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Abstract

The developmental mechanisms by which the network organization of the adult cortex is established are incompletely
understood. Here we report on empirical data on the development of connections in hamster isocortex and use these data
to parameterize a network model of early cortical connectivity. Using anterograde tracers at a series of postnatal ages, we
investigate the growth of connections in the early cortical sheet and systematically map initial axon extension from sites in
anterior (motor), middle (somatosensory) and posterior (visual) cortex. As a general rule, developing axons extend from all
sites to cover relatively large portions of the cortical field that include multiple cortical areas. From all sites, outgrowth is
anisotropic, covering a greater distance along the medial/lateral axis than along the anterior/posterior axis. These
observations are summarized as 2-dimensional probability distributions of axon terminal sites over the cortical sheet. Our
network model consists of nodes, representing parcels of cortex, embedded in 2-dimensional space. Network nodes are
connected via directed edges, representing axons, drawn according to the empirically derived anisotropic probability
distribution. The networks generated are described by a number of graph theoretic measurements including graph
efficiency, node betweenness centrality and average shortest path length. To determine if connectional anisotropy helps
reduce the total volume occupied by axons, we define and measure a simple metric for the extra volume required by axons
crossing. We investigate the impact of different levels of anisotropy on network structure and volume. The empirically
observed level of anisotropy suggests a good trade-off between volume reduction and maintenance of both network
efficiency and robustness. Future work will test the model’s predictions for connectivity in larger cortices to gain insight into
how the regulation of axonal outgrowth may have evolved to achieve efficient and economical connectivity in larger brains.

Citation: Cahalane DJ, Clancy B, Kingsbury MA, Graf E, Sporns O, et al. (2011) Network Structure Implied by Initial Axon Outgrowth in Rodent Cortex: Empirical
Measurement and Models. PLoS ONE 6(1): e16113. doi:10.1371/journal.pone.0016113

Editor: Marcus Kaiser, Newcastle University, United Kingdom

Received August 15, 2010; Accepted December 13, 2010; Published January 11, 2011

Copyright: � 2011 Cahalane et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by NIH grant R01 19245 to Barbara Finlay, NIMH research fellowships under T32 MN19389 to Barbara Clancy and Marcy
Kingsbury, NSF IBN 0138113 to B. Clancy and B. Finlay, and NIH Grant Number P20 RR-16460 to B. Clancy. D. Cahalane was supported by a Traveling Studentship
from the National University of Ireland. OS acknowledges support from the JS McDonnell Foundation. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have read the journal’s policy and the following conflict exists: Olaf Sporns is a PLoS Section Editor. No other competing
interests exist.

* E-mail: djc338@cornell.edu

Introduction

Understanding the nature of the network of interconnections within

the cerebral cortex is of central importance to determine how

information is distributed and integrated [1]. Collated neuroanatom-

ical data sets from several species [2,3] on the neuroanatomical

connections of multiple cortical regions have been analyzed extensively,

examining hierarchical organization, clustered and modular architec-

ture and other key network metrics such as small-world attributes [4–

6]. More recently, the functional connectivity of the human cortex has

been described by analyzing time series of activations obtained in

imaging studies, during resting and task-evoked activity [7]. Until now,

only a few studies have attempted to trace the developmental origin of

key features of cortical network architecture. Understanding the early

development of anatomical connectivity is important as it may help to

identify the structural features that become organized prior to those

which arise in the course of experience.

During the time in which anatomical information has been

gathered about the connectional anatomy of the cortex, our

computational understanding of it has changed continuously. The

classical view of the cortex centered on operations performed by

‘‘cortical areas’’ with each area representing a distinct region thought

to integrate specific inputs from thalamus and cortex, transform

them, and pass them to ‘‘higher’’ areas for further integration. In

accord with this theory, investigations of cortical neuroanatomy and

neurophysiology catalogued in great detail patterns of input and

output connections, and response properties of single neurons of

specific cortical regions, to illuminate each area’s essential function

(e.g. [8,9], reviewed in [10]). Correspondingly, early studies of the

development of connectivity in the cortex focused on primary visual

cortex and primary somatosensory cortex, treating each as

independent entities [11,12]. Few studies were designed explicitly

to compare the early establishment of cortical connectivity across

areas or to link its local and global features.
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Serial-processing or switchboard metaphors for the cortex have

been progressively replaced, not least because of the development

of functional neuroimaging techniques, by a less hierarchical and

more distributed model of function [13]. Under this view single

areas may contribute to multiple functions and vice versa [14–16].

The assignment of ‘‘function’’ to single brain areas has been shown

to be quite plastic, on both short and long timescales [17,18].

Information gathered from neuroanatomical studies [6,19]

together with advances in graph theoretical analysis of anatomical

networks [1] suggest that patterns of cortical connectivity reflect

the interplay of local and global rules of how axons become

spatially distributed, rather than a fixed developmental program

that assigns connections to areas according to a pre-formed list of

unique inputs and outputs.

Efficiency and scaleability are key design objectives for networks

specialized for information processing, and they also have

implications for evolving neural systems [20]. In combination

with the efficient transmission of information, neural systems must

also be economical in terms of volume and energy consumption,

and existing evolved brains are manifestly scalable [21–23].

Characterization of the efficiency and scaleability of local and

global connectivity patterns in the cortex has been limited by the

fact that all of the information presently available for analysis falls

into one of two distinct categories, differentiated by the length-

scales they examine. The first category, recorded in neuroana-

tomical studies, by activation of functional areas in imaging

studies, or by diffusion tensor and diffusion spectrum imaging,

describe axonal projections at scales comparable to the size of the

entire cortex but typically at the low resolution of cortical areas or

‘‘regions of interest’’ [24]. The second category of studies has

focused on smaller units of cortex, mapping connections within

cortical columns or patterns of synaptic connectivity on individual

arbors [25].

How features at the large scale emerge from the developmental

rules governing growth at the cellular level is not well understood.

Anatomical studies of the establishment of connectivity spanning

those two length scales are lacking in the literature, as are any

attempts to infer the global network structure arising from such

wiring rules. For this reason, we undertook to examine the

establishment of overall connectivity in the cortex in a small

mammal, the hamster, where the cortex is recently formed and

axon outgrowth is in progress at the time of birth. Furthermore,

we compared the connectivity patterns of small regions across the

cortex, both independently of and in relation to their cortical

region of origin. Based on our empirical observations, we propose

a method of generating model cortical networks. Further, we use

the model to make inferences about the particular form of the

axon outgrowth distribution observed, arguing that it may be

favored because it reduces wiring volume while maintaining high

network efficiency and robustness. The ultimate intention is to

ascertain, in a small cortex, basic principles for the establishment

of axon network structure at the onset of first experience, and

examine how those principles scale in expanding cortical sizes.

Methods

Data Acquisition and Basic Quantification
Ethics Statement. Throughout all experiments, animals

were treated in accord with the policies and procedures set forth

in The National Institutes of Health Guide for the Care and Use of

Laboratory Animals and approved regulations of Cornell

University’s Institutional Animal Care and Use Committee

(IACUC). The experiments described in this paper were

conducted under IACUC protocol number 84-55-00.

Species. Fifty-four Syrian hamster pups (Mesocricetus auratus) of

both sexes from timed pregnancies in the laboratory colony were

used in this study. Animals were fed ad libitum and maintained on a

10L:14D photoperiod.

Tracer and injections. According to convention, the 24-

hour period following birth is designated postnatal day 0 (P0).

Only hamsters born within 24 hours of the expected 15.5 day

gestation period were used for this study. Biocytin was injected into

pup cortex at ages P0, P2, P4, P6 and P8, with transport time

optimized at 24 hours. Intracortical transport was principally

anterograde with very few cortical cell bodies retrogradely labeled

outside the immediate injection area. However, both anterograde

and retrograde transport were observed to the thalamus, although

at ages earlier than P4, transport to the thalamus was principally

retrograde. This thalamic label was used to identify thalamic

nuclei with connections to the cortical injection site.

Surgeries. Pups were anesthetized by hypothermia and

maintained on an ice blanket in molded head and body

restraints. The skull was exposed and a hole made overlying the

cortical region of interest. A solution of 5% biocytin was injected

through a backfilled micropipette (inner diameter 15–20 mm)

using a Picospritzer (General Valve Co.; Fairfield, NJ), with

pressure and duration adjusted to deliver .0.1–0.5 microliters of

solution. Injections were positioned only in cortical regions that

could be clearly viewed, avoiding areas of high vascularization.

Because rodent intracortical connectivity originates from both

infra- and supragranular layers, injections were centered at a

depth adjusted for the different ages to span the full thickness of

the cortex while avoiding the underlying white matter. Following

injections, the scalp was sutured; pups were rewarmed and

returned to the mother. After 24 hours pups were overdosed with

sodium pentobarbital and perfused transcardially with 0.9% saline

followed by 4% paraformaldehyde and 0.1% gluteraldehyde in

0.1 M phosphate buffer (PB, pH 7.4). Brains were cryoprotected

in 30% sucrose at 4u centigrade until processing.

Histochemistry. All brains were frozen and sectioned

coronally at approximately 60 mm. Sections were treated

according to a protocol adapted from Ding and Elberger [26],

followed by conventional diaminobenzidine (DAB) processing.

Briefly, sections were rinsed in phosphate buffered saline (PBS;

pH 7.2,) quenched in 1% H2O2, and immersed in 1% Triton-

X100 (TX) in PBS. Tissue was incubated overnight in an avidin-

biotin solution (1:100; Vectastain Elite Standard Kit) containing

1% TX. Sections were reacted with 0.004% tetramethylbenzidine

(TMB); mounted on chromium-gelatin coated slides, dehydrated,

cleared, and coverslipped with Krystalon (Fisher Scientific) with

one series counterstained with cresyl violet. Dehydration of the

unstained series was kept to less than one-minute immersion in

each of three graded alcohols to minimize shrinkage. Following

data collection, this series was also lightly stained with cresyl violet

to further verify neural divisions and landmarks.

Reconstruction of dorsal cortex and injection

sites. Reconstructions were made using a LeitzDiaplan

Microscope and a Neurolucida imaging system with a mechanical

stage (Microbrightfield, Inc., Colchester, VT). Measurements

were obtained from each traced serial section in each of the

fifty-four brains, always including sections containing landmarks

comparatively stable across development such as the furthest ventral

and caudal levels of the white matter, thalamic complex, and

caudate nucleus. To avoid artificially elongating in the medial to

lateral plane when converting from coronal sections to dorsal views,

in each traced section a midpoint contour was measured using a line

drawn intermediate between the superficial white matter and the

top of cortical layer I. The measurement began medially at the
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‘‘point of flexure’’ (dorsalmedial crest separating the two cerebral

hemispheres) and extended laterally to the rhinal fissure. A dorsal

cortical surface view was then constructed by plotting each midline

measurement to scale using Canvas 6.0 (Deneba Systems, Inc.). In

effect, this method generates a flattened or ‘‘unrolled’’ surface from

curved serial coronal sections as if viewed from above (the dorsal

surface; see Figure 4D).

Identification of cortical regions. Multiple sources of

information were integrated to position general areal boundaries

in the developing cortex and locate injection sites. First, atlases of

the adult hamster brain [27] and developing and adult rat brain

[28–30] were used to establish the overall orientation and form of

the map. It is well established that the topology of thalamocortical

and corticothalamic projections is conserved from first innervation

to adulthood, though maturational gradients in the cortex and the

deformation of the cortex by overall growth alters the relative size

of cortical regions [31–34]. The anterograde and/or retrograde

transport of biocytin from injection sites to the thalamus, listed in

Table 1, was used to fix the positions of the primary visual,

auditory and somatosensory cortex and shift areal boundaries with

respect to the adult cortex as required, for each postnatal age.

Published and unpublished hamster developmental studies from

this laboratory were also used to help align regions of the

developing cortex with respect to other adjoining telencephalic

regions, such as the striatum and hippocampus, whose topological

positions remain fixed from initial generation to adulthood

[33,35,36].

Axon tracing. Thirty-six developing brains with well-labeled

axons were completely analyzed microscopically and 24

representative brains were traced using a Neurolucida (256) for

more detailed morphological and statistical analysis, including ages

(injected-recovered) P0–1 (n = 7), P2–3 (n = 4), P4–5 (n = 3), P6–7

(n = 4), P8–9 (n = 3). Axons were identified by their coloring, thin

uniform appearance, characteristic branching patterns, and, on

many occasions, the presence of growth cones. Every visible

intracortical axon in each traced section was drawn. Sections to be

traced (typically over one half) were determined by the presence or

absence of labeled axons, although as noted above, sections

containing the furthest ventral and caudal levels of the white

matter, thalamic complex, and caudate were always traced to

obtain registration measurements for dorsal views.

Reconstruction of axonal projections. The tracings of

coronal sections were then used to generate dorsal view

reconstructions of the furthest distal points where labeled axons

were found, as well as axon density plots of projections arising

from injection sites. First, radial lines were drawn perpendicular to

the middle layers of the gray matter and spanning the entire depth

of the white and gray matter, spaced every 200 mm beginning at

the point of flexure and ending at the rhinal fissure, with the last

measurement the interval between the final 200 mm line and the

rhinal fissure. Tangential substrates were then outlined using

pseudo phase-contrast on unstained tissue and adjusted using

counterstained sections (accounting for shrinkage, which was

consistently less than 10%). The tangential substrate boundaries

included the subjacent border of the cortex (layer VI), the

subjacent border of the infracortical fasciculus (a cell-sparse area

above the subplate neurons, also called ‘‘channel 2’’ in [29], and

the subjacent border of the subplate neurons, which corresponds

to the superficial border of the white matter. Axons crossing each

radial line were counted and tangential substrate subtotals

obtained. Each of these counts was associated with a location

(i,j) on the 60 mm6200 mm grid, indicating that this is the count at

the ith radial line in the jth section. The substrate subtotals were

labeled cCtx
i,j , for those axons counted in cortical layers, and cWM

i,j ,

Table 1. Injections of anterograde tracer were made into
three cortical regions: anterior (presumptive motor), middle
(presumptive somatosensory) and posterior (presumptive
visual cortex).

Age Animal
Pup
weight

A-P
Length Label Placement

1 PO-1 704.4 2.9 g 3420mm VL, VB, PoM anterior

2 PO-1 697.1 2.4 g 3540 mm VL, VB anterior

3 PO-1 675.2 2.8 g 3600 mm MD, VL, VB anterior

4 PO-1 678.3 2.6 g 3660 mm VL, VB, R middle

5 PO-1 704.2 2.7 g 3720 mm VL, VB, R anterior

6 PO-1 678.1 2.6 g 3600 mm MD, VL, VB anterior

7 PO-1 678.2 2.8 g 3720 mm VL, VB, dLGN posterior

8 PO-1 675.1 2.7 g 3480 mm R, L posterior

9 PO-1 678.4 2.6 g 3600 mm VB, L, dLGN posterior

10 P2-3 674.3 2.6 g 3300 mm VB anterior

11 P2-3 695.1 2.8 g 3900 mm VB anterior

12 P2-3 695.3 2.8 g 3420 mm VL, VB, L anterior

13 P2-3 710.1 4.4 g 3720 mm VL, VB, L middle

14 P2-3 695.2 2.8 g 3540 mm VL, VB, R middle

15 P2-3 679.1 3.6 g 4020 mm dLGN, vLGN posterior

16 P2-3 710.4 4.0 g 4020 mm dLG posterior

17 P4-5 671.4 4.4 g 4560 mm VL, VB, R anterior

18 P4-5 680.4 4.2 g 4140 mm VL, VB, R anterior

19 P4-5 681.2 4.0 g 4200 mm - middle

20 P4-5 694.3 4.2 g 4140 mm R middle

21 P4-5 697.3 6.8 g 4080 mm PoM, L, dLGN,
vLGN

posterior

22 P4-5 694.2 4.2 g 4140 mm VL, R posterior

23 P6-7 680.5 7.4 g 4500 mm VB anterior

24 P6-7 669.5 6.2 g 4980 mm VL, VB, R anterior

25 P6-7 694.4 7.8 g 4720 mm VL, VB, PoM, R middle

26 P6-7 683.1 6.4 g 5040 mm VL, VB, L middle

27 P6-7 707.1 5.1 g 4620 mm VL, VB, R, L middle

28 P6-7 683.3 7.2 g 5040 mm L, dLGN, vLGN posterior

29 P6-7 669.4 6.5 g 4800 mm L, dLGN, vLGN posterior

30 P6-7 708.2 7.4 g 5340 mm R, L, dLGN,
vLGN

posterior

31 P8-9 671.6 9.1 g 4920 mm VL, VM anterior

32 P8-9 672.8 10.8 g 5100 mm VL, VM, PoM anterior

33 P8-9 679.7 10.8 g 5100 mm VL middle

34 P8-9 692.4 7.9 g 4380 mm VL, VB, R, L,
dLGN, vLGN

middle

35 P8-9 701.3 10.0 g 4980 mm L, dLGN, vLGN posterior

36 P8-9 701.1 9.2 g 5160 mm R, L, dLGN,
vLGN

posterior

Because some variability is evident in the A/P length of brains at similar early
ages, we also list pup weight in grams. The Label lists only those putative major
thalamic nuclei in which we have a great degree of confidence in identification
at these ages; other nuclei were also labeled (see also [56]).
Abbreviations: dorsal lateral geniculate nucleus, dLGN; lateral nucleus, L;
mediodorsal nucleus, MD; posteromedial nucleus, PoM; reticular nucleus, R;
ventrobasal nucleus, VB; ventrolateral nucleus, VL; ventral lateral geniculate
nucleus, vLGN.
doi:10.1371/journal.pone.0016113.t001
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for those in the white matter. We use cColl
i,j to denote the collapsed

count of all axons encountered at a radial line, i.e. for each count

location cColl
i,j ~cCtx

i,j zcWM
i,j .

The tangential compartments are not uniformly identifiable in

hamster cortex: in far anterior and posterior coronal sections,

white matter fibers, subplate neurons and the infracortical

fasciculus merge. Moving anterior to posterior in pup brains,

white matter fibers are first noted at the level of orbital cortex

where the rhinal fissure no longer clearly separates cortex and

olfactory bulbs, followed approximately 0.5 mm posterior by a

distinct layer of subplate neurons and approximately 0.5 mm

further posterior by the band of fibers comprising the infracortical

fasciculus. In far lateral regions of cortex, the subplate neurons

seem to merge with neurons of the claustrum; in both far lateral

and posterior cortex, the fasciculus is quite thick relative to

anterior sections (see also [37]). The position of isolated single

axons or very sparse projections was always registered independent

of the radial lines used for systematic sampling. Care was taken to

ensure that counts did not include axons traveling to subcortical or

callosal areas; however, although these axons travel different

routes, some small uncertainty is unavoidable. Dorsal view

reconstructions were produced for projections traveling from an

injection site in each of the different substrates (cortical layers I–

VI, infracortical fasciculus, subplate and white matter), as well as a

‘‘collapsed’’ view of the first three combined so as to represent the

conventionally identified cortical gray matter.

Basic quantification. The surface area covered by

underlying axons within the borders of the cortex bounded by

the point of flexure and rhinal fissure was determined for 20 traced

pup brains using NIH Image. Total area of axon coverage (in

mm2) was analyzed for cortex, subplate, infracortical fasciculus,

and for a category collapsed across these three, as well as for the

white matter. These totals were expressed as a percentage of the

total dorsal area or anterior/posterior (A/P) or medial/lateral (M/

L) length in each individual brain. Schematized cortical areas were

not used in statistical analysis; areas were determined for each

individual brain at each age (see also Table 2). ANOVA was

performed in Statview 5.0 to determine if axon extent in M/L or

A/P planes varied based on injection site location or age, followed

by Scheffe’s Post-hoc test when appropriate.

Characterization of Axon Outgrowth Distribution
Interpolating the data. The data for each animal was

recorded as a set of axon counts taken at points on a 2-D grid

whose axes aligned with the medial/lateral (ML) and anterior/

posterior (AP) axes of the flattened cortical hemisphere. Indexing

each grid point (i,j) and calling the corresponding count ci,j , these

counts document the number of axons originating at the injection

site which were detected at location (i,j) on the 200 mm by 60 mm

grid of sample points. As described above, for each animal, three

sets of count data were analyzed: axons found in the cortical layers

only cCtx, axons in the white matter only cWM , and a collapsed set

cColl , where cColl
i,j ~cCtx

i,j zcWM
i,j .

In order to arrive at the desired description in terms of probability

distribution functions of axon terminal sites, the following steps were

carried out. Any missing counts from the interior of each dataset

were interpolated. Each grid was re-centered such that the injection

site (detected as the site having the maximum axon count cmax) had

index i,jð Þ~ 0,0ð Þ. We assumed that the injection site is a point

source of axons. To simplify further calculations, a 2-dimensional

first order interpolating function was fitted to each grid (using

Mathematica). With the interpolating function c x,yð Þ, it was

Table 2. Statistical analysis was performed using these measurements from 20 pup brains and 2 adult brains.

Age Animal Placement Total Area WM Cortex Subplate Fasc.

1 P0-1 697.1 anterior 17.4 mm2 56.1% 60.1% 39.0% 35.7%

2 P0-1 675.2 anterior 15.0 mm2 23.1% 50.8% 20.9% 20.0%

3 P0-1 704.2 anterior 16.0 mm2 25.1% 36.1% 12.1% 16.9%

4 P0-1 678.1 anterior 15.6 mm2 58.3% 62.6% 50.4% 53.9%

5 P0-1 678.2 posterior 18.1 mm2 21.2% 38.1% 19.5% 33.2%

6 P0-1 675.1 posterior 16.4 mm2 50.2% 73.6% 49.6% 56.7%

7 P0-1 678.4 posterior 17.5 mm2 23.4% 55.7% 31.9% 35.0%

8 P2-3 695.3 anterior 18.3 mm2 48.2% 66.1% 30.8% 37.1%

9 P2-3 710.1 middle 16.7 mm2 67.0% 79.4% 32.8% 33.5%

10 P2-3 695.2 middle 19.2 mm2 49.4% 88.2% 36.6% 46.4%

11 P2-3 679.1 posterior 25.0 mm2 35.4% 59.0% 39.4% 22.8%

12 P4-5 671.4 anterior 30.8 mm2 32.0% 59.1% 23.1% 17.9%

13 P4-5 680.4 middle 31.4 mm2 20.5% 53.8% 16.1% 16.9%

14 P4-5 697.3 posterior 28.6 mm2 35.7% 40.6% 31.0% 10.8%

15 P6-7 680.5 anterior 35.9 mm2 32.1% 50.9% 29.2% 22.6%

16 P6-7 669.5 anterior 40.2 mm2 25.6% 71.3% 22.7% 24.9%

17 P6-7 683.3 posterior 44.6 mm2 48.7% 52.2% 43.3% 29.1%

18 P8-9 672.8 anterior 39.6 mm2 46.3% 81.2% 47.1% 48.0%

19 P8-9 671.6 anterior 37.2 mm2 22.8% 73.4% 23.7% 14.8%

20 P8-9 701.3 posterior 35.7 mm2 40.9% 71.8% 47.5% 33.6%

Total isocortical area is expressed in mm2 and axonal coverage in each substrate is expresses as a fraction of total isocortical area. Abbreviation: white matter, WM;
infracortical fasciculus, fasc.
doi:10.1371/journal.pone.0016113.t002

Measurement and Models of Rodent Cortical Network

PLoS ONE | www.plosone.org 4 January 2011 | Volume 6 | Issue 1 | e16113



possible to treat the count data as continuous over the 2-D domain

with ci,j~c i|200mm, j|60mmð Þ.
Angular distribution of outgrowing axons. Two functions,

calculated using c x,yð Þ, were used to characterize each dataset. The

first, u hð Þ~
Ð?

0
c rcosh,rsinhð Þrdr, accounts for the angular

distribution of axons (see Figure 1A). The data exhibited a

prevalence of growth along the direction of the ML axis in

preference to the AP axis. To quantify this anisotropy, we fitted a

double peaked function q h; a,gð Þ~ 1

2

1

2p

� �
u að Þ h{gð Þz

�
1

2p

� �
u að Þ h{g{pð Þ�,defined on h[½0,2p). Here u að Þ hð Þ~

1{a2

1{2acos hð Þza2
with parameter a[½0,1) is a probability

distribution on the circle (see Figure 1B). The distribution is flat at

a~0 and approaches two delta spikes as a?1. For each animal, we

calculated the values of a and g, or the anisotropy and tilt as we call

them respectively, which minimized the least squares error between

q h; a,gð Þ and u hð Þ (see Figure S2 for fits to data). Thus q h; a,gð Þ is a

probability distribution for the relative volume of outgrowth in each

direction, parametrized in each case by anisotropy aand tilt g.

Radial distribution of outgrowing axons. Arriving at the

radial distribution function, characterizing the length distribution

of the axons, requires taking into account the cumulative nature of

the count data: c x,yð Þ is the number of axons one would expect to

find passing through any point x,yð Þ, not the number of axons

terminating there. Given that axons may trace more or less

circuitous routes between their origin and terminal arbor, and may

also branch en route, it will not be possible to exactly recover the

density distribution of endpoints from the count data. To arrive at

an approximation to the true distribution, we assume (i) that no

branching occurs prior to arrival at the terminal site and (ii) that

axons travel from the origin along straight trajectories. These

assumptions are generally consistent with the data collected in this

study and in earlier work [33]. Given that our network model is

constructed using such straight-line axon trajectories, disregarding

the (unknown) particulars of axons routes will not affect our

simulated networks.

The quantity S rð Þ~ 1

2pcmax

ð2p

0

c rcosh,rsinhð Þdh, under as-

sumptions (i) and (ii) above, can be interpreted as the probability

that an axon has length greater than or equal to r (see Figure 1A).

The probability that it terminated at a length less than r is simply

P(r)~1{S(r) and so, in principle, P(r) is an approximation to the

cumulative distribution function (CDF) for the length of the axons.

In practice however, portions of the empirical ‘‘CDFs’’ fail to meet

the monotonicity property required of distribution functions. The

difficulty arises near the origin, at small radii r, where the resolution

of the experiment means that few count sites are contributing to the

calculated value of S(r). Furthermore, what counts are present may

be noisy due to the high concentration of stained axons close to the

injection site. For this reason, we chose to disregard the non-

monotonic portions of the empirical functions P(r)near the origin

and fit analytical CDF’s to the remaining monotonic data.

However, it is that portion of the data, near the origin, which

would otherwise provide the normalizing constant for our

distributions (i.e. cmax~c(0,0)). Hence, the fitting procedure must

also provide an estimate for that normalizing constant. On

inspection, the usable portion of the empirical distributions seemed

to be well fit by gamma distributions, which have previously be used

to model axon length distributions [38]. So as to reduce the number

of fitting parameters, we constrained the fitting procedure to use

gamma distributions with a shape parameter equal to 2. Thus the

radial distribution of each outgrowth pattern was characterized by

the mean r of its fitted gamma distribution, p(r; r)~
r

r2
e{r=r. See

Figure S1 for fits to data.

Network Modeling
Generating spatial networks. We study a network model

whose nodes are localized populations of neurons, linked by edges

which model representative axons. The network is constructed as

follows (see also Figure 2). We model the hamster’s cortical

hemisphere as comprising 2,500 idealized cortical units. Each unit

represents the neural population under a 100 mm6100 mm square

of cortex. Our model cortex is a grid of 50650 = 2,500 of such

units, thus mimicking a cortical sheet measuring 5 mm65 mm.

These units are the nodes in our network. With each node i we

Figure 1. Characterizing axon outgrowth distributions. (A) The contour plot depicts a typical distribution of axon outgrowth from the site at
the origin. The spatial distribution of axon outgrowth was described by an angular distribution function u(h), quantifying the relative fraction of
outgrowth volume in the infinitesimal sector of the plane centered at angle h (shaded sector). A radial distribution function S(r) quantifies the fraction
of axon volume in the infinitesimal annulus at radius r. (B) The function q(h;a,g), with parameter a determining the height of its two diametrically
opposed peaks, is graphed here on a circular domain for several different values of a. The tilt g is the same for each member of the family shown here,
resulting in the peaks occurring at the same values of a and a + 2p for each member. The distribution is almost uniform on the circle for values of a
near zero. As a approaches 1, then q(h;a,g) becomes a delta function.
doi:10.1371/journal.pone.0016113.g001
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associate a location pi~(xi,yi), chosen uniformly at random

within the corresponding unit’s square footprint.

Emanating from each node are a fixed number, naxons, of

directed network edges, representing efferent axons. Edges are

assigned to each node i by using the following procedure: (i)

select a length r and a direction h from under the empirically

derived radial and angular probability distributions, p(r) and

u hð Þ, respectively; (ii) find the node j nearest to the point at distance r

from node i in the direction h; (iii) add a directed edge, pointing

from node i to node j, to our network. There are two exceptions to

the above procedure. First, if the randomly chosen length r and

direction h determine a point which lies outside the grid, we chose a

new random r and h, repeating until the chosen r and h determine a

point inside the grid. Second, self edges are disallowed – should one

occur, we discard it and choose a new random endpoint such that

the axon does not terminate at its node of origin. The procedure for

generating edges is repeated until the node i has been assigned its

full complement of naxons edges. Edges are assigned to all nodes in

the network in this manner. Once all edges have been assigned, in

the adjacency matrix A, the entry Aij records the number of directed

edges from node i to node j.

We note that although the details of meandering axonal paths

were ignored as we deduced u hð Þ and p(r), our method of

generating networks does not require such details to reproduce the

distribution of axon terminal sites. Our networks were created and

visualized using Mathematica 7.0 [39].

Analysis of Networks
Degree distribution, path lengths and clustering. We

calculated several measures to analyze the networks generated by

our spatial model. The out-degree kout
i ~

P
j Aij of a node on a directed

network counts the number of edges originating at that node. By

construction, we have kout
i ~naxons for all nodes in our networks. The

in-degree counts all edges terminating at a node: kin
i ~

P
j Aji. The

number of edges comprising shortest network path between any pair

of nodes, i and j, also known as the distance from i to j, is recoded as dij.

The average shortest path, l~
1

N(N{1)

X
i=j

dij, gives a characteristic

length for the network paths. The clustering of a network gives the

probability that if the edges iRj and jRk are both present then so

too is the edge kRi. The clustering, C, is given by C~

6|(number of triangles in the network)

(number of paths of length 2)
, where, for example,

iRjRk is a path of length 2 and a ‘‘triangle’’ refers to a case where

the three edges (iRj, jRk and kRi) are present [40]. A small-world

network is characterized by having both the short path lengths typical

of a random network and the high clustering typical of a more

regularly wired (e.g. lattice) network. Using random networks as a

baseline, the small-world index, S, makes the classification of networks as

being small-world quantitative [41]. The small-world index of a

network with N nodes, M edges, clustering C and average shortest

path length l, is given by S~
C
�

Cr

l
�

lr
, where Cr and lr are,

respectively, the clustering and average shortest path length of a

random network also having N nodes and M edges. For a random

network, S~1, but S takes larger values for small-world networks.

Network efficiency. Global network efficiency quantifies the

efficiency of communication between all pairs of nodes on the

network, under the assumption that information flows along the

shortest paths available [42]. Considering just one pair of nodes

first, if an edge joins the two nodes, the path between them has

length 1 and so communication is maximally efficient for that pair:

we say that path has an efficiency of 1. If the shortest path between

a pair of nodes (i and j) has length dij , then we say its efficiency is
1
�
dij

. The average value of that pairwise efficiency, taken over all

pairs of nodes in the network, is the global efficiency:

Figure 2. Generating spatial networks. (A) We begin with a grid of 100mm squares, each containing a node located uniformly at random within
the square. For each node, a set of candidate end points for efferent links is drawn from under the probability distribution, those terminating outside
the boundary of the region (such as the dashed lines here) will be discarded in favor of new candidates until the quota of naxons has been reached.
The ends of the candidate axons snap to the nearest node, and the links are recorded in the adjacency matrix. (B) Repeating the procedure in (A) for
each node results in a network such as that depicted here. For clarity of display, the network in (B) is drawn on a grid of N~20|20 nodes having
naxons = 10. Networks used in our simulation have N~50|50 and naxons = 10.
doi:10.1371/journal.pone.0016113.g002
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E~
1

N(N{1)

X
i=j

1
�
dij

. Only a completely connected network

(where all possible edges are present) has a global efficiency of 1.

All other networks have an efficiency Ev1.

Node centrality. The betweenness centrality of a node is a

measure of how important that node is for efficient

communication on the network [40]. Considering the set of all

shortest paths on the network, we see that some ‘‘central’’ nodes

may feature in a greater number of shortest paths than do other

less central nodes. The betweenness centrality of a node i is the

fraction of all shortest paths on the network which pass through i.

Specifically, if sst is the number of shortest paths from s to t, and

sst(i) is the number of such paths containing the node i, the

betweenness centrality of i is given by bi~
P

s=t=i sst
(i)=sst

.

Modularity. It can be useful to think of the nodes on a

network as being members of different communities. To

investigate the modular nature of our networks, we will assign

nodes to non-overlapping communities whose membership is

defined by location. If the communities are chosen well, one

should observe a greater prevalence of intra-community edges

over inter-community edges than would be found in a comparable

random network (i.e. a randomly wired network with the same

number of nodes and edges). The modularity Q quantifies the extent

to which we have such a prevalence [43]. Assigning each node to a

community, and denoting the node i’s community ci, we can

measure the modularity of the network with respect to that

community assignment:

Q~
1

M

X
i,j

Aij{
kin

i kout
j

M

" #
dci ,cj

,

where M is the total number of edges in the network and dci ,cj
is

equal to 1 if ci~cj and is zero otherwise. We measure the

modularity of our networks with respect to two different, spatially

defined, community assignments. First, we partition the nodes into

4 rectangular communities, roughly equal in size, aligned with the

medial-lateral axis. Namely, the communities contain the nodes in

rows 1 through 13, 14 through 25, 26 through 37 and 38 through

50 of our 50650 grid, respectively). The communities are thus

rectangles whose width spans the medial-lateral dimension of our

gird and whose height is about one fourth that of the grid. Second,

we use a similar partitioning, but in this case assigning nodes by

column number to one of four rectangular communities aligned

with the anterior-posterior axis.

The NetworkX package [44] for Python was used to carry out

the graph analysis of our networks.

Spatial modeling of links. Exploiting the spatially

embedded nature of our network, we investigate how anisotropy

may affect the volume requirement of axons via an altered number

of axon encounters (see Figure 3). Modeling all the axons as

straight lines in the plane, we count the number of axon

encounters. Only encounters along the body of an axon are

considered, those occurring at a node are disregarded. Axon

encounters were enumerated using an algorithm implemented in

c++.

Results

Characterization of initial axon distribution in empirical
data

Thirty-six developing brains were judged to have well-placed

injections and well-labeled axons and form the empirical corpus

on which the network modeling results are based. Injections were

placed across the cortical field, although because of its small size,

inaccessibility of the most lateral aspect, developing vasculariza-

tion, and the relative immaturity of posterior regions at the earliest

ages a uniform grid of sites is difficult to produce. Our method of

representing initial transected axon counts is shown on a

representative ‘‘unrolled’’ P0–1 cortex in Figure 4D.

For initial contrasts of differences in axon outgrowth patterns

across the cortical surface, injection placement was assigned to one

of three broad categories: ‘‘anterior’’ (presumptive motor),

‘‘middle’’ (presumptive somatosensory) and ‘‘posterior’’ (presump-

tive visual) cortex (Table 1). The assigned divisions take into

account the location of anterograde and/or retrograde labeling

found in thalamic regions as well as the position of the axons in the

developing cortex. Tracer was typically deposited at each site

throughout the layers of the cortex, avoiding the white matter;

injections sites were very small compared to the dimensions of the

primary cortical areas (Figure 4). The topography of axon

extension in each tangential substrate, topography of extension

within the cortex as a function of injection site and age, variations

in trajectory patterns, and changes in the relative density of

projections across ages were all quantified and contrasted.

Paths of axon extension. The greatest numbers of

intracortically confined projections are local, extending in a

radial fashion for short distances in the gray matter directly

adjacent to the injection site. Longer-range projections traveling

away from injection sites take multiple paths, coursing through the

conventionally identified gray matter, the infracortical fasciculus,

and among the subplate neurons, as well as in the white matter

itself (see Figure 4B). In these small brains, axons reaching the

most distant point from the injection site might equally be found

traveling through the cortex or through subcortical white matter

— the route taken by an axon, within grey matter or white matter

did not dictate the distance traversed. Although this study traces

the distribution of a population of labeled axons, the trajectories of

individual axons were noted when they could be followed. Some of

the individual axons that could be traced from injection site to

growth cone or terminal arbor traveled exclusively in one

substrate, others switched pathways, for example, from the

infracortical fasciculus to the white matter, avoiding the subplate

(Figure 4 C); or alternated travel between two substrates.

Overall axon extension by region, lamina and postnatal

day. The mean of the available neural area in each substrate

Figure 3. Extra volume cost due to axon encounters. Axons,
whose paths were destined to intersect in (A) incur an extra volume
cost as one or both alter their paths to avoid collision such as in (B). The
extra volume requirement of scenario (B) as compared with (A) is
(p{1)4pr3&26:9r3 , where r is the axon radius.
doi:10.1371/journal.pone.0016113.g003
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covered from the injections (expressed as a percentage of total

dorsal cortical area) is as follows: cortex mean: 61.21%, SE: 3.24,

white matter mean: 38.09%, SE: 3.16; subplate mean: 32.34%,

SE: 2.59; infracortical fasciculus mean: 30.53%, SE: 2.97

(Figures 5,6). Thus, these small tracer injections resulted in

extensive axon spread in the cortex, and insofar as it was possible

to rank injection sites by size, the only difference associated with

injection size was projection density, not extent.

Even at the earlier age, connections from each site span almost

the entire medial/lateral (M/L) distance of the cortex; this

coverage persists as total cortical area more than doubles between

ages P0–1 and P8–9 (Table 2). This widespread axon extension,

evident across all locations, is illustrated in the dorsal reconstruc-

tions depicted in Figure 5. Because extension within the subplate

and infracortical fasciculus was always less than extension within

the cortex itself, in Figure 5 these three divisions are collapsed into

one ‘‘gray matter’’ compartment. Qualitative inspection and

statistical analyses indicate no significant differences in axon

coverage from any site (anterior, middle or posterior) at any

postnatal age, when total area of coverage was expressed as a

percentage of total cortical area, regardless of the substrate of axon

extension.

Tracer placements that happened to bridge more than one

cortical area, as judged by retrograde labeling of both primary

visual and somatosensory thalamic nuclei, might be expected to

produce larger ranges of axon travel if each cortical area specifies a

unique list of termination addresses, as contrasted with a model of

initial axon outgrowth independent of cortical area identity.

Though the number of cases we could use to address this question

is small, examination of the area of cortex labeled by tracer

injections in the several cases that resulted in retrograde label to

both somatosensory and visual thalamic nuclei (45.0%, n = 3,

across ages) compared to injections that labeled either one or the

other class (70.2%, n = 7, across ages), however, showed the

opposite, though non-significant trend.

Despite the general similarity of widespread coverage patterns

from P1–P9, some local patterns were evident. As illustrated by the

gradient outlines in Figure 5, long-range connections from anterior

cortex extend asymmetrically posterior and laterally towards

middle cortex, not colonizing far posterior cortex. Axons labeled

by injections in middle cortical areas appear reciprocally focused

on anterior cortex with few posterior projections. The majority of

developing intracortical projections from posterior cortex is

confined to the posterior cortex itself, although from all sites a

number of axons typically extend to presumed medial limbic

regions.

Axon extension and trajectory changes in the white

matter. Axon travel in the conventionally recognized

pathway, the white matter, is summarized in Figure 6. Travel in

the white matter is more confined than travel in the overlying

substrates, and more anisotropic, as shown by a comparison of the

axon coverage in Figure 6 to the outlines of axon coverage in the

collapsed views illustrated in Figure 5.

Because intracortical axons travel in large numbers through the

cortex as well as the conventionally identified white matter, these

schematized dorsal representations of axon populations do not

distinguish axons traveling intracortically from those which exit

the cortex, travel in white matter, and re-enter cortex to terminate.

The generally uniform picture of axon extension that the dorsal

view reconstructions suggest is perhaps at odds with the presence

Figure 4. Representative injection site, axon travel in tangen-
tial substrates and initial reconstruction procedure. (A) Photo-
micrograph of a biocytin injection site spanning the cortical layers and
avoiding the white matter at age P4–5 (injected-recovered). Note that
this figure depicts a relatively large injection site, shown here to best
illustrate axons traveling in the various tangential substrates. (B) High
power photomicrograph of area outlined in (A) depicting axons
coursing through the cortex, the infracortical fasciculus, and the
subplate, as well as in the conventionally identified white matter. (C)
Although some axons travel within the subplate neurons (visible in the
Nissl-stained middle panel of the photomicrograph), others clearly
avoid this substrate (small black arrows). Arrowheads in B and C
delineate the upper boundaries of the infracortical fasciculus (top), the
subplate neurons (middle) and the conventionally identified white
matter (bottom). Scale bars are approximately 100 mm. (D) Graphic
depicting the method by which coronal tracings of axons are mapped
onto unrolled dorsal views of the cortex, with the standard dorsal view
superimposed in gray on the unrolled cortex. Unrolled cortex includes
cortical areas ventromedial and ventrolateral to flexures and thus
hidden in a standard (‘‘rolled’’) dorsal view. Gray arrows indicate the
medial point of flexure in both views; open arrows point to the rhinal
fissure. Black arrows in both (A) and (B) indicate the site of the injection
in a P0–1 animal (#675.1). Images in this figure were produced using
digitally scanned negatives (1200 pixels per inch resolution on a flatbed
scanner) processed using PhotoShop software (Adobe, Mountain View,

California) to optimal contrast and sharpness, then cropped and
lettered. No other adjustments were made.
doi:10.1371/journal.pone.0016113.g004
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Figure 5. Axon extension in gray matter across early ages. Dorsal views depict representative axon extension in 15 cortices across the
different developmental ages included in this study. For this figure, the three tangential substrates that make up the conventional rodent gray matter
(subplate, infracortical fasciculus, cortex) are collapsed into one compartment. The abbreviations below each animal indicate the thalamic areas in

Measurement and Models of Rodent Cortical Network

PLoS ONE | www.plosone.org 9 January 2011 | Volume 6 | Issue 1 | e16113



of a large number of abrupt trajectory shifts in axon tracks which

might suggest alteration axon extension by detection of an areal

boundary (e.g., Figure 4C, left). Trajectory shifts in white-matter

axons might indicate regions of cell-to-substrate recognition that

specify unique termination zones. For the two distributions which

most strongly suggested the development of a particular

termination focus, one early and one late in development, we

charted every axon that turned from a horizontal trajectory to

travel vertically (Figure 7). The locations of abrupt trajectory shifts

populated the entire area of extension, however, producing a

distribution that was simply a reduced form of the overall

distribution. This pattern is more suggestive of random sampling

of the substrate by the axon population prior to target selection

[45,46]. Overall these relatively uniform distributions resemble

those seen in studies which reconstructed single-axon termination

patterns within single areas in larger brains [25].

Synopsis of typical outgrowth pattern. Given the

empirical observations above, we characterize the typical

outgrowth pattern as having the following features: (i) having

areal coverage larger than half of the cortical hemisphere; (ii)

comprising axons travelling in both the white and gray matter

which traverse comparable distances; (iii) having a footprint with

greater extent along the ML axis than along the AP axis, with

travel in the white matter being comparatively more constrained

in this regard; (iv) being largely independent of the location of its

source. With these features in mind, we developed the following

framework to arrive at a quantitative description.

Modeling outgrowth distributions. Probability densities

for the angular and radial components, denoted q(h; a,g) and

p(r; r), respectively, were fitted to the observed outgrowth

distributions. The resulting values of the characteristic length r,

anisotropy a and tilt g for each dataset are shown in Figure 8, and

can be summarized as follows.

The radial distribution shows a marked departure from

uniformity (see Figure 8B). The measured values of anisotropy a
for collapsed distribution have mean 0.69 and standard deviation

0.07 on our 0 to 1 scale (see Figure S2 for fits to data). There is a

clear tendency for white matter distributions to be more

anisotropic (aWM~0:78+0:07) than distributions measured only

in the cortex (aCtx~0:66+0:07). The tilt g is such that the

preferred direction of travel is almost collinear with the ML axis,

as illustrated in Figure 8C (gColl~70+100).

The length distribution of axons in the white matter, gray

matter and collapsed distributions were well fit by gamma

distributions (see Figure S1 for fits to data), with mean lengths as

shown in Figure 8A. There is a tendency for distributions

measured in older animals to be longer and for white matter

axons to travel greater distances. Taking the ratio rWM
�

rCtx for

each animal, we find that rWM is on average 119633% as long as

rCtx - indicating a trend of axons travelling in white matter

reaching further than those traversing cortex only. This greater

length is not incompatible with the lesser areal coverage of white

matter axon distributions; travel in this compartment was also

noted to be more anisotropic and therefore has a more slender

footprint.

Spatial network modeling. We sought to create a model of

the early cortical network which was faithful both to the qualitative

characteristics and the measured distributions of axon outgrowth.

We also wanted the nodes of this network to be biologically

meaningful but representing neurons as individual nodes would

have made our model computationally unwieldy. We instead take

our nodes to be cortical populations or units, comprising all the

neuronal cell bodies and local processes within a small volume of

the cortical sheet, much like the ‘‘cortical output units’’ of

Innocenti and Vercelli [47]. We define these units as

100 mm6100 mm squares on a 2-dimensioal cortical sheet, so

that they have roughly the dimensions of a dendritic arbor. Hence

our ‘‘local’’ length-scale is set at ,100 mm. The number of nodes

is thus conducive to constructing and analyzing our simulated

networks on a desktop computer.

The simulated networks are found to have the small world

property but are not scale free. The small world index is measured

to be 4.5760.17, indicating our networks possess short path

lengths comparable with those of random networks while also

having far higher clustering. This may have been anticipated given

the form of the axonal distributions employed, which have a

preponderance of local connections and relatively few long links.

The networks are not in the class of so-called scale-free networks,

with neither their in-degree nor out-degree having the required

power-law distributions. The out-degree is, by construction, the

same for every node and is equal to the bespoke number of efferent

axons per node, naxons. The in-degrees are in close agreement with

those for a random network, only differing slightly from the

Poisson distribution one would encounter in that case. We can see

why such an in-degree distribution arises: if we ignore boundary

effects, then nodes attract afferent axons with a probability

proportional to the area of their respective Voronoi cells, the

polygons in the plane enclosing all points to which a given node is

the closest node. Given our method of distributing nodes in the

plane, the preponderance of Voronoi cells not adjacent to borders

will have area comparable with that of our 100 mm6100 mm grid

squares. Such nodes therefore attract afferent edges with

approximately equal probability, thus giving rise to the observed

narrow, near-Poisson distribution of in-degrees.

Anisotropy of axonal distributions: consequences for

efficiency, robustness and modularity. Anisotropy in

axonal distributions may lead to a more volume-efficient wiring

scheme but would seem, prima facie, to entail negative

repercussions for the resulting network structure. Given that

increased anisotropy in laying down axons leads to a smaller

ensemble of possible networks (to see this consider the limiting case

where axons are restricted to travel along only one axis), we were

curious as to what advantages it might bestow. While investigating

the effect of varying anisotropy a on the topology of simulated

networks, we also sought to determine whether increased a might

lead to a more compact packing of axons in space. We begin with

the observation that an axon’s length, and thus its volume, is

increased if it must deviate to avoid another axon (see Figure 3).

Therefore, encounters with other axons tend to increase the total

volume requirement.

Our spatial network model predicts that there exists a narrow

range of values for the anisotropy parameter a which reduces the

extra volume requirement of crossing axons without significantly

impacting the ease of communication within the network, as

measured by the efficiency E (see Figure 9A). Increasing the

anisotropy beyond this range is predicted to reduce network

efficiency. We find that the empirically measured values of

anisotropy fall within this range for both white matter and gray

matter travel.

which anterograde and/or retrograde labeling was noted. Abbreviations: dorsal lateral geniculate nucleus, dLGN; ventrobasal nucleus, VB;
ventrolateral nucleus, VL.
doi:10.1371/journal.pone.0016113.g005
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Increased anisotropy may lead to networks which are more

vulnerable in the case of central nodes failing. The presence of

such nodes is indicated by a more skewed distribution of node

betweenness centrality (see Figure 9B; also Figure S3 for

histograms of betweenness centrality distributions). The between-

ness centrality bi of the node i quantifies the relative contribution of

individual network elements to the collection of shortest paths on

the network (see Figure 10). Conversely, it can be seen as a

measure of how detrimental the removal of that element might be

to the functioning of the network as a whole. We observe that

increased anisotropy in the spatial distribution of links leads to an

increased positive skew in the distribution of node betweenness

centrality in simulated networks (Figure 9B). The right tail of the

distribution becomes increasingly ‘‘heavy’’, signifying the emer-

Figure 6. Axon extension in white matter. Dorsal views depicting representative axon extension in the white matter of the same animals
depicted in Figure 5.
doi:10.1371/journal.pone.0016113.g006
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gence of a small number of nodes with betweenness centrality

much higher than the average value. As studies in other complex

networks have shown [48], the existence of such highly central

nodes renders the network as a whole more vulnerable to

functional disruption in the event of their failure. It is also the

case, however, that communication on such a network is more

robust to the failure of a typical node, i.e. one which is not among

the few highly central nodes.

The possibility of nodes becoming overloaded may be another

reason to disfavor highly anisotropic wiring schemes. Assuming

that information is propagated along the shortest paths between

nodes, betweenness centrality can be interpreted as a measure of

how much traffic a node handles. Given the finite neural

populations comprising our nodes, they will have a limited

capacity to process or propagate information. Hence, with highly

anisotropic wiring, nodes which are very central may be at risk of

becoming overloaded, thereby affecting the reliability of commu-

nication on the network.

Looking at the modularity of our networks as anisotropy is

increased, we observe that partitioning the network into

communities aligned with the medial-lateral axis of our grid is

increasingly favored over choosing communities aligned perpen-

dicular to that axis (see Figure 11). This may favor a layout in

which more strongly connected and functionally related cortical

areas have that same axial alignment. We investigated modularity

with respect to partitioning the nodes into 4 spatially defined

Figure 7. Vertically-turning axons. Comparative views of axon
extension in cortex including gradients of only those axons extending
horizontally and parallel to the white matter at ages P2–3 (A) and P6–7
(C) together with outlines of areas where vertically-oriented axons
extending perpendicular to the white matter were found at each age (B
and D). Outlines are representative of projections patterns found even
at early ages in which labeled axons are found in areas both continuous
and non-contiguous (possible target) with the injection site.
doi:10.1371/journal.pone.0016113.g007

Figure 8. Fitting axon distributions. (A) The fitted mean length of an axon in the collapsed (black squares), cortex (gray dots) and WM (red
triangles) outgrowth distributions for each animal (assuming a gamma distribution with shape parameter equal to 2). (B) Measured anisotropy in
the collapsed (black squares), cortex (gray dots) and WM (red triangles) outgrowth distributions for each animal. We note that white matter axons
travel more anisotropically than those traversing gray matter. See Figure 1 and the Methods section for details of our approach to quantifying
anisotropy in the measured distributions. (C) Preferred direction of travel. (i) Orientation of our coordinate system relative to the anterior/
posterior and medial/lateral axes of the cortical hemisphere. The preferred axis of axon travel, shown here for each animal’s (ii) collapsed, (iii) cortex
and (iv) white matter distributions tends to align closely with the ML axis.
doi:10.1371/journal.pone.0016113.g008
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communities: first, communities which were (approximately)

equally-sized rectangular blocks of nodes, aligned with the

medial-lateral axis; second, a similar arrangement but with the

rectangular blocks now parallel to the anterior-posterior axis. In

both cases, the preponderance of short links, which leads to spatial

clustering, ensured that our networks were more modular than the

comparable network wired uniformly at random. However, the

modularity was seen to increase significantly with anisotropy for

the medial-lateral partitioning while decreasing for the anterior-

posterior partitioning.

Discussion

The neuroanatomical results we present in this paper show a

surprising independence between the early patterns of axon

outgrowth and the cortical region of their origin. In these small

Figure 9. Effect of anisotropy. (A) Packing volume and network paths. In our simulations increased anisotropy a leads to a reduced number
of axons encouters but also a decrease in network efficiency E and an increase in mean shortest path length l. The dashed line marks the mean
empirical value of a for collapsed axon distributions and the extent of the shaded region indicates the standard deviation in that quantity. Each data
point is the average result for 10 networks, each generated with N = 2500 nodes, having naxons = 10, drawn from under a distribution having
anisotropy as indicated and length distributed as a gamma-2 distribution with average length 1000 mm. (B) Node betweenness centrality.
Increased anisotropy a leads to an increased right-skewness in the distribution of node betweenness centrality in the generated networks. The
dashed line and shaded region, respectively, denote the mean and standard deviation of the empirical values for a. These data were generated using
the same network parameters as in (A). See also Figure S3 for a comparison of the histograms of the betweenness centrality distribution at a = 0.02,
a = 0.7 and a = 0.9.
doi:10.1371/journal.pone.0016113.g009

Figure 10. Contrasting nodes of high and low node betweenness centrality on the same network. (A) and (B) each show a different
subset of the shortest paths on the same network. In (A), the node on the graph with the highest betweenness centrality is marked by the green dot.
All the shortest paths which travel through that node are shown. Almost 1.5% of this directed graph’s N(N - 1) paths pass through the node. The
edges used by these paths have color and thickness reflecting the number of paths traversing that edge. By contrast, (B) shows a node of lower
betweenness centrality which is on less than 0.1% of the network’s shortest paths. The network has N = 900 nodes, naxons = 5, average axon length
800 mm and a = 0.65.
doi:10.1371/journal.pone.0016113.g010
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brains, axons extend to the limits of their growth through the

cortex itself, and also in the white-matter tracts under the cortex.

There is no obvious variation in axon ‘‘behavior’’ between axon

populations arising from sites of origin near cortical boundaries,

and axons traversing future borders of cortical areas. Axons

originating from delimited regions cover a third to a half of the

entire cortical area. The network model of cortical connectivity

inferred from these outgrowth distributions suggests that at this

scale the cortical network has a high small-world index and is not

scale-free but rather has both in- and out-degrees which are

narrowly distributed (‘‘single-scale’’). Our spatial model suggests

that the unexpected anisotropy of initial axon outgrowth may

represent a partial solution to the problem of minimizing the

volume requirement of cortical connections while simultaneously

maintaining network efficiency.

Reduced network efficiency has straightforward interpretations

in the context of neural networks, where a primary goal is the cost-

effective and timely exchange and integration of information.

Increased average path lengths, too, can serve only to incur higher

costs and error rates in propagating information on the cortical

network. Further, the increasingly right-skewed distribution of

node betweenness centrality with increased anisotropy in axon

travel hints at yet another potential constraint: highly central

nodes render the network liable to suffer a marked increase in path

lengths in the event of their failure or overload. Clearly, some

trade-off must exist between these deleterious effects and any

benefits arising from reduced wiring volume. We do not know

what relative weights one should assign to such costs and benefits

in order to achieve the optimal trade-off. However, our results

suggest that the axonal patterns recorded in this study may achieve

such a balance. Further, there is evidence that different

mammalian orders may have evolved disparate solutions to the

problem of supporting and connecting increased numbers of

neurons in the neo-cortex [49,50]. Anisotropy of axonal outgrowth

patterns may be just one aspect of the various strategies available

to taxa in solving this problem.

We suggest that two features of the outgrowth patterns

described here may contribute to the layout of the cortex: highly

central nodes in this developing cortex may seed future hub

regions and modularity may favor certain spatial layouts for

cortical areas. Regarding the former, one possible effect of a

skewed node centrality distribution is to distinguish potential

future hubs in our network of cortical units. Although network

hubs typically have higher-than-average degree, the degree

statistics of our nodes are narrowly distributed and uniform across

2-dimensional space. This is in contrast with reports of broader

degree distributions in the adult cortical network [51]. However,

in our model networks, nodes with high betweenness centrality

begin to appear as anisotropy is increased. Such nodes are

uniformly distributed in space, but may provide seed sites for the

emergence, in interaction with activity from sub-cortical projec-

tions, of structural network hubs, and for a broader distribution of

node degrees [6,24]. As development proceeds, elevated centrality

may lead activity at such sites to be correlated with that at distal

regions of the cortex, leading to increased persistence of afferent

projections. Secondly, we observed that the modularity of our

networks favors the formation of communities which extend

parallel to the medial-lateral axis. The overall layout and

separation of sensory and motor modalities in the cortex is

established by the embryonic polarization of the cortical sheet

[52]. That polarization may enable the emergent modularity of

the cortical network we have modeled. Later in development, this

modularity may itself guide the formation of features of cortical

network structure.

In this study, we have only examined the connectivity structure

‘‘implied’’ by the pattern of axon outgrowth also making the

assumption that an axon has exactly one arbor, occurring at the

extent of its travel. We have neither demonstrated that synaptic

connections have been made by these axons at the limits of their

extents, nor that the connections are permanent. Axon tracing

studies have demonstrated that a typical axon may branch once or

more and may have arbors at sites other than its most distal arbor

[53]. As to the effects of such limitations in our approach, we

expect the measured anisotropy of outgrowth to be largely

unchanged (assuming that branches of the same axon proceed

independently). The length distributions we have fitted, however,

will have under-represented axon ramifications at shorter lengths.

The effect of including more ramifications at shorter distances

from the neuron’s cell body would be to further increase the

modularity and clustering (and hence, we expect, also the small-

world index) of our networks.

Our network model presents a reduced representation of the

cortical network by taking as its nodes ‘‘cortical units’’ rather than

the greatly more numerous constituent neurons – an approach

consistent with the notion, presented in several studies, that it is

appropriate to consider computational units having the scale of,

for example, ocular dominance columns [47]. Implicit in our

model, however, is the further assumption that cortical connec-

tivity at this intermediate scale can also be usefully depicted using a

representative sample of ‘‘edges’’ far smaller in number than the

axonal connections they hope to mimic. The cross-comparability

of neural networks sampled at different scales and resolutions is a

topic of current interest in the neuro-imaging community [54].

We note that travel in the white matter as measured in this

study is only slightly longer than the cortex-only travel. For this

reason, our network model contained only one class of links,

modeling all axons as identical. From the empirical data it is clear

that axons traversing the gray matter alone can span the cortex.

Figure 11. Modularity versus anisotropy of axon outgrowth.
For the range of anisotropy values, we calculated the modularity of our
networks with respect to two different community assignments.
Assigning nodes to 4 approximately equal rectangular blocks, spanning
the medial-lateral extent of our model cortex and having height equal
to one fourth of the anterior-posterior extent, we see that modularity
increases with anisotropy. However, using a partitioning which assigns
nodes to communities extended along the anterior-posterior axis
instead, we observe a decrease in modularity. In both cases, the
networks are more modular than the comparable randomly wired
network. This is because the prevalence of relatively short edges in our
networks leads to clustering among nearby nodes in either set of
communities.
doi:10.1371/journal.pone.0016113.g011
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However, while the axons travelling in the white matter are not

very much longer than their gray matter counterparts, they do

represent a significant portion of the total axon population. This

fact suggests these axons, with their capacity for faster and more

reliable spike propagation, bestow some functional advantage even

in a small brain. Further, this length mismatch could suggest that

the size of the hamster cortex lies near an upper limit for what can

be spanned by gray matter axons alone.

Our model is easily extended to accommodate two (or more)

classes of axon. One could, for example, employ a short class, to

mimic unmyelinated axons having a reach less than the

dimensions of the cortex, and a longer class, representing

connections having a length-scale comparable with the extent of

the cortex. In this manner our model may elucidate the

empirically observed scaling of white matter volume with

increased cortical size [55]. This will necessitate deciding on some

minimum threshold for network performance (in terms of

efficiency, shortest path lengths, or similar), and then finding the

possible distributions and number of white matter connections

required to achieve that standard.

In conclusion, our goal was to succinctly capture the salient

features of the empirically-measured initial outgrowth distributions

in a simple model with a minimal number of parameters. Such a

concise model, having a small parameter space, is well suited to

exploring the developmental implications of changes in these

parameters. Ultimately, we would like to test our model’s

predictions for connectivity in larger cortices, thereby gaining

insight into how developmental programs have evolved to achieve

efficient communication in larger mammalian brains.

Supporting Information

Figure S1 Fits to data for the length distribution
function. Shown here in blue is the empirically measured

function S rð Þ and, in red, our model, n 1{C r; rð Þð Þ, where n is a

normalizing constant and C r; rð Þ is the cumulative distribution

function of the gamma(2) distribution, p(r; r)~
r

r2
e{r=r.

(JPG)

Figure S2 Fits to data for the angular distribution
function. Shown here in blue is the empirical function u hð Þ
and, in red, the fitted angular probability distribution q h; a,gð Þ for

the collapsed axon distributions. The parameter a (‘‘anisotropy’’)

determines the height of both peaks and g (‘‘tilt’’) determines the

location on the circle of the diametrically opposed peaks.

(JPG)

Figure S3 Histograms of node betweenness centrality
for several values of values of anisotropy a. The right tail

of the distributions of betweenness centrality values is seen to

become heavier with increased anisotropy a of the axon

distribution. The inset provides an enlarged view of the area

demarked by the dashed rectangle.

(JPG)
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