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a b s t r a c t  

Gamma ray, density, sonic and core logs obtained from two boreholes drilled over a longwall panel in 
Southwestern (SW) Pennsylvania were analyzed for formation boundaries, log-derived porosities and 
densities and for rock elastic properties from sonic transit times. Gamma ray (GR) and density logs (DL) 
were analyzed using univariate statistical techniques and fractal statistics for similarity and ordering of 
the log data in depth. A Fourier transformation with low-pass filter was used as a noise elimination 
(filtering) technique from the original logs. Filtered data was tested using basic univariate and fractal 
statistics, rescaled range (R/S) and power spectrum (PS) analysis to compare the information 
characteristics of the filtered logs with the original data. The randomness of log data in depth was 
analyzed for fractional Gaussian noise (fGn) or fractional Brownian motion (fBm) character. 

A new prediction technique using radial basis function (RBF) networks was developed to calculate 
shear and Young’s moduli of the formations when sonic logs are not available. For this approach, the 
filtered logs were used as input to an RBF based upon a combination of supervised and unsupervised 
learning. The network was trained and tested using rock elastic properties calculated from the sonic log 
of one of the boreholes. The network was used to predict the elastic and shear moduli of the coal-

measure rocks over a longwall coal mine in SW Pennsylvania. This approach demonstrated that it could 
be used for prediction of elastic and shear moduli of coal-measure rocks with reasonable accuracy. 

1. Introduction 

The properties of coal-measure rocks within the longwall 
overburden are important because of their controlling effect on 
fluid storage and flow before and after coal extraction. Methane 
inflow into the mines from fractured strata during longwall 
mining and production potential of the methane degasification 
boreholes drilled from surface (gob gas ventholes or GGVs) to 
capture these emissions are influenced by reservoir, elastic and 
strength characteristics of the overlying strata. Thus, the ability to 
accurately determine reservoir and elastic properties of the coal 
measure rocks is extremely important for ground control and 
methane control objectives in underground coal mining. The 
elastic modulus, or Young’s modulus, and shear modulus are used 
when deformations in underground mines need to be computed. 
Experimentally, the elastic modulus can be determined from the 
stress–strain response of a rock sample subjected to uniaxial 
compression. However, this is a complicated and time consuming 
experiment. 

With the advent of new computing and experimental techni
ques, complicated and time consuming experiments and methods 
to determine rock elastic and strength properties are being 
replaced by quicker, and may be even more accurate, techniques. 
For instance, the uniaxial unconfined compressive strength (UCS) 
test has been largely replaced by simpler, faster and cheaper 
‘‘indirect’’ tests such as point loading method [1] and Schmidt 
hammer [2], although UCS was the main direct quantitative 
method for rock strength determination for many years. Triaxial 
testing of a core from a rock material to find rock elastic and 
strength properties is another difficult, expensive and complicated 
laboratory test, in which the stress state in the rock sample is 
axisymmetric and defined by the axial stress, confining pressure 
and pore pressure. The results of this test are usually studied in 
terms of Terzaghi’s effective mean pressure and deviatoric stress 
which correspond to volume strain and the deviatoric strain [3]. 

In order to overcome the difficulties related to determination 
of elastic properties of rocks by laboratory tests, it has become 
very popular to develop alternatives that would predict the elastic 
moduli of rocks using theoretical and empirical approaches. In 
these approaches, elastic and shear moduli are either related to 
simple physical properties like total porosity or to other mechan
ical properties, indices, and even to mineral composition of rocks 
that are determined in the laboratory or documented in the 
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literature. However, as shown by the equations and conversion
factors in the literature, it is clear that there are no unique factors
and relations which can be used, even for the same type of rock.
Also, experimental data available in the literature that sometimes
is used to generate predictive equations mainly concerns lime-
stones and cemented sandstones. Poorly cemented sandstones are
difficult to characterize due to coring and heterogeneity problems.
Low permeability of shales and their sensitivity to water
complicate the tests by showing a strong interaction of the strain
rate and the saturating fluid. Thus, literature data on shales needs
to be handled carefully [3] for generating conversion factors and
relations.

Palchik [4] reported the relationships between Young’s
modulus (E) and sc are obtained from the stress–strain responses
of six carbonate rocks (dolomites, chalks and limestones)
collected from different locations in Israel. He reported that the
use of these empirical equations is not universal, but rather
limited, since empirical constants can only be used for the
carbonate rocks with which the tests were conducted. In addition,
he noted that although E generally increases with increasing sc,
these relations have different degrees of reliability with R2 ranging
from 0.57 to 0.98. Thus, he proposed a stress–strain model based
on Haldane’s distribution function to predict the elastic modulus
of intact carbonates. He concluded that this model is better
correlated with the experimental data for Israeli carbonate rocks
having a UCS o100 MPa.

Deriving the elastic properties of a rock from its mineralogical
content has been a tempting alternative approach [3]. The idea
behind this approach is that the mineralogical characteristics of
rocks influence the macromechanical properties and especially the
rock strength. Techniques such as variational methods [5] and the
theory of homogenization [6] are available for this objective.
However, these methods are far from practical and require powerful
numerical procedures. Thus, approaches based on a restrained
number of parameters accessible from drilling logs, which give
reasonable estimations of rock mechanical properties, were sought.

Mineral composition, grain size and microstructure are known
to be the most important parameters that influence rock strength
and elastic properties. Bemer et al. [3] also stated that it is difficult
to address sandstones since their composition is extremely
variable and their elastic properties depend on the stress state
due to their often nonlinear behavior. Sabatakikis et al. [7]
conducted a large number of laboratory tests on intact marlstones,
limestones and sandstones. Index properties such as porosity, unit
weight, mineralogical content, Schmidt hammer and point
loading indices, as well as the strength under uniaxial and triaxial
compression were determined. From the analyses of the data,
conversion factors relating rock strength to rock compositional
properties and index properties were calculated. They reported
that textural characteristics in limestones are more important
than mineral composition for rock strength. In sandstones, the
mineral composition was found to be more important.

Further attempts to determine UCS, shear and Young’s moduli
included data driven approaches. These used material properties
to generalize the relations between input and output space for
nonlinear approximations. Grima [8] used fuzzy modeling and
artificial neural networks (ANN) for the modeling of unconfined
compressive strength of rock samples. He compared results with
those of statistical models and the empirical relationship of
Verwaal and Mulder [9]. Density, porosity and equotip hardness
test (EHT) values were used as the input parameters for his
models. He reported that data driven models are more reliable
than statistical and empirical models. Sonmez et al. [10]
developed an artificial neural network-based chart which con-
siders sc and unit weight as input to predict elastic modulus of
intact rock. Maji and Sitharam [11], on the other hand, applied

back propagation algorithm and radial basis function to predict
elastic modulus of jointed rocks from the elastic modulus of intact
rocks, confining pressure, joint frequency, joint inclination and
joint roughness. They concluded that these models could
accurately represent the effect of confining pressure and joint
properties.

One of the major disadvantages inherent in all laboratory tests,
and in the derived correlations is that the tested samples will not
be in the in situ conditions anymore when they are tested in the
laboratory. It is very difficult or nearly impossible to create exactly
the same underground stress and fluid saturation conditions in
the laboratory due to the many interacting parameters under in
situ conditions. In addition, the scaling effect in the laboratory
measurements due to sample size and the testing effects at the
‘‘end points’’ of the sample may be an issue to interpret the
results. Furthermore, the elastic moduli can be either dynamic or
static, and undrained or drained. Standard laboratory tests usually
give access to static and drained elastic moduli, which can then be
directly used to compute strains. However, dynamic undrained
tests can be conducted either ‘‘in situ’’ or with complex and time
consuming methods.

Geophysical well logs and seismic, such as time-lapse seismic,
techniques can measure the in situ properties of rocks and fluid
reservoirs. For instance, a well log interrogates the formations
around the wellbore with different techniques and obtains
response data as the tool travels downward or upward in a
borehole. Among the well log techniques that are most frequently
used by oil and gas companies are spontaneous potential (SP),
gamma ray (GR), density log (DL) and sonic log (SL) that calculate
basic formation properties such as porosity, density, shale content
and boundaries of the formations of interest. Sonic logs that
employ compression and shear waves to interrogate the forma-
tions can also be used as the source of data for an ‘‘in situ’’
geotechnical evaluation of the rock formations since acoustic
travel time is explicitly tied to the density and the elasticity of the
medium [12]. They also can give access to dynamic undrained
elastic moduli, which require data on the compressibility of the
saturating fluids to be turned into dynamic drained elastic moduli.

Gamma ray and density logs are two of the conventional
logging techniques frequently employed by mining companies to
determine formation boundaries, formation thicknesses and
formation types. On the other hand, full wave sonic logs are
seldom used since they are more expensive to run, data intensive
and more complicated in terms of operation procedures. However,
SL is capable of providing more detailed information about the
condition of the borehole, surrounding strata, their elastic
properties and how they may behave during underground mining.
This information is particularly important for ground control and
for effective control of methane from a fractured zone using gob
gas ventholes (GGV).

The objective of this study is to develop a new technique to
calculate shear and elastic (Young’s) moduli of the formation,
which can then be used to determine bulk modulus and Poisson’s
ratio, using radial basis function (RBF) networks. The method is
based on processing of GR and DL by Fourier transform, fractal
statistics and then modeling using RBF to predict elastic and shear
moduli, when full wave sonic logs are not available or too costly to
obtain. This approach evaluates the ‘‘in situ’’ rock elastic proper-
ties of coal-measure rocks and for prediction purposes with a
reasonable accuracy.

2. Borehole data evaluated in this study

Data from two exploration boreholes (EBH-1 and EBH-2) were
used in this study. These two boreholes were in the same mining



area but were 8 km apart from each other and were located 
south and north of Waynesburg, Pennsylvania (Fig. 1). 
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Fig. 1. Exploration boreholes (EBH) studied in this paper, their locations in the field and a generalized stratigraphic column of this area. 

EBH-1 and EBH-2 were drilled for exploration purposes to 
characterize the mine roof and the mining coal thickness at the 
two locations. They were drilled from surface to an approximate 
depth of 12.2 m with rotary techniques and continued with a 
5.8 cm core drill until the bottom of the Pittsburgh coal bed was 
exceeded by about 6.1 m. Cores were fully recovered from EBH-1 
and were marked for depths and lithology identification. The total 
depths of EBH-1 and EBH-2 were 255.1 and 263 m in depth, 
respectively. After completion of drilling, boreholes were logged 
with gamma and density tools for the entire length of the 
borehole. In addition, EBH-2 also was logged with a full wave 
sonic tool. 

In this area of the Northern Appalachian basin, the overburden 
depths above Pittsburgh coal seam ranges between 152 and 
274 m. A generalized stratigraphic section of the strata above the 
Pittsburgh coal bed in the study area is shown in Fig. 1. At some 
locations in this area, there is a sandstone paleo-channel complex 
and associated shale unit overlying the Pittsburgh seam. 

The Sewickley coal bed and the rider coals (not shown in this 
figure) directly above the Pittsburgh coal bed are believed to be 
the primary sources of gob gas during longwall mining. Gas 
released from the Pittsburgh rider coals located in the caved zone 
is expected to migrate to the mine ventilation system, while gas 
from the Sewickley coalbed and from any other gas-bearing 
horizons above the caved zone migrates to the pressure sink of the 
operating gob gas ventholes in the fractured zone. 

3. Characterization of coal-measure rocks using well logs 

3.1. Characterization of rock formations using gamma ray and 
density logs 

In this section, gamma ray and density logs obtained from 
EBH-1 and EBH-2 were evaluated with core logs to characterize 
the coal-measure rocks above Pittsburgh coal bed. Fig. 2 shows 
the lithological log, thicknesses of major layers defined from the 
driller’s log, and raw gamma and density logs from EBH-2. At EBH
2, the top of the Pittsburgh coal bed was at a depth of 252 m. The 
general sequence between 204 and 241 m above the Pittsburgh 
seam layer can be divided in four sections (dotted lines in Fig. 2). 
These zones are mainly alternating sequences of limestone, shale, 
and sandstone, as determined from gamma ray and density logs. 
In each of these zones, thin shale layers (A, C–F) are sandwiched 
between stronger limestone or sandstone formations. In this log, 
the Sewickley coalbed is located at ‘‘B’’ (low gamma ray, low 
density) and overlain by carbonaceous shale (A) which records a 
high gamma ray reading accompanied by a decreased density. 

Raw gamma ray and density logs, as well as lithological logs 
and strata thicknesses, for EBH-1 are shown in Fig. 3. At this 
location, the Pittsburgh coal bed is found at a depth of 254 m. 
Similar sequence of layers, as in EBH-2, is observed at this location 
too. Limestone layers are separated by shale layers as annotated 
on gamma and density logs (A–G). Some of the low density 
readings (A/ and B/) are associated with carbonaceous and limy 
shales and with highly porous shale units. At this borehole site, 
the Sewickley coal seam is thicker than it is at EBH-2 location. This 
might influence the amount of methane that will be experienced 
once this location is undermined. Also, this location is missing the 
thick Pittsburgh sandstone that overlays the Pittsburgh coal seam. 
The absence of this layer may affect the fracturing and the amount 
of methane associated with this layer. 

3.2. Shale content and porosity of coal-measure formations at EBH-1 
and EBH-2 using GR and DL 

The GR log is a record of a formation’s radioactivity. During 
deposition of coal measure shales, its clay constituents adsorb 
ions of the heavy radioactive elements from mineralized waters 
involved in the weathering process of igneous formations. Due to 
adsorption of radioactive elements, fine grained sediments such 
as clayey sands and shales are generally quite radioactive. On the 
other hand, carbonate rocks have low radioactivity since they are 
mainly derived from calcareous marine-life skeletal material. 
Similarly, pure sandstones have low radioactivity due to the well-
ordered structure of quartz that exclude impurities during 
crystallization. Since sandstones are usually porous, they may be 
penetrated with radioactive ions and clays later [13]. 

The GR log is usually used to identify boundaries, primarily 
shale units from other low radioactivity formations, and to 
quantify shale volume of the rock formations. In fractured 
formations, an increase in the gamma ray reading without 
concurrently higher formation shaliness can be observed. This 
increase has been explained by deposition of uranium salts along 
the discontinuity surfaces of a fracture or within the crack itself. 
Also, it is not uncommon to find as much as 0.01% uranium or 
thorium in dark bituminous shale units, which increases the 
gamma ray reading [13]. 

In this study, formation type and thicknesses were first 
identified from the GR logs of the boreholes for calculating shale 
volume. The clean-formation readings for each rock type were 
determined by locating the clean sandstone and limestone units 
in the logging data. Pittsburgh sandstone and limestone intervals 
were suitable for this purpose since they were free from shales. 
The GR reading for coal was determined based on the average GR 
reading along Sewickley layer. For the shale GR reading, the 
average reading of the shale intervals was determined and used in 
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the calculations. In shale volume calculations, each interval was 
calculated separately using respective clean-formation readings. 
The aim was to minimize errors from using a single formation GR 
value for the entire borehole interval. 
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Fig. 2. Lithological log of EBH-2 with thicknesses of major layers defined from driller’s log and raw gamma and density logs. 

Porosities were calculated based on the readings of the density 
log which corresponds to bulk density. There are a variety of 
factors affecting bulk density measurements. One of the most 
important is the shaliness of the formation which affects the 
measurement by the amount of its contribution to the total signal. 
In this study, a correction was made by the volume of shale in 
order to obtain a shale-corrected density measurement [13]. 

The following equation can be used to quantify the shale 
volume by using GR log [14]: 

GR GR
Vshale 

-
¼ 

l clean rock (1)
GRshale - GRclean rock 

In this equation, GRl is the gamma ray reading (cps, count per 
second) from the log. The other two terms are the GR readings of 
the clean formations (clean sandstone and limestone) and the 
pure shale [13,14]. These readings were obtained from the 
formations and using the methodology mentioned in the previous 
paragraph. 

Bulk density (rb), on the other hand, is determined from 
density log, from which porosity can be calculated (Eqs. (2) and 
(3)). However, before porosity can be determined, the lithology of 
the formation, the matrix density, and the fluid density filling the 
pore space must be known. For a clean formation of known matrix 

density, rma, with a fluid of average density, rf, the linear sum of 
the contributions can be used to calculate porosity (f) as  
described in Karacan [15] and by using below equations: 

rb ¼ frf þ ð1 - fÞrma (2) 

rb ¼ rbsh:free 
ð1 - VshaleÞ þ rshaleVshale (3) 

Fig. 4 shows the shale content and porosity values for EBH-1. 
The calculations show that the lowest shale percentage is found in 
limestone bearing units at depths of 225.5 m, 230.1–234.7 m, with 
an average shale amount of 5–10%. Within this interval, there are 
layers of weak shale formations at 229.9 and 233.5 m. These and 
similar layers are potentially weak interfaces to be affected by 
mining stresses and by the resultant bedding plane separations. 
Outside of limestone intervals, the average shale content in the 
strata varies from 40% to 50%. 

Fig. 4 also shows the porosity values calculated in the EBH-1 
borehole using the density log. This plot shows that porosity 
values are generally low (0–0.1), except for some intervals where 
values exceeding 0.5 are observed. These locations are at 210.3 m 
(A), 217.9 m (B), 224.0–225.5 m (C–D), 233.1 m (E), 237.8 m (F) and 
243.8 m (G), where 224 m corresponds to the Sewickley coal bed. 
These intervals are generally associated with fractures, laminated 
layers and shales inter-layered between limestone units. These 
high porosity intervals can result in weak spots in the strata 
leading to eventual fracturing and separation, which may also 



promote methane flow towards any borehole or to the mine.
These areas may potentially be the reservoirs of free methane that
will flow into a pressure sink once the fracture connection is
established during mining.
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Fig. 3. Raw GR, DL, lithological log and strata thicknesses for EBH-1.

Similar observations can also be made for EBH-2 location
based on shale content and porosity calculations, which are
shown in Fig. 5. In this borehole, average shale content in the
sandy-shale layers is around 30–40%. Higher shale-content areas
are interbedded with more competent limestone sequences and
the Pittsburgh sandstone 217.9–228.6 m and below 236.2 m,
respectively. The layer that is almost exclusively shale at around
211.8 m is closely associated with thin carbonaceous shale and is
either a clay-filled fracture or a fracture surface that is carrying a
high amount of radioactive ions.

The calculated porosities for EBH-2, based on the density log,
are also shown in Fig. 5. The values indicate that most porosity
values are around 0.1. However, there are higher porosity sections
based on the strata intervals. The highest values are marked from

A to H on the figure and they are generally associated with shale
layers, especially where clay content is high and possibly where
some natural fractures within the strata or along the bedding
interfaces are present. In these sections, porosities were as high as
0.4–0.5 and in some instances even more. These high porosities
can be related to weak spots in the strata that may lead to
fracturing and bedding plane separation. They can also constitute
pockets for free methane and can serve as flow paths within the
formation.

3.3. Shear modulus and Young’s modulus calculation at EBH-2 using

sonic log

In sonic logging, ultrasonic frequencies are employed in the
form of compressional and shear waves. Compressional wave
measurement used in sonic logging exhibits longitudinal particle
motion and can be propagated in solids, liquids and gases. The



shear wave, on the other hand, is a transverse wave, in which the 
direction of propagation is perpendicular to the direction of 
particle displacement. In case of a compressional wave, the 
acoustic wave alternately compresses the surrounding medium on 
a forward movement and rarifies it on a backward movement [13]. 
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obtained from EBH-1. 
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Velocities obtained from sonic logs can be used as the 
fundamental information for rock classification and geotechnical 
evaluation. Acoustic travel time of any type of ultrasonic 
disturbance is explicitly tied to the density and the elasticity of 
the medium. Compressional waves are characterized by first 
arrival times. Although slower than compressional waves (0.5–0.7 
times), shear waves are usually stronger and can be identified in 
the total wave train. 

In this paper, shear modulus and Young’s modulus values were 
calculated using the velocities of compressional and shear waves 
determined from full wave sonic logs as described in [12]. 
Dynamic moduli were calculated using both compressional and 
shear waves and a determination of dynamic Poisson’s ratio (n) 
using Eqs. (4)–(6): 

G ¼ rV2 
s (4)

n ¼ 
(   

V 2   2
p 

),( 
V

 
p

2 2 2 
s

)
(5)

Vs V
 

where r is the density, G is shear modulus, Vp and Vs are the 
compressional and the shear wave velocities, respectively. The 
Young’s modulus (E) and the bulk modulus (K) can then be 
calculated using 

E ¼ 2Gð1 þ nÞ (6) 

E 
K ¼ (7) 

3ð1 2nÞ 

Young’s moduli and shear moduli for EBH-2 are given in Fig. 6. 
This figure shows that highest Young’s and shear moduli are 
associated with limestone and competent sandstone layers. The 
values in these layers are as high as 4 and 9 GPa for shear modulus 
and Young’s modulus, respectively. When the layer is shale, sandy 
or limy shale, or coal, values decrease abruptly to values as low as 
1–2 GPa, indicating weaker rock units that will be deformed easily 
when subjected to high stress and strain conditions prevailing 
during mining. These weak layers and their interfaces with 
stronger rocks are candidates for fracturing and bedding plane 
separations to form increased permeability pathways for methane 
migration into longwall gobs. 

Despite the crucial information obtained that is related to 
possible rock behavior under certain stress and strain conditions, 
sonic logging is more unconventional than both density and 
gamma ray logging, especially in mining-related strata character
ization. Part of the reason why it is not used as often as the other 
two is the cost and time associated with recording and processing 
sonic data. Processing sonic full wave profiles can also be a tedious 
task since the arrival times of compressional and shear waves 
should be determined from an entire wave train to calculate 
Young’s modulus, shear modulus and sonic porosity. 
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compression and shear-wave sonic velocities at EBH-2 drill site.

4. Methodology development for log-data treatment and for
generating rock elastic properties from gamma and density logs

The aim of this section is to gain a better understanding of the
data ordering in available logs from EBH-1 and EBM-2 using
rescaled range (R/S) and power spectrum (PS) analyses to
determine their fractal (fGn/fBm) character. This information is
used to compare the original logs with the filtered ones generated
using Fourier transform (FT) to make sure that both sets of data
carry the same or similar information content and data ordering.
Next, a methodology to generate shear and Young’s moduli using
filtered gamma and density records is developed. The method is
based on using filtered GR and DL with radial basis function
networks to predict available Young’s and shear moduli in the
same borehole. An optimized network system is then used to
predict the elastic and shear moduli for EBH-1 using its gamma
and density readings, which unfortunately did not have a sonic log
record.

The flowchart in Fig. 7 graphically presents the details of
the methodology followed for this approach. The details of the
techniques will be given in the next sections and in the
appendices in this paper.
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Fig. 7. A flowchart representation of the details of the mathematical methodology

followed for the log-data analysis and generation of radial basis function network.

4.1. Stationarity of self-affine fractal character of log traces

In analyzing the self-affine fractal data sequences and the
ordering of data within, stationarity and ergodicity are important

characteristics to be determined. A stationary data ensemble is
one whose ensemble average properties are independent of depth
or time. Thus, if the logs show an increasing (or decreasing) trend
with depth, even if the ensemble averages are the same, the
ensemble is non-stationary and, therefore, it is also non-ergodic
[16,17]. These two properties usually determine which mathema-
tical techniques, fractional Gaussian noise (fGn) or fractional
Brownian motion (fBm), are appropriate for an analysis.

Fractional Gaussian noise and fractional Brownian motion are
data sequences with self-affine fractal character that can be used
to describe time series and geological distributions as well as
heterogeneities. Self-affine fractal sequences are statistical in
character and mathematically described by using ‘‘Hurst coeffi-
cient’’, which is a dimensionless number between 0 and 1 and
represents the intermittency of the data. Unlike pure Gaussian
(white noise, or uncorrelated data), fGn exhibits spatial correla-
tion between data points. fBm is the integral of fGn and contains
more low frequency components than high frequencies. The
characteristics of fGn and fBm are mathematically described in
Appendices A and B.

Histograms of fGn- and fBm-type data sequences present
differences, too. Histogram of fGn is Gaussian where the
histogram of fBm is box-shaped, or rectangular. In this study
Gaussians, which represented the data distributions with accura-
cies of 0.94 and 0.96, were fitted to those data in the depth
interval of interest (204.2–240.8 m) and a good representation of
histograms with these curves were observed. The Gaussian shape
of the histograms suggested that the data series could be
classified as fGn. Also, DL and GR of EBH-2 (Fig. 2) were locally
increasing or decreasing based on the formations within this
interval. However, there was not a consistent trend in GR and DL



within this interval, suggesting that both curves are stationary. A 
similar stationarity property could be proposed for Young’s and 
shear moduli by examining the sonic-log derived data shown in 
Fig. 6. They both could be represented almost perfectly by 
Gaussian distribution with an accuracy of 0.98 (Fig. 8). 
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Fig. 8. Histogram for shear and Young moduli data calculated from SL of EBH-2 and their Gaussian representation. 

4.2. Noise reduction in log data (EBH-2) by Fourier transforms 
method 

Random noise (RN) can greatly affect the result of certain types 
of analyses by shifting the location of the peak, which leads to 
systematic overestimation of the height of the peak and to 
amplification after differentiation. RN can also decrease the 
prediction capability of any predictive methods by creating 
additional nonlinearities and local minimums that may distort 
the approach to convergence in iterative techniques. Since random 
noise is distributed over all frequencies and the real signal is 
typically limited to low frequencies, a reduction of high frequency 
components improves the signal/noise (S/N) ratio. Before pro
ceeding further in the elastic and shear moduli generation using 
GR and DL in RBF, the original logs were filtered to remove the 
high frequency signals, which correspond to possible noise. The 
purpose of this step is to increase S/N and thus improve the 
prediction capability of RBF on the true ‘‘signal’’. 

There are different methods available to generate a smoother 
data trace. For instance, a smoother log signal can be generated 
from the original curve by averaging every ‘‘n’’ values of the curve 
and plotting these averages at the middle of each of the averaged 
intervals. However, this process significantly reduces the number 
of data points, and thus the information content. Running average 
is another option but it creates large lags at the ends of the data 
sequence. 

For filtering the data sequence, the aim is to generate a curve 
with improved S/N that honors the properties of the original curve 
and that is statistically similar. This can be done by generating a 
curve with the same (or close) mean, standard deviation, the same 
average values and self-affine fractal properties investigated by 
different methods as the original curve. In this work, the objective 
of ‘‘non-destructive’’ filtering on well logs was achieved by 
employing a low-pass filter using Fourier transform methods. 
Well logs are processed as discrete and finite signals and 
transformed into frequencies for filtering of high-frequency 
signals, while trying to preserve as much of the original 
information content as possible. 

During FT, selected parts of the frequency spectrum ‘‘G’’ can 
easily be subjected to piecewise mathematical manipulations 
based on the frequency of the signal. These manipulations result 
in a modified or ‘‘filtered’’ spectrum. Therefore, signal smoothing 
can be performed by completely removing higher frequency 
components while information-bearing low frequency compo
nents are retained. By eliminating undesirable high-frequency 
components, we can filter a data array to remove noise and other 

artifacts. Taking an inverse Fourier transform converts the data 
back into the depth domain [16]: 

Do XN 
2pg i

j ¼ Gme ðj-1Þðm-1Þ=N (8)
2p 

m¼1 

where o is the angular frequency of a sine or cosine function, and 
f ¼ o/2p. 

Fig. 9 compares the original GR and DL of EBH-2 with the curve 
generated by averaging the data every 0.61 m and with the filtered 
curve generated using the low-pass filter in Fourier transform 
methods. This figure shows that the filtered curve better 
represents the original curve in both cases without destroying 
the overall information in high and low frequency regions. 

The success of FT filtering techniques is further investigated by 
comparing the descriptive statistics of the original log data with 
the filtered one to see if similar mean, standard deviation and 
median can be captured. The Hurst exponents and global scaling 
parameters obtained from the two sets to characterize the fractal 
nature of the original and filtered data using rescaled range and 
power spectrum were also studied in the following sections. 

4.3. Univariate measures to investigate the statistical similarity of 
filtered and original logs of EBH-2 

The filtered logs were investigated using univariate and fractal 
statistics to see if they honored the properties of the original 
curves. Comparing the histograms obtained from filtered GR and 
DL logs to the original histograms showed that FT preserved the 
Gaussian properties of the original logs with accuracies of 0.93 
and 0.98 for GR and DL, respectively. A similar filtering and 
comparative study for shear and Young’s moduli logs were also 
performed and proved that these data could also be filtered 
without affecting the character of the original moduli curves. 

In addition to Gaussian checks of original and filtered log data, 
statistical parameters of original and filtered sequences of GR, DL, 
shear modulus and Young’s modulus from EBH-2 were compared. 
This approach checked if the filtered data sequences honored the 
basic statistical features of the original data sequence. Table 1 
shows the results of these analyses. Values of mean, standard 
error, median and standard deviation are very similar for the 
original and filtered logs of EBH-2. These results encourage 
the use of filtered data instead of noisier, original data in the 
subsequent analysis and proxy model development for prediction 
of elastic properties of rock strata for EBH-2 and EBH-1. 

4.4. Self-affine fractal analysis on logs of EBH-2: power spectrum 
and rescaled range analysis for determining Hurst (Hu) and global 
scaling (H) coefficients 

Univariate statistical analyses on the original and filtered 
sequences of different logs obtained from EBH-2 show statistical 



similarities between data sequences before and after FT. In order 
to have a better understanding of the data ordering in specific 
geophysical logs, multivariate measures, such as rescaled range 
analysis and power spectrum analysis should be used (Appendices 
C and D). 

225 

245 

Gamma (cps) Density (g/cc) 

0 20 40 60 80 100 1.25 1.75 2.25 2.75 
200 200 

205 205 

210 210 

215 215 

220 220 

Gamma-Original 

Gamma-Averaged 

Gamma-Filtered 

D
ep

th
 (m

) 

230 230 

235 235 

240240 

Density-Original 

Density-Averaged 

D
ep

th
 (m

)

225 

245 

Fig. 9. Comparison the original GR and DL of EBH-2 with the curve generated by 

Density-Filtered 

averaging the data in every 0.61 m and with the filtered curve generated using 
Fourier transform methods. 

Table 1 
Basic univariate statistical 
DL (B), shear modulus (C) 

parameters of original and filtered 
and Young modulus (D) logs from 

sequences 
EBH-2. 

of GR (A), 

Original Filtered 

(A) GR (cps) 
Mean 
Standard error 
Median 
Standard deviation 

(B) DL (g/cc) 
Mean 
Standard error 
Median 
Standard deviation 

(C) Shear modulus (GPa) 
Mean 
Standard error 
Median 
Standard deviation 

(D) Young modulus (GPa) 
Mean 
Standard error 
Median 
Standard deviation 

36.242 
0.534 
36.690 
18.744 

2.473 
0.004 
2.500 
0.147 

2.213 
0.018 
2.260 
0.631 

5.318 
0.043 
5.330 
1.529 

36.262 
0.495 
35.935 
17.234 

2.473 
0.004 
2.499 
0.138 

2.213 
0.016 
2.279 
0.558 

5.319 
0.040 
5.284 
1.411 

Fractional Gaussian noise-type data can be analyzed by Hurst 
coefficients (Hu), which can be evaluated numerically by rescaled 
range analysis. R/S is considered a robust method for investigating 
the presence of correlations in random events. This analysis is a 
measure of how a sequence varies as the distance (lag) between 
data points increases according to R=S ¼ ðaNÞHu, where N is the lag 
and a is a constant. In general, the longer the interval studied (the 
lag), the greater the rescaled range. In R/S analysis, the logarithm 
of rescaled range is plotted against the logarithm of lag. If the 
resulting plot gives a straight line for the region of long lags, the 
slope of this line is denoted as ‘‘Hu’’. The values of Hu determined 
from R/S are given in Table 2. 

Table 2 
Results of R/S analysis 
and Young’s modulus 

for original 
(EBH-2). 

and filtered data series of GR, DL, shear modulus 

Hu (from original log) Hu (from filtered log) 

R/S on EBH-2 logs 
Gamma 
Density 
Shear moduli 
Young’s moduli 

0.420 
0.299 
0.401 
0.248 

0.405 
0.285 
0.447 
0.285 

Fig. 10 shows the R/S plots for original and filtered sequences 
for GR and DL from EBH-2. These plots show that filtering changes 
the behavior of R/S in the whole lag range. However, Hu at long 
lags is not severely affected. The Hu values calculated for original 
and filtered data using these graphs ranged between 0.2 and 0.4 

for density and gamma logs (Table 2). These values are in 
0oHuo0.5 range and represent anti-persistent nature of the logs. 

The Hu values were also calculated for shear and Young’s 
moduli logs (Table 2) for their original and filtered values from 
EBH-2. Comparing Hu values of these logs with the corresponding 
values of DL and GR shows that the Hu values are close to each 
other for shear modulus-GR and Young’s modulus-DL pairs. This 
indicates, in the physical sense, that shear modulus is mostly 
related to the clay or shale content in a formation and thus to 
gamma ray readings, whereas the elastic modulus of a formation 
is more related to its bulk density. 

Power spectrum analysis is the next technique to be used in 
investigating the fractal character and ordering of the data 
sequence. Power spectral density is a statistical measure based 
on the Fourier transform of the original discrete sequence (e.g. a 
well log). In this analysis, the logarithm of the square of amplitude 
array (spectral density) is plotted against the logarithm of angular 
frequency. The resulting early slope is denoted as b (spectrum 
power), which is related to global scaling coefficient, H, by b fGn ¼ 

-ð2HfGn - 1Þ for fGn-type series. These values are given in Table 3 
for GR and DL of EBH-2. 

Spectrum power and global scaling coefficients (H) calculated 
using the PS approach are given in Table 3. The table shows that 
the global scaling coefficient, HfGn, which is allowed to change 
between +1 and -1, is somewhat larger than Hu obtained from R/S 
analysis. However, they are close to the values of unfiltered 
‘‘original’’ log data and these and the fractal dimensions still show 
a pairing between GR-shear modulus and Young’s modulus-DL. 
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Fig. 10. R/S plots for original and filtered sequences for GR and DL from EBH-2. The straight lines are the best linear fits to the long-lag regions of the data series. 

Table 3 
Results of 
DL, shear 

power spectrum (PS) 
modulus and Young’s 

analysis for original 
modulus (EBH-2). 

and filtered data series of GR, 

bfGn (original) HfGn (original) bfGn (filtered) HfGn (filtered) 

PS analysis on EBH-2 logs 
Gamma -0.126 
Density -0.525 
Shear moduli -0.240 
Young’s moduli -0.517 

0.563 
0.763 
0.620 
0.759 

-0.125 
-0.724 
-0.150 
-0.654 

0.562 
0.862 
0.575 
0.827 

Fig. 11 shows the power spectrum of the filtered GR and DL 
data of EBH-2. Since the power spectrum is obtained via Fourier 
transform, the power spectrum of filtered (Fourier transformed) 
data is related to the power spectrum of the original sequence by 
the convolution theorem [16]. This results in a power spectrum 
plot of filtered function versus frequency that is constant up to 

 some frequency value, ~f . This value is the ‘‘roll-off frequency,’’ 
which is the value at which a filter adds a constant to within some 
percentage to the spectral density of the original sequence from 

~ ~-N to f . Above f , the amount added rapidly decreases [16]. 
The results presented in this section show similarities between 

the univariate and fractal statistical measures of the original and 
filtered data. In other words, the filtering technique applied to the 
original data honors the properties of the original data sequence 
without critical distortions. 

5. Development of a radial basis function network for prediction 
of Young and shear moduli from gamma and density logs 

A neural network simulates a highly interconnected, parallel 
computational structure of the brain with many relatively simple 
individual processing elements, called neurons [18] to approx
imate nonlinear or complex data. Neurons are networked 
(topology) in a number of ways depending on problem type and 
complexity. Within the hidden layer, the inputs are summed and 
processed by a nonlinear function, called a transfer function or 
axon. The nonlinear nature of the function plays an important role 
in the performance of a neural network. 

The process of finding a suitable set of weights for the network 
is called network optimization or ‘‘training’’. The most common 
way of training the networks is via supervised training algorithms, 
which require repeated showings (epochs) of both input vectors 
and the expected outputs of the training set to the network to 
allow it to learn the relations. However, in some specific cases 
(Kohonen self-organizing maps, radial basis functions), unsuper
vised networks are also used with success. 

The neural network computes its output at each epoch and 
compares it with the expected output (target) of each input vector 
in order to calculate the error. An error is defined for a given 
pattern (input–output) and summed over all output neurons over 
the entire epoch. The error is summed over all neurons to give an 
average mean squared error (MSE) [18]. Minimizing this error is 
the goal of the training process. During error minimization, it is 
preferable to find the global optimum rather than the local 
optimum. Once the training phase is complete, the performance of 
the network needs to be validated on an independent data set. 
Cross validation is a model evaluation method that indicates the 
performance of the ANN when it is confronted with data it has not 
yet seen. It is important that validation data not be used as part of 
training. More detail is found in [19,20]. 

One of the most widely used topologies is the feed forward (FF) 
network because it can be applied in almost every kind of 
modeling, general classification, and regression. Radial basis 
function is the most widely used network after FF. The key to 
successful implementation of these networks is to find suitable 
centers for the Gaussian functions. Radial basis functions are 
typically used to build up function approximations of the form 

N 

yðxÞ ¼  
X 

wifðkx - cikÞ (9) 
i¼1 

where the approximating function y(x) is represented as a sum of 
N radial basis functions, each associated with a different center ci, 
and weighted by an appropriate coefficient wi. In this equation, f 
is the radial basis function. Approximation schemes of this kind 
have been particularly used in time series prediction and in 
control of nonlinear systems exhibiting sufficiently simple chaotic 
behavior. 

The sum (Eq. (9)) can also be interpreted as a rather simple 
single-layer type of artificial neural network called a radial basis 
function network, with the radial basis functions taking on the 
role of the activation functions of the network. It can be shown 
that any continuous function on a compact interval can in 
principle be interpolated with arbitrary accuracy by a sum of this 
form if a sufficiently large number, N, of radial basis functions is 
used. Radial basis function networks have a static Gaussian 
function as the nonlinearity for the hidden layer processing 
elements. One of the most commonly used types of radial basis 
functions is Gaussian function: 

fðrÞ ¼  e-br2 
; b40 (10) 

The Gaussian function responds only to a small region of the 
input space where the Gaussian is centered. Suitable centers can 
be found using either supervised or unsupervised learning 



approaches, the latter which may in some cases produce better
results. In order to take advantage of both learning methods, a
hybrid supervised-unsupervised topology was applied in this
study to build the RBFs.

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E-03
Angular Frequency

Sp
ec

tr
al

 D
en

si
ty

Gamma-Original
Gamma-Filtered

1.00E-23
1.00E-20
1.00E-17
1.00E-14
1.00E-11
1.00E-08
1.00E-05
1.00E-02
1.00E+01
1.00E+04

1.00E-03
Angular Frequency

Sp
ec

tr
al

 D
en

si
ty

Density-Original
Density-Filtered

1.00E-02 1.00E-01 1.00E+00 1.00E-02 1.00E-01 1.00E+00

Fig. 11. Power spectrum plots of original and filtered GR and DL (EBH-2). The straight solid lines are the linear fits to the short-lag regions of the data series. Plots also show

the frequency roll-off when applying FT to filtered data prior to PS analysis.

In this approach, the simulation started with the training of an
unsupervised layer. This layer was trained based on ‘‘Full-
Conscience’’ competition. Its function derives the Gaussian
centers and the widths from the input data. These centers are
encoded within the weights of the unsupervised layer using
competitive learning. During unsupervised learning, the widths of
the Gaussians are computed based on the centers of their
neighbors. The output of this layer is derived from the input data
weighted by a Gaussian mixture [21]. By using the ‘‘Full-
Conscience’’ algorithm in this process, the winning rate of each
neuron is tracked and the weights are adjusted so that there will
not be a single neuron dominating in the whole process but,
rather, each neuron will have a chance in the learning process. At
the conclusion of training, each neuron’s weight represents
reference data, which is later used for classification.

Once the unsupervised layer has completed its training, the
supervised segment then sets the centers of Gaussian functions
(based on the weights of the unsupervised layer) and determines
the width (standard deviation) of each Gaussian. A 2-layer
multilayer perceptron (MLP) was used for processing the
weighted input at this stage.

For developing an RBF-based network, filtered GR and DL data
were used as inputs instead of the original data, since they
included less noise and were capable of representing the original
logs. An RBF network having Gaussian inner functions and trained
on a full-conscience unsupervised learning algorithm was used
and the output was fed into a 2-step multilayer perceptron-based
network, which was trained using a back-propagation algorithm.
The graphical representation of the network and its major
elements and parameters are shown in Fig. 12.
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Hyperbolic tangent activation 
600 iterations
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Fig. 12. Architecture of RBF-MLP network developed to calculate shear and Young’s moduli from GR and DL readings.

5.1. Optimization of the network

In optimization or training of the RBF network, filtered log data
from GR, DL, shear and Young’s moduli from EBH-2 were used.
Each of these logs had 1231 evenly spaced data points. First, these
data were randomized to eliminate the biases. Of the randomized
input series (1231 log data points), 180 were tagged for cross
validation, 180 were tagged for testing of the network response
and the rest were allocated for training purposes. In optimization
of the network, it was trained six times in such a way that the 180
optimization inputs were shifted in every training step within the
whole training set in order to change the order of the inputs and
thus to minimize the error caused by ordering of the data in the
randomized set.



The optimization and the testing of the network were
completed with mean squared errors of 0.015 for the optimization
stage, and 0.089 and 0.290 for the testing stage when predicting
shear and Young’s moduli, respectively. The results showed that
the expected and predicted values were close to each other
indicating that the network achieved a reasonable predictive
performance. The performance indicators of the testing phase are
given in Table 4.

Table 4
Performance of network in testing phase for the prediction of shear and Young’s

moduli.

Performance measure Shear-modulus Young-modulus

MSE

Nominal MSE

Mean abs error (GPa)

Min abs error (GPa)

Max abs error (GPa)

R

0.0894

0.3089

0.2209

0.0001

1.0228

0.8337

0.2906

0.1592

0.4213

0.0100

2.0058

0.9183

The moduli data used in the testing phase of the network
(calculated from sonic log) and the RBF predicted values based on
GR and DL are also plotted as a function of depth (Fig. 13).
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This
graph shows that the modulus values calculated from the sonic
log are in good agreement with the modulus values predicted by
the network using gamma and density logs, encouraging its use as
a predictive tool in other wellbores where gamma and density
logs are present but sonic log is not available.

5.2. Application of RBF network for predicting shear and Young’s

moduli for EBH-1 and EBH-2 boreholes
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Fig. 14. Sonic-log derived shear and Young moduli versus network predictions

using gamma and density logs (EBH-2).

The verification of the network was performed independently
from the network optimization and testing protocol presented in
the previous section. For this process, the arithmetic averages of
GR and DL values within different stratigraphic intervals shown in
Fig. 2 were calculated. Shear and Young’s moduli values were also
calculated using the same method of averaging. To test and verify
the network response on this set of data, the average GR and DL
values were given to the network as inputs and shear and Young’s
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moduli were predicted as outputs. The data from this prediction 
process data shown in Fig. 14. The network produced reasonable 
results for both moduli parameters with an accuracy of 0.92. 

For further verification, the bulk modulus and Poisson’s ratio 
calculated using sonic velocities were averaged within different 
stratigraphic intervals as described in the previous paragraph, and 
plotted against the bulk modulus and Poisson’s ratio calculated 
using Young’s and shear moduli from RBF output in Eqs. (6) and 
(7) as input (Fig. 15).
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Fig. 15. Sonic-velocity derived bulk modulus and Poisson’s ratio versus calculated 
ones (Eqs. (6)–(7)) using network-predicted Young and shear moduli from gamma 
and density logs (EBH-2). 

 The comparison shows that errors associated 
with RBF calculation of Young’s and shear moduli are not 
amplified and bulk modulus and Poisson’s ratio can also be 
calculated with a reasonable accuracy. 

By using a similar technique, the GR and DL from EBH-1, for 
which a sonic log was not available, were averaged within the rock 
intervals. These average values were given to the network as 
inputs to predict shear and Young’s moduli. The results of the 
network are presented in Fig. 16. 
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6. Summary and concluding remarks 

In this study, GR, DL and sonic log data from two exploration 
boreholes from a mining area were analyzed for formation 
boundaries, shale contents, in situ porosity measurements and 
for rock elastic properties. 

An analysis algorithm to process available log data was 
developed. According to this procedure, univariate statistical 

techniques and fractal statistics were used to study similarity 
and ordering of the log data in the depth scale. For this procedure, 
the data was smoothed using a Fourier transformation with a low-
pass filter. Filtered data was tested using basic statistics and 
evaluated with rescaled range and power spectrum analyses to 
see if this data represented the information characteristics of the 
original data set. 

Based on the fractal characteristics of the original and filtered 
data sequences, filtered data were used in a new prediction 
technique for shear and elastic moduli from DR and DL using 
radial basis function networks. This technique accurately pre
dicted shear and elastic moduli, showing that it can calculate 
shear and Young moduli of the formations when sonic logs are 
either not available or too costly to obtain. 

Appendix A. Fractional Brownian motion 

Fractional Brownian motion is a non-stationary self-affine 
random process, defined by Mandelbrot and Van Ness [22] as 

1 0

BHuðtÞ ¼  

" Z 
Hu10:5

G
fjt 1 ljHu10:5 1 jl

Hu 0:5
j gdBðlÞ

ð þ Þ 11Z t 

þ
 
jt 

0
1 ljHu10:5 dBðlÞ

]
(A.1) 



where G(x) is the gamma function, and BHu(t) an ordinary 
Gaussian process with zero mean and unit variance. 

In this integral, the parameter Hu is the Hurst coefficient 
(0oHuo1). When Hu is 0.5, the repeated integral produces 
uncorrelated noise (white noise). The sequence with 0.5oHu o1.0 
is a persistent sequence. In other words, if the trend is increasing, 
an increasing trend can be expected in the future. If 0oHuo0.5, 
then the process is anti-persistent in nature [23,24]. 

Appendix B. Fractional Gaussian noise 

Fractional Gaussian noises are family of random processes with 
stationary and Gaussian properties and long statistical depen
dence [25,26]. The fGn is more varied than fBm since it is fBm’s 
derivative, which can be defined by 

BHuðx þ dÞ - B
Þ ¼

HuZ
ðxÞ 

ðx lim	 (B.1) 
d!0 d 

It has zero mean and its variance is 

Var

{
B

 Huðx þ dÞ - BHuðxÞ 
}
¼ VHud

2Hu-2	 (B.2)
d 

where VHu is 

cosðpHu
G

Þ
ð1 - 2HuÞ	 (B.3)pHu 

Appendix C. Rescaled range analysis 

Hurst coefficient can be evaluated numerically by rescaled 
range analysis (R/S analysis), which is a measure of how a 
sequence varies as the distance (lag) between data points 
increase. This measure has been initially observed and imple
mented for records of natural data in time. In this analysis, first, 
the natural records are transformed into a new variable, X(t, N), 
the so-called accumulated departure of the natural record in time 
in a given year t (t ¼ 1,2,y,N), from the average, x̄ðtÞ, over a period 
of N years. The transformation formula is 

X t t 

Xðt; NÞ ¼  ðxi - x̄N Þ ¼  
X 

xi

i

- t x̄N (C.1) 
i¼1 ¼1 

! 

The rescaled range R/S, the range can be defined as 
RðNÞ ¼ max1ptpNNðt; NÞ -min1ptpNNðt; NÞ, and the standard de
viation by 

1=2
1 N 

SðNÞ ¼  x x̄ 2 (C.2) 
N 

X 
½ t - N

t

 

¼1 

!

by dividing the range with its standard deviation, many natural 
phenomena can be studied using this power relationship [27,28]. 

R=S ¼ ðaNÞ	Hu (C.3) 

where Hu is the Hurst coefficient. In general, the longer the 
interval studied (the lag), the greater the rescaled range. In R/S 
analysis, the logarithm of rescaled range is plotted against the 
logarithm of lag. If the resulting plot gives a straight line for the 
region of long lags, the slope of this line is denoted as H. 

R/S is considered as a robust method for investigating the 
presence of correlations in random events, or even if the data obey 

Gaussian statistics or not [28]. However, some authors suggest 
that spectral density technique should be applied first to confirm 
fBm and R/S should be applied later to some incremental series of 
the data [26]. 

Appendix D. Power spectrum and spectral density analysis 

The spectral density is a statistical measure based on the 
Fourier transform of the original data. All of the information in a 
discrete sequence created by Fourier transform is retained in 
amplitude and phase, which can be converted back to the same 
sequence by inverse transform. The square of the amplitude array 
is called the ‘‘spectral density’’. In spectral density analysis, one 
should plot logarithm of spectral density against logarithm of 
frequency. The resulting early slope is denoted as b (spectrum 
power), which is related to global scaling coefficient, H, by  

bfGn ¼ -ð2HfGn - 1Þ for fractional Gaussian noise; fGn (D.1) 

and 

bfBm ¼ -ð2HfBm þ 1Þ for fractional Brownian motion; fBm (D.2) 

For fGn, b (spectrum power) is between +1 and -1, inclusive. For 
fBm, b is between -1 and -3, exclusive. Also, bfGn ffi bfBm - 2 [26]. 
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