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Control of underwater vehicles is a challenging task sihesé¢ systems demonstrate highly coupled and nonlin-
ear behavior in uncertain and often unknown environmenardier to successfully design higher levels of control
hierarchy, sufficiently accurate parameters of a mathealatiodel describing the vessel is required. These param-
eters vary significantly depending on the payload; henceetional, time-consuming identification methods are
tedious.

This paper introduces a self-oscillation based methoddterdhining inertia and drag parameters for underwater
vehicles. The procedure is easily implementable in fieldd@@ns and gives satisfactory results. Both linear and
nonlinear models of yaw, heave and surge degree of freedonbeadentified. Experimental results obtained
from yaw identification experiments on a real underwateiicletwill be presented. In addition to this, the same
methodology will be used to determine which model descrihes/ehicle dynamics more suitably. Modifications
of the proposed algorithm for systems with delays and diseime systems will be described, together with an
estimate of parameter error bounds due to quantizatiotsleve

Key words: Nonlinear systems, Unmanned underwater vehicles, |degtiibin, Self-oscillations

Identifikacija bespilotnih ronilica koristenjem postupka vlastitih oscilacija. Upravljanje bespilotnim ronili-
cama predstavlja zahtjevan zadatak Hidia ronilice pokazuju snazno spregnuto i nelinearno pamad nepred-
vidljivim i €esto nepoznatim okruZenjima. U svrhu uspjeSnog progtrvisSih razina u njihovoj upravigkoj
hijerarhiji, potrebno je dovoljno dobro poznavati pararaehatematikog modela plovila. Ovi se parametri mogu
znatno mijenjati ovisno o opremi i drugim uvjetima tijekonisije, stoga su uoBajeni, vremenski zahtjevni iden-
tifikacijski postupci neprikladni.

Clanak opisuje postupak koji koristi vlastite oscilacipearelivanje inercije i otpornosti bespilotnih ronilica.
Postupak je lako primjenjiv u terenskim uvjetima i daje z2ad@avajite rezultate. Linearan i nelinearan model
zaoSijanja, zaranjanja i napredovanja moaje identificirati. U radu su prikazani eksperimentalaiuéati dobiveni
na identifikacijskim ekperimentima zaoSijanja na stvarpajlici. Uz navedeno, ista metodologija je iskoriStena za
odlucivanje o modelu koji prikladno opisuje stvarnu ronilicu.r&bu su opisane i preinake predloZenog algoritma
za sustave s transportnim kasnjenjem i diskretne sustawei, frocjene pogreSaka u odieanju parametara koje
su posljedica kvantizacije.

Klju €ne rijeCi: nelinearni sustavi, bespilotne ronilice, identifikacijigstite oscilacije

1 INTRODUCTION as autonomous systems without any communication with
the surface. There are many commercial ROVs available
Underwater robotics is an area that occupies interest ¢in the market (VideoRay, Seamor, Benthos, etc.) and the
the research community increasingly over the years. Thenarket of AUVs has started to grow in the last few years
main reason for this is probably the ever growing numbefIVER2, Remus, etc.). The applications of these vehicles
of applications of these technologies in real life. Under-vary from underwater cartography to military applications
water vehicles (UVs) are widely used in marine biology,(mine detection and disposal).
underwater archeology, navies, hydrography, oceanogra- From the control point of view, AUVs require much
phy, fishery, etc. These vehicles can be divided into remore effort in control design. In general, control strate-
motely operated vehicles (ROVs) whose main characteriggies for marine vehicles can be divided into three levels.
tic is that they are controlled from the surface via tether;The low level is responsible for control of the vehicles’
and autonomous underwater vehicles (AUVS) which actpeeds (surge, yaw rate, etc.), positions (depth, dynamic
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positioning, etc.) and orientations (heading, tilt anglenoeuvre consists in turning the ship rudder at the maximum
etc.), [2], [8]. Mid level of control is responsible for path speed to the starboard sidelat (20°); when ships course
following, trajectory tracking and gives commands to thechanges byi0° (20°) from the initial course, the rudder
low level, [4]. High level of control is dedicated to mission is turned to the opposite side (port) &t° (20°), causing
management, mission planning (path and trajectory plarthe ship to turn to port. When ship course changes®y
ning) and to safety issues (collision avoidance, faultrtole (20°) from the initial course on the opposite side, the rud-
ance, etc.), [19]). For a higher level to function properly,der is again turned to the starboard sidé @t (20°). The
low levels have to be designed and work reliably. In ordetheading and the rudder position are recorded all the time
to design the low level control structure, UV mathematicalduring the experiment. Under the assumption that the ship
model parameters have to be identified. yaw model can be described with a linear first order astatic
Many identification procedures applicable to marine vedifferential equation (Nomoto model), the obtained data
hicles can be found in the literature, only few will be can be integrated and model parameters can be explicitly
mentioned in this paper. In order to |dent|fy ma[hemat_determined. This procedure is practical if linear Nomoto
ical model parameters of an underwater vehicle, differmodel describes the vessel's dynamic properly. However,
ent sensors can be used, such as inertial measuremdhfonlinear terms in the drag appear, the procedure can-
units (IMUs), Doppler velocity loggers (DVLs), ultra- hot be used. This method is not robust to external distur-
short baseline positioning systems (USBLs), etc., [3]. InPances, [16], and a great number of sequential data have to
research community, vision-based techniques are widele integrated to calculate the parameters.

used, probably due to low cost. These techniques deter- This paper will present a method which uses similar
mine the position of an UV using a camera, and this datgscillating data as in the "zig-zag" test, only it uses sim-
is then further processed to calculate higher order derivgsler calculations to determine the model parameters. It
tives and thus dynamic model parameters. An interestings pased on the describing function method, [18], [23],
vision-based laboratory apparatus used for URIS ROV pagng can therefore be used to determine nonlinear model
rameter identification was described in [20]. It was basefbarameters, also. The paper is organized as follows.
on placing a floor pattern at the bottom of the laboratorysection 2 describes mathematical models of underwater
pool enabling the position of the vehicle to be uniquelyyehicles and presents their simplifications that are used
determined by the help of the onboard down facing camfor control purposes. In Section 3 a theoretical ap-
era. Another approach found in the literature is to use aproach to self-oscillations is given, together with proofs
external camera with perspective view placed next to thf self-oscillation symmetry for astatic systems. Section
pool, [6]. The authors have implemented a similar techy4 gescribes the proposed identification by use of self-
nique with a camera placed exactly above the laboratonyscillations (1IS-O) method and presents complete formu-
swimming pool, obtaining orthogonal view from above on|ae for calculating unknown parameters in two case stud-
the vehicle, [15]. ies, which are used to describe the dynamics of underwater
The above mentioned methodologies and apparatus alehicles. Section 5 describes how 1IS—-O method can be
low application of classical process identification meth-applied to underwater vehicles and gives experimental re-
ods, [12]. These methods require time consuming expesults obtained on a real ROV. The paper is concluded with
iments, great number of collected data and computationSection 6.
of high complexity, and can be quite tedious and imprac-
tical in situations where sensor suite of the ROV changes2 UNDERWATER VEHICLES' MATHEMATICAL
The parameters of the mathematical model of the vehicle MODELS
also change significantly and, unless this model was identi-
fied previously, heading and depth controllers will not be-  |n order to define the full mathematical model of a gen-
have in a satisfactory manner. Different payload can b@ral marine vehicle the terminology adopted from [7] will
mounted on an UV (CTD probes, side-scan sonars, acouge used. First of all, two coordinate frames should be
tic modems, etc.), depending on the application, and everyefined: an Earth-fixed coordinate system {E} which is
time the model parameters will change. Performing consteady, immobile coordinate frame, and a body-fixed co-
ventional identification methods is not possible in theseyrdinate system {B}, which is usually attached to the cen-
cases, and a need for a quick, feasible in the field, easilie of gravity (CG) of the vehicle, as shown in Fig. 1.
implementable method is required. Variables that are included in the mathematical model of
One of such methods has been used for surface marimearine vehicles are linear and angular velocities, pasitio
vehicles and is called the "zig-zag" test. The "zig-zag" maand orientations, and forces that excite the vehicle. These
neuver has been used for designing ship autopilots, i.e. dare listed in Table 1 together with their names, which are
termining yaw motion of a surface vessel, [13]. The ma-common in marine applications. Surge, sway and heave
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Table 1. Notation used for marine vehicles
DOF surge sway heave roll pitch yaw definedin

v u v w D q r {B}

n z Yy z v ¢ () {E}

T X Y Z K M N {B}
Actuators

rG

Actuators in technical systems are actuating devices that
perform desired action on the system, [22]. In marine sys-
tems these are roughly divided into thrusters (propulsors)

SURGE) control surfaces and mass. This paper will focus on under-
water vehicles with thrusters.

(ROLL)

7 (YAW)
As the thrustei rotates, it exerts thrust and torquey’
(HEAVE) which can be described with (1) wherds propeller rev-
olution rate andl’, .|, Tn|u,» @njn| ANAQ)|y|y, are posi-
Fig. 1. Body-fixed and Earth-fixed coordinate frames  tjve coefficients given by the propeller characteristidsisT
model is also known as thalinear thruster model[7].
v i _
ACTUATOR 1 T = Tn\n\n || T\n\ua In| uq

n T v ) 1
—»| ACTUATORS [——» ALLOCATION —>DYNAMICS<|-> KINEMATICS L qz — inn‘n |n| _ anlua n| Ug ( )

f

=
o

A simpler model given with (2) can be derived if ambient

Fig. 2. Block-diagram of a complete mathematical model WVater speed, (see [19]) is neglected.

7 = a|n|n+ bn. (2)

are defined as motion in the-, y— andz—direction, re- - pis model is more applicable in practice especially at low
spectively, while roll, pitch and yaw are defined as rotationgpeeqs. Further simplification gives that linear part of the
aboutr—, y— andz—axis, respectively. model can also be neglected, ibe= 0, giving the so called

Earth-fixed coordinate system {E} is used to define@ffine model

vehicle’s positionsny; = [ T oy z ]T and orienta- However, the force exerted by thrusters is rarely the
same when the propeller is rotating clockwise and counter-
clockwise. This is why a more complex model given with

T
torn = [ni m3 ] . Inthe same manner, body- (3) should be used. Subindicgsandb denote ‘forward’
fixed coordinate frame is used to define linear velocitiesnq 'packward'.

vi=[u v w ]T (surge, sway and heave), and rota-

tional velocitiess, = [ p ¢ r ]T (roll, pitch and yaw) s ] arlnlntbem,  n>0 3)
]T ap|n|n+byn, n<O0

tionsm, = [ ¢ 0 @ ]T forming a six element vec-

forming a six element vectar = [ v{ v

Motion of the vehicle is achieved by applying externaIThe influence of the torque exerted by a thruster can be

forces and moments. Three forces (each in the directioﬁompens‘”‘tmj If thrusters are positioned i pairs in such a
of one body-fixed frame axis) and three moments (defineé@’ay that they are counter-rotating.

as rotation about each body-fixed frame axis) form a six

element vector of external forces and moments in the formctuator allocation

T=[XY Z P Q R ]T. External forces are

exerted by actuators. Let denote commanded thrusts  Actuator allocation is a linear connection between the
for each actuatori(= 1,...,n wheren is the number of space of actuator forces (described with veetgrand the
actuators). Valua® denotes commanded inputs for the ac-space of vehicle’s forces and moments (described with vec-
tuators themselves (rotation speed of the propeller, nuddeor 7). The matrix which describes this link is called the
deflection, etc.). Using this notation, the complete matheallocation matrixand it depends on the number of avail-
matical model can be represented with Fig. 2. able actuators and their topology.

AUTOMATIKA 50(2009) 3-4, 167-183 169



Identification of Unmanned Underwater Vehicles by Self-is®on Method N. Miskove, Z. Vukic, M. BariSt

Kinematic model e existence of Coriolis and centripetal forces and

Kinematic model gives the relation between the speeds e difference between the center of gravity and the origin
v in a body-fixed coordinate frame {B} and first derivative of the body-fixed coordinate frame.
of positions and angleg in an Earth-fixed coordinate sys-
tem {E}. A full set of kinematic equations is given with The first reason is almost always neglected because these
4) coupling terms have insignificant influence on the behav-
ior of the vehicle, [7]. If it is assumed that the vehicle
is moving at slow speed, the effect of Coriolis and cen-
[ n } _ [ Ji(n2)  Oszxs } { vy ] = I tripetal forces can also be neglected. This simplification i
2 || Osxz  Ja(n2) 2] = usually performed in modeling underwater vehicles, [20].
(4)  Incongruity of the center of gravity and the origin of the
where body-fixed coordinate system can be neglected in under-
water vehicles of smaller dimensions [15]. Having this in
J1 () = zzgz ;f;i?:;;é;g:b j’ﬁf inzggf 8 mind, the simplifications which are introduced in order to
12 obtain an uncoupled model for underwater vehicles are:

—s6 cls¢ chcop
and e coupled added mass terms are negligible,
e center of gravityC'G coincides with the origin of the
1L sptd  cotd body-fixed coordinate frame B,
JQ (7]2) = 0 cl S(b .
0 spc 'O copc1o e roll and pitch motion are negligible, i.ea = = p =

For the sake of brevity; denotes cosine;, sine,¢ tangent ¢=0.

and superscript-1 is the reciprocal function. L
P Pt P As a consequence of these simplifications

Dynamic model e total mass matriM prp + M 4 is diagonal,

The dynamic model gives relation between velocitres e the total Coriolis and centripetal matrix
and accelerations of the vehicle and forces that act on Crp (v) + C4 (v) vanishes, and

it, and is highly nonlinear and coupled. . .
e restoring forces influence only the heave degree of

(Mrp +My)r + (Crp(v)+Ca(v))v freedom.
—_—
M C(v
L D +(gé77) T These simplifications lead to one, generalized, uncoupled,

(5) nonlinear dynamic equation that describes surge, sway,

A full dynamic equation of forces acting on marine vehi- heéave ad yaw degree of freedom separately and it is given
cles can be written in a compact form given with (5) whereWith )

My is a rigid-body inertia matrixC 5 is the rigid-body v (t)+BW(t) v(t)=0+7(t). (6)
Coriolis and centripetal matrixXMi 4 is added-mass ma- parameters(t), (t), 5, « and3(z(t)) are interpreted in
trix, Ca (v) is added-mass Coriolis and centripetal matrix,tapje 2 for each degree of freedom, whexes, 7y g, 725
D(v) is total hydrodynamic damping matrix, and they areang - ,, represent external disturbanc, is weight of

all 6 by 6 matricesg (1) is vector of restoring forcesis  the vehicle andB is vehicle’s buoyancy. Other vehicle pa-

is the vector of environmental forces and moments (waveggmeters notations have been taken from [7] and are widely
winds, current) ane is the vector of actuation forces and ;seq in literature.

moments. The latter three vectors have dimensions 6 by

1,[7], [19]. 3 SELF-OSCILLATIONS

2.1 Uncoupled model for underwater vehicles One of the many behaviors that nonlinear systems ex-
Coupling effects in (5) can appear for the following rea-hibit is calledlimit cycle, [23], [21]. During this state, the

sons: closed-loop system state trajectories form a closed curve

(limit cycles). In the time domain, this behavior is rep-
e existence of coupled terms in the added mass matriresented as oscillatory behavior. The oscillations which
M4 (nondiagonal terms), arise as a consequence are caletf-oscillations(S-O).
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Table 2. Parameters in (6) depending on the DOF.

DOF  u(t) ay —B(v(t)) 5 7(t)
surge  u om— Xy Xy + Xy lul TXE X
sway v m-—Yy; Y, + Yy YE Y
heave w m — Zy Zw+Zw|w‘ |lw| Tz +W —B Z
yaw T I, — N; N, + NT|T| |7“| TNE N

The fact that the closed-loop system is in steady oscillawherep = % is the differential operator.

tlolr;s do_e”s not imply thatb'f ISon the"eg%e ;’f stability. The 1 hasic definition of the describing function is formed
self-oscillations are a stable, controlled behavior cti@ra ,, oummetric input oscillations. For the symmetric nonlin-

|st.|c f(_)r Ir_1onl|ne.ar systems, unlike steadyhosgllladtlorm}th ear elementF(z) — —F(—z), and unbiased oscillations
arise In linear time-invariant systems on the border of staz ¢ input the following expression for the output of the

bility, [22]. nonlinear element can be written as
3.1 Describing function yn (t) = Ypisinwt+ Yg1 coswt =
o . m) L Yor(Xm)p| o« 12
Harmonic linearization is a tool for obtaining an ap- = [YP;Q: ) 4 Q§<§m )f} z (12)

proximation of a nonlinear element in the cases when self-

oscillations are present. The describing function is consefrom where the following definition is stated.

quently an equivalent gain of a nonlinear element which is

excited by periodic signals. Let a biased monoharmoni®efinition 1 (Describing function) The describing func-

signal be defined as tion of a nonlinear element is defined as the ratio between
) the first harmonic of output and input signals expressed in
x(t) =9+ an sinwt = xo + z* (7) Complex form:
and let it be placed at the input of a nonlinear element G (Xm) = Py (Xm) + 5Qn (Xm) (13)
whose output is then in the form
where
yn(t) = F(z). 8)
2
The outputyy (t) of the nonlinear elemenf(z) can be  Pnv (Xn) = 3 = == [ F(Xpsinwt)sinwtd (wt)
developed into a Fourier series ; 9
. . Qn (X)) = % - ﬂ)l( f{ F (X, sinwt) coswtd (wt)
yn () = Yo—i—z Ypy sin (k:wt)—i—z Yor cos (kwt) (9) (14)
k=1 k=1
wh Similarly, the output of a nonlinear element with a biased
ere o .
harmonic input can then be written as
2T
_ 1 :
YE] = 37 {F(lﬂo +Xm SlIlwt)d (Wt) F(lE) ~ E)(x()aXm)‘i’ PN (330,Xm) + QN (330,Xm) g} T*
2
- 1 - - (15)
Yoo = & { F (@ + X sinwt) sin (kwt)d (wt) This definition allows us to define parameters of the de-
v g ?/’WF( 4 X, sinwt) cos (kwt)d (wt) scribing function parameters of the asymmetrical nonlinea
Qk = ™ 0 o m SULWE) COS (W wi) - EIGmentFo(.To, X'rn): PN (.1’0, X'rn) andQN (.1’0, X'rn)-
(10)
plified into ear element described withyy(t) = F(z) where
F = - F(- mmetrical nonlinear charac-
v () = Yo+ Yersinwt+ Yor coswt — (x) (—x) (symmetrical nonlinear charac

Yor(a0.Xm) . You(z0,Xm) teristic) is excited with an unbiased monoharmonic signal,
P1(T0,Am 1(Z0,Am) ] * . . .

= Yo(wo, Xom) + o S Bl e (1) = X, sin(wt), outputyy (¢) consists of odd multi-
(11)  ples of the first harmonic, only. O
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r=0 _ x(t) Yu(1) y(t) r =r,=const_ x(t t t
e e CT i el [ AP

Fig. 3. A closed loop consisting of a nonlinear elementand_. losed | ‘ . f self
a linear part of the system Fig. 4. Closed loop system for proving symmetry of self-

oscillations with constant input and astatic process

Proof: The simplest way of proving this theorem is
to show that even multiples of the first harmonic vanish. In Proof:

other wordsYp o1, andYy o, have to equal 0.
= If the nonlinearity is symmetric and the input signal is

unbiased then

N

T

Ypor = < [F(x*)sin(2kwt)d (wt) =
0 o
_ L [IF(2") — F (29)]si _ Yo = 1 [F(a")dwt) =
= L [[F(2*) = F(z*)]sin (2kwt)d (wt) =0 0 )
0 s T
_ 1 * 1 *
In a similar manner the proof goes B .. | = o7 ;{F(l’ )d (wt) + ?;{F(_l’ ) (wt).
3.2 Symmetric self-oscillations Since the nonlinear element is symmetric,
Symmetric oscillations are defined foraclosed loopsys- F(z) = — F(-x), and the proof follows

tem at the input of the nonlinear element where nonlinear ~ directly asY, = 0.

and linear part are separated as shown in Fig. 3, [23], [18]. o

The input to the system is zero, i.e. = 0. In addition = |f Y, = 0 this means that/ F (zo + x*)d (wt) = 0
to that, the linear part of the syste@, attenuates higher

0
multiples of the first harmonic of self-oscillations. Thés i from where it follows that

usually achieved in low-pass linear systems. Since most ™ ™
technical systems have low-pass properties, an assumption 1 /F(a:)d(wt) + 1 /F(ac)d(wt) 0.
is made from here on that the higher harmonics are suffi- ™ , ™ J

ciently attenuated. Given these assumptions, the follgwin
set of equations can be written if the system is oscillating Using the property of symmetry,
at frequencyw:

z(p) = -y (») l/F(xo +z%)d (wt) = 1 /F (—zo + z")d (wt)
y(Jjw) = G (jw) yn (jw) (16) mJ ™)
YN (]W) = GN (Xm)x (]w) .
which can only be true ity = —xz( from where it

These equations boil down to the closed loop equation,
which is used to calculate the magnitudg, and fre-
quencyw of self-oscillations.

follows thatzy = 0.

|
Gn (Xm) GL (]w) +1=0 (17)

Theorem 2 (On symmetric S-Os and constant reference)

Previously it was assumed that the input to the closed IooE :
e et the closed loop system composed of a symmetric non-
system should be 0 for the self-oscillations to be symmet- bsy b y

ric. The following theorem will show that if the process linear element and a process as in Fig. 3 be excited with
. 9 P a constant reference signal. If and only if the process is

n the closed Ioolp Is astatic (bg it linear or npnllnear), theastatic, the induced self-oscillations are symmetric. O
induced self-oscillations will still be symmetric.

Lemma 1 (On symmetric nonlinearities) Let the non- Proof: Let’s say that the process in general is non-
linear element be described withy(t) = F(z) where linear and therefore can be joined to the nonlinear part
F(x) = —F(—=x) (symmetrical nonlinear characteristic). of the system forming a static nonlinearity given with
If and only if such nonlinear element is excited with anyy = Fn (u, 4,4, , 9N, N, -+ ) leaving only thek in-
unbiased monoharmonic signal; (t) = X, sin(wt), Yo tegrators as the linear process as shown in Fig. 4. Let’s
vanishes. O  assume that the input to the nonlinear part is biased, i.e.
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that the self-oscillations are asymmetric{) = = + =*. If o = 0, Y, will never vanish because the nonlinearity is
The output of the nonlinear element is then asymmetric. Therefore, it can vanish onlycif # 0, i.e. if
the monoharmonic signal is biased. The other direction of
yn (t) = Fo+ | Py (20, Xpn,w) + wp z*  the proofis conducted in a similar manner. |
w
(18)

where the describing function is dependent on the fre:rheorem 3 (On asymmetric S-O and nonlinearities)

uency of self-oscillations also. The closed loob equa- Let the closed loop system be composed of a nonlinear ele-
q y ' peq ment and an astatic process. The induced self-oscillations

tions give v are asymmetric if and only if the nonlinear element is
oy asymmetric. O
FYN =Y (29)
yn = Fn (2).

Proof: As it was shown in the proof of Theorem 2,
Under the assumption that) is biased causing the output the closed loop equation can be written using (20) from
of the nonlinear element to be (18), the following equationwhere it follows that if the process is astafig = 0. Ac-

is obtained: cording to Lemma 2, ifcy # 0 then the nonlinear element
1 0 must be asymmetric. The reverse direction of the proof
To+aF =19 — ]? {FO + (PN + —Np> az*} . (20) goesinthe same manner using Lemma 2. [ |
w
The static part of the equation gives thét(zo — o) = 4 IDENTIFICATION BY USE OF SELF-
—Fp. OSCILLATIONS (I1S-0)

Self-oscillations are often considered a malicious effect
in control systems. However, self-oscillations can some-
times be used to determine systems’s parameters. In these
cases, nonlinear elements are intentionally introduced in
the closed loop in order to induce self-oscillations.

= Since the process is astatic;> 0, and thek-th deriva-
tive of a constant is 0, which implies th&, = 0.
From Theorem 1 it follows that, = 0 which proves
that the induced S—Os are symmetric.

< If the S-Os are symmetrig;o = 0 which again ac-
cording to 1 means thdf, = 0. Thenp” (—r() can
be equal 0 only it: > 0 since the theorem assumption
is thatry # 0. This proves that the process is astatic.

The concept of identification by use of self-oscillations
was introduced about 25 years ago when Astrém and Hag-
glundin [1] derived a so-called ATV (autotuning variation)
method used for system identification. The method was
presented as simple and appropriate for in situ identifica-
tion. The method is based on using a relay-feedback to
bring the system to self-oscillations. Then Luyben in [14]
used this method in chemical industry to identify a trans-

Asymmetric self-oscillations in general can be a resulffer function of extremely nonlinear systems (distillation
of a constant input to the system (Theorem 2 proves thajolumns). Since then, inducing self-oscillations proved t
this is not the case with any type of closed loop system) ope an efficient tool for controller tuning in processes and
asymmetry in the nonlinear element. The following theo-for process identification, [11], [5], especially in pharma
rem will show that for astatic systems, self-oscillatiorss a ceutical industry. There are no records of this methodol-
asymmetric if and only if the nonlinear element is asym-ogy being used for marine vehicles apart from the work
metric. from the authors. The work that is presented in this paper
demonstrates the use of the IS-O method on a class of non-

Lemma 2 (On asymmetric nonlinearities) Let the non-  jinear models which can be used to describe dynamics of
linear element be described withy () = F(xz) where | ,nderwater vehicles.

F(z) # —F(—z) (asymmetrical nonlinear characteris-
tic). If and only if such nonlinear element is excited with
a biased monoharmonic signal;(t) = X, sin(wt), Yy
can vanish. O

3.3 Asymmetric self-oscillations

A general strictly proper{ > m) nonlinear process can
be described with

fai, 2 =D ™) =D w)=u+9
(21)

Proof: If the nonlinearity is asymmetric arldy can , .
wherea; are process’ parameters,is process outputy

vanish then . .
process input and constant term at the input. If self-
2m oscillations are induced by introducing a nonlinear ele-
_ 1 * —
Yo = = bf F (o +27)d (wt) =0 ment, the input to the nonlinear element can be written as
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—z(t) = 2o+ X,, sin(wt) whereX,,, andw are magnitude with Fy = Fy (z, Xon), Py = Pn (20, X)) @andQn =

and frequency of the established self-oscillations, respe Q n (x0, X,,). From here, three equations that describe the
tively andz is the biased component causedbWithout  unknown parameters can be derived:

the loss of generality, the closed loop reference is assumed

xrer = 0. The derivatives of the process’ output are a = PN(TQ.,XW)
_ _Qn(®0,Xm) 27
x = o+ Xpsin(wt) 53 . oy (27)
t = Xpjwsin(wt) = Fy(zo, Xm)
(22)
2(F) : X (jw)¥ sin(wt) Case study 2 (Linear drag)

and the process can be developed into a Fourier series. Thjs case study is given with (28) and it will also be re-
Keeping only the first harmonic leads to ferred to as the "linear damping" or the "linear drag" case,
[Fr(ai, @0, Xom, @) + f1(ai, 20, X, w)] 2* = u + 6. because damping of the equation is given vith - |z (¢)].
(23)
The termfy(a;, o, X:m,w) Of the process is considered to
be 0 for the sake of simplicity. Unity feedback implies that

ail(t) + Buald(D]d(t) = 6 +ult)  (28)

Substituting (24) and (22) into (28) gives the following
U(t) = 7E](£L’(), Xm) — GN(ZL’(], Xm) -zt (24) 6quati0n

where Fo(zo, Xm), andG n (20, Xm) = Py (20, Xm) + osz(jw)2 sin (wt) + jBre X 2,w? |sin (wt)] sin (wt) =
JjQn(x0, X,,) are parameters of the describing function 5+ [~ Fy— (Py —l—jQN)X,,:nsin (wi)],

of the nonlinear element and do not depend on frequency

of self-oscillations if the nonlinearity is static. Combig  \yith Fo = Fy (20, Xm), Py = Py (20, Xn) andQy =
(23) with (24), an equation is obtained which can be sep ~ (20, X.m). Further development of the nonlinear term
arated in an oscillatory component and static componenf the Fourier series gives

forming two equations given with (25).

fTR+Jjf1 = —Pn—jQn |sin(wt)|sin(wt)z3—7rsin(wt),
Fy = 6 (25) 8

From here, three equations can be determined and they c&Rd finally, three eq_uatitzns that describe the unknown pa-
be used to calculate unknown parameters of the process.F2Meters can be written::

Two case studies will be analyzed in this paper. The o = Pv(@oXm)
first, given with (26), is a linear first-order differential o 37#“5N(x0,xm) (29)
equation with an integrator. The second case study, given Poe = —F %0
0 = FO (.TO, X'rn)

with (28), is a nonlinear first order differential equation
with an integrator, where the nonlinearity can be inter-
preted as linear drag,.. - |£(¢)|. Both equations have a 4.1 Benchmark example: Relay with hysteresis
bias termy included. The assumption is made thag con-

stant, therefore it can be observed as one of the unknown l']l:he mo;t commonly used nonlinearity for ||ndUC|_nrg1]
parameters of the system. self-oscillations in practice is a two-position relay wit

hysteresis, [21]. Some work related to using relay for iden-
tification of process parameters can be found in [9], [10],
[26], [25], [24]. Some of the main reasons why this ele-

This case study is given with (26) and it will also be re-Mmentis commonly used are that
ferred to as the "constant damping"” or the "constant drag"

Case study 1 (Constant drag)

case, because damping of the equation is given gjith e every system whose Nyquist characteristic passes
. . through the Il quadrant can be caused to oscillate (this
ai(t) + Bod(t) = & +u(t) (26) comes as direct consequence of the Goldfarb method,
Substituting (24) and (22) into (26) gives the following  [23]),
equation

e itis insensitive to noise, and
X (jw)? sin (wt) + j B Xmw sin (wt) = o o
6+ [-Fy — (Py + jQn) Xy sin (wt)] ’ e itis easily implementable.

174 AUTOMATIKA 50(2009) 3-4, 167-183



N. Miskovic, Z. Vukic, M. BariSt Identification of Unmanned Underwater Vehicles by Seltiaion Method

A I
Jcvs |
A 6,57 ----
-X.Y >
Xa ystefesis
< > switching level -
-C+d
3
2,15
Fig. 5. Asymmetric two-position relay with hysteresis
0 |
P N T S B T e B
relay output Th T, 0 1 2 3 4 5 6 7 8 9 10 11

A I time step

Fig. 7. lllustration of false switching in discrete-timessy
> tems

~

with time delays, but they were mostly based on insert-
ing an additional time delay in order to shift the system in
Fig. 6. Asymmetric output from the relay with hysteresis phase and therefore obtain different frequency points for
identification. In this paper, time delay will be treated as
a known part of the system, and its influence has to be
compensated for. The influence of time delays is rather
obvious in systems forced into self-oscillations: theyehav
greater magnitude and smaller frequency of oscillatiohns. |
Ifhe system with a delay is to be identified, the delay should
be taken into account. Let’s suppose that the general non-
"inear process (21) has a time deldy at the input, i.e.
u+06 =u(t—Ty)+6(t —Ty). Then (23) can be rewritten
as

*40? (30) fr+ifi = (Pn+jQn)e /¥

X2, F, o= &

B 2 2| This modification can be observed as rotation of the orig-
20 T — T Ta + To . e ;
Py = X 1- . +4/1 - . - inal vector of the describing function by an angle/Ty.

In other words, same equations as for the system without
(31)  process delay can be used, only the modified describing
It is worth noting that the imaginary part of the describ-function parameter®;; andQ% have to be calculated us-
ing function,@ x (7o, X:m), is in fact not a function ofo.  ing ( 34).
The unbiased describing function is obtained:if = 0.

Fig. 5 shows the asymmetric two-position relay with
hysteresis wheré€’ is relay output;, is hysteresis width
ando is the bias term which causes the asymmetric osci
lations at the output of the relay shown in Fig. 6. The
describing function parameters for such nonlinearity ca
be determined by using (14) and are as follows:

Qn =

(33)

The static term of the describing function can also be de- | Py | | coswly sinwly Py (34)
termined and it is given with (32). Qy | | —sinwTy coswTy Qn |
Ty —1TL e _ )
Fp=C=—/——= (32) 4.3 Modification for discrete-time systems
Ty + Ty,

_ o When the IS-O method is used in practice, the process
To sum up, the terms for identifying unknown parameterss usually computer-controlled. Therefore a slight modifi-
of the two case studies when the nonlinear element is igation of the procedure has to be done.

the closed loop, can be found in Table 3. Let's say that the nonlinear element which caused the

self-oscillations in the system is a relay with hysteresis
with z, = 3. This means that it should switch when the
Delays in systems have great influence on quality ofnput signal has value 3. It could happen that at some time
control. They are often present and seldom negligiblestepk the inputis 2.15 and at the following time step- 1
Some research has been done on autotuning of systentss 6.57, as shown in Fig. 7. Since at the moméerthe

4.2 Modification for systems with delays
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Table 3. Formulae for determining unknown parameters uk8i@ method with relay with hysteresis

Case study 1 (constant drag) Case study 2 (linear drag)
_ PN(Q’«'()va) __2C 1 1 Taq—T0 2 1 Ta+To 2
P ="T0r T n X, =) TV TR
__QN(Xw) _ 4Cza 1 37 QNXm) _ 3Cz, 1
ﬁx - w oo wX? ﬂzz - 8 X,w?2 2 Ww2X3
T—T,
0=Crirm

input to the relay has not yet reached the switching value, r-—
it will switch at the moment + 1. In other words, this

is equivalent to hysteresis parametgrhaving the value

x} = 6.57, which is more than double the assumed value,
therefore false results can be expected. It can also happen
that the switching occurs exactly at the desired moment, re-
sulting in accurate identification. Since it cannot be known
a priori weather the chosen hysteresis parameters will give
satisfactory results, the only way is to perform the correc-
tion of the hysteresis width (determine real switching lev-
els z), after the experiment has been performed. With
smaller sampling times, the chances of hysteresis switch- (@) (b)

ing atz} > z, become smaller. However, sampling time

is usually not something that can be altered, therefore the

proposed modification is necessary. Fig. 8. a) VideoRay ROV and b) thruster distribution

5 IMPLEMENTATION OF IS-O TO UNDERWA- . . . L
mapping. The simplest way to perform this mapping is to
TER VEHICLES ; . S
induce vehicle motion in such a way that the pull-force of
5.1 System description the vehicle can be recorded by a dynamometer, as shown in

The vehicle that was used to implement the proposedF'g' 9(a). After a series of such experiments, for different

. e P ) : input signals, the results shown in Fig. 9(b) have been ob-
identification by use of self oscillations method is a Video-, _.
Ray ROV shown in Fig. 8(a). Its dimensions are 355mm tained, where the dots represent measured values and the

228mm x 215mm and it weighs 3.5kg. Heading sensor ;iull line gives the interpolated curve, given with (2).

a magnetic compass witt? quantization. In addition, it is The ROV is connected to the surface computer via tether
equipped with a depth pressure-based sensor. The vehid@é itis shown in Fig. 10. All the control algorithms are cal-
is actuated using a port, starboard and vertical thrustes. T culated and executed on the surface and sent to the ROV
schematic representation of thruster locations is shown iHsing the RS - 232 interface. The schematic representation
Fig. 8(b) from where it follows that the thruster allocation Of the complete system that was used for identification is
matrix (only for port and starboard thrusters) can be writ-shown in Fig. 11. Yellow blocks represent the communi-

ten using (35). cation with the ROVCOMM 1is communication from the
surface computer towards the vehicle and is modeled as
X 1 1 ;1 one discretization step delayy{ = 0.1s). Block COMM
{ N ] = [ d —d } { 2 } (35  2is modeled in the same manner and it represents the

communication delay from the ROV towards the surface

Determining the static characteristic of a thruster, i.ewhere the heading data is collected. The blue block en-
the relation between the exerted thrastand the thruster titled "VideoRay ROV" represents the vehicle itself. The
control signal (voltage:® in this case) is called thruster signals inside this block are virtual and are marked with a
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tification procedure is initiated. The grearpriori com-
pensatiorblock has the purpose to compensate for as many
nonlinearities in the system as possible. The dead zone in-
herent to thrusters is avoided by adding a constant signal
so that the thrusters are rotating even at small input volt-
ages. The nonlinear thruster characteristic can easily be
compensated by applying the inverse of identified charac-
teristic, f ! (z). In order to control the vehicle by sending
it the yaw moment ) command, inverse thruster alloca-
tion has to be performed. This block presents the matrix
*+  measured values inversion of (35). In other words, the complete system,
interpolated curve from the input yaw momen¥ through the output heading
M 1) can be modeled with (36), in concordance to (6).

-
o

Thrust [N]

N O N A O ©

a, i + 8 (¢)) =N —2T)) +mve  (36)

TN E presents the external disturbance that is mainly caused
3 ] by the tether. This disturbance is assumed to be constant
‘ ‘ ‘ and has to be estimated during the identification process.
200 -100 0 100 200 Another assumption is that drag is either dominantly con-
Thruster control input . . .
stant or dominantly linear. This means that general drag

b .
®) 15 <¢> can obtain one of the two values:

,
N

VideoRay ROV ‘w for linear drag

) a ~Since it is not known a priory what kind of model best de-

the 1S-O method are the parameters of the dynamic yayhich of these models suits the vehicle best will be devel-
model of the vehicle. However, the vehicle demonstrategneqd and elaborated later on.

some nonlinear behaviors which must be detected prior to

the initiation of the IS-O method. One of these nonlinear5.2  Quantization levels
ities is the relation between the thruster input voltagke (
andn?) and thrust itself£! andr?). This relation has been
described before and is schematically representetajs

Fig. 9. Thruster mapping a) experiment and b) results for 3 (1/1) - { Br for constant drag
N ﬁTT'

The quantization can greatly influence the quality of the
identified system. Different compasses can have different
guantization levels, and based on the quality of the com-

in Fig. 11. Thethruster allocatiorblock is given with (35). ass, identification results can differ. The same goes for
It has been noted that small voltage applied to the thrustelpst ' . j . C
other sensors which can be used to determine vehicle’s

will not cause them to rotate, mainly because of friction.model based on the self-oscillation experiments
This effect has been modeled using the dead zone blocks. '
: . . g . Using the formulae in Table 3, the percentual difference
Now that these static nonlinearities and allocations have, v iqentified parameters can be found in relation to per-
been defined, they can be compensated for before the ide@éntual difference of the quantization intervalX,,) and

the magnitude of self-oscillations({,,). These error esti-
RS-232: actuator commands [ | mates are given with (37), (38) and (39).

SURFACE
CONTROL |, Rs-232: sensor readings

Aoy 2- (X—)2 AX,,

= (37)
2
Qg ()i_;”> -1 Xm
AB, AX,,
=-2
5, X, (38)
Fig. 10. Connection of the ROV to the surface control unit ABee 3AXm (39)
/811 - XT?L
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A PRIORI COMPENSATION COMM 1 VIDEORAY ROV COMM 2
1 1 1# 1# #
T 3 n n T X
] SURGE
INVERSE () > X(#-To) ™7 fx) i MODEL
THRUSTER
N THRUSTER 7 . n? n* % | ALLOCATION | N7 # YAW v
ALLOCATION _
i £1(x) . X(-Ty) »7{-4 f(x) T

Fig. 11. Schematic representation of the complete model

It is clear that the percentual errors in determinjfg
andg,, caused by quantization are constant. The absolute
errors in these parameters however, can be minimized if
the experiments are performed with greater magnitude of
self-oscillations (minimizing the percentual error of mag
nitude).

5.3 Experimental results

The self-oscillation experiments were performed in the E o
Laboratory for Underwater Systems and Technologies, =
Faculty of Electrical Engineering and Computing, Univer- ~0.1645) ‘ ‘ ‘ ‘
sity of Zagreb. The Laboratory is equipped with a circular 10 5 2 imes %
pool 1.5 m deep, which made it impossible to conduct the
heave degree of freedom tests on the real vehicle. How-
ever, extensive experiments have been carried out on iden-Fig. 12. Example of responses during the 1S-O method
tifying the yaw degree of freedom.

An example of responses during one experiment are 3. Calculate average bias of the input signal The

shown in Fig_ 12. First plot givgs the input to the relay, existence ofry means that external disturbance was
zp_,.ef — 1, while the sec_ond plot gives r_elay outpMt Red present during the experiment (tether in the specific
circles represent maxima of the oscillations, green dots case)

minima and yellow stars represent the moments in which
relay switching occurred. 4. Check condition (40). If false, repeat experiment with

For the experiment to be successful, self-oscillations  different relay parameters and go to 1.
have to be obtained. A condition which has to be fulfilled
for this is given with (40). This comes as a direct conse-
quence of the domain of real part of the describing function
of the asymmetric relay with hysteresis (31). Anexample  1,q geit ogcillation parameters were changed by vary-
of the relay parame_tersf set inappropriately is given in F|ging two relay parameters: relay outpdtt and hysteresis
13, where hysteresis width was chosen tarhe= 0. width z,. All together, 19 experiments were performed

xt — 2 and the results can be found in Table 4. Based on the
X <1 (40)  standard deviations of obtaingd and 3, it can be con-
cluded that the linear drag model fits the data better with a

Once the data have been obtained the following procestandard deviation between the measurements of 14.84%.

dure is executed: For better representation, Fig. 14 gives relative errors of
parametersy, ;, ., and .., calculated in the-th ex-
1. Calculate average magnitudé,, and average fre- periment with regard to the obtained mean valags=

5. Calculate vehicle parameters using the formulae in
Table 3. The delay is to be compensated using (34).

quencyw of self-oscillations. lf ave lf i i § B |
. oo = .= = _—andg.,, = = —,r ively.
2. Calculate average hysteresis switching leygl = 19 _57 L and g3, e Ls'.speCt ely
will be bigger than the preset one,() because of the Green circles in first plot show,, ; = ‘a—‘ -100%,
discrete nature of the signal (see Section 4.3). and in the second plot green diamonds shay, =
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model of the vehicle. The experimental data have shown
that model parameters can be determined accurately from a
single experiment. The methodology on how to determine
which model structure is more appropriate is described in
the following section.

5.4 Deciding on the appropriate model

The extensive experiments have shown that the most ap-
propriate model for the vehicle is the one with linear drag
(nonlinear model). In other words, the equation for calcu-
lating the drag which should be used is given with (29).

However, this cannot be known if only one self-
oscillation experiment has been conducted. That is why
an additional experiment, with different relay parameters

Fig. 13. Example of responses during the 1S-O method},uid be conducted. From the first experiment, fy1,

when conditions for inducing self-oscillations are not ful
filled (z, = 0)

[%6]

E=a|

o Py,

10 15

—0— prx n

P
e S S

[26]

¢

10 15
Experiment number

20

Fig. 14.
bounds for identified parameters

’—ﬁ’*%’ﬁ”' ’-100% andred circlegg,, , = ﬁﬁ;’é -100%.

The Tconfidence bounds are calculated bgsed

Relative errors and quantization confidence

on the error

Bzz1 are obtained, and from the secoags, B.2, Buz2.
Standard deviations can be calculated as

Oas% = |amyass| 100%

05 % %‘ -100% (41)
_ Bra1 —Bzra2

O6:s% = |Forthus|  100%-

Theoretically,o,,_ % should be 0. In real experiments
it will have some value, which can be interpreted as mea-
surement uncertainty. The criterion for determining which
model best describes the vehicle is given with (42), where
A is a parameter which determines the robustness of the
decision making.

> A = linear drag (,)
08, % — 08,.% 4§ < —A = constant dragq,) .
€ [-\)A] = nodecision

(42)
Depending on robustness parametgiour different crite-
ria were tested:

1. A = 0 is the least robust criterion ensuring that any
pair of measurements will result in a decision on the
model, even though the difference between standard
deviations is small. This criterion may lead to wrong

which can occur due to quantization effects, and they are
calculated by using formulae (37), (38) and (39). It is eas-
ily seen that confidence bounds get smaller as the mag-
nitude of self-oscillations gets bigger. This leads to the
conclusion that self-oscillations experiments shoulduse r
with higher oscillating magnitudes in order to minimize the
error caused by quantization effects. These experiments
show that 1IS-O method can be applied to identify underwa-
ter vehicle mathematical model parameters with sufficient
precision.

However, the point of 1IS-O method is not to perform 4.

a great number of experiments in order to determine the

AUTOMATIKA 50(2009) 3-4, 167-183

decisions.

2. A = 0,,% Is a criterion which includes the measure-
ment uncertainty described by the standard deviation
of ag;. Robustness in this case is increased and there

is a margin in which decision might not be made.

3. A = 0,,% + 5% is a criterion with increased robust-
ness. The margin of not making a decision is also

increased.

A = 04, % + 10% is a criterion with increased robust-
ness where it is demanded that the difference between

179



Identification of Unmanned Underwater Vehicles by Self-is®on Method N. Miskove, Z. Vukic, M. BariSt

Table 4. Experimental results obtained from the Videoray &~ DOF

Exo. N N xh X o T:% Q- O Brr
XP. 0. ms? — ms — ms? -5
P [Nm] [deg] [deg] [deg] [s] [NdTg-w 4] [ﬁTg-w 4] [126?-10 ]
1 2.10 10.29 20.6 2 4.26 5.05 6.4 2.48
2 3.85 11 26.17 1.17 3.82 5.69 7.87 2.16
3 3.85 15 29.8 7.8 4.18 5.14 7.87 2.07
4 3.85 16.84 29.78 2.22 4.14 4.99 8.52 2.22
5 3.85 21.20 35.25 1.25 4.64 5.24 8.14 2.01
6 3.85 41.07 53 3.86 6.6 5.38 8.53 1.99
7 8.23 6.58 26.36 3.8 2.69 5.73 11.11 2.12
8 8.23 12.21 30.69 1.62 3.21 6.6 12.51 2.46
9 8.23 17.73 3657 2.86  3.39 5.62 11.84 2.06
10 8.23 21.92 42.25 4.75 3.79 6.03 11.44 1.92
11 8.23 22.37 41.08 2.62 3.68 5.64 11.85 1.99
12 823 31.29 47.17 1.5 4.27 5.70 12.85 2.18
13 12.6 22.42 44.09 1.55 3.28 6.28 15.07 2.10
14 16.98 13.12 40.33 2.17 2.48 5.76 15.72 1.81
15 16.98 14.25 42.73 3.67 2.5 5.49 14.99 1.65
16 16.98 14.33 42.73 2.36 2.51 5.52 15.07 1.66
17 16.98 19.83 48.88 2.29 2.77 5.7 14.91 1.59
18 16.98 23.6 49.67  2.78 2.93 5.88 16.19 1.79
19 16.98 34 60.33 2.67 3.51 6.62 16.34 1.78
T 5.69 11.96 2
. 100% 8.07 27.38 12.48

standard deviations be significantly different. In thisments the decision could not be made (below 10%). How-
case the decision that is made can be considered cagver, in this case, the number of correct decisions is 8 time
rect, but the path to making a decision may requirebigger then wrong decisions. By increasing the margin of
more measurements being taken. decision (criteria 3 and 4) the number of cases without de-
cision increases, but the number of pairs with correct de-
Based on the experiments which were performed, the corgision gets 12 (criterion 3) and even 37 (criterion 4) times
clusion is made that the model with linear drag describebigger.
the system better than the one with constant drag. Among
the 19 experiments, pairs were taken in such away thatore5 Discussion on identifying heave and surge models
pair must have different relay outpué. This is common, . .
For identification of a heave model, depth sensor must

since the two experiments that are performed to decide o X . : ! oS
the model should be as different as possible. This cond -? apph_ed. The equauop which des_cnbes heave m9t|on IS
tion leads to 131 different combinations of pairs. All four glve:'_]kW|_th (h43) where3 (£) can be eithep, or fuw [Z],
criteria have been tested and the results are shown in FibLfSt ke In the yaw case.
15, where dark green represents the number of pairs when

the conclusion was correctly made, light green the number

of pairs when the conclusion was falsely made and in yelyo yever, in (43)-, 1 presents the external disturbance and
low the number of pairs where the conclusion could not bgjittarence between weight’ and buoyancyB of the ve-
made. hicle. The difference is usually dominant in comparison to

Itis clear from Fig. 15 that criterion 1 always caused thethe external disturbance that is mainly caused by the tether
decision to be made, and in almost 90% of pairs the conwhich is why greater asymmetry in self-oscillations should
clusion was made correctly. In about 7 times less cases, thme expected during IS-O experiments, [17]. Special atten-
conclusion was false. When using criterion 2, the margirtion should be paid to quantization errors since depth sen-
of no decision is introduced and for a number of experi-sors often give rough measurements.

i+ B(2)-2=2Z{t—2T)) + 728 (43)
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Lo The proposed IS-O method was derived for identifying

ol B coroct processes which exhibit asymmetric self-oscillations, fo
[ wrong the purpose of generality. It was also shown that the dis-
[_Jundefined turbance in the system does not correlate to the identified

1001

drag of the vehicle. In addition to that, the 1S-O method is

8of extended to cover the systems with delays.

Extensive IS-O experiments have been performed on
yaw DOF of VideoRay ROV showing that the best fitting
model is nonlinear. However, the key point of IS-O method
is to perform only one experiment to determine the model
and these multiple experiments have shown that each ex-
periment gives accurate model parameter estimations. In

T > . " order to determine the most appropriate structure of the
Criterion no. model, a practical decision-making scheme was presented
and applied to the real ROV. in addition to that, estimates of
Fig. 15. Number of cases when the conclusion was correcgrrors due to quantization have been given and the conclu-
false or undefined sion was raised that these errors decrease with the increase
of magnitude of self-oscillations.

The identification of the surge model is commonly con-  In the final part, suggestions for applying the proposed
ducted using a Doppler velocity logger (DVL), which gives IS-O method on other degrees of freedom of underwater
surge speed as output (among other speeds). This meayghicles are stated.
that the model to be identified would be of the first order
without an integrator. However, the same procedure as iIBCKNOWLEDGMENT
yaw case can be applied if the integral of measured surge
speedu<> — f udt is introduced to the re|ay input_ Then The work was carried out in the framework of the Euro-
the surge model can be described with (44) whefé®)  Pean FP7-Capacities project "Developing the Croatian un-
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