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Abstract

Inverse dynamics models used to investigate musculoskeletal disorders associated with handle 

gripping require accurate phalangeal kinetics. Cylindrical handles wrapped with pressure film 

grids have been used in studies of gripping kinetics. We present a method fusing six degree-of-

freedom hand kinematics and a kinematic calibration of a cylinder-wrapped pressure film. 

Phalanges are modeled as conic frusta and projected onto the pressure grid, automatically 

segmenting the pressure map into regions of interest (ROIs). To demonstrate the method, 

segmented pressure maps are presented from two subjects with substantially different hand length 

and body mass, gripping cylinders 50 and 70 mm in diameter. For each ROI, surface-normal force 

vectors were summed to create a reaction force vector and center of pressure location. Phalangeal 

force magnitudes for a data sample were similar to that reported in previous studies. To evaluate 

our method, a surrogate was designed for each handle such that when modeled as a phalanx it 

would generate a ROI around the cells under its supports; the classification F-score was above 

0.95 for both handles. Both the human subject results and the surrogate evaluation suggest that the 

approach can be used to automatically segment the pressure map for quantifying phalangeal 

kinetics of the fingers during cylindrical gripping.
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1. Introduction

The forces and pressures experienced by the hand during tool use have been identified as 

important risk factors for hand related musculoskeletal disorders (MSDs) such as hand-arm 

vibration syndrome, carpal-tunnel syndrome, and hand/wrist tendinitis [1]. Understanding 

the relationships between these MSDs and hand forces during gripping requires accurate 

measurement of phalangeal kinetics [2–4]. More broadly, in studies of the kinetics of object 

manipulation, it is important to ensure accurate spatial registration of finger segments with 

instrumented contact surfaces [5–7].

Existing methods for measuring phalangeal kinetics generally involve either instrumenting 

the hand or instrumenting the contact surface. Instrumenting the hand includes such 

techniques as gloves with discrete sensors [8,9] or with sensor strips inserted into glove 

fingers [10], sets of pressure matrices [10] or a pressure mat attached to the hand [11], and 

distinct sensors attached to the hand [12]. Instrumenting the contact surface to acquire 

phalangeal kinetics includes using discrete sensors attached at specific locations [6,13–16], 

and covering the surface with a pressure sensitive mat or thin-film grid and applying either a 

manual [7,17–21] or automated feature-based [5] segmentation of the pressure distribution.

Gloves with a small number of individual sensors, and sensor matrices attached to the hand 

or a glove, have incomplete coverage of the contact area [10]; such methods often target data 

collection at the middle of each phalanx [8,9,12,14–16] which could alter the pressure 

distribution or not record pressures which have been observed to deviate from the middle of 

the phalanx [22,23]. The thickness of gloves can impact grip force output and distribution 

[24]; sensors of non-trivial thickness may alter the pressure distribution [11,12]. Techniques 

involving multiple sensors attached to the hand or glove may require cables or transmitters 

which can alter postures [10]. Devices instrumented with a small number of discrete sensors 

constrain finger placement, potentially altering the pressure distribution [6]. Techniques 

segmenting the pressure map into regions of interest (ROIs) through manual intervention 

introduce inter- and intra-segmenter variability in the creation of ROI boundaries [25–27]. 

Fully automated segmentation techniques based only on the pressure map create ROIs using 

inherent features of the pressure distribution; they do not provide spatial registration of 

finger phalanges and pressure cells, and thus cannot accurately locate ROI center of pressure 

(COP) relative to the contact anatomy.

Goislard de Monsabert et al. [19] wrapped a thin-film pressure grid around a 6-arm 

dynamometer handle and captured hand kinematics using retroreflective markers on the skin 

dorsal to finger joints. However, citing the complexity of fusing hand and pressure film 

kinematics, they used only thumb kinematics in calculating force vectors; the pressure map 

was manually segmented using inherent image features. Lee and Rim [22,23] combined 

cylindrical gripping kinematics and kinetics to assign pressure to phalanges. They used ink 

capsule film (Fuji Film, Fuji Photo Film USA Inc., New York) to collect peak pressure data, 

and applied black tape markers to the hand and markers to the cylinder to collect static 

kinematic data using synchronized photographic cameras. While similar, their approach has 

several important limitations. First, they used dorsal markers at joints to create and project 

finger segment lines which did not closely approximate the actual longitudinal bony 
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segments. Second, for each trial they manually aligned the film using markings on the 

handle. Third, they manually segmented the pressure distribution using a separate trial where 

the subject gripped a paper-covered handle with an inked hand, but provided no evaluation 

of either the film localization or segmentation. Finally, the film recorded only the maximum 

loading experienced by each ink capsule over the trial [23].

Inverse dynamics analyses used to study gripping related MSDs require quantification of the 

contact force between the hand and handle. In addition, the segmentation of the pressure 

map during gripping can further the understanding of the force distribution among the 

fingers, aiding ergonomic handle design. We present a method fusing hand and pressure film 

kinematics for the automated segmentation of a pressure map during gripping with minimal 

constraints on finger placement, allowing the quantification of phalangeal cylinder reaction 

forces, along with a center of pressure location, appropriate for use in inverse dynamics 

analyses.

2. Methods

2.1. Theoretical description

Thin-film pressure grids have been used previously in studies of gripping [2,5,18,19]. Our 

goal was to segment the pressure map into ROIs corresponding to overlying phalanges, 

principally of the index through little finger, based on rotational joint centers (Fig. 1A). We 

developed a fusion of hand kinematics supplied by motion capture markers, and kinetics 

supplied by a thin-film pressure grid wrapped around the handle and tracked with circular 

disk markers (Fig. 1B). First, we kinematically calibrated a pressure film coordinate system 

within the cylinder surface. Second, we utilized a six degree-of-freedom (6DOF) hand 

kinematic model in which frusta of cones are used to represent the phalanges [28] (Fig. 2A). 

In this model, segmental endpoints are created in a static calibration posture to approximate 

joint centers of rotation during dynamic trials. Frusta silhouettes were projected into the 

pressure grid to create ROIs which were used to calculate phalangeal integrated pressure, 

COP location, and cylinder reaction force (CRF) vectors. Finally, these data were combined 

with the hand kinematics in biomechanics software. A preliminary version of this work was 

presented at the American Society of Biomechanics annual meeting [29].

Two subjects (Table 1) were recruited within a research protocol approved by the agency 

Human Subjects Review Board, and provided informed consent. Kinematic data were 

collected at 100 Hz with a 14-camera Vicon MX-F40 optical motion capture system (Vicon 

Motion Systems Ltd., Oxford, England) with typical calibration accuracy better than 0.1 

mm. Gripping kinetics were collected using two cylindrical aluminum handles with thin-film 

resistive pressure grids wrapped around them, 50 mm and 70 mm in diameter, created and 

calibrated using previously published methodology [2] (Fig. 1A). Each film contained a 44 × 

44 grid of square cells 2.54 mm and 3.75 mm on a side, respectively (Tekscan, Inc., Boston 

MA, USA, models 5101 and 5150 N). Retroreflective hemispherical and circular disk 

markers were affixed to the handle and pressure film, respectively, for the creation of local 

coordinate systems. Pressure data were collected synchronously with the kinematics at 10 

Hz.
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The terminology used here is adapted from that of Pham et al. [27], used to describe the task 

of medical image segmentation.

Assigning pressure cells to ROIs which correspond to finger segments during gripping is 

similar to the task of classifying image pixels as having a particular property, such as being 

in the area of a tumor. In medical image analysis, the delineation of the pixel grid into 

regions is often based on inherent image features [27]. However, the task here was to 

generate anatomical ROIs from overlying finger segments, classifying pressure cell ROI 

membership independent of features of the pressure distribution.

Let Φ be the domain of pressure cells, each having a unique centroid location j in the 

pressure film coordinate system P, and let φ(j) be the recorded pressure value associated with 

location j. Our primary goal was to assign pressure cell locations to ROI sets Rk in Φ, where 

k ∈ {1, 2, …, K} corresponds to an anatomical ROI generated from one of K kinematically 

modeled phalanges, and k = 0 identifies the set of cells not assigned to an anatomical ROI. 

Pressure cells were assigned as members of one or more Rk based on the inclusion of the 

cell centroid within the ROI. For each Rk, a membership function, mk, was created which 

defined the fractional amount of each cell’s pressure value contained within the ROI.

The side length of the square pressure cells was more than an order of magnitude greater 

than the motion capture calibration residuals. To more closely match the pressure grid spatial 

resolution to motion capture system accuracy, each pressure cell was logically divided into a 

uniform n × n grid of subcells, with cell pressure uniformly distributed amongst all subcells. 

Spatial divisor n = 10 was found to provide a good balance between spatial resolution and 

computational complexity for single-thread execution on a personal computer (2.53 GHz 

Intel® Core i5 processor, 4GB memory). This logical division increased the accuracy of the 

partitioning of pressure cells by ROI boundaries, by the inclusion of subcells based on their 

centroid locations. In the case of a cell partially intersected by only one ROI boundary, the 

calculation of cell area within the ROI would have less than 5% error. Henceforth, the term 

cell will be used synonymously for any positive integer n.

2.1.1. Hand kinematics—A 6DOF hand kinematic model, developed by Buczek et al. 

[28], was implemented; 4 mm hemispherical markers were used to track the phalanges 

which were modeled as frusta of cones (Figs. 1B and 2A). In this model, to accommodate 

the visibility requirements of optical motion capture, joint calibration markers are located on 

dorsal and volar skin surfaces in the sagittal plane; inter-marker distance determines 

corresponding frusta diameters. Here, the frustum was used to provide a segment outline in a 

plane parallel to the handle axis during a power grip where coronal plane breadth is more 

relevant and has been shown to be consistently larger than sagittal plane depth at IP joints 

[31]. Therefore, in this study breadth measurements were used to determine frustum 

diameters; this modification did not affect the kinematic modeling. Frusta diameters were 

determined using a 12 megapixel digital photograph of the hand flat on a table with the palm 

down and fingers extended; the camera’s optical axis was perpendicular to the table with 

anthropometric scales in view. Diameters at IP joints were determined using finger width at 

the dorsal joint calibration marker. The diameter at the fingertip was determined using 

tangent lines drawn distally from the distal IP (DIP) joint and intersecting a transverse line 
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drawn tangent to the fingertip. At metacarpophalangeal (MCP) joints, the midpoints between 

the MCP markers of adjacent fingers was marked and the distance between adjacent 

midpoints was used as the diameter, except for the index and little fingers where the lateral 

and medial aspect markers, respectively, were used instead of a midpoint mark. This manual 

volumetric calibration of the model is similar to the manual application of joint calibration 

markers used to locate segment endpoints during gripping trials; it does not affect the 

automated nature of the creation of ROIs in the pressure map.

2.1.2. Pressure film kinematics—For each matching motion capture and pressure film 

sample, several local reference frames were created (Fig. 2B). Calibration disk marker 

coordinates in reference frame S and their corresponding nominal row and column pressure 

cell coordinates were used to calibrate the 2-D pressure film coordinate system, P(r, c), 

where r and c were Real-valued; e.g., the cell in the first row and column had centroid 

location j1,1 = (0.5, 0.5).

A linear least-squares optimization was performed to calculate the orientation angle (α) and 

create a row-format orthonormal orientation matrix of P in S:

(1)

Pressure cell side length d and cell spatial divisor n were used to create a scaling matrix:

(2)

Establishing the translation between coordinate systems requires a point whose coordinates 

are known in both systems. This is often the origin of one system, although any common 

point may be used. To reduce errors associated with marker-based tracking, when the 

coordinates of multiple points are known in both systems it is preferable to use their centroid 

instead of a single point [33]. The correspondence between the disk markers’ centroid in 

S, Sm̄, and their nominal cell centroid, Pm̄, was used to locate the origin of P in S:

(3)

Using Eqs. (1)–(3), a row-format surface position vector, Srj, could be transformed into a 

Real-valued pressure cell position vector:

(4)

The precision of the pressure film kinematic calibration was assessed by calculating the 

root-mean-square error (RMSE) of calibration markers with nominal cell centroids. The 

pressure film had been permanently adhered to the handle in a prior study, complicating the 
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assessment of calibration marker accuracy. The calibration process was replicated three 

times using a setup similar to that of the 50 mm handle, using a lightly-taped pressure film 

which was removed after each calibration to measure marker placement accuracy.

2.1.3. Silhouette projection and ROI creation—A trapezoidal silhouette of the 

phalanx frustum was created by the intersection of its long axis with a plane parallel to the 

cylindrical axis (Fig. 2B). Silhouette vertices were projected onto the surface orthogonally to 

the cylindrical axis and the surface. Using Eq. (4), projected vertex points in S were 

transformed into Real-valued row and column coordinates in P, and were linearly 

interpolated to create a ROI. At IP joints, the ROIs were typically not perfectly mated. This 

was expected due to the use of a 6DOF hand model and to the orientations of the flexed 

fingers relative to the cylindrical axis. In order to more realistically represent the contact 

anatomy, ROIs at IP joints were connected by a shared boundary using the midpoints of 

respective adjacent medial and lateral vertices.

2.1.4. Region of interest set membership—For each anatomical ROI, Rk, where k ∈ 

{1, 2, …, K}, and for all centroid locations j, there was an initial pressure cell set 

membership function:

(5)

Additionally, all cells which were not members of an anatomical ROI were contained in a 

non-anatomical ROI, R0, with an initial membership function:

(6)

Initially all membership functions had binary range {0, 1}. If there were no overlapping 

ROIs, the membership functions  would preserve the unity of pressure in Φ. However, 

overlapping regions were allowed and expected. Therefore, we apportioned the cell pressure 

value equally among overlapping regions, resulting in final membership functions for all j, 
k:

(7)

The combination of Eqs. (5) and (6) ensured that ∀j, ∃k, , or that every cell was 

contained within at least one ROI. Therefore, Eq. (7) ensured that ∀j, ∀k, 0 ≤ mk(j) ≤ 1, and 

∀j, , or that the unity of pressure was preserved while allowing overlapping 

anatomical ROIs.
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An outward-pointing unit vector normal to the cylinder surface, Cnj, was created at each cell 

centroid, and the resultant cylinder reaction force vector was calculated for each Rk:

(8)

where A was the cell area. The force vector was transformed into laboratory coordinates. 

The COP was calculated using cell centroid position vectors:

(9)

Using the inverse of Eq. (4), the COP was transformed into S and ultimately into laboratory 

coordinates.

2.1.5. Phalanx surrogate validation—Direct validation of image segmentation tasks is 

often confounded by the lack of a feasible gold standard method providing a ground truth 

segmentation [25,34]. Surrogates for human anatomy have been used to provide 

experimental control in evaluating image segmentation algorithms and imaging systems 

[25,27,35–37]. We constructed a phalanx surrogate for each handle (Fig. 3A). The surrogate 

exerted pressure through two supports, each of which was slightly less than a column in 

width and a multiple of rows in height. Tracking and calibration markers were attached to 

replicate the modeling of a phalanx, kinematic calibration data were collected, and 

calibration markers removed. The surrogate was attached to the handle and kinematic and 

pressure data were collected (Fig. 3B). Thin strips of a high-friction cushioning material 

were incorporated between the supports and pressure film and were included in the design.

The surrogate was attached such that each support lay within a single column and along a 

number of rows which defined the actual ROI, RA. The surrogate was designed to produce a 

projected ROI encompassing the cells under and between its supports, defining the 

hypothesized ROI, RH. Using the same method as with human subject data, a hypothesized 

ROI was generated for surrogate trials (Fig. 3C). The goal in the surrogate trial was to 

perform a binary classification of pressure cells as being either inside or outside of RA. This 

task can be seen as hypothesizing the case’s membership in one of two ground truth sets, 

“positive” or “negative” (P or N) for a cell centroid being respectively inside or outside of 

RA. By comparison with the ground truth, the classification of each cell was evaluated to be 

true or false, leading to four possible outcome sets, defined in Fig. 4.

Binary classification outcomes are closely related to statistical hypothesis testing [38]. The 

frequency of correctly classified positive cases is called the true positive rate: TPR = |TP|/|P|, 

where vertical bars denote set cardinality or number of members. TPR is also known as 

sensitivity, the statistical power and complement of the probability of a “Type II” error. The 

frequency of correctly classified negative cases is called the true negative rate: TNR = |TN|/|

N|. TNR is also known as specificity, the complement of the probability of a “Type I” error. 

Sensitivity and specificity are often used together to characterize a classifier’s tradeoff 

between true positives and false positives. In our case the number of negative cells, |N|, is 
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influenced by the size of the pressure film grid and so TNR would arbitrarily depend on the 

pressure film model. However, since the ideal of TPR = 1 can be achieved by setting RH = 

Φ, using TPR alone is insufficient. An additional performance measure is precision, which is 

the proportion of true positives in RH: precision = |TP|/(|TP| + |FP|). The unweighted first 

harmonic mean of TPR and precision, known as the F-measure or F-score [38], has been 

used to describe classification performance independent of |N|:

(10)

Substituting the set theoretic formulations in Fig. 4,

(11)

and

(12)

Substituting Eqs. (11) and (12) into Eq. (10) and simplifying, we express F1 in terms of ROI 

sets:

(13)

The numerator of Eq. (13) rewards achieving true positives, while the denominator penalizes 

doing so by creating an overly large RH. The range of F1 is [0, 1], where the ideal result of 

F1 = 1 is obtained if and only if RH = RA. Using Eq. (13), F1 was calculated for a single trial 

using each handle and the surrogate designed for it.

2.2. Experimental protocol

After the subject provided informed consent, anthropometric measurements were taken of 

the right hand, and motion capture markers were applied. Dorsal photographs were taken of 

the hand resting flat on a tabletop with the fingers extended, a pose similar to the subsequent 

kinematic calibration. Markers used only for calibration were removed and the subject 

performed a maximum power grip with their dominant right hand for 10 seconds on each 

handle (Fig. 1A). The trial length was to allow subjects time to achieve a quasi-static 

exertion level based on total grip force. Subjects were instructed to grip such that the thumb 

did not overlap, and exert pressure on, other digits. Experimenters verified the hand position 

on the pressure film to ensure data collection under the fingers, as has been done in other 

studies of gripping [2,7,20,22]. Neither the hand-arm system nor the handle were fixed in 

space; excellent visibility of the motion capture markers was observed, with the vast 

majority being tracked by at least three cameras. The “6DHand” 6DOF kinematic model and 

Sinsel et al. Page 8

Med Eng Phys. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



marker set developed by Buczek et al. [28] was used for the hand kinematics (Fig. 1B). 

Kinematic modeling was performed in Visual3D; kinematics and pressure data were 

imported into MATLAB (The MathWorks, Inc., Natick MA, USA, version 2009a) for 

analysis.

3. Results

Pressure maps with anatomical ROIs are presented for four trials involving two subjects and 

two handle sizes (Fig. 5). The subjects differed greatly in both body mass and hand length 

(Table 1). Human trial results show strong qualitative correspondence between pressure film 

ROIs and overlying anatomy, with the ROIs containing nearly all suprathreshold pressure 

within recognizable anatomical patterns. ROI boundary locations also demonstrate the 

transparency of the method to inherent features of the pressure map; some IP joint 

boundaries cross through areas of no measured pressure, while others cross through areas of 

relatively homogenous local pressure. Force magnitudes are presented (Fig. 6A) for the 

sample pressure data shown in Fig. 5C. The force vectors were applied to the hand at the 

corresponding COP locations, in modeling software (Fig. 6B).

Pressure film kinematic calibration RMSE are presented for the four trials shown in Fig. 5 

and for the replicated calibrations (Table 2). Mean RMSE values were less than 0.5 mm, 

with standard deviations less than 0.02 mm. The calibration replication study produced 

similar precision, with mean RMSE less than 0.5 mm, and mean error vector magnitude and 

standard deviation were less than 0.2 mm for all three replications. The maximum error 

vector magnitude across all replicated calibrations was less than 10% of the length of a cell 

side. Standard deviations were higher along the row axis, which was aligned with the 

cylindrical axis, where marker placement relied on more obscure visible landmarks than 

along the column axis.

The hypothesized ROIs of the surrogate trials closely matched the actual ROIs, with F1 > 

0.95 for both handles (Table 3). The largest sources of error were likely in the surrogate 

fabrication and its attachment. Notwithstanding these potential sources of error, similarly 

high performance was demonstrated for both handles which were of different diameters and 

wrapped with different pressure film models.

4. Discussion and conclusions

In the current study, we proposed a method to extract the contact forces applied on the finger 

segments in gripping test, wherein a pressure grid on the handle was kinematically calibrated 

for the fusion of hand kinematics and kinetics resulting in the automated creation of 

phalangeal regions of interest in the pressure film. The calculated contact force on the 

segments of the index through little finger for a male subject maximally gripping a 50 mm 

handle (Fig. 6A) are consistent with the mean contact force reported in previous studies 

[15,16,19,23]. However, differences in results may be expected due to methodological 

differences. In particular, Amis [15] collected force data from independent trials, one per 

finger, not all fingers simultaneously. Radhakrishnan and Nagaravindra [16] used four 

parallel arcs of discrete sensor pads, with a pad near the middle of each phalanx, which 

constrained the grip posture and potentially altered the force distribution. Our technique 
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does not constrain the grip posture to accommodate discrete sensors and the use of a 

pressure film provides more complete coverage of the finger contact area. Total finger force 

is consistent with that reported by Goislard de Monsabert et al. [19], who used a similar 

pressure film with a manual segmentation method; however a detailed comparison of the 

forces applied on the finger segments is not possible, as different anatomical bases were 

used for segmenting the pressure distribution.

Phalangeal normal force is also generally consistent with that reported by Lee and Rim 

[22,23], whose method was mathematically similar to that presented here. However, they 

used ink capsule film, which records the maximum loading on each capsule during the trial. 

Additionally, they used skin markers dorsal to finger joints to create segment lines. 

Projections of dorsal segment lines can cause errors, particularly in COP locations, when the 

plane of flexion is not aligned with the cylinder transverse plane – an orientation illustrated 

by the index finger of subject A in our study (see Fig. 5A and B). Our method uses a 6DOF 

hand model to provide segment lines which approximate the bony segment. In addition, their 

method involved a manual segmentation of the pressure map which is not explained in detail 

or evaluated. Rossi et al. [20] combined a handle with integrated sensors for measuring total 

grip force with an overlying pressure mat to provide a total grip force-normalized pressure 

distribution, however they used a manual segmentation technique based on subject 

anthropometry. Our approach can improve the localization and segmentation of pressure 

data in such sensor fusion. Automated image segmentation techniques based on inherent 

image features fail in regions of homogenous data, such as in areas of sub-threshold pressure 

(see Fig. 5A, little finger distal IP joint), and in areas where the ROI boundary crosses a 

contiguous region of pressure (see Fig. 5C, thumb IP joint). By combining hand and 

pressure film kinematics, our technique is capable of creating ROIs independent of the 

inherent features of the pressure distribution.

The segmentation performance relies principally on the accuracy of the human kinematic 

modeling, the accuracy of the pressure film kinematic calibration, and on the projection of 

frusta silhouettes. The kinematic performance of the 6DHand model, including the trials 

used here, has been described elsewhere for the index through little finger [28]. For 20 

subjects lightly gripping a handle 30 mm in diameter, the reported means and standard 

deviations of translations at IP joints were less than 2 mm. The accuracy of the pressure film 

kinematic calibration could not be directly measured as the film had been permanently 

adhered to the handles. However, the replicated calibrations, performed by the same 

experimenter who kinematically calibrated the handles used for subject trials, demonstrated 

consistently high accuracy, and RMSE values were similar to those observed in subject trials 

(Table 2). Our method involved modeling phalanges as frusta whose silhouettes were 

mathematically projected onto the pressure film. The resulting ROI could encompass cells 

which do not lie under the contact anatomy, and ROIs of adjacent digits could overlap. In 

other studies involving the segmentation of pressure maps generated by the hands or feet, it 

is common for segmentation regions to encompass area not in direct contact with overlying 

anatomy [18–21]. An individuated surface model, such as via 3-D finger scan, could provide 

more accurate projections. However, such geometric errors would be primarily in the 

longitudinal ROI borders where observed pressure values were relatively low (see Fig. 5). 

Also, total contact area changes with total grip force output and handle diameter [39,40]. It 
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seems likely that any method wherein a static geometric model is projected onto the pressure 

map during a dynamic trial would result in ROIs which do not precisely fit the contact area. 

Further, the inclusion of cells of subthreshold pressure in an ROI would have no change on 

the force and COP calculations in Eqs. (8) and (9), as these are not directly affected by ROI 

area.

The pressure films did not completely cover the handles; that limitation was a byproduct of 

the combination of handle and pressure film and was not inherent to the approach. Also, 

since inverse dynamics analysis is mainly intended to investigate the musculoskeletal 

loading in the fingers and thumb, which is relevant to the MSDs, the contact forces at the 

palm are not important. It is well accepted that the musculoskeletal loading in the fingers is 

minimized for a handle diameter of approximately 40 mm [39,41]. A smaller handle size 

(e.g., <30 mm) is rarely used in tool design because of ergonomic reasons. Therefore, we 

have not considered the effects of the finger overlap when gripping on such small handles. 

The pressure film models lacked shear force information, although shear may cause local 

variations in the grip force distribution, especially with high-friction handle surfaces. Enders 

and Seo [14] observed a 22% mean increase in proximal-distal shear force and a 4% mean 

increase in phalanx normal force when subjects gripped a cylindrical handle 51 mm in 

diameter covered in rubber as opposed to paper (for both 50% and maximum exertion). 

Notwithstanding these limitations, reasonable accuracy was demonstrated in both qualitative 

and quantitative evaluations, suggesting that this approach provides a good first 

approximation of phalangeal kinetics during gripping on a cylindrical handle.

Acknowledgments

Funding

This work was funded by the National Institute for Occupational Safety and Health (NIOSH), U.S.A.

The authors thank Elizabeth Kyonka for her helpful discussion of an earlier version of the manuscript.

Nomenclature

Φ domain of pressure cell centroids j

d pressure cell side length

n pressure cell spatial divisor

C, S, P local reference frames for cylinder, cylinder surface, and pressure film

x, y, z, s, r, c coordinate system axes

Srj, Prj, Sl row-format position vectors with reference frame superscript

Sm̄, Pm̄ pressure cell calibration marker centroid position vectors

α orientation angle of P in S

SRP orthonormal orientation matrix of P in S

SDP scaling matrix from S to P
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φ(j) pressure value for cell at location j

Rk ROI set k in Φ

mk membership function for Rk

|Rk| set cardinality

||e|| vector magnitude

∀, ∃. quantifiers: universal, existential

∪, ∩, ∈ set operators: union, intersection, membership

TP, FP, TN, FN classification outcome sets

TPR, TNR true positive rate, true negative rate

F1 unweighted F-score

pk integrated pressure for Rk

Cfk cylinder reaction force vector for Rk

Pck center of pressure position vector for Rk
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Fig. 1. 
Experimental setup. (A) Cross-sectional illustration of a finger during gripping, with the 

distal, middle, and proximal phalanges. (B) A subject gripping the 50 mm handle. The 

segmental contact area is defined using estimates of the joint centers of rotation (CORs). 

Hemispherical (4 mm) markers were used to kinematically calibrate segment endpoints at 

CORs, and track the finger segments and cylinder. Circular disk (5 mm) markers were used 

to calibrate the pressure film coordinate system.
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Fig. 2. 
Kinematic analysis. (A) Kinematic modeling of the trial in Fig. 1B, in Visual3D software 

(C-Motion Inc., Germantown MD, USA), using the 6DOF hand kinematic model “6DHand” 

[28]. (B) Coordinate systems and frustum silhouette projection onto the pressure film. 

Hemispherical markers on the cylinder were used to calibrate the cylinder 3-D coordinate 

system, C(x,y,z), in the laboratory (L), where the z-axis was aligned with the cylinder 

longitudinal axis. The surface of a cylinder may be conceptually unrolled and 

mathematically treated as a 2-D plane [32]. The 2-D cylinder surface coordinate system, 

S(s,z) was created through a parameterization of C. The pressure film was assumed to be 

coincident with the cylinder surface and was treated as a 2-D grid in S. Disk marker 

coordinates in S were used to calibrate the pressure film row and column coordinate system 

P(r,c). The frustum silhouette was projected orthogonally onto S and transformed into P to 

create an anatomical ROI in the pressure film.
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Fig. 3. 
Phalanx surrogate design (A), trial setup (B), and graphical result (C) for the 50 mm handle. 

The pressure map is presented in binary scaling for clarity, with the actual ROI defined by 

activated cells and the hypothesized ROI boundary drawn with a solid black line. The same 

algorithm was applied as with the human subject data. Square pressure cell sides were 2.54 

mm.
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Fig. 4. 
Binary classification outcomes in set theoretic formulations. True positive (TP), false 

positive (FP), true negative (TN), and false negative (FN) outcome sets are defined by the 

intersection of ROI sets RH and RA within pressure cell domain Φ. An individual pressure 

cell is included as a member of the appropriate set based on its centroid location.
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Fig. 5. 
Grip pressure maps with phalangeal regions of interest for a combination of subjects and 

handle sizes. Each panel (A–D) contains a single pressure sample of a maximum voluntary 

grip trial. Each row is a single subject; anthropometry is given in Table 1. The left and right 

columns show results from the 50 mm and 70 mm handle, respectively. Each panel 

represents a 44 × 44 grid of pressure cells, where cells in the left and right columns have 

2.54 mm and 3.75 mm side length, respectively. All panels share a uniform pressure scale in 

kilopascals, at bottom.
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Fig. 6. 
Phalangeal contact forces for Subject B with the 50 mm handle. (A) Force magnitudes for 

illustrated finger segments. (B) Cylinder reaction force vectors combined with the kinematic 

hand model in Visual3D software, using the corresponding COP locations in laboratory 

coordinates. The results were calculated from the sample reported in Fig. 5C. Forces were 

not calculated for the middle and metacarpal phalanges of the thumb, as those ROIs were not 

entirely within the pressure film.
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Table 2

Pressure film kinematic calibration errors. For the subject trials, RMSE is of 8 to 10 markers per frame with 

the mean (SD) calculated across 100 frames. Errors are between marker and nominal cell centroid in the 

calibrated grid. For replicated calibrations with a handle 47 mm in diameter, the RMSE and error vector 

magnitude (||e||) is of 10 markers of a single frame. The pressure film was optically scanned in a flatbed 

scanner and imported into vector graphics software (CorelDRAW X6, Corel Corp., Ottawa Ontario, CA), 

where errors were manually measured between marker and cell centroids. The same experimenter performed 

all calibrations. Measurements are in millimeters.

Subject trial calibrations

Subject Handle diameter Mean RMSE

A 50 0.41 (0.01)

A 70 0.35 (0.01)

B 50 0.49 (0.02)

B 70 0.32 (0.01)

Replicated calibrations

Mean ||e|| RMSE

Trial 1 0.14 (0.08) 0.39

Trial 2 0.12 (0.09) 0.41

Trial 3 0.14 (0.08) 0.37
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Table 3

Phalanx surrogate validation results. The F-score (F1), is the unweighted harmonic mean of precision and the 

true positive rate (TPR), and has range [0, 1], where higher is better.

Handle diameter Precision TPR F1

50 mm 0.942 0.973 0.957

70 mm 0.945 0.972 0.959
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