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Abstract
Rationale and Objective—In this Emerging Science Review, we discuss a systems genetics
strategy, which we call Gene Module Association Study (GMAS), as a novel approach
complementing Genome Wide Association Studies (GWAS), to understand complex diseases by
focusing on how genes work together in groups rather than singly.

Methods—The first step is to characterize phenotypic differences among a genetically diverse
population. The second step is to use gene expression microarray (or other high throughput) data
from the population to construct gene co-expression networks. Co-expression analysis typically
groups 20,000 genes into 20–30 modules containing 10’s to 100’s of genes, whose aggregate
behavior can be represented by the module’s “eigengene.” The third step is to correlate expression
patterns with phenotype, as in GWAS, only applied to eigengenes instead of SNPs.

Results and Conclusions—The goal of the GMAS approach is to identify groups of co-
regulated genes that explain complex traits from a systems perspective. From an evolutionary
standpoint, we hypothesize that variability in eigengene patterns reflects the “good enough
solution” concept, that biological systems are sufficiently complex so that many possible
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combinations of the same elements (in this case eigengenes) can produce an equivalent output, i.e.
a “good enough solution” to accomplish normal biological functions. However, when faced with
environmental stresses, some “good enough solutions” adapt better than others, explaining
individual variability to disease and drug susceptibility. If validated, GMAS may imply that
common polygenic diseases are related as much to group interactions between normal genes, as to
multiple gene mutations.

Keywords
systems genetics; genetics of complex diseases; scale-free networks; hybrid mouse diversity panel;
computational biology

Introduction
The Human Genome Project completed in 2001 is one of the seminal achievements in
modern science, and ushered in an era of unbridled optimism about our prospects for
deciphering the genetic basis of human diseases, and beyond 1. A decade later, over a
thousand genetic loci conferring increased risk of a wide variety of diseases have been
identified, successfully revealing new genes and novel pathways not previously suspected to
be involved 2. While these findings are a major advance, associations of SNPs with common
polygenic diseases, have, in some respects, been disappointing 3: generally, SNP’s typically
confer only a modestly increased risk (average 1.3-fold) and explain only a small fraction of
the genetic component (less than 20%). Moreover, since the loci are identified out of
context, elucidating the role such genes play in disease can take years (e.g., the role of
apolipoprotein E in Alzheimer’s). Even for single gene disorders (such as Huntington's
disease), a mechanistic understanding of the effects of the genetic variation remains
challenging. For common complex diseases such as hypertension, diabetes, atherosclerosis,
heart failure, cancer and Alzheimer’s disease, SNPs associated with increased risk have
small effect sizes and only account for a small fraction of the genetic risk 3. Thus, the
majority of patients at risk for developing common diseases are unlikely to be identified by
SNPs.

This is not really surprising, given that most common diseases are polygenic, caused by
modest effects of multiple genes interacting with environmental factors. Hundreds or
thousands of loci can influence common polygenic diseases and many of these loci have
individual effect sizes too weak to be identified individually by Genome-Wide Association
Studies (GWAS). Since GWAS focus on identifying SNPs that for the most part co-vary
with single gene mutations, it is not surprising that the genetic basis of common diseases
remains unsolved for the bulk of afflicted patients.

To break this impasse will require moving beyond the single gene perspective to view how
groups of genes work together. A worthwhile analogy may be the similarity between a
human organism and a business organization. Both have modular designs: a human is
comprised of physiological modules regulating metabolism, cell cycling, apoptosis,
differentiation, signaling, structural integrity, etc., whereas a large business consists of
divisions, such as production, distribution, marketing, public relations, hiring, legal, etc. If
you were asked to analyze why a business is failing, the equivalent to GWAS would be a
bottom-up approach, reviewing the personnel file of each employee (gene), one at a time, to
decide whom to pin the blame on. Occasionally, a business failure may be attributed to a
single rogue employee (analogous to a monogenic disease), but most business failures are
multi-factorial (analogous to complex polygenic diseases) in which key divisions are
underperforming or not integrating their activities effectively with other divisions. In the
human genome, there are millions of SNPs with a prevalence exceeding a few percent of the
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general population 2. It is the combined effect of many variants which contribute to an
individual’s disease risk. In principle, a bottom-up GWAS approach could be applied to
analyze these SNP’s and identify the variation involved in disease. However, since each
SNP involved in disease only accounts for a small fraction of the disease risk,
astronomically large samples are required to identify these variants. Straightforward
combinatorial mathematics illustrates the problem. To identify one SNP out of a million
associated with a disease is already looking for a needle in a haystack. However, the number
of ways in which a million SNP’s can be combined in pairs is approximately 500 billion1;
for triplets, this number mushrooms to 1.7×1017. For 16 SNP combinations, the number of
possible combinations reaches 1082, greater than the estimated number of atoms in the
observable universe (1080)! As an example, GWAS performed to identify the genetic basis
of coronary heart disease involved over a hundred thousand individuals, and still these
studies accounted for only about 4% variance of the trait. A discussion of the lack of power
of GWAS for identifying genetic interactions is presented in Zuk et al. 4.

If the bottom-up GWAS approach of looking at SNP (or gene) combinations to explain
complex disease susceptibility has serious limitations, an alternative is to develop a top-
down approach. In analyzing a business failure, this would entail a multi-step process: first,
group (cluster) employees into divisions (modules); second, relate the divisions to
performance measures; third, identify under-performing employees within poorly
performing divisions. In this article, we provide a perspective illustrating how we might take
advantage of new “–omic” technologies to view how genes work in groups, rather than as
single agents, and use this information to develop an analogous top-down strategy for
elucidating the genetic basis of complex polygenic diseases. In the first section, we set the
stage by borrowing the “good enough solution” concept from the field of evolutionary
biology 5, 6. This concept is based on the idea that in complex systems, many different
combinations of the system’s parameters can produce a nearly identical output (i.e. “good
enough solutions” which meet the required output specifications). Thus, a wide range of
individual gene expression patterns may all be perfectly adequate for normal function, but
have different abilities to adapt to an environmental stress, accounting for differential
susceptibility to common diseases and drug reactions. This raises the intriguing hypothesis
that susceptibility to common diseases and drug reactions may be more related to the way in
which normal genes interact with each other, than to additive effects of multiple gene
mutations. Following upon this rationale, we then describe how network theory can be
applied to gain insight into biological systems. We explain how a randomly-interacting,
growing modular network facing selection pressures naturally evolves towards a scale-free
network topology conferring robustness, adaptability, and efficiency, through small world
properties, to the system. We then turn to the gene networks specifically, and discuss how
systems genetics approaches can be used to discover how genes are naturally grouped into
modules, each containing tens to hundreds of genes, linked in an approximately scale-free
modular network. We explain how the functions of these modules can often be discerned
from known genes (e.g. apoptosis genes, metabolic genes, cell cycle genes) and cell markers
in which they are enriched. We then illustrate how novel system genetics resources, such as
the Hybrid Mouse Diversity Panel (HMDP), can be utilized to test the hypothesis that
variation in gene module expression patterns between different strains of mice reflect
different “good enough genetic solutions” which are all comparably adequate for normal
function, but exhibit differential adaptability to disease-inducing stresses. Conceptually, this
allows for a Gene Module Association Study (GMAS) to explore associations between gene
module expression patterns and disease susceptibility, using the same biostatistical
techniques developed for GWAS. In the final section, we discuss some possible applications
of this GMAS strategy, and speculate on how this approach might be used on a broader scale
involving the other “–omics,” to further elucidate the causes of common human diseases and
drug reactions.
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“Good Enough Solutions”
In a series of fascinating studies 5, neuroscientist Eve Marder and her colleagues have
investigated the somato-gastric ganglion of lobsters and crabs. This ganglion, which consists
of about 30 neurons with well-defined interactions, exhibits a characteristic neural bursting
pattern controlling digestive activity (Fig. 1A). When Marder and colleagues analyzed the
densities of various ion channels regulating the bursting activity, they were surprised to find
that, despite very similar bursting patterns, the densities of the key ion channels differed
substantially from lobster to lobster, which they also confirmed by measuring mRNA and
protein levels 5. For example, some lobsters expressed Ca-activated K channels at a high
level, whereas others relied on a low expression level, but both exhibited nearly identical
bursting patterns under normal conditions (Fig. 1B). When subjected to an environmental
stress, such as histamine exposure, however, the responses could be quite different 5. When
they constructed a mathematical model of the bursting behavior incorporating the relevant
ion channels known to be present, and performed a random search of 17 parameters to
identify combinations produced similar bursting patterns, out of 594,510 models tested, they
identified over a thousand “good enough solutions” that satisfied the basic requirements
(Fig. 1B). Upon reflection, this is not really surprising, since it has been long appreciated
that when models contain many adjustable parameters, many different combinations can be
fitted to the same data (e.g. by requiring that the sum of squares of the differences between
the predicted and actual data fall below some arbitrary minimum threshold). To paraphrase
John von Neumann 7, “With four parameters, I can fit an elephant, and with five I can make
him wiggle his trunk.”

Why do different lobsters choose different “good enough solutions” for the same bursting
behavior? Marder and colleagues argued that it has the evolutionary advantage of enhancing
the adaptability of the lobster population as a whole to environmental stresses. For example,
imagine that a toxin blocking Ca-activated K channels is dumped into the lobsters’ habitat.
Those lobsters whose “good enough solutions” are highly dependent on Ca-activated K
channels will be poisoned, and may die. However, lobsters whose “good enough solutions”
are minimally dependent on Ca-activated K channels will be spared, so that although the
lobster population will be transiently diminished, it will not be extinguished. Thus, the
“good enough solution” concept resolves the paradox that a living organism must be both
robust, i.e. impervious to environmental challenges, yet at the same time be able to adapt to
environmental challenges. That is, the organism is resilient and stable in the face of most,
but not all, environmental challenges. As long as all of the individuals in the population are
not all susceptible to the same environmental challenges, this differential adaptability
ensures that some individuals will survive to restore the population.

It is easy to imagine how the same principle might apply to patients in a clinical setting 8.
For example, consider the human ventricular action potential model illustrated in Fig. 2. In
this computer modeling study, Sarkar & Sobie9 used a human cardiac action potential model
to demonstrate that many different combinations of 16 ionic current parameters all produced
“good enough solutions” to generate a “normal” cardiac action potential. Fig. 2A shows two
different combinations of parameters that produced nearly identical action potentials (blue
and red). For the blue trace, the conductance of rapidly-activated delayed rectifier K
channels (GKr) is much larger than for the red trace, indicating that repolarization of the blue
action potential depends more strongly on GKr. Now imagine two patients, Tom and Jerry,
whose genetically-determined cardiac action potentials correspond to the blue and red “good
enough solutions” respectively. Tom and Jerry both have normal QT intervals on their
electrocardiograms, since the summed ionic conductances are adequate to repolarize either
action potential under normal conditions. However, suppose that Tom and Jerry develop
infections, and are treated with the antibiotic erythromycin, a known GKr blocker. Tom’s QT
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interval may show dramatic QT interval prolongation, since his ventricular repolarization is
strongly dependent on GKr. Jerry, on the other hand, may show little change, since his
ventricular repolarization is relatively insensitive to GKr. Thus, Tom is at increased risk of
developing life-threatening arrhythmias like Torsades de pointes when exposed to GKr
blocking drugs, whereas Jerry is not.

If true in humans as well as lobsters and crabs, the “good enough solution” concept provides
an appealing explanation for why some individuals, but not others, develop side effects from
drugs, or, similarly, why only some individuals develop hypertension on a high salt diet, or
atherosclerosis on a high fat diet. This raises the possibility that “modifier genes,” the
traditional explanation proposed to underlie individual susceptibility to drug reactions or
diseases, are really different “good enough solutions” among individuals in a population. If
true, susceptibility to common diseases or drug reactions might be determined more by how
normal genes are grouped, rather than by additive effects of multiple gene mutations.

Networks
To understand how our genome produces different “good enough solutions,” we need to
understand how gene expression is regulated at a global level, i.e. how genes interact with
each other within the context of an integrated biological network. In principle, our 23,000
genes could be individually regulated to produce a truly astronomical number of potential
“good enough solutions.” However, mounting evidence indicates that biological systems are
organized as modular networks, in which genes, proteins, metabolites and other factors
operate in groups, rather than as single agents. For example, it is well-appreciated that many
transcription factors, micro RNA’s, DNA methylation and chromatin remodeling regulate
the expression of large numbers of genes in concert, consistent with genes being organized
as a network of co-expression modules.

How can a gene co-expression network, if it exists, be revealed? In network theory, a
complex system is represented in a highly abstract manner, dispensing with the fine details
and considering the system simply as “nodes” connected by “links” or “edges”. This type of
analysis has provided dramatic insights into how network structure (also called network
topology) evolves in complex systems, ranging from technology and social networks to
biological networks, including gene, metabolic and protein-protein interaction networks 10.

The process begins when a group of nodes form links with each other. If the process is
random, then the majority of nodes will have close to the average number of links per node,
and very few nodes will have many more, or many fewer, links than the average. But now
suppose that the network is growing, with new nodes and new links being added over time.
In this case, the original nodes, having been around longer, will have had more opportunities
to capture links as they are added to the system. Thus, older nodes will have, on average,
more links than newer nodes, eventually creating a small subset of the oldest nodes, called
hub nodes, which are more highly connected than average node. Now imagine one more
feature, that nodes which have already acquired a substantial number of links have an
advantage in acquiring new links as they are added to the growing network, i.e. “the strong
get stronger and the weak get weaker.” This feature, called preferential attachment, further
accentuates the connectivity of the hub nodes, generating a “scale-free” network, so-called
because the number of links per node follows a power law distribution.

For a self-organizing system which needs to be robust, adaptable and efficient in order to
survive in a constantly changing environment full of daily stresses, such as any biological
organism, the presence of highly-connected nodes in a network confers some extraordinarily
useful properties. First, a network with many parallel connections between nodes has the
advantage that should a link between two nodes a and b be destroyed, redundant pathways
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exist to allow the information to flow from a to b by an alternate route (e.g. through a node c
linked to both a and b). In a typical scale-free network, for example, up to 80% of nodes and
links can be randomly destroyed before the network fails catastrophically 11. In contrast, a
purely linear pathway (e.g. a→ b→ c → d) is disabled if even a single link or node is
destroyed. Thus, the robustness of a network in the face of a constantly changing
environment is a key property promoting survival.

The second key network property is the ease with which information flows quickly from one
location to another. This “small world property” is conferred by hub nodes which make long
range connections to other nodes, analogous to the “six degrees of separation” effect in
friendship networks. The ability to access any individual node from a multitude of
alternative pathways makes a scale-free network inherently adaptable to changing
environmental conditions, another key priority for living systems.

Since the properties described above involve the presence of multiple redundant pathways,
one might think that a scale-free network, by favoring robustness and adaptability, sacrifices
efficiency compared to a linear system in which the pathway between the input and output is
very direct. This might be true if the system operated under nonvarying environmental
conditions. However, to adapt to changing environmental conditions, a network is inherently
more efficient than a strictly linear system. For example, consider the bacterium E. Coli,
whose metabolic pathways include a total of 778 metabolites 12. To represent metabolism as
a network, each metabolite is considered a node, and each enzyme which converts one
metabolite to another is a link. If, hypothetically, E. Coli’s metabolites (nodes) were
arranged in a linear chain, from #1 to #778, linked by enzymes converting #1 to #2, #2 to
#3, and so forth (Fig. 3A), then consider the following scenario. If metabolite #575 were a
critical metabolite such as uridine, required for DNA synthesis and replication, the bacteria
would thrive in a broth containing an ample supply of nearby metabolites, such as #573.
However, if the supply of #573 was exhausted, and only a metabolite at the end of the chain
was available, such as #4, the bacteria would now have to convert hundreds of precursor
metabolites to produce uridine. This process would be slow, inefficient and energetically
costly, making it unlikely that the bacteria could adapt successfully to its new environment.
In contrast, in a scale-free metabolic network, the presence of hub nodes ensures that
metabolites anywhere in the network can be converted to uridine in only a few steps, as
illustrated in Fig. 3B (red nodes).

What is the evidence that scale-free topology is present in modular biological systems, such
as metabolic, gene and protein networks? Directly extrapolating from technology and social
networks, Barabasi and colleagues 12 were the first to show that the metabolism of E. Coli
had features of a scale-free network. Representing each metabolite as a node, and each
enzyme as a link, Fig. 4A shows the E. Coli network displayed visually as a topological
overlap map. Fig. 4B shows the statistical distribution of the number of links per node on a
log-log scale, demonstrating the power law relationship (i.e. the defining characteristic of
scale-free systems). For E. Coli, the metabolic network of 768 nodes contains 5,763 links.
Due to the hub metabolites (such as ATP, pryuvate, glutamate, NADH, and others), the
average number of links (distance) required to convert one metabolite to another is 3.2 12,
i.e. less than the “six degrees of separation” characterizing many social networks. So our
hypothetical E. Coli bacteria in Fig. 3 would do just fine in a culture medium containing
either metabolite #573 or #4 as its only available substrate for synthesizing uridine.

Barabasi and many others have gone on to show that, in addition to metabolism, both gene
co-expression networks and protein-protein interaction networks display similar power law
relationships suggesting at least an approximately scale-free topology 10. Although this
could be merely coincidental, the convergence of modular systems, ranging from molecular
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to social networks, towards scale-free topology suggests a fundamental mechanism in
biological evolution for optimizing robustness, adaptability and efficiency in response to a
changing environment, the essential qualities needed for a biological organism to thrive.

How to construct a gene network
We now turn to analyzing genes from a modular network perspective. We start by assuming
that if genes belong to the same module, they will be co-regulated by the same factors, and
therefore their expression levels should track each other. In addition, from the considerations
enumerated above, we assume that this modular network is likely to exhibit, at least
approximately, a scale-free topology. A number of analytical methods have been proposed
to detect sets of interacting genes, including nonnegative matrix factorization 13, Bayesian
networks 14–17, ARACNe 18, Geronemo 19 and MINDy 20 or WGCNA 21–23. The first step
is to quantify gene expression levels in a genetically diverse population, which can be
achieved using gene expression microarrays or RNA sequencing. The next step is to analyze
this data using an appropriate network analysis algorithm. Here we briefly summarize the
approach using one of these approaches, Weighted Gene Co-Expression Network Analysis
(WGCNA). WGCNA utilizes the natural quantitative variation in gene expression levels
between individuals in the population to analyze how strongly each gene’s expression level
correlates with every other gene’s expression level across the population. The result is a
matrix containing all pair-wise Pearson correlations between all genes. These Pearson
correlations are then transformed to a measure of pairwise connection strength (adjacency),
which is accomplished through a soft thresholding process, accomplished by raising the
correlation to a fixed power β known as the soft threshold (typically, the default β=6). This
particular soft thresholding approach has several practical and theoretical advantages: i) it
results in a linear relationship between adjacency and correlation coefficients on a log scale;
ii) β is a single threshold parameter which is highly robust with respect to the choice of the
threshold, and iii) the resulting correlation network facilitates a geometric interpretation of
network statistics 24.

A critical step in the network analysis is the definition of modules. Toward this end, the
adjacency measure is often transformed into a more robust and biologically meaningful
measure of network interconnectedness that takes into account the shared neighbors of each
gene pair in the network, called topological overlap 21, 25. From the topological overlap
values calculated between each gene and every other gene, groups of genes with high
topological overlap are hierarchically clustered to define modules 21. Modules correspond to
branches of the resulting cluster tree, which are defined using dynamic tree cutting 26. A
gene’s connectivity is rated by the sum of all of its adjacency values (or alternatively
topological overlap values) with other genes in the same module (defining its intramodular
connectivity), as well as with genes in different modules (defining its intermodular
connectivity). Intramodular hub genes can be identified as the most highly connected genes
in each module.

Since each gene module contains tens to hundreds of genes, the next key data reduction step
is to identify a reliable surrogate which expresses the aggregate behavior of each gene
module in the network. In WGCNA, the method used is principal component analysis
(PCA), which summarizes the expression profile of the genes inside a co-expression module
by the module eigengene (the first principal component of the adjacency co-variance
matrix). The module eigengene is the mathematically optimal summary of the module
expression profiles, since it captures the maximum amount of variation.

It is important to emphasize that the construction of the network as outlined above is
unbiased – that is, once the raw gene expression data has been processed, no assumptions
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are made beyond the soft threshold β used for defining the adjacency matrix. Setting a low
soft threshold is more inclusive, creating a small number of highly-interlinked modules,
whereas setting a high threshold is more exclusive, creating a large number of sparsely-
interlinked modules with more unlinked genes. How do we choose the most appropriate soft
threshold β? There is no unequivocal answer, but several independent criteria are used in
practice. The primary criterion assumes that Darwinian evolution should favor a scale-free
network topology, to maximize robustness, adaptability and efficiency through small world
properties, as discussed earlier. Thus, a practical criterion is to select the smallest value of β
that yields an approximately scale-free network topology.

Secondary criteria are based on whether the identified modules are biologically meaningful.
Assuming that modules in a gene network, like divisions of a business organization, are
likely to have identifiable functions, each module can be examined for the genes with known
functions, to determine if the module is enriched in a particular class of genes (e.g. cell
cycling, apoptosis, cytoskeleton, metabolism, signaling). Thus, from gene ontology (GO)
enrichment, biological functions can often be assigned to different modules. Another
strategy is to determine whether modules correlate with known cell markers, since modules
sometimes correspond to different cell types within a given tissue 27.

In summary, a soft threshold choice which yields a network with approximate scale-free
topology containing modules with well-defined biological functions (based on gene
ontology enrichment or cell marker enrichment) is biologically credible. The interested
reader can access further details at:
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/ or in book form28.

Gene networks can be constructed using gene co-expression data obtained from any
population exhibiting genetic diversity. The obvious challenge, however, is to demonstrate,
in an independent manner, that a modular gene network is functionally meaningful, and not
just biostatistical fluke. The key functional criterion for biological validity is whether the
expression of gene modules (i.e. the eigengene expression pattern) predicts phenotype.
Although this aspect is still in its infancy, eigengene expression levels have been shown to
correlate with traits in humans, animal models or cell lines for a variety of diseases
including autism 29, Alzheimer’s disease 30, heart failure 31, obesity 32, 33, hyperlipidemia 34

and atherosclerosis 35. Moreover, by associating eigengenes with specific traits, the gene
module represented by the eigengene can then be broken down into its constituent
submodules, which can be analyzed in detail to discover novel genes and pathways that
regulate the phenotype.

Models to construct and validate gene networks
Validation of systems genetics approaches requires that both molecular phenotypes (such as
global transcript levels) and clinically relevant phenotypes be concomitantly examined
among the individuals of a population. What kinds of populations are available to test and
validate the GMAS concept? Human studies are necessarily limited by the difficulty of
accessing tissues other than blood and cell lines. Model organisms such as yeast, flies, and
worms can serve as excellent resources, but their relevance to common human diseases is
limited. Among mammals, rodents are currently the most well-developed models for
systems genetics, since strains exhibiting wide genetic variation have been developed and
there is a large body of knowledge of their physiology, genetics, and genomics. Sets of
recombinant inbred rats, in particular, have proven particularly useful for systems genetic
analyses of cardiovascular and metabolic traits 36. The use of mice for genetic studies was
facilitated historically by the popularity of breeding mice as pets, called fancy mice, which
originated in China and reached its height of popularity in Europe in the late 19th century.
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The genetic diversity of fancy mice spans more than a million years of murine evolution,
when the ancestral Northern Asian, Southern Asian and European lines first diverged 37.

To link genotype to phenotype in rodents, a typical approach is to perform genetic crosses
between two strains exhibiting different phenotypic responses to an environmental stressor,
such as the predisposition to obesity when placed on a high fat diet. Due to homologous
recombination during cross-breeding, large regions of chromosomes are randomly swapped
among progeny of the two strains, which in turn results in differences in gene expression
among the progeny. Drawbacks, however, are that each progeny is genetically unique, so
that the correlation between gene expression and phenotype can only be assessed once per
genetically-identical individual. Also, the incidence of homologous combination in mice is
low, which limits resolution.

Recently, new resources has been developed to circumvent some of these limitations 38. A
highly diverse set of mouse recombinant inbred strains, termed the Collaborative Cross, is
now under development 39. Here, we focus on a similar resource called the Hybrid Mouse
Diversity Panel (HMDP) 38, which consists of 100 (or more) common and recombinant
inbred strains which have been either entirely sequenced or densely genotyped with over
140,000 SNPs. The HMDP strains are commercially available and thus can be assayed for
multiple phenotypes by different laboratories, providing cumulative biological insights. The
ability to use classic inbred strains in this manner is dependent on correction for population
structure using an algorithm such as the Efficient Mixed Model Algorithm 40. Since
individuals within a given HMDP strain are genetically identical to each other, the
reproducibility of gene expression and phenotype among individuals of the same strain can
be assessed. Thus, intra-strain variability due to environmental factors can be separated
inter-strain variability due to genetics, both with respect to gene expression and phenotypic
responses to an environmental stressor. Studies to date have documented that intra-strain
variability in gene expression and phenotype is much less than the inter-strain variability 38.
GWAS studies using the HMDP have successfully detected and finely mapped genes
modulating adiposity, bone density, plasma lipids, and other complex traits 41. For example,
in a network study examining the genetic basis of adiposity in mice, a set of curated
pathways was shown to be enriched in genes differentially expressed between livers of fat
and lean mice in a segregating mouse population 22. The identified pathways tended to
center on the tricarboxylic acid cycle, which is central in energy production. Through the
use of systems genetics, a set of 9 genes were predicted to be causally related to adiposity in
mice 42. Their effects on adiposity were validated with transgenic approaches, and
expression array analyses of the transgenic mice showed that the differentially regulated
genes were enriched in many of the same tricarboxylic acid–centered pathways 42.

With these encouraging GWAS results, the use of HMDP for a GMAS approach designed to
link groups of genes, rather than single genes, to phenotype, is now beginning to be
explored. Fig. 5 shows the gene network generated from microarray analysis of heart tissue
from 101 HMDP strains. Of 20,000 genes represented on the microarray chip, ~8,000 genes
were expressed at significant levels in the heart. In Fig. 5A, the cardiac gene network is
displayed in a topological overlap map. In this visualization, genes whose topological
overlap (or adjacency) value exceeds the pre-defined threshold are defined as neighbors,
which are color-coded and grouped into modules (clusters) connected by lines. Another
useful display is a heat map representation shown in Fig. 5B, in which modules containing
the 8,000 genes are stacked on the vertical axis, and the HMDP strains are arranged along
the horizontal axis. The expression level of each gene is indicated on a red (high)-low
(green) color scale. From the heat map representation, it is clear that different HMDP strains
exhibit striking differences in gene expression.
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The patterns of gene expression within a given module in Fig. 5B are very complex. To
facilitate linking gene modules to phenotype, the aggregate behavior of the individual genes
within each module can be represented by an “eigengene,” derived from principal
component analysis 28. The eigengene is not a physical entity, like a real gene. Rather, it is a
phenomenological entity representing a read-out of the aggregate behavior of all the real
genes in a module, in the same sense that the blood pressure is not a physical entity, but
rather is a measurement or read-out of interactions between physical entities such as the
heart, blood vessels, hormone levels, blood volume, etc., or like the refractory period is a
read-out of the aggregate behavior of many real ion channel proteins determining tissue
excitability. Thus, of the ~20,000 individual genes in the mouse genome, a given tissue such
as the heart expresses ~8,000 genes at significant levels, which can be condensed, using the
WGCNA technique, into ~20 gene modules, each represented by an eigengene as the global
read-out of the module’s expression level. Fig. 5C shows a heat map of eigengene
expression levels for the HMDP. The eigengene heat map emphasizes even more strikingly
the variation gene module expression patterns among the different HMPD stains.

Given that most of the HMDP strains were bred in captivity and selected for traits such as
hair color, a natural question to ask is, why are the patterns of gene module expression so
markedly different? Natural selection for most fitness genes should have been similar and
traits such as hair color require only a few genes, yet the expression levels of thousands of
genes differ between HMDP strains, despite only a small variation among individuals of the
same strain. These markedly different gene module (eigengene) expression patterns among
HMDP strains appear to be equivalently well-suited for survival in captivity, since all strains
are capable of being bred and maintained. One intriguing, although still speculative,
possibility is that each HMDP strain represents a different “good enough solution” for
survival in captivity under normal conditions. That is, within a given strain, each mouse has
roughly the same “good enough solution,” reflecting strain-specific mutations in its
regulatory DNA. However, other HMDP strains, with different strain-specific mutations in
regulatory DNA, manifest different eigengene patterns encoding alternative “good enough
solutions.”

To test the feasibility of this idea, we analyzed the variation in gene expression levels
observed in the microarray analysis of the HMDP for five key cardiac proteins regulating
normal cardiac excitation-contraction (EC) coupling in the mouse ventricle (the transient
outward current Ito,f, the ryanodine receptor RyR; the Na-Ca exchanger NCX, the
sarcoplasmic-endoplasmic reticulum Ca ATPase SERCA; and the L-type Ca current ICa,L).
The variation of mRNA expression for those five genes analyzed for one microarray (one
heart) per strain for 100 strains is shown in Fig. 6A. We then compared these findings to an
exhaustive computational search of “good enough solutions” in a mouse ventricular action
potential model (Fig. 6B). The computational search was conducted by first generating
10,000 “trial solutions” constructed by assigning random values to the conductances
corresponding to those five EC proteins, with each conductance varying from a value a few
times smaller to a few times larger than its normal value. Not surprisingly, only a handful of
trial solutions were good enough. To systematically find good enough solutions, we
therefore used a minimization algorithm that iteratively varied all five conductances starting
from the randomly chosen values until a positively defined “cost function”, which measures
the departure from a normal electrophysiological phenotype (action potential and calcium
transient), falls below a tolerance limit. This mathematical optimization yielded 1,952 good
enough solutions from the 10,000 trial solutions with the corresponding variation of
conductances shown in Fig. 6B.

Remarkably, the conductance variation of computer-generated good enough solutions
matches reasonably well the variation of mRNA expression among the 100 HMDP strains.
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Only a rough agreement is to expected at best since functional conductances may not always
correlate well with mRNA expression levels due to post-transcriptional and/or post-
translational modifications 43. In addition, the parameter space of good enough solutions
selected by evolution need not be as large as the parameter space of all possible good
enough solutions determined computationally. Despite those caveats, the comparison of Fig.
6 lends credence to the possibility that HMDP strains represent different good enough
solutions for normal cardiac EC coupling. It is also consistent with the broader finding that
biological circuits are generally “sloppy” 44, i.e. tolerant to significant variations of many
parameter combinations, albeit not all combinations, as exemplified here by the fact that
SERCA expression is tightly constrained.

In summary, the HMDP has joined traditional genetic crosses as a powerful new resource
for systems genetics studies. The genetically identical individuals within each HMDP strain
can be subjected to repeated microarray analysis to confirm that variability in gene
expression levels between individuals within a strain is small compared to variability
between individuals from different strains. A key advantage is the increased resolution of
the HMDP due to historical recombinations among classical inbred strains, allowing gene
networks to be constructed with greater reliability and fidelity. Likewise, the response of
each HMDP strain to an environmental stress of interest can be repeated in as many
individuals from the same strain as desired to ensure that the phenotypic response is
consistent. This provides an ideal model system for testing the GMAS concept.

Getting Down to Business: The GMAS Strategy
To unravel the genetic basis of common polygenic diseases, our goal is to devise a top-down
strategy to analyze how genes work together in groups, rather than singly. Towards this end,
the salient observations/assumptions discussed so far can be summarized as follows: 1)
Applying WGCNA to the HMDP allows us to group the mouse genome of ~20,000 genes
into an approximately scale-free network comprised of ~20 gene modules in a tissue such as
the heart; 2) The aggregate behavior of the genes in a given module can be represented
phenomenologically by the module’s eigengene, a read-out of the module’s expression level
calculated from principal component analysis; 3) The expression pattern of eigengenes is
very similar among individuals within a given HMDP strain, but varies considerably
between different HMDP strains, reflecting the concept that evolution has generated
different “good enough solutions” adequate for normal cardiovascular function; 4) When the
HMDP strains are exposed to an environmental stress, however, some strains may adapt
better than others, consistent with some “good enough solutions” being better suited to
adjust successfully to a specific stress than others; 5) If the different eigengene expression
patterns of HMDP strains truly correspond to different “good enough solutions,” then the
eigengene pattern should predict the phenotypic response to the stressor.

If these observations/assumptions are valid, then the top-down strategy is straightforward: 1)
Expose all of the ~100 HMDP strains to an environmental stress of interest, e.g. a high fat
diet to induce atherosclerosis, chronic isoproterenol or angiotensin infusion to induce heart
failure, or any stressor known to induce a disease phenotype; 2) Functionally characterize
the range of phenotypes in terms of quantitative traits exhibited by the ~100 HMDP strains
in response to the stressor; 3) Correlate the eigengene expression patterns of the HMDP
strains with the panel of quantitative traits.

Thus, in place of the bottom-up approach of looking for associations between single genes
(or SNPs) and phenotype, here we narrow the number of candidates from thousands of
individual genes (or millions of SNPs) to a relatively small number of eigengenes (20–30),
with each eigengene representing tens to hundreds of individual genes, depending on the
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size of the module. As in the case of a failing business organization, we are no longer
looking one-by-one for a single rogue employee (gene) to blame, but instead are viewing
how the system’s modular divisions (represented by its eigengenes) interact and adapt to the
stressor. Moreover, with only 20 or so eigengenes, combinations of eigengenes are much
more feasible to evaluate. That is, searching for a correlation of a single eigengene with a
quantitative trait involves evaluating 20 possibilities; correlating pairs of eigengenes
involves evaluating 20!/(18!×2!)=190 possible pair combinations; for triplets the
corresponding number is 20!/(17! ×3!)=1,140; and for groups of 16 eigengenes, the
corresponding number is 20!/(16! ×4!)=4,845, still very manageable compared to the
number of possible 16 SNP combinations, which exceeded 1080 (the number of atoms in the
observable universe), using a GWAS approach.

Caveats and Challenges
In the discussion above, we have sketched out a relatively straightforward scenario for a
GMAS strategy, based on the assumptions that the basal eigengene pattern encodes a “good
enough solution” for normal function, and some “good enough solutions” adapt more
successfully than others to environmental stress. If these assumptions are correct, then it
logically follows that the eigengene pattern should predict the phenotypic response to the
stressor.

The challenge, of course, will be to validate these assumptions. Models like the HMDP are
valuable resources in this regard. HMDP has the advantage that the reproducibility of
eigengene patterns and phenotypic response to stressors can be cumulatively tested in
multiple genetically-identical individuals, in order to separate environmental influences
from genetic determinants. However, the success of this approach ultimately depends on the
accuracy of techniques such as WGCNA21–23 or alternative strategies 18–20 at deciphering
biologically meaningful gene networks. In other words, to what extent are the derived gene
modules real, or biostatistical flukes due to contamination by genetic noise? How does one
decide on which genes to include in which module – are maximizing the scale-free topology
and using gene ontology and cell marker enrichment to infer function the best criteria? Even
if the gene network modular topology is accurate, are eigengenes calculated by principal
component analysis the best way to represent the aggregate behavior of individual genes in a
module? Both WGCNA and eigengene calculations are based on linear correlation
measures. Whether more general nonlinear methods to group genes into modules or
calculate eigengenes, such as mutual information testing as used in ARACNe 18 and
MINDy 20, or still largely unexplored methods such as maximal information nonparametric
exploration (MINE)45 or principal geodesic analysis (PGA) 46, will improve accuracy has
yet to be determined.

It is also important to recognize that eigengene patterns reflect a mixture of both genetic and
environmental (epigenetic) perturbations. Co-expression modules are imperfect
representations of biology. They can be refined by experimental and interactive approaches,
but they are limited by the fact that they represent only one of many scales contributing to
overall function, and changes in gene expression patterns reflect both genetic and
environmental perturbations. Thus, it will be important to expand the approach to datasets
reflecting epigenetic control (DNA methylation, chromatin structure), alternative splicing
(next generation sequencing), protein localization and post-translational modification (mass
spectroscopy, imaging) and metabolism (mass spectroscopy). Nevertheless, the available
evidence suggests that the gene network structure is relatively invariant – that is, individual
genes do not jump to different modules in response to a stressor 47, 48. Rather, the gene
content of modules remains similar, but the expression level of the genes in the module
(represented by the eigengene) changes. In this case, it may turn out that the change in the
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eigengene pattern, rather than the basal pattern, will be a better predictor of phenotype.
These are all important issues that remain to be explored.

Clinical Implications
If the GMAS strategy outlined above for the HMDP proves successful in identifying gene
module expression patterns that predict adaptability to environmental stressors, how might
this help us better understand the genetic basis of common human diseases or drug
reactions? With the exception of identical twins, all humans are genetically unique (i.e., each
is analogous to a different HMDP strain). However, the principle is the same: if each
human’s genome encodes a different “good enough solution” for survival in a “normal”
human environment, then some “good enough solutions” may adapt better than others when
the environment changes (e.g. from a subsistence diet to a high calorie, high fat diet, or from
drug-free to a new drug state), accounting for the variable susceptibility to complex diseases.
Using WGCNA, a human gene network can be constructed with microarray data from less
than 100 patients 29–31. Thus, tissue-specific human and mouse gene networks, and their
corresponding eigengene patterns, can be compared between human diseases and
corresponding mouse disease models to search for commonalities. For example, we might
expose the HMDP strains to an arrhythmia-inducing drug to search for specific eigengene
patterns associated with electrocardiographic QT interval prolongation and cardiac
arrhythmias, and if so, determine whether the corresponding human eigengene patterns can
be similarly identified. Moreover, novel therapies for complex diseases may be suggested if
we can discover interventions which alter eigengene expression patterns, and show that this
also alters diseases susceptibility. At the present time, regulation of gene module expression
levels is not well-understood, but interesting candidates to evaluate include hub and driver
genes 49, microRNAs, DNA methylation or acetylation, and histone acetylation/chromatin
remodeling. For example, microRNAs often coordinately regulate hundreds of individual
genes. Do the genes regulated by a given microRNA belong to the same module? If so, then
manipulation of specific microRNAs might provide a molecular approach to convert an
eigengene pattern conferring susceptibility to a disease to one conferring resistance.

GMAS and GWAS approaches are also inherently complementary to each other. One of the
major contributions of GWAS has been to identify novel pathways previously unsuspected
to be involved in the pathogenesis of a disease. By linking pathways to discrete gene
modules, GMAS provides an additional context for discovering how pathways are
interactively linked in health and disease states. The synergy between GWAS and GMAS
may thus enhance our ability to identify promising therapeutic targets among the molecular
constituents of these pathways.

Realization of the potential clinical applications of GMAS will require much more work in
this emerging research area which is still in its infancy. However, if a GMAS approach
based on eigengene analysis or alternative strategies ultimately proves successful, then our
view of how genetics influences susceptibility to common diseases and drug reactions may
shift away from the traditional focus on searching for mutations, and towards studying the
way in which normal genes are grouped. We already know that an identical set of genes can
produce a markedly different phenotype depending on the expression pattern (e.g. the
metamorphosis of a caterpillar into a butterfly). So perhaps it is not so far-fetched to imagine
that whether or not an individual succumbs to a disease or drug reaction may depend more
on the “good enough solution” reflected in the gene module expression pattern of
completely normal genes, rather than on multiple gene mutations. Finally, gene networks are
only one of many networks vital to a living organism. The ultimate and even more daunting
challenge will be to map how information flows between gene networks, protein-protein
interaction networks, metabolite networks, etc. The emerging science of network analysis,
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combined with “-omics” technologies, are powerful new tools whose further development
holds great promise to meet these challenges.
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Emerging Science Reviews Text Box

Emerging Science Reviews are published on an occasional basis to highlight areas of
research that are very recent and at the cutting edge of cardiovascular biology. The goal
of these articles is to bring attention to promising new topics that are not yet well
developed.
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Fig. 1.
“Good enough solutions” in the somato-gastric ganglia of lobsters. A. Schema of the
somato-gastric ganglion (above), whose bursting pattern controls digestive activity in the
lobster (below) B. All lobsters exhibit very similar bursting activities (green and orange
traces). C. However, different lobsters use different combinations of ionic conductances
(left) and corresponding ion channel gene expression levels (right) to produce the nearly
identical bursting patterns. Adapted from Marder 5, with permission.
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Fig. 2.
Two sets of ionic conductances (log(G/Gcontrol) in a human ventricular action potential
model which produce nearly identical action potentials and Ca transients (middle red and
blue traces, respectively), i.e. representing two “good enough solutions” for normal cardiac
function. Arrows point to the conductance of IKr, an important current for repolarization,
which is large in the blue action potential and small in the red action potential. If these
action potentials corresponded to two different “good enough solutions” in real patients, the
blue patient would be at greater risk for QT prolongation and torsades de pointes than the
red patient if administered a drug such as erythromycin which blocks IKr. Adapted from
Sarkar and Sobie 9 with permission.
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Fig. 3.
Small world properties in metabolic networks. A. Hypothetical arrangement of E. Coli’s 778
metabolites in a linear chain. If #525 is Uridine (required for DNA synthesis and
replication), its synthesis from nearby precursor metabolites such as #523 is highly efficient,
requiring only a few steps. However, if only distant precursors such as #4 are available,
hundreds of steps are now required, making Uridine synthesis slow, inefficient and
energetically costly. B. In contrast, highly-connected hub nodes (red) in a scale-free network
allow efficient conversion of either #523 or #4 to Uridine in only a few steps.
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Fig. 4.
A. The E. Coli metabolic network, displayed as a topological overlap map, in which
metabolites are nodes (circles) and enzymes converting one metabolite to another are links
(lines). Colors reflect the modules to which the nodes (metabolites) belong, corresponding to
carbohydrate, protein, lipid, nucleic acid, aromatic, monocarbon and coenzyme metabolism.
Adapted from Ravasc et al 25, with permission. B. Log-log plot of the distribution of links
per node (P(k) vs k), showing a power law distribution for both ingoing (blue) and outgoing
(red) links. Adapted from Barabasi and Oltvai 50, with permission.
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Fig. 5.
A. Topological overlay map of the cardiac gene network from the HMDP. Colors indicate
nodes belonging to the same gene module. B. Gene heat map of the HMDP cardiac gene
network. The 8,000 expressed genes are grouped on the vertical axis according to their
color-coded module (on left), with the 101 HMDP strains arranged along the horizontal axis.
The expression level of each gene is indicated on a red-green color scale (red=high,
black=intermediate, green=low). C. Eigengene heat map of HMDP cardiac gene network.
Expression levels of individual genes in each module have been replaced by the
corresponding eigengene expression level on a red-green color scale.
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Fig. 6. Correspondence between gene expression and “good enough solution” predictions
Left panels (blue) show histograms defining the range of conductances of 5 key EC coupling
proteins (transient outward current Ito,f, the ryanodine receptor RyR, the Na-Ca exchanger
NCX, the sarcoplasmic-endoplasmic reticulum Ca ATPase SERCA, and the L-type Ca
current ICa,L) among 1,952 computer-generated “good enough solutions” obtained using a
mouse ventricular action potential model 51 with a mathematical formulation of Ca cycling
adapted from 52. Right panels (red) show histograms of gene expression levels for the same
5 key EC coupling proteins among 100 HMDP strains. The reasonable agreement supports
the hypothesis that gene expression variation in HMDP strains reflects multiplicity of
functional “good enough solutions” for normal murine EC coupling.
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