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Abstract. Resonances observed in the 12C + 12C collisions are studied with a molecular
model. At high spins J = 12–16, a stable dinuclear configuration is found to be an equator-
equator touching one as is obtained in the 28Si + 28Si system. With K-quantum number being
specified as rotation-vibration model, normal modes have been solved around the equilibrium,
firstly. Furthermore, Coriolis coupling has been investigated by diagonalization among low-
lying normal-mode states with K = 0 and K-excitation. It is found that the Coriolis coupling
introduces about 30% of K-mixing into the K = 0 molecular ground states of J = 12–16. The
analyses of the angular momentum coupling show up a dominance of the lowest L in the inelastic
channel of the molecular ground state newly obtained. Thus alignments appear strongly in the
inelastic channel, which is in agreement with the explanation by the band crossing model.
Discussion is given on “why disalignments appear in the 28Si + 28Si system, in contrast to the
above results”.

1. Introduction
The first discovery of the sub-barrier resonances in the 12C + 12C system is the starting point
of the heavy-ion resonances [1]. Well above the Coulomb barrier, series of resonances have
been found with high spins of J = 12–16 [2, 3]. Coupled channel calculations have been
applied with the elastic and inelastic channels such as 2+ excitation of 12C nuclei, which are
expected to play an important role in the resonances. Band Crossing Model, based on the
double resonance mechanism, has successfully explained resonance mechanism and resonance
states with the aligned configurations of the orbital angular momentum and the spins of the
excited states of 12C [4]. On the other hand, for high-spin resonances observed in 24Mg+ 24Mg
and 28Si+ 28Si, we have developed a new molecular model [5, 6, 7]. In particular, for 28Si+ 28Si,
the molecular model naturally explains peculiar disalignments observed between the orbital
angular momentum and the spins of 28Si fragments. The resonances in both 12C + 12C and
28Si+ 28Si systems are thought to have dinuclear configurations of oblate constituent nuclei, but
they have completely different structures, i.e., aligned in the former while disaligned in the latter,
concerning angular momentum coupling. The contrasting features are observed experimentally
and well explained by the two models, respectively. Thus, it is keenly interesting to know how
they can be understood consistently. In other words, the question is how or in what conditions
angular momentum coupling is determined in the resonance states. For the purpose, we take up
12C+ 12C system with the new molecular model, and show how the aligned configuration arises
in the resonances, not the disaligned one.
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2. Dinuclear molecular structure of 12C− 12C
2.1. Dynamical property and Normal modes

Assuming a constant deformation and axial symmetry of the constituent nuclei for simplicity, we
have seven degrees of freedom (qi) = (θ1, θ2, θ3, R, α, β1, β2), as illustrated in fig. 1. The relative
vector of two 12C nuclei (R, θ2, θ1) defines molecular z′-axis. The orientations of the symmetry
axes of the 12C nuclei are considered as internal degrees of freedom, and are described with
Euler angles (αi, βi) referring to the molecular axes. With α1 and α2, θ3 = (α1 + α2)/2 of the
total K-rotation around z′-axis and α = (α1 − α2)/2 of twisting motion are defined.

The kinetic energy is given classically in terms of angular velocities, and then the quantization
is done to describe the rotation of the whole system with the total angular momentum operator
Ĵ ′ and the internal motions referring to the molecular axes. The nucleus-nucleus interaction is
given with folding potential using the nucleon-nucleon interaction DDM3Y. Expecting a stable
configuration, the interaction potential is described with geometrical configurations specified
by the internal degrees (R,α, β1, β2). Consistently with the coordinate system, at first we
introduce a rotation-vibration type wave function specified with K-quantum number as basis
one, Ψλ ∼ DJ

MK(θi)χK(R,α, β1, β2), where χK describes the internal motions. Correspondingly
with specified J and K, we define a multidimensional centrifugal potential
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where I denotes the moment of inertia of the constituent nuclei 12C, the value of which is
estimated from the excitation energy of the 2+1 state of 12C. In order to know dynamical aspects
of multi-dimensional internal motion, we calculate the effective potential for given J and K,

VJK(R,α, β1, β2) = Vinteraction(R,α, β1, β2) + T ′

rot(J,K;R,α, β1, β2). (2)

In fig. 2, a multidimensional energy surface is displayed. A local minimum is obtained around
β = 90◦ and R = 5.6 fm, which is called as equator-equator (E-E) configuration. The barrier
height is 5.7 MeV located at R ∼ 7.5 fm.

Couplings among various molecular configurations are taken into account by the method of
normal mode around the equilibrium at βi = 90◦, which gives rise to the molecular modes of
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Figure 1. Dinuclear molecular coordinates;
seven degrees of freedom of 12C+12C (oblate-
oblate system) are described with (qi) =
(θ1, θ2, θ3, R, α, β1, β2).
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Figure 2. Contour map of the effective
potential energy VJK with J = 14 and K = 0
for the R − β(β1 = β2) degrees at α = π/2.
Contours are displayed by 2 MeV.
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excitation. Combining the kinetic energy operator and the expanded effective potential, the
total hamiltonian is written as

H = H0 + T ′

C + (higher order), (3)

where H0 and T ′

C denote the normal-mode hamiltonian and the Coriolis coupling, respectively.
H0 is separated into each internal degree of freedom, which means the internal degrees of freedom
(R,α, β1, β2) are the normal modes themselves, as follows,

H0 = H(R) +H(α) +H(∆β1) +H(∆β2) +Hcoupl(α, β1, β2) (4)

where ∆βi denote βi − π/2. Additional Hcoupl includes coupling among βi and α such as
β1β2 cos 2α as well as corrections for confinement of βi on weak K-dependence. Thus we use
basis wave functions, ΨJMK(θi;R,α, β1, β2) ∼ DJ

MK(θi)fn(R)φν(α)ϕn1
(β1)ϕn2

(β2), where fn,
ϕn1

and ϕn2
are H.O. functions, while φν is a rotational function eiνα or cos να, since the

confinement in α-motion is very weak. The energy of the basis state is given as

EJK(n, ν, n1, n2) = E0(Re) + {J(J + 1)−K2 − 1}h̄2/2µR2
e + {K2 − 2}h̄2/4I

+(n+ 1/2)h̄ωR + (n1 + n2 + 1)h̄ωβ + ν2h̄2/4I, (5)

where h̄ωβ ∼ 5 MeV. Hcoupl and coupling
by H(α) have been diagonalized. Since
H0 is almost separable, the eigenenergy
of H0 is very close to eq. (5) except for
the following case: Hcoupl couples strongly
between the basis states with (n1, n2, ν) =
(2, 0, 0), (1, 1, 2), in which butterfly and anti-
butterfly modes appear as likely described
with β± = (∆β1 ±∆β2)/

√
2 [6, 7]. Note that

a selection rule exists as K ± ν = even in
general. In addition, we have rules (−1)n1 =
(−1)(K+ν)/2 and (−1)n2 = (−1)(K−ν)/2. In
fig. 3, molecular normal modes of 12C + 12C
with spin 14 are displayed, classified with
quantum numbers as K = 0, 1, 2. The first
excited state of K = 0 is twisting excitation
with ν ∼ 4 of α-rotation, and the next levels
are of the butterfly modes. The lowest K = 1
state starts with β excitation of (n1, n2, ν) =
(1, 0, 1) due to the selection rule.
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Figure 3. Energy spectra of molecular
normal modes of 12C + 12C for J = 14.
From the left, levels with K = 0, 1 and 2
are displayed. Diagonalization of the Coriolis
coupling with 3 low lying states of K = 0, 1, 2
gives a new spectrum in the r.h.s.

2.2. Coriolis coupling

Generally in the rotating system, we have Coriolis coupling, which is denoted as T ′

C in eq. (3).
It is obtained as many terms described with differential operators of (θi) and those of the
internal variables (α, β1, β2), but we can make them into a simple form such as a product
−J

′
· (S′

1
+ S

′

2
)/µR2 between the total angular momentum operator J

′ and spins of the
constituent nuclei S′

i
which refer to the molecular axes. We consider it as residual coupling,

which causes K-mixing with ∆K = 1. In 12C + 12C, in which alignments are expected to be
important, we have to take this coupling into account, as it favors alignments. Actually, in the
molecular ground state, (K = 1, ν = 1) mixed component appears to bring strong alignments
in the single 2+ channel.
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Since we specifyK-quantum number at the
first stage, the angular momentum coupling
has its own characteristics of each specified
K. In fig. 4, a configuration of 12C + 12C is
displayed. Spin vectors are illustrated as an
example, upward ones (black) of which are
aligned with the orbital angular momentum
L, while downward ones (red) are anti-aligned
with L. The downward spins originate from
the upward ones by π-rotation around z′-axis,
followed with the phase exp(iKθ3). Thus
characteristics of the angular momentum
coupling are inferred: 1) amplitudes AJ±S are
almost in the same magnitudes, 2) relative
phase between AJ−S and AJ+S is (−1)K ,
which is confirmed later in table 1.

Y’

X’ I1
C12C +12

2I

L

K−rotation

Z’

K given, then

A L=J−2 A L=J+2

Figure 4. A configuration of 12C + 12C is
displayed. Upward spin vectors (black) are
aligned with L, and downward ones (red)
are anti-aligned with L, both of which are
included in the states with specified K.

Usually the spins S
′

i
are described with differential operators of Euler angles βi. It is

noted here that βi can describe not only rotational motions but also vibrational motions of
the poles of the constituent nuclei, depending on the potential. In our molecular model,
with respect to confinements around the equilibrium configurations, the normal modes of βi-
motions are vibrational. For the H.O. states, the differential operators of βi are written as

−∂/∂βi = −∂/∂∆βi =
√

mωβ/2h̄(b
∗
i − bi), and ∆βi =

√

h̄/2mωβ(b
∗
i + bi), respectively, where b

∗
i

and bi denote the creation and annihilation operators of bosons for βi, respectively. Note that
m is defined as (1/I+1/µR2

e)
−1, and h̄/mωβ is nondimensional. The Coriolis coupling operator

J
′(S′

1
+ S

′

2
) connect different K states, namely J

′ gives lowering and raising operators of K,
J ′
± = J ′

1 ± iJ ′
2, respectively. Thus the Coriolis coupling is written with those operators and we

can calculate its matrix elements among K-states.

Low lying three states of K = 0, 1 and
2 are taken for basis states, and the Coriolis
coupling between them are solved. In fig. 3,
energy levels before the diagonalization are
connected by red lines and the resulting levels
are displayed in the r.h.s for J = 14. The
molecular ground state of J = 14 is obtained
with energy gain 1.8 MeV from the K = 0
state, in which mixed probability with K 6= 0 is
30%. In fig. 5(a), the energy spectrum of basis
states for J = 12 − 16 are displayed, and in
(b), the spectrum obtained after K-mixing are
displayed, classified into resultant three bands.
For comparison, experimental resonance levels
with spin assignments [3] are indicated in the
r.h.s. Level energies of the first band are in
good agreement with the experiment. Note that
for the states of the second and third bands to
be reliable solutions, they need more extended
basis states than three low-lying basis ones for
the diagonalization, as the energies of the states
of those excited bands are close to those of the
other basis states.
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Figure 5. (a) Each energy spectrum of
J = 12 − 16 for the low lying K = 0, 1, 2
states, (b) Whole spectrum after K-mixing
are displayed, where thin lines are an eye-
guide for J = 14. Experimental resonance
levels with spin assignments [3] are given.
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3. Analyses of angular momentum coupling
We examine the angular momentum coupling of the molecular wave functions, before and after
K-mixing, by calculating overlapping between those functions and the channel wave functions.
We define a generalized channel wave function, with a given orbital angular momentum l for the
relative motion as Y(I1I2)Il;JM =

∑

MI ,m
(IlMIm|JM)S12[ψ(I1I2)IMI

Ylm(θ2, θ1)], where ψ(I1I2)IMI

denotes a channel wave function composed with D-functions, i.e., rotational functions for the
constituent nuclei with spins (I1, I2) and a specified channel spin I. S12 denotes the symmetry
operator between two identical constituent nuclei. The overlapping integral is defined as follows,
to obtain the distribution on [(I1, I2), L],

AJK;(I1I2)L =

∫

dΩ

∫

[

∑

I

Y∗

(I1I2)IL;JM

]

Ψ′

JMK(θi;α, β1, β2)
√

sin β1 sin β2dαdβ1dβ2, (6)

where Ψ′

JMK is defined as ΨJMK/fn(R), dropping the radial wave function out, from the
eigenstate of H0. Ω denotes the solid angle of (θi). As we can transform the generalized
channel wave function into a kind of molecular wave function, with the rotational function of
the whole system DJ

MK(θi) in a series of K, we easily calculate overlapping integrals [8]. Note
that

√
sin β1 sin β2 of the integral volume elements in eq. (6) is due to the definition of the volume

element dV = dRdαdβ1dβ2 for the model wave function with vibrational description.
In table 1, the amplitudes AJK;(I1I2)L are shown for each K-state of the low-lying series of

J = 14 and for the resultant molecular ground state with K-mixing by the Coriolis coupling.
Only single 2+ channel is examined, because the amplitudes of the mutual one are small for
the low lying K-states adopted. In each K-state, we see almost the same magnitudes of the
amplitudes for L = 12 and L = 16, as expected by the consideration with fig. 5, and thus
the states with specified K have not spin alignments. However, after K-mixing by the Coriolis
coupling, the components of L = 14 and 16 in the single 2+ channel extremely diminish as given
in the rightmost column, and we obtain strong spin alignments.

Table 1. Analyses of alignments by the distribution of the amplitudes AJK;(I1I2)L in the elastic

and single 2+ channels of the states of J = 14. AJK;(I1I2)L of three states, K = 0, 1 and 2 are
indicated in the left, and the total amplitudes of the mixed results with the coefficients (the
values in the parentheses) obtained by the Coriolis diagonalization are given in the r.h.s.

K = 0(0.836) K = 1(−0.465) K = 2(−0.289) total(K-mixed state)

elastic channel 0.86 0 0 0.72
single 2+ channel
L = 12 -0.29 0.65 0.36 -0.65
L = 14 0.24 -.06 0.80 -1.×10−3

L = 16 -0.31 -0.65 0.30 -0.04

4. Discussion — Different characteristics in disalignments of 28Si+ 28Si —
The resonances in 28Si + 28Si system are expected to be similar to 12C + 12C, with dinuclear
configurations of oblate constituent nuclei, but those systems have completely different
structures. Namely, disalignments in 28Si+ 28Si are observed experimentally and well explained
by the molecular model [8]. Thus, it is very interesting to know how they can be understood
consistently, i.e., to know what determines the angular momentum coupling of the resonance
states.
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As explained in [7], we have found an
equilibrium configuration like two pancakes
sitting on the plane, as is displayed in fig. 6,
the shape of which is axially asymmetric as a
whole. With tight binding between two 28Si, the
whole compound system is expected to behave
like an axial-asymmetric rotator, which rotates
wobblingly on the plane with a high spin. In the
high-spin limit (|K|/J ∼ 0), we obtain analytical
wobbling (K-mixing) solutions of the asymmetric
rotator as Fn(K) = Hn(K/b) exp(−K2/2b2) with
the Hermite polynomial Hn, where K is taken to
be K = even. Since the intrinsic deformation
axes of 28Si are almost orthogonal to the plane,
the spin vectors are in the plane, which is the
origin of disalignments.

In this context, we have assumed that the axis
of the largest moment is along X-axis in fig. 6,
due to the density distribution of the whole

Z
Molecular

Y

’

rotate
Wobblingly

X

at Decays
Spin

Moment Si
and Spin in the

compaund system

of 28I3

due to induced deform.

Figure 6. A configuration of 28Si + 28Si
is displayed. Spin vectors in the wobbling
motions and those at decays are illustrated
respectively, as an example, the latter of
which are in the reaction plane and are
disaligned with L.

system of fig. 6. Namely, in the quantum mechanical understanding, we have assumed new
moments of inertia along X-axis, which are expected to come out with induced deformations
of the constituent 28Si nuclei. Of course, at decays, the induced deformations vanish and 28Si
nuclei return to be normal ones. Note that in the sticking limit, the spins S′

i
of 28Si nuclei along

X-axis are frozen and are constrained to be proportional to J
′, and thus the the energy of the

Coriolis coupling turns to J ′
x
2, as a part of rotator energy. This is the reason why the system

turns to be like an axial-asymmetric rotator [7]. Thus the necessary condition is enough binding
of the constituent nuclei to be a compound system like an axial-asymmetric rotator.

5. Conclusions
Molecular model has been applied to 12C+ 12C system, where the double resonance mechanism
is known to be successful. With respect to the Coriolis coupling, K-mixing is calculated.
Alignments between the orbital angular momentum and the fragment spin in the single 2+

channel have been obtained, which is qualitatively in agreement with band crossing model.
In conclusion, description of the molecular model includes various angular momentum

couplings, both alignments and disalignments. The answer for “which coupling scheme appears?”
depends on strength of nucleus-nucleus interactions. Actually, in the heavier system such as
28Si+ 28Si, the interaction between the constituent nuclei is stronger than 12C+ 12C case, which
is exhibited by the deep potential energy surface around the equilibrium. Moreover, the heavier
constituent nuclei are expected to deform easily from their original deformation, to form a total
compound system. Thus we can naturally understand the mechanism for the contrasting features
of angular momentum couplings between the two systems.
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