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An adaptive multilayer neural network controller for high precision maneuvering of underwater 
vehicles is presented. Maneuvering of underwater vehicles requires special attention to a number 
of factors, including thruster and vehicle’s nonlinearities, couplings which exist between various 
degrees of freedom as well as effects of the sea currents. The neuro control system for underwater 
vehicle maneuvering described in this paper is based on a conventional controller supported with 
the so-called adaptive neural network. The adaptive neural network has two tunable layers, thus 
the problem of selection of proper basis is avoided.
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Višeslojna neuronska mreža za praćenje trajektorije za ronilice 

Izvorni znanstveni rad

Predstavljen je adaptivni višeslojni neuro regulator za precizno manevriranje ronilicom. 
Manevriranje ronilicom zahtijeva da se obrati posebna pažnja na nelinearnost procesa, međusobni 
utjecaj između različitih stupnjeva slobode gibanja te utjecaj morskih struja. Neuro regulacijski 
sustav za manevriranje ronilicom opisan u ovom radu baziran je na konvencionalnom regulatoru 
nadograđenim s tzv. adaptivnom neuronskom mrežom. Adaptivna mreža sastoji se od dva sloja, 
tako da je problem oko izbora parametatra prvog sloja izbjegnut.

Ključne riječi: adaptivna neuronska mreža, održavanje trajektorije, podvodno vozilo, precizno 
manevriranje 
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1 Introduction

The use of underwater vehicles in the inspection of the sea areas 
requires a high precision track-keeping along the specifi ed route.

Consequently, the underwater vehicle is required to have good 
maneuvering capabilities and the control system is characterized 
by use of adequate position sensors and generally by the adoption 
of advanced control approaches. 

Rigorous adaptive control results are available. The model ref-
erence approach given in [1] allows simultaneous proofs of track-
ing error and parameter error stability. However, all conventional 
adaptive control techniques assume that the unknown dynamic 
forces and moments are expressed as a linear function of unknown 
parameters and a regression matrix specifi c to the AUV (Autono-
mous Underwater Vehicle) has to be computed [1], [7]. That may 
not be always possible and the computation of regression matrix 
is usually complicated and time consuming. The possible solution 
might be found in using neural networks for control.

The application of neural networks to the navigation and 
control of underwater vehicles using backpropagation algo-
rithm and its variants can be found in [11], [12]. However, the 
backpropagation algorithm is proven to have convergence and 
stability problems [7].

The goal of this paper is to present the main aspects of the 
design of a controller for precise maneuvering based on the neural 
network, which is embedded in a trajectory tracking control of 
the underwater vehicle. One of the possible approaches to the 
use of neural network in underwater vehicle tracking control is 
given in [10]. This paper demonstrates the feasibility of another 
approach, proposed for control of robot manipulators in [2], [7]. 
Control design proposed in this paper does not depend on linear 
dependency in parameters. No regression matrix has to be found. 
In contrast to [13], this paper deals with multilayer control where 
all the layers of neural network are tunable.

The organization of the paper is as follows. In Section 2 the 
basic formulation of the problem is given. Some mathematical 
preliminaries are given in Section 3. The neural network control 
algorithm is described in Section 4. The illustrative example is 
given in Section 5. Finally, the conclusions are given in Section 
6.

2 Problem formulation

One of the problems in underwater vehicle’s precise maneu-
vering is the problem of guiding the vehicle along the prescribed 
trajectory. 
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The mathematical model of the underwater vehicle in 6DOF 
is given by the following well known matrix expression ([1]):

(1) 

where:
• M - system inertial matrix (incl. added mass),

• C(ν) - Coriolis and centripetal matrix (incl. added mass),

• D(ν) - matrix of hydrodynamic damping,

• g(η) - vector of restoring forces and moments,

• τν - vector of control inputs,

• τ
d
- vector of disturbances,

• ν = [u v w p q r]T - vector of linear and angular velocities,

• η = [x y z φ θ ψ]T- position and Euler angles vector

• J - velocity transformation matrix
There are several problems related to the low speed 

maneuvering of the underwater vehicle. We will mention the 
following:
• thrusters are highly nonlinear subsystems and have a signifi -

cant infl uence on the control system dynamics,
• the hydrodynamic couplings between thrusters can be very 

strong, 
• the effect of the sea current is very important, especially 

when the speed of the sea current is comparable to the vehicle 
speed,

• the vehicle mathematical model is complex and usually dif-
fi cult to estimate (with existing nonlinearities and couplings 
between particular degrees of freedom).
The conventional approach adopted for the dynamic position-

ing controller design is the LQG control and PID control. The 
maneuvering performance is infl uenced by control of vehicle’s 
linear and angular velocities. The problem can be resolved by 
use of the neural networks together with the conventional LQG 
or PD controller [10].

3 Mathematical preliminaries

Let  R denote a set of real numbers, Rn a space of real n-vectors 
and Rmxn a space of real mxn matrices.  Let S be a compact simply 
connected set of Rn, With map f : S  Rm. Let us defi ne Cm (S) 
the space such that f is continuous. LetΩ||•|| be any suitable vector 
norm. The supremum norm of f(x) over S is defi ned as:

(2)

Given A = Î a
ij
˚, B   Rmxn the Frobenius norm is defi ned by:

(3)

3.1 Neural network

Given x RN∈ 1 , a two-layer NN (Figure 1) has a net output 
given by

                                 y = WTσ(VTx) (4)

where x = [1 x
1
 ... x

N1
]T,  y = [y

1  
y

2
 ... y

N3
]T and σ(•) the activation 

function. If z = [z
1
 z

2 
...]T, we defi ne σ(z) = [σ(z

1
)  σ(z

2
) ...]T. In-

cluding “1” as the fi rst term in σ(VTx) allows one to incorporate 
the thresholds as the fi rst column of WT. Then any tuning of NN 
weights includes tuning of thresholds as well [7].

Figure 1  Neural network structure
Slika 1 Struktura neuronske mreže

A general function f x C S x t Rm n( ) ( ), ( )∈ ∈  can be written 
as

(5)

with ε(x) a NN functional reconstruction error.

3.2 Underwater vehicle model and its properties

Underwater vehicle model in earth-fi xed vector representation 
([1]) is expressed as:

(6)

Dynamics given in (6) is similar to the standard robot dynam-
ics form and has the following properties ([1]) for any practical 
purposes:

Property 1: The inertia matrix M is symmetric and positive 
defi nite matrix bounded by

with m
1
, m

2
 positive known constants.

Property 2: The matrix M
.

η – 2Cη is skew-symmetric

Property 3: The matrix Dη is real and positive defi nite matrix 
that satisfi es the following inequality:

with σ(D
n
) as singular value of Dη 

Property 4: The matrix Cη (ν, η) is bounded

Property 5: The unknown disturbance satisfi es τ ηd db< , 
with b

d
 known positive constant.

M C D

JT
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g vd
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Given the desired trajectory η
d
 one can defi ne the tracking 

error:

                                 e(t) = η
d
(t) - η(t) (7)

Defi ne fi ltered tracking error:

                                   r = e + 1e (8)

where 1 = 1T > 0 and (8) is stable system. The dynamics (6) can 
be now written in terms of fi ltered tracking error

(9)

where nonlinear function f is:

(10)

4 Two-layer NN controller

The design of the controller is performed following the 
procedure given in [2] and [7]. A modifi ed tuning algorithm 
from [2] and [7] is used to make NN robust, so no persistency 
of excitation is needed.

Assume that there exists constant ideal weight matrix W so 
that the function f in (10) can be written as:

(11)

Assume that net reconstruction error satisfi es ε ε( ) ( )x x< N  
with εN ( )x known positive constant.

4.1 Controller structure

Defi ne the NN functional estimate by

(12)

with Ŵ  and V̂  the current values of the NN weights. Weight 
estimation errors can be defi ned as

(13)

It is assumed that ideal weights are bounded by known values 
so that

(14)

Select control input as

(15)

(16)

with K
v
 positive defi nite design matrix and K

z
 explained later in 

the proof. Then, the closed-loop fi ltered error dynamics in (6) 
becomes

(17)

The proposed control structure is shown in Figure 2.

Figure 2 Tracking controller structure
Slika 2  Struktura regulatora

Now, let us expand σ(VTx) into a Taylor series around VTx  
([7]):

(18)

where O V xT( )2  are the higher order terms in Taylor series.
It is shown in [7] that the higher order Taylor series terms 

are bounded by:

(19)

Let the weight tuning laws be

(20)

(21)

with F and G any symmetric and positive defi nite matrices and 
k positive design parameter. Then the fi ltered tracking error and 
weight estimates are uniformly ultimately bounded.

Proof:
Defi ne Lyapunov candidate:

(22)

After differentiating and using the dynamics (9), (10), and 
(17), control (15) and (16) and tuning laws (20) and (21) we 
obtain:
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(23)

where:

(24)

and

(25)

where C
i
 are known positive constants.

With K
z
 > C

2
 we then have:

(26)

where 
K Dv min min ( )+ σ η  are minimum singular values of matrices 

K
v
 and Dη. Defi ne K K Dvd v= + ( )min minσ η  and C Z C kB3 1

1= + − . 
Then, after completing the squares we have:

(27)

Inequality (27) is always negative as long as the term in 
parentheses is positive, which is guaranteed as long as:

(28)

(29)

Thus, Lyapunov function derivative is negative outside a 
compact set. Acording to the LaSalle extension, this demonstrates 
that both r and Z are ultimately unconditionally bounded. 

5 Simulation example

The controller design procedure described above is illustrated 
with the mathematical model simulation example. Vehicle model 
used for the simulation example is the NPS Autonomous Under-
water Vehicle (model controlled by forces and moments) as it is 
given in [9]. The desired trajectory is fi ltered squared signal with 
different frequency and amplitude for each particular DOF. The 
neural network input was:

(30)

Simulation was performed with the following neural network 
parameters: N

w
 = 60, F=diag(545), G=diag(73), k=0.0005. The 

following gain matrix was used: 

and the fi ltered error parameter Λ was Λ = diag(5).
The reference trajectories and angles are given in Figures 3 

to 8. Errors are shown in Figures. 9 to 14.

Figure 3  Reference x
Slika 3  Referenca x

Figure 4  Reference y
Slika 4  Referenca y

Figure 5  Reference z
Slika 5  Referenca z
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Figure 6  Reference Φ
Slika 6  Referenca Φ

Figure 7  Reference θ
Slika 7  Referenca θ

Figure 8  Reference ψ
Slika 8  Referenca ψ
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Figure 9  Error x
Slika 9  Greška x

Figure 10 Error y
Slika 10 Greška y

Figure 11  Error z
Slika 11   Greška z
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Figure 12  Error Φ
Slika 12  Greška Φ

Figure 13  Error θ
Slika 13   Greška θ

Figure 14  Error ψ
Slika 14  Greška ψ

Vector of control inputs is shown in Figure 15.

Figure 15  Vector of control inputs - forces
Slika 15  Vektor regulacijskih signala - sile

Figure 16  Vector of control inputs - moments
Slika 16  Vektor regulacijskih signala - momenti

Simulation results show the proposed control schemes keep 
control errors small. Control signals are bounded, which in turns 
shows that neural networks weights are also bounded. This con-
fi rms the results of the proof.

6 Conclusion

After the presentation of neural network’s adaptive mode of 
work some conclusions could be given. 

Neural network, in combination with a conventional control-
ler can ensure good trajectory tracking which is required during 
specifi c vehicle maneuvers. 

The presented control scheme is easily added to the existing 
conventional vehicle dynamic positioning system. 

No persistency of excitation is needed to ensure proper 
controller action. Stability is rigorously proven and synthesis 
procedure is straightforward and simple to use. No knowledge of 
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the details of the vehicle dynamics is needed and no regression 
matrices had to be found to design the controller.

Proportional gain weights can be used to drive the fi ltered 
error to small values. Neural networks do not have to be trained 
and weights are updated online.
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