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Control of underwater vehicles is a challenging task since these systems demonstrate highly coupled and nonlin-
ear behavior in uncertain and often unknown environment. Inorder to successfully design higher levels of control
hierarchy, sufficiently accurate parameters of a mathematical model describing the vessel is required. These param-
eters vary significantly depending on the payload; hence conventional, time-consuming identification methods are
tedious.

This paper introduces a self-oscillation based method for determining inertia and drag parameters for underwater
vehicles. The procedure is easily implementable in field conditions and gives satisfactory results. Both linear and
nonlinear models of yaw, heave and surge degree of freedom can be identified. Experimental results obtained
from yaw identification experiments on a real underwater vehicle will be presented. In addition to this, the same
methodology will be used to determine which model describesthe vehicle dynamics more suitably. Modifications
of the proposed algorithm for systems with delays and discrete-time systems will be described, together with an
estimate of parameter error bounds due to quantization levels.
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Identifikacija bespilotnih ronilica korištenjem postupka vlastitih oscilacija. Upravljanje bespilotnim ronili-
cama predstavlja zahtjevan zadatak budući da ronilice pokazuju snažno spregnuto i nelinearno ponašanje u nepred-
vidljivim i često nepoznatim okruženjima. U svrhu uspješnog projektiranja viših razina u njihovoj upravljačkoj
hijerarhiji, potrebno je dovoljno dobro poznavati parametre matematǐckog modela plovila. Ovi se parametri mogu
znatno mijenjati ovisno o opremi i drugim uvjetima tijekom misije, stoga su uobičajeni, vremenski zahtjevni iden-
tifikacijski postupci neprikladni.

Članak opisuje postupak koji koristi vlastite oscilacije za određivanje inercije i otpornosti bespilotnih ronilica.
Postupak je lako primjenjiv u terenskim uvjetima i daje zadovoljavajúce rezultate. Linearan i nelinearan model
zaošijanja, zaranjanja i napredovanja moguće je identificirati. U radu su prikazani eksperimentalni rezultati dobiveni
na identifikacijskim ekperimentima zaošijanja na stvarnojronilici. Uz navedeno, ista metodologija je iskorištena za
odlučivanje o modelu koji prikladno opisuje stvarnu ronilicu. Uradu su opisane i preinake predloženog algoritma
za sustave s transportnim kašnjenjem i diskretne sustave, kao i procjene pogrešaka u određivanju parametara koje
su posljedica kvantizacije.

Klju čne riječi: nelinearni sustavi, bespilotne ronilice, identifikacija,vlastite oscilacije

1 INTRODUCTION

Underwater robotics is an area that occupies interest of
the research community increasingly over the years. The
main reason for this is probably the ever growing number
of applications of these technologies in real life. Under-
water vehicles (UVs) are widely used in marine biology,
underwater archeology, navies, hydrography, oceanogra-
phy, fishery, etc. These vehicles can be divided into re-
motely operated vehicles (ROVs) whose main characteris-
tic is that they are controlled from the surface via tether;
and autonomous underwater vehicles (AUVs) which act

as autonomous systems without any communication with
the surface. There are many commercial ROVs available
on the market (VideoRay, Seamor, Benthos, etc.) and the
market of AUVs has started to grow in the last few years
(IVER2, Remus, etc.). The applications of these vehicles
vary from underwater cartography to military applications
(mine detection and disposal).

From the control point of view, AUVs require much
more effort in control design. In general, control strate-
gies for marine vehicles can be divided into three levels.
The low level is responsible for control of the vehicles’
speeds (surge, yaw rate, etc.), positions (depth, dynamic
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positioning, etc.) and orientations (heading, tilt angle,
etc.), [2], [8]. Mid level of control is responsible for path
following, trajectory tracking and gives commands to the
low level, [4]. High level of control is dedicated to mission
management, mission planning (path and trajectory plan-
ning) and to safety issues (collision avoidance, fault toler-
ance, etc.), [19]). For a higher level to function properly,
low levels have to be designed and work reliably. In order
to design the low level control structure, UV mathematical
model parameters have to be identified.

Many identification procedures applicable to marine ve-
hicles can be found in the literature, only few will be
mentioned in this paper. In order to identify mathemat-
ical model parameters of an underwater vehicle, differ-
ent sensors can be used, such as inertial measurement
units (IMUs), Doppler velocity loggers (DVLs), ultra-
short baseline positioning systems (USBLs), etc., [3]. In
research community, vision-based techniques are widely
used, probably due to low cost. These techniques deter-
mine the position of an UV using a camera, and this data
is then further processed to calculate higher order deriva-
tives and thus dynamic model parameters. An interesting
vision-based laboratory apparatus used for URIS ROV pa-
rameter identification was described in [20]. It was based
on placing a floor pattern at the bottom of the laboratory
pool enabling the position of the vehicle to be uniquely
determined by the help of the onboard down facing cam-
era. Another approach found in the literature is to use an
external camera with perspective view placed next to the
pool, [6]. The authors have implemented a similar tech-
nique with a camera placed exactly above the laboratory
swimming pool, obtaining orthogonal view from above on
the vehicle, [15].

The above mentioned methodologies and apparatus al-
low application of classical process identification meth-
ods, [12]. These methods require time consuming exper-
iments, great number of collected data and computations
of high complexity, and can be quite tedious and imprac-
tical in situations where sensor suite of the ROV changes.
The parameters of the mathematical model of the vehicle
also change significantly and, unless this model was identi-
fied previously, heading and depth controllers will not be-
have in a satisfactory manner. Different payload can be
mounted on an UV (CTD probes, side-scan sonars, acous-
tic modems, etc.), depending on the application, and every
time the model parameters will change. Performing con-
ventional identification methods is not possible in these
cases, and a need for a quick, feasible in the field, easily
implementable method is required.

One of such methods has been used for surface marine
vehicles and is called the "zig-zag" test. The "zig-zag" ma-
neuver has been used for designing ship autopilots, i.e. de-
termining yaw motion of a surface vessel, [13]. The ma-

noeuvre consists in turning the ship rudder at the maximum
speed to the starboard side at10◦ (20◦); when ships course
changes by10◦ (20◦) from the initial course, the rudder
is turned to the opposite side (port) at10◦ (20◦), causing
the ship to turn to port. When ship course changes by10◦

(20◦) from the initial course on the opposite side, the rud-
der is again turned to the starboard side at10◦ (20◦). The
heading and the rudder position are recorded all the time
during the experiment. Under the assumption that the ship
yaw model can be described with a linear first order astatic
differential equation (Nomoto model), the obtained data
can be integrated and model parameters can be explicitly
determined. This procedure is practical if linear Nomoto
model describes the vessel’s dynamic properly. However,
if nonlinear terms in the drag appear, the procedure can-
not be used. This method is not robust to external distur-
bances, [16], and a great number of sequential data have to
be integrated to calculate the parameters.

This paper will present a method which uses similar
oscillating data as in the "zig-zag" test, only it uses sim-
pler calculations to determine the model parameters. It
is based on the describing function method, [18], [23],
and can therefore be used to determine nonlinear model
parameters, also. The paper is organized as follows.
Section 2 describes mathematical models of underwater
vehicles and presents their simplifications that are used
for control purposes. In Section 3 a theoretical ap-
proach to self-oscillations is given, together with proofs
of self-oscillation symmetry for astatic systems. Section
4 describes the proposed identification by use of self-
oscillations (IS–O) method and presents complete formu-
lae for calculating unknown parameters in two case stud-
ies, which are used to describe the dynamics of underwater
vehicles. Section 5 describes how IS–O method can be
applied to underwater vehicles and gives experimental re-
sults obtained on a real ROV. The paper is concluded with
Section 6.

2 UNDERWATER VEHICLES’ MATHEMATICAL
MODELS

In order to define the full mathematical model of a gen-
eral marine vehicle the terminology adopted from [7] will
be used. First of all, two coordinate frames should be
defined: an Earth-fixed coordinate system {E} which is
steady, immobile coordinate frame, and a body-fixed co-
ordinate system {B}, which is usually attached to the cen-
tre of gravity (CG) of the vehicle, as shown in Fig. 1.
Variables that are included in the mathematical model of
marine vehicles are linear and angular velocities, positions
and orientations, and forces that excite the vehicle. These
are listed in Table 1 together with their names, which are
common in marine applications. Surge, sway and heave
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Table 1. Notation used for marine vehicles

DOF surge sway heave roll pitch yaw defined in

ν u v w p q r {B}
η x y z ϕ θ ψ {E}
τ X Y Z K M N {B}

xB

yB

zB

(SURGE)

(HEAVE)

(SWAY)

p

q

r

(PITCH)

(YAW)
(ROLL)

CG

xEyE
zE

rO

rG
rc

Fig. 1. Body-fixed and Earth-fixed coordinate frames

ACTUATOR 
ALLOCATION DYNAMICS KINEMATICS

i

ACTUATORS
i

Fig. 2. Block-diagram of a complete mathematical model

are defined as motion in thex–, y– andz–direction, re-
spectively, while roll, pitch and yaw are defined as rotation
aboutx–, y– andz–axis, respectively.

Earth-fixed coordinate system {E} is used to define

vehicle’s positionsη1 =
[
x y z

]T
and orienta-

tions η2 =
[
ϕ θ ψ

]T
forming a six element vec-

tor η =
[

ηT
1 ηT

2

]T
. In the same manner, body-

fixed coordinate frame is used to define linear velocities
ν1 =

[
u v w

]T
(surge, sway and heave), and rota-

tional velocitiesν2 =
[
p q r

]T
(roll, pitch and yaw)

forming a six element vectorν =
[

νT
1 νT

2

]T
.

Motion of the vehicle is achieved by applying external
forces and moments. Three forces (each in the direction
of one body-fixed frame axis) and three moments (defined
as rotation about each body-fixed frame axis) form a six
element vector of external forces and moments in the form
τ =

[
X Y Z P Q R

]T
. External forces are

exerted by actuators. Letτ i denote commanded thrusts
for each actuator (i = 1, . . . , n wheren is the number of
actuators). Valueni denotes commanded inputs for the ac-
tuators themselves (rotation speed of the propeller, rudder
deflection, etc.). Using this notation, the complete mathe-
matical model can be represented with Fig. 2.

Actuators

Actuators in technical systems are actuating devices that
perform desired action on the system, [22]. In marine sys-
tems these are roughly divided into thrusters (propulsors),
control surfaces and mass. This paper will focus on under-
water vehicles with thrusters.

As the thrusteri rotates, it exerts thrustτ i and torqueqi

which can be described with (1) wheren is propeller rev-
olution rate andTn|n|, T|n|ua

, Qn|n| andQ|n|ua
are posi-

tive coefficients given by the propeller characteristics. This
model is also known as thebilinear thruster model, [7].

τ i = Tn|n|n |n| − T|n|ua
|n|ua

qi = Qn|n|n |n| −Q|n|ua
|n|ua

(1)

A simpler model given with (2) can be derived if ambient
water speedua (see [19]) is neglected.

τ i = a |n|n+ bn. (2)

This model is more applicable in practice especially at low
speeds. Further simplification gives that linear part of the
model can also be neglected, i.e.b = 0, giving the so called
affine model.

However, the force exerted by thrusters is rarely the
same when the propeller is rotating clockwise and counter-
clockwise. This is why a more complex model given with
(3) should be used. Subindicesf andb denote ’forward’
and ’backward’.

τ i =
{
af |n|n+ bfn, n > 0
ab |n|n+ bbn, n < 0 (3)

The influence of the torque exerted by a thruster can be
compensated if thrusters are positioned in pairs in such a
way that they are counter-rotating.

Actuator allocation

Actuator allocation is a linear connection between the
space of actuator forces (described with vectorτ i) and the
space of vehicle’s forces and moments (described with vec-
tor τ ). The matrix which describes this link is called the
allocation matrixand it depends on the number of avail-
able actuators and their topology.
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Kinematic model

Kinematic model gives the relation between the speeds
ν in a body-fixed coordinate frame {B} and first derivative
of positions and anglesη in an Earth-fixed coordinate sys-
tem {E}. A full set of kinematic equations is given with
(4)

[
η̇1
η̇2

]
=

[
J1(η2) 03×3

03×3 J2(η2)

] [
ν1
ν2

]
⇔ η̇ = J(η)ν

(4)

where

J1(η2) =

 cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ
sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsθcφ
−sθ cθsφ cθcφ


and

J2(η2) =

 1 sφtθ cφtθ
0 cθ sφ
0 sφc−1θ cφc−1θ

 .
For the sake of brevity,c denotes cosine,s sine,t tangent
and superscript−1 is the reciprocal function.

Dynamic model

The dynamic model gives relation between velocitiesν
and accelerationṡν of the vehicle and forcesτ that act on
it, and is highly nonlinear and coupled.

(MRB + MA)︸ ︷︷ ︸
M

ν̇ + (CRB(ν) + CA(ν))︸ ︷︷ ︸
C(ν)

ν

+ D(ν)ν + g(η) = τ + τE

(5)
A full dynamic equation of forces acting on marine vehi-
cles can be written in a compact form given with (5) where
MRB is a rigid-body inertia matrix,CRB is the rigid-body
Coriolis and centripetal matrix,MA is added-mass ma-
trix, CA(ν) is added-mass Coriolis and centripetal matrix,
D(ν) is total hydrodynamic damping matrix, and they are
all 6 by 6 matrices.g (η) is vector of restoring forces,τE

is the vector of environmental forces and moments (waves,
winds, current) andτ is the vector of actuation forces and
moments. The latter three vectors have dimensions 6 by
1, [7], [19].

2.1 Uncoupled model for underwater vehicles

Coupling effects in (5) can appear for the following rea-
sons:

• existence of coupled terms in the added mass matrix
MA (nondiagonal terms),

• existence of Coriolis and centripetal forces and

• difference between the center of gravity and the origin
of the body-fixed coordinate frame.

The first reason is almost always neglected because these
coupling terms have insignificant influence on the behav-
ior of the vehicle, [7]. If it is assumed that the vehicle
is moving at slow speed, the effect of Coriolis and cen-
tripetal forces can also be neglected. This simplification is
usually performed in modeling underwater vehicles, [20].
Incongruity of the center of gravity and the origin of the
body-fixed coordinate system can be neglected in under-
water vehicles of smaller dimensions [15]. Having this in
mind, the simplifications which are introduced in order to
obtain an uncoupled model for underwater vehicles are:

• coupled added mass terms are negligible,

• center of gravityCG coincides with the origin of the
body-fixed coordinate frame B,

• roll and pitch motion are negligible, i.e.ϕ = θ = p =
q = 0.

As a consequence of these simplifications

• total mass matrixMRB + MA is diagonal,

• the total Coriolis and centripetal matrix
CRB (ν) + CA (ν) vanishes, and

• restoring forces influence only the heave degree of
freedom.

These simplifications lead to one, generalized, uncoupled,
nonlinear dynamic equation that describes surge, sway,
heave ad yaw degree of freedom separately and it is given
with

αν ν̇ (t) + β (ν (t)) · ν (t) = δ + τ (t) . (6)

Parametersν(t), τ(t), δ, α andβ(x(t)) are interpreted in
Table 2 for each degree of freedom, whereτXE , τY E , τZE

andτNE represent external disturbances,W is weight of
the vehicle andB is vehicle’s buoyancy. Other vehicle pa-
rameters notations have been taken from [7] and are widely
used in literature.

3 SELF-OSCILLATIONS

One of the many behaviors that nonlinear systems ex-
hibit is calledlimit cycle, [23], [21]. During this state, the
closed-loop system state trajectories form a closed curve
(limit cycles). In the time domain, this behavior is rep-
resented as oscillatory behavior. The oscillations which
arise as a consequence are calledself-oscillations(S-O).
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Table 2. Parameters in (6) depending on the DOF.

DOF ν(t) αν −β(ν(t)) δ τ(t)

surge u m−Xu̇ Xu +Xu|u| |u| τXE X

sway v m− Yv̇ Yv + Yv|v| |v| τY E Y

heave w m− Zẇ Zw + Zw|w| |w| τZE +W −B Z

yaw r Ir −Nṙ Nr +Nr|r| |r| τNE N

The fact that the closed-loop system is in steady oscilla-
tions does not imply that it is on the edge of stability. The
self-oscillations are a stable, controlled behavior character-
istic for nonlinear systems, unlike steady oscillations that
arise in linear time-invariant systems on the border of sta-
bility, [22].

3.1 Describing function

Harmonic linearization is a tool for obtaining an ap-
proximation of a nonlinear element in the cases when self-
oscillations are present. The describing function is conse-
quently an equivalent gain of a nonlinear element which is
excited by periodic signals. Let a biased monoharmonic
signal be defined as

x(t) = x0 +Xm sinωt = x0 + x∗ (7)

and let it be placed at the input of a nonlinear element
whose output is then in the form

yN (t) = F (x). (8)

The outputyN (t) of the nonlinear elementF (x) can be
developed into a Fourier series

yN (t) = Y0+
∞∑

k=1

YPk sin (kωt)+
∞∑

k=1

YQk cos (kωt) (9)

where

Y0 = 1
2π

2π∫
0

F (x0 +Xm sinωt)d (ωt)

YPk = 1
π

2π∫
0

F (x0 +Xm sinωt) sin (kωt)d (ωt)

YQk = 1
π

2π∫
0

F (x0 +Xm sinωt) cos (kωt)d (ωt) .

(10)
If only the first harmonic is taken into account, (9) is sim-
plified into

yN (t) = Y0 + YP1 sinωt+ YQ1 cosωt =
= Y0(x0, Xm) +

[
YP1(x0,Xm)

Xm
+ YQ1(x0,Xm)

Xm

p
ω

]
x∗

(11)

wherep = d
dt is the differential operator.

The basic definition of the describing function is formed
on symmetric input oscillations. For the symmetric nonlin-
ear element,F (x) = −F (−x), and unbiased oscillations
at the input the following expression for the output of the
nonlinear element can be written as

yN (t) = YP1 sinωt+ YQ1 cosωt =
=

[
YP1(Xm)

Xm
+ YQ1(Xm)

Xm

p
ω

]
x∗ (12)

from where the following definition is stated.

Definition 1 (Describing function) The describing func-
tion of a nonlinear element is defined as the ratio between
the first harmonic of output and input signals expressed in
complex form:

GN (Xm) = PN (Xm) + jQN (Xm) (13)

where

PN (Xm) = YP1
Xm

= 1
πXm

2π∫
0

F (Xm sinωt) sinωtd (ωt)

QN (Xm) = YQ1
Xm

= 1
πXm

2π∫
0

F (Xm sinωt) cosωtd (ωt)

(14)

Similarly, the output of a nonlinear element with a biased
harmonic input can then be written as

F (x) ≈ F0(x0, Xm)+
[
PN (x0, Xm) +QN (x0, Xm)

p

ω

]
x∗.

(15)
This definition allows us to define parameters of the de-
scribing function parameters of the asymmetrical nonlinear
elementF0(x0, Xm), PN (x0, Xm) andQN (x0, Xm).

Theorem 1 (On vanishing even harmonics)If a nonlin-
ear element described withyN(t) = F (x) where
F (x) = − F (−x) (symmetrical nonlinear charac-
teristic) is excited with an unbiased monoharmonic signal,
x∗(t) = Xm sin(ωt), outputyN (t) consists of odd multi-
ples of the first harmonic, only. �
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NONLINEAR
ELEMENT

0r = ( )x t ( )Ny t
( )LG p

( )y t

Fig. 3. A closed loop consisting of a nonlinear element and
a linear part of the system

Proof: The simplest way of proving this theorem is
to show that even multiples of the first harmonic vanish. In
other words,YP,2k andYQ,2k have to equal 0.

YP,2k = 1
π

2π∫
0

F (x∗) sin (2kωt)d (ωt) =

= 1
π

π∫
0

[F (x∗)− F (x∗)] sin (2kωt)d (ωt) = 0

In a similar manner the proof goes forYQ,2k.

3.2 Symmetric self-oscillations

Symmetric oscillations are defined for a closed loop sys-
tem at the input of the nonlinear element where nonlinear
and linear part are separated as shown in Fig. 3, [23], [18].
The input to the system is zero, i.e.r = 0. In addition
to that, the linear part of the systemGL attenuates higher
multiples of the first harmonic of self-oscillations. This is
usually achieved in low-pass linear systems. Since most
technical systems have low-pass properties, an assumption
is made from here on that the higher harmonics are suffi-
ciently attenuated. Given these assumptions, the following
set of equations can be written if the system is oscillating
at frequencyω:

x (p) = −y (p)
y (jω) = GL (jω) yN (jω)
yN (jω) = GN (Xm)x (jω) .

(16)

These equations boil down to the closed loop equation,
which is used to calculate the magnitudeXm and fre-
quencyω of self-oscillations.

GN (Xm)GL (jω) + 1 = 0 (17)

Previously it was assumed that the input to the closed loop
system should be 0 for the self-oscillations to be symmet-
ric. The following theorem will show that if the process
in the closed loop is astatic (be it linear or nonlinear), the
induced self-oscillations will still be symmetric.

Lemma 1 (On symmetric nonlinearities) Let the non-
linear element be described withyN (t) = F (x) where
F (x) = −F (−x) (symmetrical nonlinear characteristic).
If and only if such nonlinear element is excited with an
unbiased monoharmonic signal,x∗(t) = Xm sin(ωt), Y0

vanishes. �

0r r const= = ( )x t ( )Ny t 1
kp

( )y t
NF

Fig. 4. Closed loop system for proving symmetry of self-
oscillations with constant input and astatic process

Proof:

⇒ If the nonlinearity is symmetric and the input signal is
unbiased then

Y0 = 1
π

2π∫
0

F (x∗)d (ωt) =

= 1
π

π∫
0

F (x∗)d (ωt) + 1
π

π∫
0

F (−x∗)d (ωt) .

Since the nonlinear element is symmetric,
F (x) = − F (−x), and the proof follows
directly asY0 = 0.

⇐ If Y0 = 0 this means that
2π∫
0

F (x0 + x∗)d (ωt) = 0

from where it follows that

1
π

π∫
0

F (x)d (ωt) +
1
π

π∫
0

F (x)d (ωt) = 0.

Using the property of symmetry,

1
π

π∫
0

F (x0 + x∗)d (ωt) =
1
π

π∫
0

F (−x0 + x∗)d (ωt)

which can only be true ifx0 = −x0 from where it
follows thatx0 = 0.

Theorem 2 (On symmetric S-Os and constant reference)
Let the closed loop system composed of a symmetric non-
linear element and a process as in Fig. 3 be excited with
a constant reference signal. If and only if the process is
astatic, the induced self-oscillations are symmetric. �

Proof: Let’s say that the process in general is non-
linear and therefore can be joined to the nonlinear part
of the system forming a static nonlinearity given with
yN = FN (u, u̇, ü, · · · , ẏN , ÿN , · · · ) leaving only thek in-
tegrators as the linear process as shown in Fig. 4. Let’s
assume that the input to the nonlinear part is biased, i.e.
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that the self-oscillations are asymmetric,x(t) = x0 + x∗.
The output of the nonlinear element is then

yN (t) = F0 +
[
PN (x0, Xm, ω) +

QN (x0, Xm, ω)
ω

p

]
x∗

(18)
where the describing function is dependent on the fre-
quency of self-oscillationsω also. The closed loop equa-
tions give

x = r0 − y
1
pk yN = y

yN = FN (x) .
(19)

Under the assumption thatx(t) is biased causing the output
of the nonlinear element to be (18), the following equation
is obtained:

x0 + x∗ = r0 − 1
pk

[
F0 +

(
PN +

QN

ω
p

)
x∗

]
. (20)

The static part of the equation gives thatpk (x0 − r0) =
−F0.

⇒ Since the process is astatic,k > 0, and thek-th deriva-
tive of a constant is 0, which implies thatF0 = 0.
From Theorem 1 it follows thatx0 = 0 which proves
that the induced S–Os are symmetric.

⇐ If the S–Os are symmetric,x0 = 0 which again ac-
cording to 1 means thatF0 = 0. Thenpk (−r0) can
be equal 0 only ifk > 0 since the theorem assumption
is thatr0 6= 0. This proves that the process is astatic.

3.3 Asymmetric self-oscillations

Asymmetric self-oscillations in general can be a result
of a constant input to the system (Theorem 2 proves that
this is not the case with any type of closed loop system) or
asymmetry in the nonlinear element. The following theo-
rem will show that for astatic systems, self-oscillations are
asymmetric if and only if the nonlinear element is asym-
metric.

Lemma 2 (On asymmetric nonlinearities) Let the non-
linear element be described withyN (t) = F (x) where
F (x) 6= −F (−x) (asymmetrical nonlinear characteris-
tic). If and only if such nonlinear element is excited with
a biased monoharmonic signal,x∗(t) = Xm sin(ωt), Y0

can vanish. �

Proof: If the nonlinearity is asymmetric andY0 can
vanish then

Y0 = 1
π

2π∫
0

F (x0 + x∗)d (ωt) = 0.

If x0 = 0 , Y0 will never vanish because the nonlinearity is
asymmetric. Therefore, it can vanish only ifx0 6= 0, i.e. if
the monoharmonic signal is biased. The other direction of
the proof is conducted in a similar manner.

Theorem 3 (On asymmetric S–O and nonlinearities)
Let the closed loop system be composed of a nonlinear ele-
ment and an astatic process. The induced self-oscillations
are asymmetric if and only if the nonlinear element is
asymmetric. �

Proof: As it was shown in the proof of Theorem 2,
the closed loop equation can be written using (20) from
where it follows that if the process is astaticF0 = 0. Ac-
cording to Lemma 2, ifx0 6= 0 then the nonlinear element
must be asymmetric. The reverse direction of the proof
goes in the same manner using Lemma 2.

4 IDENTIFICATION BY USE OF SELF-
OSCILLATIONS (IS–O)

Self-oscillations are often considered a malicious effect
in control systems. However, self-oscillations can some-
times be used to determine systems’s parameters. In these
cases, nonlinear elements are intentionally introduced in
the closed loop in order to induce self-oscillations.

The concept of identification by use of self-oscillations
was introduced about 25 years ago when Åström and Häg-
glund in [1] derived a so-called ATV (autotuning variation)
method used for system identification. The method was
presented as simple and appropriate for in situ identifica-
tion. The method is based on using a relay-feedback to
bring the system to self-oscillations. Then Luyben in [14]
used this method in chemical industry to identify a trans-
fer function of extremely nonlinear systems (distillation
columns). Since then, inducing self-oscillations proved to
be an efficient tool for controller tuning in processes and
for process identification, [11], [5], especially in pharma-
ceutical industry. There are no records of this methodol-
ogy being used for marine vehicles apart from the work
from the authors. The work that is presented in this paper
demonstrates the use of the IS-O method on a class of non-
linear models which can be used to describe dynamics of
underwater vehicles.

A general strictly proper (n > m) nonlinear process can
be described with

f(ai, x
(n), x(n−1), ..., x, u(m), u(m−1), ..., u̇) = u+ δ

(21)
whereai are process’ parameters,x is process output,u
process input andδ constant term at the input. If self-
oscillations are induced by introducing a nonlinear ele-
ment, the input to the nonlinear element can be written as
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−x(t) = x0+Xm sin(ωt) whereXm andω are magnitude
and frequency of the established self-oscillations, respec-
tively andx0 is the biased component caused byδ. Without
the loss of generality, the closed loop reference is assumed
xref = 0. The derivatives of the process’ output are

x = x0 +Xm sin(ωt)
ẋ = Xmjω sin(ωt)

...
x(k) = Xm(jω)k sin(ωt)

(22)

and the process can be developed into a Fourier series.
Keeping only the first harmonic leads to

[fR(ai, x0, Xm, ω) + jfI(ai, x0, Xm, ω)]x∗ = u+ δ.
(23)

The termf0(ai, x0, Xm, ω) of the process is considered to
be 0 for the sake of simplicity. Unity feedback implies that

u(t) = −F0(x0, Xm)−GN (x0, Xm) · x∗ (24)

whereF0(x0, Xm), andGN (x0, Xm) = PN (x0, Xm) +
jQN (x0, Xm) are parameters of the describing function
of the nonlinear element and do not depend on frequency
of self-oscillations if the nonlinearity is static. Combining
(23) with (24), an equation is obtained which can be sep-
arated in an oscillatory component and static component
forming two equations given with (25).

fR + jfI = −PN − jQN

F0 = δ
(25)

From here, three equations can be determined and they can
be used to calculate unknown parameters of the process.

Two case studies will be analyzed in this paper. The
first, given with (26), is a linear first-order differential
equation with an integrator. The second case study, given
with (28), is a nonlinear first order differential equation
with an integrator, where the nonlinearity can be inter-
preted as linear dragβxx · |ẋ(t)|. Both equations have a
bias termδ included. The assumption is made thatδ is con-
stant, therefore it can be observed as one of the unknown
parameters of the system.

Case study 1 (Constant drag)

This case study is given with (26) and it will also be re-
ferred to as the "constant damping" or the "constant drag"
case, because damping of the equation is given withβx.

αẍ(t) + βxẋ(t) = δ + u(t) (26)

Substituting (24) and (22) into (26) gives the following
equation

αXm(jω)2 sin (ωt) + jβxXmω sin (ωt) =
δ + [−F0 − (PN + jQN)Xm sin (ωt)]

,

with F0 = F0 (x0, Xm), PN = PN (x0, Xm) andQN =
QN (x0, Xm). From here, three equations that describe the
unknown parameters can be derived:

α = PN (x0,Xm)
ω2

βx = −QN (x0,Xm)
ω

δ = F0 (x0, Xm)
(27)

Case study 2 (Linear drag)

This case study is given with (28) and it will also be re-
ferred to as the "linear damping" or the "linear drag" case,
because damping of the equation is given withβxx · |ẋ(t)|.

αẍ(t) + βxx|ẋ(t)|ẋ(t) = δ + u(t) (28)

Substituting (24) and (22) into (28) gives the following
equation

αXm(jω)2 sin (ωt) + jβxxX
2
mω

2 |sin (ωt)| sin (ωt) =
δ + [−F0 − (PN + jQN )Xm sin (ωt)] ,

with F0 = F0 (x0, Xm), PN = PN (x0, Xm) andQN =
QN (x0, Xm). Further development of the nonlinear term
to the Fourier series gives

|sin (ωt)| sin (ωt) ≈ 3π
8

sin (ωt) ,

and finally, three equations that describe the unknown pa-
rameters can be written::

α = PN (x0,Xm)
ω2

βxx = − 3π
8

QN (x0,Xm)
Xmω

δ = F0 (x0, Xm)
(29)

4.1 Benchmark example: Relay with hysteresis

The most commonly used nonlinearity for inducing
self-oscillations in practice is a two-position relay with
hysteresis, [21]. Some work related to using relay for iden-
tification of process parameters can be found in [9], [10],
[26], [25], [24]. Some of the main reasons why this ele-
ment is commonly used are that

• every system whose Nyquist characteristic passes
through the II quadrant can be caused to oscillate (this
comes as direct consequence of the Goldfarb method,
[23]),

• it is insensitive to noise, and

• it is easily implementable.
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C+δ

xa
-xa

-C+δ

Fig. 5. Asymmetric two-position relay with hysteresis

t

relay output TH TL

Fig. 6. Asymmetric output from the relay with hysteresis

Fig. 5 shows the asymmetric two-position relay with
hysteresis whereC is relay output,xa is hysteresis width
andδ is the bias term which causes the asymmetric oscil-
lations at the output of the relay shown in Fig. 6. The
describing function parameters for such nonlinearity can
be determined by using (14) and are as follows:

QN = −4Cxa

πX2
m

(30)

PN =
2C
πXm

√
1−

(
xa − x0

Xm

)2

+

√
1−

(
xa + x0

Xm

)2
 .

(31)
It is worth noting that the imaginary part of the describ-
ing function,QN (x0, Xm), is in fact not a function ofx0.
The unbiased describing function is obtained ifx0 = 0.
The static term of the describing function can also be de-
termined and it is given with (32).

F0 = C
TH − TL

TH + TL
(32)

To sum up, the terms for identifying unknown parameters
of the two case studies when the nonlinear element is in
the closed loop, can be found in Table 3.

4.2 Modification for systems with delays

Delays in systems have great influence on quality of
control. They are often present and seldom negligible.
Some research has been done on autotuning of systems

0 1 2 3 4 5 6 7 8 9 10 11

6,57

3 

0 

2,15

time step

hysteresis 
switching level

Fig. 7. Illustration of false switching in discrete-time sys-
tems

with time delays, but they were mostly based on insert-
ing an additional time delay in order to shift the system in
phase and therefore obtain different frequency points for
identification. In this paper, time delay will be treated as
a known part of the system, and its influence has to be
compensated for. The influence of time delays is rather
obvious in systems forced into self-oscillations: they have
greater magnitude and smaller frequency of oscillations. If
the system with a delay is to be identified, the delay should
be taken into account. Let’s suppose that the general non-
linear process (21) has a time delayTd at the input, i.e.
u+ δ

.= u(t−Td)+ δ(t−Td). Then (23) can be rewritten
as

fR + jfI = (PN + jQN) e−jωTd

F0 = δ
(33)

This modification can be observed as rotation of the orig-
inal vector of the describing function by an angle−ωTd.
In other words, same equations as for the system without
process delay can be used, only the modified describing
function parametersP ∗N andQ∗

N have to be calculated us-
ing ( 34).[

P ∗N
Q∗

N

]
=

[
cosωTd sinωTd

− sinωTd cosωTd

] [
PN

QN

]
. (34)

4.3 Modification for discrete-time systems

When the IS-O method is used in practice, the process
is usually computer-controlled. Therefore a slight modifi-
cation of the procedure has to be done.

Let’s say that the nonlinear element which caused the
self-oscillations in the system is a relay with hysteresis
with xa = 3. This means that it should switch when the
input signal has value 3. It could happen that at some time
stepk the input is 2.15 and at the following time stepk+1
it is 6.57, as shown in Fig. 7. Since at the momentk the

AUTOMATIKA 50(2009) 3–4, 167–183 175



Identification of Unmanned Underwater Vehicles by Self-Oscillation Method N. Miškovíc, Z. Vukić, M. Barišíc

Table 3. Formulae for determining unknown parameters usingIS-O method with relay with hysteresis

Case study 1 (constant drag) Case study 2 (linear drag)

αx = PN (x0,Xm)
ω2 = 2C

π
1

ω2Xm

[√
1−

(
xa−x0

Xm

)2

+

√
1−

(
xa+x0

Xm

)2
]

βx = −QN (Xm)
ω = 4Cxa

π
1

ωX2
m

βxx = − 3π
8

QN (Xm)
Xmω2 = 3Cxa

2
1

ω2X3
m

δ = C TH−TL

TH+TL

input to the relay has not yet reached the switching value,
it will switch at the momentk + 1. In other words, this
is equivalent to hysteresis parameterxa having the value
x∗a = 6.57, which is more than double the assumed value,
therefore false results can be expected. It can also happen
that the switching occurs exactly at the desired moment, re-
sulting in accurate identification. Since it cannot be known
a priori weather the chosen hysteresis parameters will give
satisfactory results, the only way is to perform the correc-
tion of the hysteresis width (determine real switching lev-
els x∗a), after the experiment has been performed. With
smaller sampling times, the chances of hysteresis switch-
ing atx∗a ≫ xa become smaller. However, sampling time
is usually not something that can be altered, therefore the
proposed modification is necessary.

5 IMPLEMENTATION OF IS–O TO UNDERWA-
TER VEHICLES

5.1 System description

The vehicle that was used to implement the proposed
identification by use of self oscillations method is a Video-
Ray ROV shown in Fig. 8(a). Its dimensions are 355mm x
228mm x 215mm and it weighs 3.5kg. Heading sensor is
a magnetic compass with2◦ quantization. In addition, it is
equipped with a depth pressure-based sensor. The vehicle
is actuated using a port, starboard and vertical thruster. The
schematic representation of thruster locations is shown in
Fig. 8(b) from where it follows that the thruster allocation
matrix (only for port and starboard thrusters) can be writ-
ten using (35).[

X
N

]
=

[
1 1
d −d

] [
τ1

τ2

]
(35)

Determining the static characteristic of a thruster, i.e.
the relation between the exerted thrustτ i and the thruster
control signal (voltageni in this case) is called thruster

(a)

1 2

3

d

(b)

Fig. 8. a) VideoRay ROV and b) thruster distribution

mapping. The simplest way to perform this mapping is to
induce vehicle motion in such a way that the pull-force of
the vehicle can be recorded by a dynamometer, as shown in
Fig. 9(a). After a series of such experiments, for different
input signals, the results shown in Fig. 9(b) have been ob-
tained, where the dots represent measured values and the
full line gives the interpolated curve, given with (2).

The ROV is connected to the surface computer via tether
as it is shown in Fig. 10. All the control algorithms are cal-
culated and executed on the surface and sent to the ROV
using the RS - 232 interface. The schematic representation
of the complete system that was used for identification is
shown in Fig. 11. Yellow blocks represent the communi-
cation with the ROV.COMM 1 is communication from the
surface computer towards the vehicle and is modeled as
one discretization step delay (Td = 0.1s). Block COMM
2 is modeled in the same manner and it represents the
communication delay from the ROV towards the surface
where the heading data is collected. The blue block en-
titled "VideoRay ROV" represents the vehicle itself. The
signals inside this block are virtual and are marked with a
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N. Mišković, Z. Vukić, M. Barišíc Identification of Unmanned Underwater Vehicles by Self-Oscillation Method

0
6
10

20

1 2X τ τ= +

(a)

(b)

Fig. 9. Thruster mapping a) experiment and b) results for
VideoRay ROV

hash symbol. The parameters that are to be identified using
the IS-O method are the parameters of the dynamic yaw
model of the vehicle. However, the vehicle demonstrates
some nonlinear behaviors which must be detected prior to
the initiation of the IS-O method. One of these nonlinear-
ities is the relation between the thruster input voltage (n1

andn2) and thrust itself (τ1 andτ2). This relation has been
described before and is schematically represented asf(x)
in Fig. 11. Thethruster allocationblock is given with (35).
It has been noted that small voltage applied to the thrusters
will not cause them to rotate, mainly because of friction.
This effect has been modeled using the dead zone blocks.

Now that these static nonlinearities and allocations have
been defined, they can be compensated for before the iden-

RS-232: actuator commands

RS-232: sensor readings

Fig. 10. Connection of the ROV to the surface control unit

tification procedure is initiated. The greena priori com-
pensationblock has the purpose to compensate for as many
nonlinearities in the system as possible. The dead zone in-
herent to thrusters is avoided by adding a constant signal
so that the thrusters are rotating even at small input volt-
ages. The nonlinear thruster characteristic can easily be
compensated by applying the inverse of identified charac-
teristic,f−1(x). In order to control the vehicle by sending
it the yaw moment (N ) command, inverse thruster alloca-
tion has to be performed. This block presents the matrix
inversion of (35). In other words, the complete system,
from the input yaw momentN through the output heading
ψ can be modeled with (36), in concordance to (6).

αrψ̈ + β
(
ψ̇

)
· ψ̇ = N (t− 2Td) + τNE (36)

τNE presents the external disturbance that is mainly caused
by the tether. This disturbance is assumed to be constant
and has to be estimated during the identification process.
Another assumption is that drag is either dominantly con-
stant or dominantly linear. This means that general drag

β
(
ψ̇

)
can obtain one of the two values:

β
(
ψ̇

)
=

{
βr

βrr

∣∣∣ψ̇∣∣∣ for constant drag
for linear drag

.

Since it is not known a priory what kind of model best de-
scribes the VideoRay ROV, a methodology for determining
which of these models suits the vehicle best will be devel-
oped and elaborated later on.

5.2 Quantization levels

The quantization can greatly influence the quality of the
identified system. Different compasses can have different
quantization levels, and based on the quality of the com-
pass, identification results can differ. The same goes for
other sensors which can be used to determine vehicle’s
model based on the self-oscillation experiments.

Using the formulae in Table 3, the percentual difference
in the identified parameters can be found in relation to per-
centual difference of the quantization interval (∆Xm) and
the magnitude of self-oscillations (Xm). These error esti-
mates are given with (37), (38) and (39).

∆αx

αx
=

2−
(

Xm

xa

)2

(
Xm

xa

)2

− 1

∆Xm

Xm
(37)

∆βx

βx
= −2

∆Xm

Xm
(38)

∆βxx

βxx
= −3

∆Xm

Xm
(39)
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Fig. 11. Schematic representation of the complete model

It is clear that the percentual errors in determiningβx

andβxx caused by quantization are constant. The absolute
errors in these parameters however, can be minimized if
the experiments are performed with greater magnitude of
self-oscillations (minimizing the percentual error of mag-
nitude).

5.3 Experimental results

The self-oscillation experiments were performed in the
Laboratory for Underwater Systems and Technologies,
Faculty of Electrical Engineering and Computing, Univer-
sity of Zagreb. The Laboratory is equipped with a circular
pool 1.5 m deep, which made it impossible to conduct the
heave degree of freedom tests on the real vehicle. How-
ever, extensive experiments have been carried out on iden-
tifying the yaw degree of freedom.

An example of responses during one experiment are
shown in Fig. 12. First plot gives the input to the relay,
ψref −ψ, while the second plot gives relay outputN . Red
circles represent maxima of the oscillations, green dots
minima and yellow stars represent the moments in which
relay switching occurred.

For the experiment to be successful, self-oscillations
have to be obtained. A condition which has to be fulfilled
for this is given with (40). This comes as a direct conse-
quence of the domain of real part of the describing function
of the asymmetric relay with hysteresis (31). An example
of the relay parameters set inappropriately is given in Fig.
13, where hysteresis width was chosen to bexa = 0.

x∗a − x0

Xm
< 1 (40)

Once the data have been obtained the following proce-
dure is executed:

1. Calculate average magnitudeXm and average fre-
quencyω of self-oscillations.

2. Calculate average hysteresis switching levelx∗a. x∗a
will be bigger than the preset one (xa) because of the
discrete nature of the signal (see Section 4.3).

10 15 20 25 30
−50

0

50

ψ
 −

 ψ
R

E
F
 [°

]

10 15 20 25 30
−0.1645

0

0.1645

time [s]

N
 [N

m
]

Fig. 12. Example of responses during the IS-O method

3. Calculate average bias of the input signalx0. The
existence ofx0 means that external disturbance was
present during the experiment (tether in the specific
case).

4. Check condition (40). If false, repeat experiment with
different relay parameters and go to 1.

5. Calculate vehicle parameters using the formulae in
Table 3. The delay is to be compensated using (34).

The self-oscillation parameters were changed by vary-
ing two relay parameters: relay outputN and hysteresis
width xa. All together, 19 experiments were performed
and the results can be found in Table 4. Based on the
standard deviations of obtainedβx andβxx it can be con-
cluded that the linear drag model fits the data better with a
standard deviation between the measurements of 14.84%.
For better representation, Fig. 14 gives relative errors of
parametersαr,i, βr,i andβrr,i calculated in thei-th ex-
periment with regard to the obtained mean valuesᾱr =
19∑

i=1
αr,i

19 , β̄r =

19∑

i=1
βr,i

19 and β̄rr =

19∑

i=1
βrr,i

19 , respectively.

Green circles in first plot showpαr,i =
∣∣∣αr,i−ᾱr

ᾱr

∣∣∣ · 100%,

and in the second plot green diamonds showpβr,i =
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Fig. 13. Example of responses during the IS-O method
when conditions for inducing self-oscillations are not ful-
filled (xa = 0)
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Fig. 14. Relative errors and quantization confidence
bounds for identified parameters

∣∣∣βr,i−β̄r

β̄r

∣∣∣·100% and red circlespβrr,i =
∣∣∣βrr,i−β̄rr

β̄rr

∣∣∣·100%.

The confidence bounds are calculated based on the error
which can occur due to quantization effects, and they are
calculated by using formulae (37), (38) and (39). It is eas-
ily seen that confidence bounds get smaller as the mag-
nitude of self-oscillations gets bigger. This leads to the
conclusion that self-oscillations experiments should be run
with higher oscillating magnitudes in order to minimize the
error caused by quantization effects. These experiments
show that IS-O method can be applied to identify underwa-
ter vehicle mathematical model parameters with sufficient
precision.

However, the point of IS-O method is not to perform
a great number of experiments in order to determine the

model of the vehicle. The experimental data have shown
that model parameters can be determined accurately from a
single experiment. The methodology on how to determine
which model structure is more appropriate is described in
the following section.

5.4 Deciding on the appropriate model

The extensive experiments have shown that the most ap-
propriate model for the vehicle is the one with linear drag
(nonlinear model). In other words, the equation for calcu-
lating the drag which should be used is given with (29).

However, this cannot be known if only one self-
oscillation experiment has been conducted. That is why
an additional experiment, with different relay parameters
should be conducted. From the first experimentαx1, βx1,
βxx1 are obtained, and from the secondαx2, βx2, βxx2.
Standard deviations can be calculated as

σαx% =
∣∣∣αx1−αx2
αx1+αx2

∣∣∣ · 100%

σβx% =
∣∣∣βx1−βx2
βx1+βx2

∣∣∣ · 100%

σβxx% =
∣∣∣βxx1−βxx2
βxx1+βxx2

∣∣∣ · 100%.

(41)

Theoretically,σαx% should be 0. In real experiments
it will have some value, which can be interpreted as mea-
surement uncertainty. The criterion for determining which
model best describes the vehicle is given with (42), where
λ is a parameter which determines the robustness of the
decision making.

σβx% − σβxx%


> λ
< −λ
∈ [−λ, λ]

⇒ linear drag (βxx)
⇒ constant drag (βx)
⇒ no decision

.

(42)
Depending on robustness parameterλ, four different crite-
ria were tested:

1. λ = 0 is the least robust criterion ensuring that any
pair of measurements will result in a decision on the
model, even though the difference between standard
deviations is small. This criterion may lead to wrong
decisions.

2. λ = σαx% is a criterion which includes the measure-
ment uncertainty described by the standard deviation
of α%. Robustness in this case is increased and there
is a margin in which decision might not be made.

3. λ = σαx% + 5% is a criterion with increased robust-
ness. The margin of not making a decision is also
increased.

4. λ = σαx% +10% is a criterion with increased robust-
ness where it is demanded that the difference between
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Table 4. Experimental results obtained from the Videoray ROV yaw DOF

Exp. No.
N x∗a Xm x0 T = 1

ω αr βr βrr

[Nm] [deg] [deg] [deg] [s]
[

Nms2

deg · 10−4
] [

Nms
deg · 10−4

] [
Nms2

deg2 · 10−5
]

1 2.10 10.29 20.6 2 4.26 5.05 6.4 2.48

2 3.85 11 26.17 1.17 3.82 5.69 7.87 2.16
3 3.85 15 29.8 7.8 4.18 5.14 7.87 2.07
4 3.85 16.84 29.78 2.22 4.14 4.99 8.52 2.22
5 3.85 21.20 35.25 1.25 4.64 5.24 8.14 2.01
6 3.85 41.07 53 3.86 6.6 5.38 8.53 1.99

7 8.23 6.58 26.36 3.8 2.69 5.73 11.11 2.12
8 8.23 12.21 30.69 1.62 3.21 6.6 12.51 2.46
9 8.23 17.73 36.57 2.86 3.39 5.62 11.84 2.06

10 8.23 21.92 42.25 4.75 3.79 6.03 11.44 1.92
11 8.23 22.37 41.08 2.62 3.68 5.64 11.85 1.99
12 8.23 31.29 47.17 1.5 4.27 5.70 12.85 2.18

13 12.6 22.42 44.09 1.55 3.28 6.28 15.07 2.10

14 16.98 13.12 40.33 2.17 2.48 5.76 15.72 1.81
15 16.98 14.25 42.73 3.67 2.5 5.49 14.99 1.65
16 16.98 14.33 42.73 2.36 2.51 5.52 15.07 1.66
17 16.98 19.83 48.88 2.29 2.77 5.7 14.91 1.59
18 16.98 23.6 49.67 2.78 2.93 5.88 16.19 1.79
19 16.98 34 60.33 2.67 3.51 6.62 16.34 1.78

x 5.69 11.96 2
σx

x · 100% 8.07 27.38 12.48

standard deviations be significantly different. In this
case the decision that is made can be considered cor-
rect, but the path to making a decision may require
more measurements being taken.

Based on the experiments which were performed, the con-
clusion is made that the model with linear drag describes
the system better than the one with constant drag. Among
the 19 experiments, pairs were taken in such a way that one
pair must have different relay outputsN . This is common,
since the two experiments that are performed to decide on
the model should be as different as possible. This condi-
tion leads to 131 different combinations of pairs. All four
criteria have been tested and the results are shown in Fig.
15, where dark green represents the number of pairs when
the conclusion was correctly made, light green the number
of pairs when the conclusion was falsely made and in yel-
low the number of pairs where the conclusion could not be
made.

It is clear from Fig. 15 that criterion 1 always caused the
decision to be made, and in almost 90% of pairs the con-
clusion was made correctly. In about 7 times less cases, the
conclusion was false. When using criterion 2, the margin
of no decision is introduced and for a number of experi-

ments the decision could not be made (below 10%). How-
ever, in this case, the number of correct decisions is 8 time
bigger then wrong decisions. By increasing the margin of
decision (criteria 3 and 4) the number of cases without de-
cision increases, but the number of pairs with correct de-
cision gets 12 (criterion 3) and even 37 (criterion 4) times
bigger.

5.5 Discussion on identifying heave and surge models

For identification of a heave model, depth sensor must
be applied. The equation which describes heave motion is
given with (43) whereβ (ż) can be eitherβw or βww |ż|,
just like in the yaw case.

αw z̈ + β (ż) · ż = Z (t− 2Td) + τZE (43)

However, in (43)τZE presents the external disturbance and
difference between weightW and buoyancyB of the ve-
hicle. The difference is usually dominant in comparison to
the external disturbance that is mainly caused by the tether,
which is why greater asymmetry in self-oscillations should
be expected during IS-O experiments, [17]. Special atten-
tion should be paid to quantization errors since depth sen-
sors often give rough measurements.
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false or undefined

The identification of the surge model is commonly con-
ducted using a Doppler velocity logger (DVL), which gives
surge speed as output (among other speeds). This means
that the model to be identified would be of the first order
without an integrator. However, the same procedure as in
yaw case can be applied if the integral of measured surge
speedu⋄ =

∫
udt is introduced to the relay input. Then

the surge model can be described with (44) whereβ (u̇⋄)
can be eitherβu or βuu |u̇⋄|, just like in the yaw case.

αuü
⋄ + β (u̇⋄) · u̇⋄ = X (t− 2Td) + τXE (44)

6 CONCLUSIONS

The use of identification procedures based on self-
oscillations has been applied to underwater vehicles in this
paper and it has proven to be time preserving (in compari-
son to conventional identification methods), easily applica-
ble and implementable, and computationally not demand-
ing.

The IS-O method was applied by inserting a symmet-
ric nonlinear element in the closed loop right before the
UV. In the starting part, special attention was dedicated to
self-oscillations, which occur in closed loop systems con-
sisting of a nonlinear element and an astatic process (lin-
ear and nonlinear). It has been proven that in such systems
self-oscillations are symmetric if the nonlinear element is
symmetric, regardless of the reference input. In addition to
that, the proof is given that asymmetric oscillations can oc-
cur if and only if the nonlinear element is asymmetric. This
proof is important since external disturbance in underwater
vehicles appears exactly at the output of the nonlinear ele-
ment (input to the UV), forming an asymmetric nonlinear
characteristic.

The proposed IS-O method was derived for identifying
processes which exhibit asymmetric self-oscillations, for
the purpose of generality. It was also shown that the dis-
turbance in the system does not correlate to the identified
drag of the vehicle. In addition to that, the IS-O method is
extended to cover the systems with delays.

Extensive IS-O experiments have been performed on
yaw DOF of VideoRay ROV showing that the best fitting
model is nonlinear. However, the key point of IS-O method
is to perform only one experiment to determine the model
and these multiple experiments have shown that each ex-
periment gives accurate model parameter estimations. In
order to determine the most appropriate structure of the
model, a practical decision-making scheme was presented
and applied to the real ROV. in addition to that, estimates of
errors due to quantization have been given and the conclu-
sion was raised that these errors decrease with the increase
of magnitude of self-oscillations.

In the final part, suggestions for applying the proposed
IS-O method on other degrees of freedom of underwater
vehicles are stated.
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Matko Bariši ć, M.Sc.
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