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Abstract

The development of a new anticancer drug with a novel structure and unique mechanism of action 

is an important event, especially when the drug has a clear role in improving the outcome for 

cancer patients. No drug fits this description better than Taxol®. However, during the early phases 

of its development there was little interest in the drug, particularly by the medical community. The 

story of Taxol® is long and fascinating, and includes many examples in which the drug could have 

been dropped, resulting in its antitumor activity never being available to patients. It was 21 years 

between the original landmark paper on the isolation and structural determination of Taxol® [1] 

and its approval in 1992 by the FDA for its use in the treatment of ovarian cancer.
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INITIAL PROCUREMENT

A screening program for antitumor agents in the plant kingdom was initiated in 1960 under 

Dr. Jonathan L. Hartwell of the National Cancer Institute (NCI). Plant samples collected at 

random were supplied to the NCI by the U.S Department of Agriculture (USDA) under an 

interagency agreement. In August 1962, USDA botanist Arthur S. Barclay, Ph.D., and three 

college student field assistants collected 650 plant samples in California, Washington, and 

Oregon, including bark, twigs, leaves, and fruit of Taxus brevifolia (Pacific or Western 

Yew) in Washington State [2].

T. brevifolia is a slow growing tree which is found primarily in the coastal areas of the 

Northwest of the United States. Potential medicinal properties of the plant had never been 

investigated. The assignment of the plant to the Research Triangle Institute (RTI) 

International by Dr. Hartwell was not entirely serendipitous. When the original cytotoxicity 

tests were conducted with crude extracts by NCI contractors, some of the samples 

demonstrated cytotoxicity against 9KB cell cultures that had been derived from a human 

cancer of the nasopharynx. Drs. Wall and Wani, medicinal chemists who worked at RTI 

International, had noted an excellent correlation between L1210 (lymphoid leukemia in 

mice) in vivo activity and the 9KB cytotoxicity assay when studying camptothecin [3]. 

Accordingly, they had requested Dr. Hartwell to assign to them as many 9KB active plant 

extracts as possible.
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EXTRACTION AND ISOLATION

Initial samples of T. brevifolia arrived at RTI International in 1964. The isolation procedure 

finally adopted after several unsuccessful trials is shown in Charts 1 and 2. Extraction was 

carried out by ethanol with partition of the ethanolic residue between water and chloroform. 

Purification and isolation utilized a large number of Craig countercurrent distribution 

treatments, the last of which involved a 400-tube Craig countercurrent distribution. In this 

manner, approximately 0.5 g of Taxol® [1] (Figure 1) was isolated starting with 12 kg of air 

dried stem and bark from T. brevifolia. The yield was approximately 0.004%. All the 

various steps were monitored by an in vivo bioassay which involved the inhibition of the 

solid tumor known as Walker-256 intramuscular rat carcinosarcoma. As shown in Chart 2, 

increased purification was accompanied by increased antitumor activity at lower doses. The 

isolation steps were laborious, but because of the mild countercurrent distribution 

methodology, losses or alterations of the active constituent were avoided. Much simpler 

procedures were subsequently developed both at RTI International and elsewhere.

STRUCTURAL DETERMINATION OF TAXOL®

As soon as Taxol® had been isolated in pure form, the structure of the compound was 

investigated using available spectroscopic methods. Although methods for ultraviolet, 

infrared, and mass spectrometry were at a reasonably advanced stage in the late 1960s, 

nuclear magnetic resonance (NMR) spectroscopy was relatively primitive compared to the 

sophisticated instrumentation and procedures now available.

The determination of the structure of Taxol® proved to be an extremely difficult task. The 

molecular formula of Taxol® was determined to be C47H51NO14 by a combination of mass 

spectrometry and elemental analysis [1]. Data from 1H-NMR spectrometry and biogenetic 

considerations suggested that Taxol® was a diterpenoid possessing a taxane skeleton to 

which several esters were attached.

Because of the extremely limited quantity of Taxol® available at the time and its evident 

structural complexity, attempts were made to prepare derivatives suitable for x-ray analysis. 

Although a number of crystalline, halogenated derivatives were obtained, none had 

properties suitable for x-ray analysis. Taxol® was therefore subjected to a mild base-

catalyzed methanolysis at 0° yielding a nitrogen containing α-hydroxyl ester (2, 

C17H17NO4), a tetraol (3, C29H36O10) and methyl acetate as shown below:

The ester 2 was converted to a p-bromobenzoate 4 and the tetraol 3 to a 7, 10-bisiodoacetate 

5 (Figure 2) and the structures of the halogenated derivatives of 2 and 3 were determined by 

X-ray analysis. For full details of x-ray analysis and physical constants of compounds 2–5, 

cf. reference 1.

The structures of the methyl ester 2 and the tetraol 3 (10-deacetylbaccatin III) (Figure 2) 

were derived from the X-ray structures of 4 and 5, respectively. Compound 2 is the methyl 
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ester of N-benzoyl-β-phenylisoserine. The final structure of 1 required the placement of the 

two hydrolyzed ester functions of 1 on the tetraol 3. Taxol® could not be oxidized by 

neutral, activated manganese dioxide, indicating that the two esters were located at the 

allylic positions 10 and 13. The chemical shifts of the protons at C-10 and C-13 were also in 

accord with this observation. Oxidation of 1 with activated manganese dioxide under mild 

basic conditions (pH of the aqueous suspension 8.0) in acetone yielded the 7β-hydroxyl 

conjugated ketone 6 (Figure 2). The molecular composition by high resolution mass 

spectrometry was in accord with the formula C31H36O11, suggesting that it was formed by 

the loss of the nitrogen-containing α-hydroxyl ester function and oxidation of the liberated 

allylic α-hydroxyl group. The ultraviolet (λmax MeOH, 272 nm, ε 4800) and infrared spectra 

(νmax CHCl3 1680 cm−1) were in complete accord with this structure and ruled out the 

alternative Δ11-9, 10-dioxo formulation. In addition, 1H-NMR spectrum of 6 clearly showed 

the presence of a singlet due to the C-10 proton at δ6.46 as required by formulation 6.

BIOLOGICAL ACTIVITY OF CRUDE AND PURIFIED TAXOL®

The crude extracts of T. brevifolia were subjected to a number of assays in rodent leukemias 

and solid tumors. In early work it was found that the crude extracts were active not only in 

the Walker tumor inhibition assay, but also had modest activity in L1210 leukemia and 

particularly high activity in the 1534 (P4) leukemia assay. The latter assay is a life 

prolongation assay in mice, and it had been used previously by scientists at Eli Lilly during 

the isolation of the vinca alkaloids which showed high activity in this system. The same was 

noted for Taxol® with T/C values in the P4 system in excess of 300, even with crude 

extracts. The activity of pure Taxol® in a number of in vivo rodent assays is shown in Table 

I.

ACTIVITY OF TAXOL® AGAINST SOLID TUMORS

Development efforts with Taxol® stopped for nearly a decade because of its mediocre in 

vivo activity in P-388 and L-1210 leukemia assays, poor water solubility, and anticipated 

supply problems because of low yields from natural sources, and inaccessibility by total 

synthesis, due to structural complexity. There was a revival of interest in Taxol® when it 

was discovered that Taxol® possessed impressive activity against the relatively resistant 

murine B16 melanoma and a panel of human solid tumors carried as xenografts in mice. 

(Table I).

MECHANISM OF ACTION OF TAXOL®

Drs. Wall and Wani and their colleagues were totally responsible for the initial isolation and 

characterization of Taxol®. It was Dr. Wall who named the drug Taxol® that was acquired 

later by Bristol-Myers Squibb for their trademark. The generic name for Taxol® is 

paclitaxel. Today there are two semisynthetic molecules, derived from Taxol®; Taxotere® 

(7) and cabazitaxel (8) that are U.S. Food and Drug Administration (FDA) approved for 

cancer treatment. Taxotere has been a very important drug for the treatment of breast cancer 

and cabazitaxel is FDA approved for the treatment of hormone-refractory prostate cancer.
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In 1977, Susan Band Horwitz, then an Assistant Professor in the Department of Molecular 

Pharmacology at the Albert Einstein College of Medicine in the Bronx, New York, received 

a letter from the NCI, signed by David Abraham, Ph.D. requesting that she study the 

mechanism of action of Taxol®. Although the landmark paper describing the initial isolation 

of Taxol® and determination of its structure was published in 1971 [1], Dr. Horwitz was 

completely unaware of this molecule. Her publications with camptothecin [4], the 

epipodophyllotoxins [5] and bleomycin [6] demonstrated her deep interest in natural 

products that had antitumor activity. In addition, she was the recipient of a CREG, a Cancer 

Research Emphasis Grant. The latter was an unusual funding mechanism, somewhere 

between a contract and a grant. She had been requested by the NCI to study other 

compounds but had turned them down because often they were a well-studied drug with a 

new substitution, such as a fluorine or bromine. Taxol® was quite different; it was a 

complex molecule the structure of which Dr. Horwitz found intriguing. This unusual 

chemical structure was a diterpene having a taxane ring with a four-membered oxetane ring 

and an ester side chain at position C-13, the latter being essential for biological activity 

(Figure 2). She had a new graduate student at the time, Peter Schiff (see chapter -----), who 

was searching for a good thesis topic. Together they decided they would start exploring the 

mechanism of action of Taxol® and requested 10 mg from the NCI. If the project didn’t look 

interesting after a month they would drop it, otherwise they hoped it would provide a good 

thesis project. As it turned out, it was a superb thesis topic and to this day, Taxol® continues 

to stimulate interesting scientific questions in addition to being an important component of 

drug combinations. The drug has been given to over one million patients.

The Horwitz lab verified that Taxol® was highly cytotoxic, inhibiting the growth of HeLa 

cells at nanomolar concentrations. Although cells went through a perfectly normal S phase 

in the presence of the drug, it became clear that Taxol® blocked cells in the metaphase of the 

cell cycle. However, what was most exciting and unusual was that Taxol® had the capacity 

to enhance the polymerization of stable microtubules. In contrast to the vinca alkaloids, 

vincristine and vinblastine, that inhibit microtubule polymerization and are important 

antitumor drugs used for the treatment of leukemias and lymphomas respectively, Taxol® 

enhanced the polymerization of tubulin in an in vitro system with purified bovine brain 

tubulin in the absence of GTP that is normally required. These polymerized microtubules 

were stable to cold temperatures and calcium, conditions that depolymerize normal 

microtubules [7]. Studies in HeLa cells made it clear that the effects observed in an in vitro 

system carried over into living cells where obvious alterations could be seen in the 

microtubule cytoskeleton after Taxol® treatment. The drug reorganized the microtubule 

cytoskeleton so that large bundles of microtubule were clearly visible (Figure 3), 

proliferation was inhibited, and the cells were unable to migrate [8]. The formation of stable 

microtubule bundles in cells are a hallmark of Taxol® treatment and seen in the white blood 

cells of patients being treated with the drug. In many ways, Taxol® caused what could be 

referred to as a paralyzed microtubule cytoskeleton. More extensive studies with Taxol® 

indicated that the mechanisms by which Taxol® induced cell death were concentration 

dependent. At Taxol concentrations >10 nM, cells were blocked in mitosis, whereas at lower 

concentrations, aberrant mitosis led to cell death [9–11] and suppression of microtubule 

dynamics [12,13]. Although it was immediately clear to biochemists and cell biologists that 
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Taxol® would be an excellent tool for studying microtubule polymerization and the role of 

microtubules in a variety of cellular processes, there was no interest in the drug by 

pharmaceutical companies. The interest of biologists in the drug was immediately observed 

at the NCI where requests for the drug increased dramatically.

In 1979, the Horwitz laboratory published its first paper on Taxol® describing its unique 

mechanism of action [7]. Based on the good activity the drug had demonstrated against B16 

melanoma, the NCI selected the drug for clinical development. The collaboration between 

the USDA and the NCI had not produced any new anticancer drugs, and Taxol® was its last 

hope. Taxol® also demonstrated good activity against some human xenografts, particularity 

the MX-1 mammary tumor. The fact that the Horwitz laboratory had published that Taxol® 

was a prototype for a new class of antitumor drugs also helped to set the stage for preclinical 

toxicology studies to begin at the NCI.

Although there was no question that Taxol® had a dramatic effect on the microtubule 

cytoskeleton, it was not a simple task to decipher the mechanism by which that occurred. 

Taxol® did not form a covalent bond with tubulin, making it difficult to decipher the 

interaction of the drug with its target protein in the test tube or in a cell. The Horwitz 

laboratory decided that the best approach was to use photoaffinity-labeled Taxol® analogs, 

that in the presence of light would form covalent bonds with tubulin. Using three different 

analogs, three defined sites in β-tubulin were identified as binding sites for Taxol®. CNBr 

and enzymatic digestions of the drug-tubulin complex plus N-terminal amino acid 

sequencing identified three points of interaction between the drug and β-tubulin [14].

At the same time, Eva Nogales and Ken Downing who were working in California and 

doing electron crystallography of zinc sheets of tubulin stabilized with Taxol®, developed a 

three dimensional model of Taxol® with an α-, β- tubulin heterodimer that was fitted to a 3.7 

Å density map [15]. This was significant and important research that dramatically enhanced 

our understanding of how small molecules interacted with tubulin. There was good 

agreement between the results attained with photoaffinity analogs and electron 

crystallography. Since that time, many laboratories have contributed to our understanding of 

the mechanism of action of Taxol®. By incorporating hydrogen/deuterium exchange and 

mass spectrometry into experiments, insight into the conformational and allosteric changes 

that Taxol® induces in microtubules can be assessed [16].

Although originally there was little interest in Taxol® as an antitumor drug, its success in the 

clinic has made small molecules that interact with microtubules of great interest. Today 

there are a number of molecules of natural product origin that stabilize microtubules. What 

is of particular interest is that although these compounds all have distinct chemical structures 

and come from diverse natural products such as plants, bacteria, coral and sponges, they all 

target and stabilize microtubules. One such molecule, the epothilone analog, ixabepilone 

(Ixempra®), isolated from a bacteria has already been FDA approved for the treatment of 

advanced breast cancer, and other molecules, all of natural product origin, that interact with 

the tubulin/microtubule system are in the pipeline.
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CLINICAL DEVELOPMENT

Chemists were well aware of the extreme hydrophobicity of the Taxol® molecule which 

became a serious problem when trying to formulate the drug for clinical use. The drug was 

prepared in Cremphor EL and ethanol that alone, in the absence of Taxol®, could cause 

toxicities, such as a drop in blood pressure in dogs. Another serious problem was the severe 

hypersensitivity reactions that were experienced by the first patients to receive Taxol®. In 

fact, one of the first patients that received Taxol® died of an anaphylactic shock and this 

would have been sufficient to block further clinical studies with most drugs. There was a 

five year hiatus between 1983 and 1988 when the drug was not used in any clinical trials. 

During this period, oncologists, formulation chemists and pharmacologists worked together 

to find a solution to the allergic reactions being seen, so that the drug could again be 

introduced into clinical trials. This time the drug was given to patients who were pre-treated 

with antihistamines and steroids and who also received the drug over a 24 hour period, 

instead of as a bolus, the way the first patient did. Another serious problem was a scarcity of 

drug, as it took the bark of a mature yew tree (200 years old) to provide sufficient drug to 

treat a single patient with breast cancer, and when the bark was removed the tree died. It was 

the collaboration of physicians and scientists working together that was responsible for 

moving Taxol® forward.

Once the drug was administered with the pre-treatment regimen, it became clear that it had 

good clinical activity in advanced drug refractory ovarian carcinoma [17] and metastatic 

breast carcinoma [18]. Although all of the clinical studies had been carried out under the 

auspices of the NCI, the latter was not a drug company and incapable of developing the drug 

further. Since no patents had been taken out on the chemical structure of the drug or its 

mechanism of action, the compound was not attractive to pharmaceutical companies. 

Therefore the NCI advertised a Cooperative Research and Development Agreement 

(CRADA) that was awarded to Bristol Myers-Squibb. Much to their credit, the company 

isolated sufficient drug from the bark of the yew tree for testing, and in 1992 on December 

29th, the FDA approved Taxol® for refractory ovarian cancer, in 1994 for breast carcinoma, 

and in 1999 for non-small cell lung carcinoma. Taxol® has and continues to be an essential 

drug for the treatment of a variety of malignances and is still being tried in new 

combinations of antitumor drugs. Just this year, the FDA approved the supplemental New 

Drug Application (sNDA) of Abraxane (paclitaxel albumin-bound particles for injectable 

suspension) as first-line treatment for patients with metastatic adenocarcinoma of the 

pancreas, in combination with gemcitabine. Adenocarcinoma, a sub-type of exocrine 

tumors, accounts for about 95 percent of cancers of the pancreas.

Nature has been a remarkable chemist, providing us with chemical structures no scientist 

could imagine. We anticipate there are many more interesting molecules to be found before 

much of natural habitat of the earth has been destroyed.
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Figure 1. 
Structures of Taxol®, Taxotere® and Cabazitaxel.
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Figure 2. 
Structures of Related Taxanes and Taxol (1) Ester Side-Chain

Wani and Horwitz Page 9

Anticancer Drugs. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The effect of Taxol® on the microtubule cytoskeleton (green) in A549 cells
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Chart 1. 
*5WM is a solid tumor known as Walker-256 intramuscular rat carcinosarcoma.

**T/C = mean tumor weight of treated animal ÷ mean tumor weight of control animals x 

100
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Chart 2. 
*T/C in 5 WM. For definitions of 5WM and T/C see footnotes of Chart 1
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Table I

Cytotoxic and Antitumor Activity of Taxol (1)

Cytotoxic Activity

KB (human carcinoma of the nasopharynx):

ED50 =3.5 × 10−5 μg/mL

(ED50 = conc. required for 50% inhibition of growth)

Antitumor Activity

System Tested Administration Activity (% T/C)

i.p P388 Leukemia i.p. + (164)

i.p. B16 Melanoma i.p. ++ (283)

i.p. L1210 Leukemia i.p. + (139)

S.R.C* CX-1 Colon Xenograft s.c. ++ (3)

S.R.C. LX- Lung Xenograft s.c. + (8)

S.R.C. MX-1 Mammary Xenograft s.c. ++ (−77)

*
Sub-renal capsule
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