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The equations of Simple and Ordinary Kriging are compared to outline their differences in the estimation

procedure. Emphasis is given to the Lagrange multiplicator as a variable that allows the minimization of

variance in Ordinary Kriging. The matrices and linear systems of kriging, which are most often performed in

the background of the computer mapping algorithm, are analyzed and presented in detail. The intention is to

show the importance of geomathematics in one of the basic geological tasks, mapping. Furthermore, a

detailed presentation of equation sets provides a better understanding of the Simple and Ordinary Kriging

algorithms for geological engineers, as the two most-used geostatistical techniques (included Indicator

Kriging as the third). The conclusion includes proposals, presented in four steps, for the determination of the

Lagrange multiplicator value in any Ordinary Kriging equation.
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1. INTRODUCTION

The kriging method is considered a progressive interpo-

lation method for the estimation of a regionalized vari-

able at selected grid points. The term regionalized

variable refers to such variables, which can be regarded

to be random variable in the infinitely small surrounding

of a particular location, but there exist a function above

the region which can relate these variables to each other.

The term “random” assumes that the probability of the

variable being smaller than a real number exists for any

real number.

Kriging, as a statistical estimation method, is named af-

ter South Afrikaans engineer Krige6, who first applied

and described this methodology to estimate gold concen-

trations in ore deposits. This was followed by further the-

oretical development of the method, predominantly by

French scientists, especially Matheron11. Finally, several

kriging techniques have been defined with different equa-

tions (such as Simple, Ordinary, and Indicator Kriging,

and others).

Kriging estimation is based on the application of exist-

ing measurements (so-called “control points”), whose in-

fluence on the estimation is expressed with weighting

coefficients. This estimation also assumes the satisfac-

tion of the relevant criteria. This means that the estima-

tion must be unbiased and performed so that the

variance between the measured and estimated values at

the selected points is as low as possible. Such a value is

also called the “kriging variance”, which represents the

interpolation quality and can be compared with a

cross-validation technique.

In every kriging techniques, the procedure for minimiz-

ing the estimation error includes a variable called the

“Lagrange multiplicator”. The purpose of the analysis

presented here is to describe the mathematical meaning

of the multiplicator and its role in minimizing the kriging

variance.

2. KRIGING PROPERTIES

Kriging techniques belong to a set of linear algorithms

that are based on the least squares method. The selec-

tion of the appropriate technique is based on the proper-

ties of the random variable that is to be interpolated by

kriging. The techniques are based on the estimation of

weighting coefficients with an assumption of unbiased-

ness. Each hard data has its own weighting coefficient

(�), which represents the influence of a particular data on

the value of the final estimation at the selected grid node.

The relationship between the existing (hard) data and the

estimation point has been expressed by variogram values

(if we suppose the existence of intrinsic hypothesis) or by

covariance in case of second order stationarity. Such val-

ues describe the spatial dependence and the influence of

the particular location in terms of its distance and direc-

tion from the estimated location (point).

A spatial model based on a larger number of control

points, a higher variogram range, a lower nugget effect,

and without anisotropy is usually much more reliable.

Regardless of the spatial dependence described by the

variogram or the covariance function, the weighting

coefficient at a particular location is exclusively a

measure of the distance and orientation between data

points. This means that the measurement values at the

observed points do not influence the variogram or the

covariance values. Higher variogram values (within the

range of influence) indicate an increasing “order” or

estimation reliability, i.e., higher values for any pair of

points indicate a greater interaction between those

locations supposing that their separation distance

smaller than the range of influence. An additional

estimation quality can be reached by the regular

distribution of the control points. Because of all its

advantages as a statistical interpolation technique,

kriging is described as the “best linear unbiased

estimator” or by the acronym “BLUE”.
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In the text below, the detailed meaning of linearity in

Simple and Ordinary Kriging, and how such linearity is

achieved, will be described.

3. MATHEMATICAL FUNDAMENTALS

OF KRIGING

The principle of kriging is shown most simply with sets

of equations that define the method. Kriging is applied to

the estimation of the values of a regionalized variable at a

selected location (Zk), based on surrounding existing val-

ues (Zi). Each such location is assigned a relevant weight-

ing coefficient (�i), and the calculation of this is the most

demanding part of the kriging algorithm. The value of a

regionalized variable can be defined as:

� �Z Z x
i i
� (3.1)

where

xi is the value at the known location.

Moreover, the value of a regionalized variable estimated

by kriging based on n points is:

Z Z
k i i

i

n

� �
�

��
1

(3.2)

where

�i is the weighting coefficient for a particular location “i”;

Zi are known values, the so-called “control points” (hard

data);

Zk is the value estimated by kriging.

These equations represent the system of linear kriging

equations that is described in numerous books, e.g., ref-

erences3, 4, 5, 7 and others.

Equation 3.2 can be written as the matrix Equation 3.3.

In both of these matrices, the values are expressed as

variogram values, i.e., these values depend only on the

distances and orientations between the control points

and not on their values. The third matrix includes

weighting coefficients, which are simply estimated from a

system with “n” equations with “n” unknown variables.

� � � � � �A B� �� (3.3)

The method of kriging includes several techniques.

These are Simple Kriging, Ordinary Kriging, Indicator

Kriging, Multiple Indicator Kriging, Universal Kriging,

IRFk Kriging, Lognormal Kriging, and Disjunctive

Kriging. In the following comparison of simple and

ordinary kriging, we will describe the effect caused by

including of the linear coefficient in the kriging equations

to achieve unbiasedness.

3.1. Simple Kriging theory

Simple kriging, as its name implies, is the simplest

kriging technique. The full matrix equation is:
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where

� are the variogram values;

Z1…Zn are known measured values at points;

Z is the point at which new values are estimated from

known (hard) data (Z
1
…Zn).

Kriging uses dimensionless point data that represent the

values of the regionalized variable. In Simple Kriging, it is

assumed that the regionalized variable has second order

stationary, the excepted value is everywhere constant and

known � ��( )x �0 , and the covariance function is known

� �c x y Cov Z x Z y( , ) ( ( ), ( ))� . Furthermore, when this esti-

mation is performed at the control point, the error can

also be calculated at the point as:

� � 
( )Z Z
real estimated

(3.5)

If there is no external drift in the variable and the sum of

all weighting coefficients is 1, unbiasedness is achieved.

The difference between all the measured and estimated

values is called the estimation error or kriging variance

and it is expressed as:

� 2

2

1�



�

�( )Z Z

n

real estimated i

i

n

(3.6)

It can also be shown as the second square of the variance

or the standard error of the estimation:

� �� 2

(3.7)

In an ideal case, kriging tries to calculate the optimal

weighting coefficients that will lead to the minimal esti-

mation error. Such coefficients, which lead to an estima-

tion of unbiasedness with minimal variance, are

calculated by solving of the matrix equations system. If

the matrices in Equation 3.4 is represented by linear

equations, it can be written as:
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The estimation is the selected point that can be repre-

sented by the following equation:
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(3.9)

Moreover, for Equation 3.8 to be considered unbiased,

an additional condition must be fulfilled, i.e., the sum of

all weighting coefficients is 1 ( )�
i

i

n

�

� �
1

1. This condition is

achieved by adding new conditions to the kriging matri-

ces like Lagrange multiplicator in Ordinary Kriging equa-

tions.
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3.2. Ordinary kriging theory

All others kriging techniques add some constraints to the

matrices, to minimize the error �
k

x
2
( ), and these tech-

niques are unbiasedness estimations. Generally, these

factors would describe some external limit (restriction)

on the input data, which cannot simply be observed in

the measured values. The most-used kriging technique is

probably ordinary kriging, and we therefore analyse the

constraint factor in Ordinary Kriging equations, called

the Lagrange multiplicator.

As discussed above, if the sum of all weighting coefficient

is 1, Expression 3.8 can be written as:
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If such a system of linear equations is shown as a matri-

ces it can be written as:
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The number of weighting coefficients and control points

can be very large, but contemporary computers can suc-

cessfully solve numerically demanding tasks. The esti-

mation can be performed simply by calculating the

influence of all the control points weighted by their asso-

ciated coefficients according to Equation 3.2, as follows:

Z Z Z Z
n n

� � � � � � �� � �
1 1 2 2

� (3.12)

The calculation of the estimation variance includes add-

ing the Lagrange coefficient:

� � 	 � 	 � 	2

1 1 2 2
� � 
 � � 
 � � � 
 �( ) ( ) ( )� � � � �

n n
Z Z m (3.13)

Here are shown the two probably most-used kriging tech-

niques. In general, in all linear kriging techniques (since

they are constrained optimization problems), the associ-

ated equations can be divided into two parts:

a) in one part of the equations, the spatial dependence

(spatial correlation) of the measured data is

calculated, usually using a variogram;

b) the other part of the equations includes different

constraints, resulting in the sum of all weighting

coefficient being equal to 1.

4. EXAMPLES OF THE CALCULATION

OF KRIGING MATRICES

The model presented in ref.2 is used as a simple example

in the following subsections. There is no reason why this

model is better than other similar simple models with

several control points, except that the authors have

clearly presented all the spatial data values and the

variogram values for them. This means that with such a

clear and simple model, we can focus in the analysis be-

low on the changes that such data can cause in different

kriging technique equations. The calculation tasks are

compared using Simple Kriging (best linear estimator,

abbreviated BLE) or Ordinary Kriging (best linear unbi-

ased estimator, abbreviated BLUE).

4.1. Difference in the estimation variance with

Simple and Ordinary Kriging techniques

Based on the data for the variogram values for the con-

trol points taken from Figure 1 and ref.2 the matrices for

Ordinary Kriging (Equation 3.11) is shown as:
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(4.1)

Matrix �B� can be calculated as:

- In the 1
st

row:

0x0.3805 + 12.65x0.4964 + 21.54x0.1232 + 1x(– 0.9319)

= 8.001

- In other rows (2
nd

, 3
rd

, 4
th
), the same procedure is applied.

Furthermore, the variance of Ordinary Kriging can be cal-

culated according to:

� � 	 � 	 � 	��
� � � 
 � � 
 � � � 
 �

1 1 2 2
( ) ( ) ( )� � � � �

n n
Z Z m (4.2)

This variance is �2=6.70 m2, whereas the standard error

is �=2.59 m. Note that � �� 1(because of the number of

decimal places used, the error is +1‰). Now, Equation

4.1 can be rewritten in the form of the Simple Kriging

matrix presented in Equation 4.3 (the locations of the

control points are kept the same as in Figure 2):
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(4.3)
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Fig. 1. Distribution of control and estimation points in a

coordinate system
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In this matrix, the values of the variograms between the

estimation and control points are changed (i.e., values

for matrix �B� from Equation 3.3 are changed). This

means that the locations of the estimation points could

be changed from those in Figure 1. Moreover, it implies

that the estimation variance is changed (to �2=7.631 m2),

as well as the standard error (�=2.76 m). Both are in-

creased.

4.2. Change in weighting coefficient values in

Simple Kriging

Let us now analyse the case in which Simple Kriging

maintains the locations of the control and estimation

points, as in the previous example. In this way, the same

variogram values for all points are held equal in both the

kriging techniques examined here. It is clear that the val-

ues for the weighting coefficient in Simple Kriging have

been changed and can be calculated according the equa-

tion:
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2154 14 45 0
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�
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(4.4)

When this equation is presented as linear formulae, the

linear system is:

12 65 2154 8

12 65 14 45 5 66

2154

2 2

1 3

1

. .

. . .

.
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2

. .� ��

(4.5)

The weighting coefficient can be expressed as:

�
�

�
�

�

2

3

1

3

1

8 2154

12 65

5 66 14 45

12 65

14 42 14

�

 �

�

 �

�



.

.

. .

.

. .

.

42

2154

2
� �

(4.6)

The following coefficient values are calculated:

�1= 0.347; �2 = 0.483; �3 = 0.088 (note that � �= 0.918).

This means that the matrix equation in Simple Kriging

for the points distributed as in Figure 1 is:
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4.3. Calculation of Ordinary Kriging matrices

with a regular distribution of control

points and variation of the Lagrange

multiplicator

In this subsection, we use a new distribution of control

points (Figure 2) and new values for the variogram

model. The purpose is to present changes in the

Lagrange multiplicator and evaluate their influence on

the estimated value.

The three examples presented include different

multiplicator values. In the first, the Lagrange value is

0.06, taken from published work3. However, in the sub-

sequent two examples of kriging calculations, the values

for the Lagrange multiplicator are 0.9 and –0.9. These

two values are considered the extreme values that the

multiplicator can take in practice.

We selected these three values for the same matrix

equations to illustrate the fact that the selection of the

multiplicator value is the most important factor in Ordi-

nary Kriging calculations, i.e., in minimizing of the esti-

mation error (kriging variance). The entire calculation is

performed manually, which makes it possible to observe

the changes in the matrices and linear systems of the

kriging (Equations 3.10 and 3.13). The distribution ana-

lysed includes four control points. The unknown value is

located in the centre of a polygon and the estimation is

performed with Ordinary Kriging (Figure 2).

In Figure 2, the relative distances between the control

points (50 m) can be read. The variogram values are cal-

culated from these distances. This variogram model has

the following characteristics:

• The experimental variogram is approximated by a

spherical model;

• The sill is 1;

• The variogram range is 200 m;

• The nugget effect does not apply (0).

4.3.1. Lagrange multiplicator value 0.06

In this subsection, the value of the Lagrange

multiplicator is taken from reference3. This value allows

us to achieve the minimum kriging variance with Ordi-

nary Kriging, which is why we used this value in the man-

ual calculation of the kriging equations and for the

calibration calculation performed with different values of

the Lagrange multiplicator.

The matrices for Ordinary Kriging in this case are shown

as a covariance matrices (inverted to a variogram):
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In this example of a regular distribution of the control

points, the matrices ��� and �B� (Equation 3.3) include

constant values. If the matrix equation is written in the

linear system, it is:
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1 0 25 0 49 0 25 0 49 0 25 0 31 0 25 0 06 0 6325

0
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(4.9)

Now, it is possible to calculate the weighting coefficient

and the error variance:

�
OK

2

0 25 0 63 0 25 0 63 0 25 0 63 0 25 0 63 0 06� � � � � � � � � �. . . . . . . . . 0 69.

(4.10)

4.3.2. Lagrange multiplicator value 0.9

In this example, the Lagrange multiplicator is given a

positive vale of 0.9. In such cases, the covariance matrix

is:

10 0 49 0 49 0 31 10

0 49 10 0 31 0 49 10

0 49 0 31 10 0 4

. . . . .

. . . . .

. . . . 9 10

0 31 0 49 0 49 10 10

10 10 10 10 0 0

.

. . . . .

. . . . .

�

�







�

�

�
�
�
�
�

�

�

�







�

�

�
�
�
�
�

�

0 25

0 25

0 25

0 25

0 9

147

147

147

1

.

.

.

.

.

.

.

.

.47

10.

�

�







�

�

�
�
�
�
�

(4.11)

Again, the matrices ��� and �B� contain constant values,

as in Subsection 4.3.1. These matrices are represented

by linear equations in the following system:

1 0 25 0 49 0 25 0 49 0 25 0 31 0 25 0 9 14725

0 4

� � � � � � � � �. . . . . . . . .
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. .
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(4.12)

The kriging variance for a Lagrange value of 0.9 is:

�
OK

2

0 25 147 0 25 147 0 25 147 0 25 147 0 9 1� � � � � � � � � �. . . . . . . . . .2675

(4.13)

4.3.3. Lagrange multiplicator value –0.9

In the last example, the Lagrange multiplicator is given a

negative value of –0.9 (our intention was to select a simi-

lar value as that applied in Subsection 4.1). Then, the

kriging matrices are:

10 0 49 0 49 0 31 10

0 49 10 0 31 0 49 10

0 49 0 31 10 0 4

. . . . .

. . . . .

. . . . 9 10

0 31 0 49 0 49 10 10

10 10 10 10 0 0

.

. . . . .

. . . . .

�

�
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�

�
�
�
�
�

�




�

�
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�

�
�
�
�
�
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.
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.

.

.

.33

0 33
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�
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�

�

�
�
�
�
�

.
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(4.14)

As in the previous two examples, matrices ��� and �B�

have constant covariance values. Moreover, if the matrix

is substituted with linear equations, it becomes the sys-

tem:

1 0 25 0 49 0 25 0 49 0 25 0 31 0 25 0 9 0 327� � � � � � � � 
 �
. . . . . . . ( . ) . 5

0 49 0 25 1 0 25 0 31 0 25 0 49 0 25 0 9 0 32. . . . . . . ( . ) .� � � � � � � � 
 �
 75

0 49 0 25 0 31 0 25 1 0 25 0 49 0 25 0 9 0 3. . . . . . . ( . ) .� � � � � � � � 
 �
 275

0 31 0 25 0 49 0 25 0 49 0 25 1 0 25 0 9 0. . . . . . . ( . ) .� � � � � � � � 
 �
 3275

1 0 25 1 0 25 1 0 25 1 0 25 0 0 9 1� � � � � � � � � 
 �. . . . ( . )

(4.15)

The kriging variance is then:

�
OK

2

0 25 0 3275 0 25 0 3275 0 25 0 3275� � 
 � � 
 � � 
 �. ( . ) . ( . ) . ( . )

0 25 0 3275 0 9 0 982. ( . ) ( . ) .� 
 � 
 �


(4.16)

All three examples presented in Subsection 4.3 clearly

show that the Lagrange value of 0.06 (as given in ref.3 and

shown in Figure 2) is the value at which the estimation

variance of Ordinary Kriging is minimal. The reason for

this and how we can select the most appropriate value for

the Lagrange multiplicator are analysed in the next chap-

ters, the Discussion and Conclusion of the analysis.

5. DISCUSSION OF THE

MATHEMATICAL MEANINGS OF

THE LAGRANGE MULTIPLICATOR

The results of Chapter 4 clearly show that in the applica-

tion of ordinary kriging, as a statistical procedure for the

estimation of geological or other variables, the value of

the Lagrange multiplicator plays a critical role in the final

result.

The two accepted values of the Lagrange multiplicator

used to minimize the variance in the previous examples

differed, with one negative (–0.9319) and the other posi-

tive (0.06). The proof that both values are correct is

shown by varying of value 0.06 in the kriging matrices

(Subsection 4.3). A change in this value induced an in-

crease in the estimation variance (Subsection 4.3.2) or a

negative (mathematically impossible) variance (Subsec-

tion 4.3.3).

Let us examine once again the mathematical meaning

of the Lagrange multiplicator in kriging equations. The

value at the estimation point can be expressed as:

Z r r( ) ( )� �� � (5.1)

where

� is the correct (but really unknown) mean of the entire

population;

�(r) is the curve and mean value normalized about the value

0 on the curve of the spatial random function.

Usually, we do not know the real mean value of the entire

population (�). Therefore, the estimation is more often

performed with the Ordinary Kriging technique than with

Simple Kriging, using only the local mean based on data

encompassed by the search radius around the estima-

tion point. Moreover, second-order stationarity is also

assumed for kriging with the covariance CZ of the estima-

tion is Z(x). This stationarity can be expressed:

� �C r r E r r C r r
2 1 2 1 2 2 1 2
( , ) ( ) ( ) ( )� � � 
� � (5.2)

This condition can be described with a variogram (in-

stead of covariance) when the stationarity is presented

as:

� �	 � � 	
Z Z

r r E r r r r( , ) ( ) ( ) ( )
1 2 1 2

2

1 2

1

2

� � 
 � 
 (5.3)

The array of N measurements Z(x1)…Z(xn) at locations

x1…xn is assumed. Three conditions must be satisfied for

an Ordinary Kriging estimation, based on the value of the

variable Z (
�

Z) at any unsampled location x0:
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1.
�

Z is linear and calculated from the values Z x Z x
n

( ) ( )
1

� ;

2.
�

Z is an unbiased estimation;

3.
�

Z minimizes the value of the mean square error

expressed as � �E Z x Z x( )
�

( )
0 0

2


 .

Linearity (condition 1) is realized if the equation

�

( )Z Z r
i i

i

n

� �
�

� �
1

is satisfied.

Unbiasedness (condition 2) is fulfilled if the following

equation is valid:

� � � �E Z r E Z r
i i

i

n

i i

i

n

i

n

�

( ) ( )
0

11

1� � � � � � � �� ��
��

� �� � � � � �
� 

(5.4)

Minimizing the error (condition 3) demands the selection

of the most appropriate values for the coefficients �1,…,

�n and the Lagrange multiplicator 2m. Their optimization

can be expressed for each point as the function

L m
n

( ,... , , )� �
1

:

L E Z x Z x m
i i

i

n

i

i

n

� 
 �
�

�
��

�

�
�� 
 � 


�

�
��

�

�� �

� �( ) ( )
0

1

2

1

2 1� � �� !L 0 (5.5)

The optimization of the coefficients (�1,…, �n) and the

Lagrange value (m) is achieved by solving the differential

equation
"

"�

L

0

0� .

If we look again at the basic kriging matrices (Equation

3.3) and show them using covariances, the kriging esti-

mation is:

C C� ��
0 0

(5.6)

The variables C and C0 can be presented as matrices:

C

C C Z Z C Z Z

C Z Z C C Z Z

C Z

n

n

�


 



 


( ) ( ) ( )

( ) ( ) ( )

(

0 1

0 1

1 2 1

2 1 2

�

�

�

n n
Z C Z Z C
 


�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

1 2
0 1

1 1 1 0

) ( ) ( )�

�

(5.7)

C

C Z Z

C Z Z

C Z Z
n

0

0 1

0 2

0

1

�










�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

( )

( )

( )

� (5.8)

The expected weighting coefficient can then be calculated

(using Equation 5.6) as:

��
0

1

0
� �


C C (5.9)

The estimation at the selected point is:

�

( ) ( ) ( )Z x Z x Z x
n n0 1 1

� � � � �� �� (5.10)

The optimal weighting coefficient and Lagrange value al-

low the calculation of the least possible standard kriging

variance using the equation:

� �( ) ( )x C c m
0 0

0� 
 #� � (5.11)

6. CONCLUSION

In the previous chapters, we have shown why the Ordi-

nary Kriging technique is more appropriate for the inter-

polation of point data (compared with Simple Kriging).

Moreover, several previous papers have described the

application of the kriging method to petroleum geology

data (porosity) collected from hydrocarbon reservoirs in

the Croatian part of the Pannonian Basin. It was there

proven that geostatistical interpolation (as well as sto-

chastic estimation) is the best approach to mapping geo-

logical variables (e.g., references 1, 8, 9, 10, 12).

Based on such analyses, it is concluded that kriging can

be usefully applied to cases with a minimum of 10 or

even 15 data points. However, any representative statisti-

cal dataset of geological variables must include at least

30 data points. This means that we cannot conclude the

value of the real population mean (expectation) based

only on the usually available datasets. For this reason,

the so-called “local mean” is most often applied, which is

calculated only from the hard data encompassed by the

searching radii, and this favours the Ordinary Kriging

technique.

Therefore, we must be very careful to analyse the vari-

ables with Ordinary Kriging equations. Most of the vari-

ables are the standard elements of all kriging techniques,

but there is a unique variable, the Lagrange (linear)

multiplicator, the role and importance of which has been

discussed in the previous chapters. How can we calculate

numerically the most appropriate value for this variable

(m), i.e., the value that will result in the least kriging vari-

ance?

The answer has been sought in the procedure of ran-

dom sampling, i.e., the selection of a random seed num-

ber from the set of possible (expected) values for the

Lagrange multiplicator. It has been shown that this value

can be negative, but the values for the kriging variance

cannot be negative (mathematically impossible). If the

value is randomly sampled many times from some inter-

val (e.g. �–1,1��, one value will produce the least possible

kriging variance. It then remains to select the interval

width and the number of samplings. How this is done can

be described in four steps:

1. Based on experience, it can be assumed that value of

the Lagrange multiplicator should occur in the

interval �–1,1�. Some values can be very close to 0 (as

shown in our example). For these reasons, we

consider that the starting point in the random

sampling for the Lagrange value should be set at 0.01.

2. In the next step, the starting value must be decreased

(in steps of –0.05), i.e., it becomes negative. Again, the

appropriate kriging variance can be calculated and

registered. Such a procedure should be repeated until

the kriging variance is positive. Using this procedure,

the value of m with the least kriging variance can be

selected (Figure 3 left).

3. The positive side of the Lagrange value should then be

checked, again increasing the value in steps of +0.05.

Again, a reduction in the variance will be observed,

and the procedure should be continued until this

reduction vanishes. The first time that the variance

increases, the calculation is stopped (Figure 3 right).
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4. It is important to know that if, for the first positive m

(m>0), the variance immediately start to increase,

then it can be considered that the minimum kriging

variance is found in the negative scale and random

sampling can cease (Figure 3 left).

We believe that the four rules discussed above completely

describe the correct procedure for selecting the Lagrange

multiplicator in Ordinary Kriging equations. Thus, using

this technique is one of the best interpolation algorithms

for mapping geological variables.
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Fig. 3. Graphical representation of how to select the most appropriate value for the Lagrange multiplicator using random

sampling

Sl. 3. Slikovni prikaz naèina odabira najprimjerenije vrijednosti Lagrangeovog multiplikatora metodom sluèajnog uzorkovanja


