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Abstract

Despite years of preclinical development, biological interventions designed to treat complex 

diseases like asthma often fail in phase III clinical trials. These failures suggest that current 

methods to analyze biomedical data might be missing critical aspects of biological complexity 

such as the assumption that cases and controls come from homogeneous distributions. Here we 

discuss why and how methods from the rapidly evolving field of visual analytics can help 

translational teams (consisting of biologists, clinicians, and bioinformaticians) to address the 

challenge of modeling and inferring heterogeneity in the proteomic and phenotypic profiles of 

patients with complex diseases. Because a primary goal of visual analytics is to amplify the 

cognitive capacities of humans for detecting patterns in complex data, we begin with an overview 

of the cognitive foundations for the field of visual analytics. Next, we organize the primary ways 

in which a specific form of visual analytics called networks have been used to model and infer 

biological mechanisms, which help to identify the properties of networks that are particularly 

useful for the discovery and analysis of proteomic heterogeneity in complex diseases. We describe 

one such approach called subject-protein networks, and demonstrate its application on two 

proteomic datasets. This demonstration provides insights to help translational teams overcome 
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theoretical, practical, and pedagogical hurdles for the widespread use of subject-protein networks 

for analyzing molecular heterogeneities, with the translational goal of designing biomarker-based 

clinical trials, and accelerating the development of personalized approaches to medicine.
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INTRODUCTION

Although vast resources have been spent in developing new therapies for complex diseases 

such as asthma, many drugs designed to target specific proteins have failed in clinical trials 

for reasons ranging from drug ineffectiveness to toxic side effects [1, 2]. For example, 

although several in-vitro studies strongly suggested that blocking IL-5 (critical in Th2 

inflammation and allergic response) would be effective in asthma treatment [3, 4], clinical 

trials using mepolizumab (a monoclonal antibody to IL-5) failed to show a statistically 

significant improvement in key clinical parameters [5]. Subsequent studies found that only a 

subgroup of asthma patients might benefit from mepolizumab treatment [6, 7], suggesting 

that there existed considerable heterogeneity in molecular etiologies among asthma patients.

Such realizations have led to a growing consensus that current methods used for identifying 

proteomic targets in complex diseases (defined as having multifactorial etiologies) are not 

designed to reveal proteomic heterogeneities (defined as differences in the proteomic 

profiles of patients), resulting in missed opportunities for the design of therapies that are 

targeted to specific patient subgroups. For example, most methods used to analyze 

molecular data assume that cases and controls can each be characterized by a single mean 

and variance, and identify variables that are univariately (e.g., chi-square) or multivariately 

(e.g., regression) significant across the two distributions. This focus on identifying variables 

that explain the difference between cases and controls potentially conceals patient 

subgroups, whose identification could lead to more targeted therapeutics, a necessary 

component of personalized medicine [8].

One approach to help multidisciplinary translational teams [9] (typically consisting of 

biologists such as proteomic researchers, clinicians, and bioinformaticians) integrate and 

comprehend such complex proteomic data is through methods from the evolving field of 

visual analytics [10]. Because a primary goal of visual analytics is to help humans amplify 

their cognitive capabilities for detecting complex patterns in data, we begin by presenting an 

overview of the theoretical foundations for visual analytics, and the motivations to use 

methods from this field to analyze proteomic data. Next, we organize the major ways in 

which a specific form of visual analytics called networks have been used to model and infer 

biological mechanisms such as genetic regulatory pathways. This organization helps to 

identify the properties of networks that are especially effective for the analysis of molecular 

heterogeneities and their respective mechanisms. We demonstrate the use of an approach 

that uses these network properties to help identify proteomic heterogeneity and their 

respective pathways across two proteomic datasets. These demonstrations reveal the 
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strengths and limitations of the method leading to insights for the development of future 

advanced approaches that can accelerate the discovery of molecular heterogeneities through 

the integrated analysis of multi-omics data.

VISUAL ANALYTICS: THEORETICAL FOUNDATIONS

Visual analytics is defined as “the science of analytical reasoning facilitated by interactive 

visual interfaces” [10]. Visual analytical methods are designed to augment cognitive 

reasoning by transforming symbolic and numeric data (e.g., numbers in a spreadsheet) into 

visualizations (e.g., a scatter plot), which can be manipulated through interaction (e.g., 

highlight outliers in the scatter plot). As described below, visualizations and interactions 

with those visualizations can be powerful for making important discoveries in proteomic 

data because of the nature of cognition and the tasks that translational teams typically 

perform.

The Role of Visualizations in Analytical Reasoning

Data visualization can be powerful for analyzing biomedical data because it leverages the 

parallel architecture of the human visual system consisting of the eye and the visual cortex. 

This parallel cognitive architecture enables the rapid comprehension of multiple complex 

relationships simultaneously such as similarities, anomalies, and trends, which can lead to 

insights about relationships in the data [10, 11]. For example, Figure 1A shows a 

spreadsheet that contains normalized cytokine expression levels in patients before and after 

taking a drug. Determining which of the two conditions have more patients with cytokine 

level >= 0.8 is tedious and error prone because the analyst needs to compare the entry in 

each cell with >= 0.8, remember the result of each comparison, and then count the number 

of patients with cytokine levels >= 0.8 in each column to make the final comparison. 

Because such symbolic processing is done serially, the cognitive load increases with an 

increasing number of entries, and therefore a large number of data points can easily 

overwhelm the cognitive capacities of an analyst.

As shown in Figure 1B, when cells with values >= 0.8 are highlighted in red, the resulting 

visual representation allows the analyst to determine more rapidly that the left column has 

more red cells compared to the right column. This occurs because the representation 

leverages the power of the human visual system to process in parallel the red cells in each 

column. Moreover, the visualization in Figure 1B shifts information from an internal to an 

external representation, which speeds up the task of counting the number of individuals with 

high cytokine levels in each column [12].

Nevertheless, not all data visualizations are helpful in enhancing cognition. For example, a 

road map that is oriented to the south is not helpful for a driver who is facing north since she 

will have to rotate the map mentally before identifying the route. Similarly, an 

organizational chart that shows employee names and locations laid out in a hierarchy based 

on rank is not helpful if the task is to identify patterns based on the geographic location of 

the employees. Furthermore, if a chart has a missing legend, it is difficult to map domain 

concepts onto the visualization. Visualizations therefore need to be aligned with tasks [13], 
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mental representations of the user [14], and the data before they can be helpful in enhancing 

cognition.

The Role of Interactivity in Analytical Reasoning

Although data visualizations can be useful if they are aligned with tasks, mental 

representations, and data, they often can be inadequate for analyzing complex data. This is 

because analysis typically entails multiple subtasks such as discovery, inspection, 

confirmation, and explanation [15], each of which requires a different representation of the 

data. For example, if the task in Figure 1 is to comprehend the relationship of gender to 

condition, then it is useful to sort the data based on gender. As shown in Figure 1C, 

interaction with the data through such sorting reveals that the drug has no effect on females 

(low values remain low, and high values remain high), but consistently lowers cytokine 

expression in males (all high values become low). Thus, interaction with data visualizations 

can reveal relationships that are often not apparent in a single static visualization of the data.

Furthermore, interactivity is particularly critical when an interdisciplinary team is involved 

in the analysis because each member of the team typically needs a different representation of 

the same data. For example, a molecular biologist might be interested in which genes are co-

expressed across individuals of a specific phenotype, while a clinician might be interested in 

the response to a therapy in patients with similar gene expression profiles. To be able to 

handle several tasks and mental representations, interactivity is critical to transform parts, or 

the entire visual representation to generate new representations.

Theories Related to Visual Analytics

Visual analytics draws on existing theories and taxonomies from cognitive psychology, 

computer science, and graphic design. However, integrative theories and principles 

underlying visual analytics are still in early stages of development [10]. For example, 

researchers have developed several classifications of visual representations [16, 17], and 

articulated the goals of interaction at different levels of granularity [18, 19].

One such classification [16] of visual representations categorizes them into (1) time series 
(e.g., line plots showing how the expression of cytokines change over time), (2) statistical 
distributions (e.g., box-and-whisker plots of cytokine expression across patients), (3) maps 
(e.g., heatmaps of proteomic expression across patients), (4) hierarchies (e.g., dendrograms 

resulting from hierarchical clustering showing how cytokines cluster based on differences in 

expression across patients), and (5) networks (e.g., protein-protein interaction networks). 

Each of these visual representations are constructed of basic elements referred to as marks 

(e.g., points, lines, and areas), which can have graphical attributes referred to as channels 

(e.g., position, size, value, texture, color, orientation, and shape) [20, 21]. A mark and 

associated channels are together referred to as a visual encoding of symbolic information 

such as protein expression.

Once a visual representation of the data is generated, interactivity allows it to be transformed 

in part or in whole into a new visualization. For example, a top-down tree may be 

transformed into a circular tree, and nodes in a tree may be colored based on specific 
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properties such as gender. Several attempts have been made to categorize such interactions 

with visualizations at different levels of granularity. For example, low-level interaction 

intents have been classified [19] as: filter, retrieve value, compute derived value, sort, 

determine range, find extremum, characterize distribution, find anomalies, cluster, and 

correlate. In contrast, higher level interaction intents have been classified as: select, explore, 

reconfigure, encode, abstract/elaborate, filter and connect [18].

While classifications help to organize different types of visualizations and interactions, 

several principles and heuristics have been proposed to guide the design of effective 

visualizations and interaction methods. These include the principle of closure (tendency of 

an incomplete shape like a circle drawn with a missing segments to appear like a closed 

form) from the Gestalt Laws of Grouping [22], and the pop-out effect (tendency of objects 

with bright colors, movement, and large size to stand out compared to other objects in the 

visual field, and conditions when this phenomenon fails leading to effects like visual clutter) 

from the Biased Competition Theory [23]. Furthermore, several design heuristics have been 

proposed for creating effective visualizations such as (1) to increase the “data-ink” ratio [24] 

when designing quantitative displays of information (stripping unnecessary decoration and 

other “chartjunk” that interferes with comprehension), (2) how to select visual channels for 

different data types (e.g., position in a Euclidean plane is the most effective channel to 

represent nominal, ordinal, and continuous data) [25] and (3) the strategy of overview first, 

zoom and filter, then details-on-demand to help interaction designers create interfaces that 

help humans explore and comprehend large and complex visual displays of information 

[17]. Many of these principles interact in complex ways, and therefore require skill for their 

application (often requiring trial and error) in order to generate an effective visualization that 

is useful for specific tasks and users.

In addition to the above classifications of visual representations and interactions, there have 

been early attempts at developing theoretical frameworks that explain how key elements of 

visual analytics enable analytical reasoning. For example, Liu and Stasko [26] proposed a 

framework that integrates the three major components of visual analytics: visual 

representation, interaction, and analytical reasoning. In this framework, internal and external 

representations are coupled to enable three related goals: (1) External anchoring or the 

process of associating conceptual structures (e.g., cytokine expression >= 0.8) to elements of 

the visualization (red colored cells), (2) Information foraging or the process of exploring the 

external visual representation through extraction (e.g., counting red cells related to cytokine 

expression) or through transformation (e.g., sorting according to gender) of the 

representation, and (3) Cognitive offloading or the process of transferring a conceptual 

structure onto the visual representation to reduce cognitive load (e.g., encircling or 

annotating in Figure 1C all female patients who have cytokine expression >= 0.8 before and 

after taking the drug). Though such frameworks are still in early stages of development, they 

provide a first step in developing a theoretical understanding of how visual analytics enables 

analytical reasoning,

Finally, it is pertinent to note that the field of visual analytics has considerable overlap with 

the fields of scientific visualization (concerned with the visualization of real-world three-

dimensional phenomena such as earthquakes) and information visualization (focused on 
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visual representations of abstract data such as relationships). However, while visual 

analytics obviously shares visualization with both fields, it differs from them because it is 

also focused on developing interactive methods that facilitate analytical reasoning and 

making sense of complex information by analysts individually, or in groups [10].

In summary, although many heuristics, principles, and frameworks from cognitive 

psychology, computer science and graphic design have been proposed to inform visual 

analytics, integrated theories for this field have yet to emerge. However, despite the lack of 

such theories, one form of visual analytics, namely networks, have been widely used to 

model and infer biological mechanisms. The next section organizes these attempts, with the 

goal of identifying the properties of networks that make them particularly suitable for 

modeling and inferring proteomic heterogeneity.

APPLICATION OF VISUAL ANALYTICS TO MODEL AND INFER 

BIOLOGICAL MECHANISMS

In recent years there has been a growing realization that most biological phenomena emerge 

from complex relationships among numerous components of a cell such as DNA, RNA, 

proteins, and metabolites. This realization has motivated a shift in the analysis of biological 

phenomena from a reductionist approach of analyzing individual molecules and their 

immediate neighbors, to a holistic approach of modeling and inferring relationships among 

all molecules related to a biological system [27, 28]. Understanding biological processes 

using this holistic approach by integrating the individual molecular associations has become 

a central goal of systems biology [29].

Because the systems biology approach embraces complex relationships among numerous 

molecular components, network analysis has gained primacy as a fundamental approach for 

modeling and inferring biological phenomena [30, 31]. This is because networks enable (1) 

the visual representation of associations between pairs of molecules, in addition to how all 

the pair-wise associations in the network result in a biological system, (2) the quantitative 

analysis and validation of local and global patterns because the representation is a graph and 

therefore has mathematical properties, and (3) interaction with the visualization which helps 

translational teams to explore different aspects of the data with the goal of comprehending 

the overall biological system.

A network consists of a set of nodes, which are connected in pairs by edges [32]. Nodes can 

represent one or more types of entities (e.g., subjects or cytokines), and edges between 

nodes represent a relationship between the entities (e.g., a case has a particular cytokine 

expression value). Unipartite networks have nodes that are of one type of entity (e.g., 

proteins), and the edges represent associations between them (e.g., protein-protein 

interaction). In contrast, Figure 2 shows an example of a bipartite network where nodes 

represent two types of entities, and edges exist only between different types of entities [32] 

(e.g., between subjects and cytokines representing cytokine expression).

Nodes and edges (marks represented as points and lines in a network) can have several 

graphical attributes (channels) to represent different aspects of the data. Nodes can represent 
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different aspects of the data through shape and color (e.g., white and red circles can 

represent cases and controls), and edges connecting nodes can either be undirected (as 

shown in Figure 2), or directed such as an arrow representing directionality (e.g., a 

transcription factor regulates a gene in a biological pathway). Furthermore, edges can be 

weighted to represent continuous values (e.g., thickness of the edge is proportional to the 

normalized amount of cytokine expression as shown in Figure 2), or unweighted to represent 

a binary relationship (e.g., a drug is related to a target). Additionally, edges can be colored 

or have style to represent a type of relationship (e.g., red and blue dashed lines representing 

up and down regulation), or be arced, tapered, or bundled to improve comprehension [33, 

34]. Networks can also be dynamic representing temporal changes (e.g., spread of a virus 

through a social network [35], and laid out in three dimensions to analyze complex data 

which are described in more detail elsewhere [36]. Furthermore, there is a wide range of 

network analytical measures (e.g., modularity and degree centrality), whose description is 

beyond the scope of this paper, but which have been extensively covered in recent reviews 

and books [32].

The above graphical properties of nodes and edges designed to represent different aspects of 

the data have been combined to generate different network types to help model or infer a 

wide range of biological mechanisms. As shown in Table 1, these networks can be 

organized based on four major types of biological relationships:

1. Process networks. This class of networks is designed to directly model biological 

mechanisms typically using a bipartite or multipartite (where nodes can represent 

many types of entities) network. For example, in a gene regulatory network the 

nodes represent genes or transcription factors, and a directed edge either shows 

which gene generates which transcription factor, or which transcription factor 

regulates which gene. This approach has been used to help biologists comprehend a 

biological system as a whole, and to identify regulation phenomena such as NfkB 

signaling [37] or cytokine signaling [38]. As shown in Table 1, signal transduction 

networks [39] and metabolic networks [40] also model biological processes, but the 

nodes and edges have different semantic meaning compared to gene regulatory 

networks. Process networks have been modeled using tools such as Cytoscape [41] 

which can layout the nodes from left to right to reflect the directionality of the 

overall sequence of regulation (see [42], and [43] reviews of network analysis 

tools).

2. Interaction networks. This class of networks is designed to model molecules that 

interact with each other. Because such interactions have no directionality, they are 

typically modeled using a unipartite network with undirected edges. For example, 

in a protein-protein interaction network, the nodes represent proteins and the 

undirected and unweighted edges represent the binary relationship that two proteins 

can interact with each other. Protein-protein interaction networks [44] have been 

used to identify network properties of individual proteins (e.g., hub proteins that 

have many edges because they can interact with many other proteins and are 

evolutionarily important), in addition to global network properties (e.g., densely 

connected clusters representing protein complexes related to a specific function). 
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As shown in Table 1, interaction networks have also been used to model how genes 

interact (via proteins) with each other [45]. Typical tools for such analyses include 

Cytoscape, and STRING [44].

3. Similarity networks. This class of networks is designed to model how entities 

such as molecules or subjects are similar to each other using a statistical measure to 

represent similarity, and a weighted unipartite network to represent the pair-wise 

similarity. For example, in a gene co-expression network the nodes represent genes, 

and the weighted edges represent some statistical measure of similarity between 

gene pairs, such as the Pearson’s correlation of two genes co-occurring across 

subjects (see [46] for an analysis of key similarity measures). Gene co-expression 

networks are therefore not designed to directly model biological mechanisms, but 

rather are used to infer mechanisms based on how genes cluster. For example, a 

gene-gene co-expression network was used to infer the function of five genes with 

cellular processes of cell proliferation and cell cycle that were previously 

uncharacterized [47]. As shown in Table 1, other examples of similarity networks 

include patient-patient similarity networks which aim to reveal how patients are 

similar or dissimilar based on molecular or clinical variables [48], in addition to 

metabolite-metabolite correlation networks [49]. Typical tools to construct such 

networks include Cytoscape and Pajek [50].

4. Affiliation networks. This class of networks is designed to model how one kind of 

entity is affiliated to another kind of entity. This is typically done by explicitly 

representing both entities using a bipartite network with weighted or unweighted 

edges. For example, in a drug-target network, the nodes represent drugs or targets, 

and unweighted edges represent which drug is affiliated with which target. Drug-

target networks [51] have been used to infer new purposes for known drugs. For 

example, researchers have (1) modeled addictive drugs and their targets as a 

bipartite network, (2) included in the network non-addictive drugs that shared at 

least one target with the addictive drugs, and (3) analyzed how the non-addictive 

drugs clustered with the addictive drugs suggesting a new purpose for the non-

addictive drugs. Other types of networks in this class include disease-gene 

networks [52], and species-microbiome networks [53]. Finally, subject-protein 

networks contain nodes which represent subjects or proteins, and weighted edges 

represent protein expression. Such networks have been useful in identifying 

proteomic heterogeneity within subjects (based on how the subjects are clustered), 

and their respective pathways (based on which proteins are enriched in subject 

clusters) [54]. Typical tools to construct such bipartite networks include Pajek.

The above classification of networks that have been used to model and infer biological 

phenomena suggests that subject-protein networks are most useful in analyzing proteomic 

heterogeneity because they explicitly model both subjects and proteins in the same 

representation. This duality can therefore reveal not only how subject clusters are similar or 

different based on their proteomic profile, but also how those subject clusters are related to 

protein clusters, and therefore the possible mechanisms activated or absent in those subject 

clusters.
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Subject-protein networks therefore differ from similarity networks which are unipartite, and 

created by aggregating one side of the bipartite relationship in the data such as patient 

clusters, based on an aggregated similarity score of proteins, or vice versa.

While similarity networks can reveal either subject clusters, or protein clusters, they cannot 

reveal how subjects are related to protein clusters. This relationship is fundamental for 

inferring the mechanisms that are unique or shared among the subject clusters and are 

therefore critical for comprehending proteomic heterogeneity.

Furthermore, as described in the next section, because of their dual-node representation, 

subject-protein networks also enable an integrated visualization and analysis of not only the 

above discussed proteomic profiles, but also how those profiles are associated with subject 

variables (e.g., clinical, demographic, and environmental), and with the protein variables 

(e.g., function and pathways to which they belong). Furthermore, an important property of 

subject-protein networks is the modeling of experimental data, in comparison to modeling 

existing knowledge culled from databases of molecules and their function and interactions.

Despite the power of the above subject-protein bipartite representation, to the best of our 

knowledge there appear to be few attempts to use them for analyzing proteomic 

heterogeneity. The next section therefore aims to address this missed opportunity by 

describing the methodology for modeling and analyzing subject-protein networks, and the 

subsequent section demonstrates how that method has been used to reveal different forms of 

heterogeneity in two proteomic datasets.

METHOD FOR SUBJECT-PROTEIN NETWORK ANALYSIS: DISCOVERING 

PROTEOMIC HETEROGENEITY

Because subject-protein networks have key properties that help translational teams to infer 

proteomic heterogeneity and the respective mechanisms, we have found it useful to use its 

bipartite representation throughout the modeling and analytical phases. This approach is 

different from the commonly-used approach of starting with a bipartite network 

representation but then converting it into a unipartite network [52] of only subjects or only 

molecules. As discussed earlier, this approach cannot reveal how biomarkers and subjects 

co-cluster. Below we describe a three stage approach of analyzing proteomic data using 

subject-protein networks throughout the analytical process.

1. Exploratory Visual Analysis

The first stage is to transform the symbolic relationships (protein expression) between 

subjects and proteins in the data into a visual representation for analysis of heterogeneities. 

As illustrated in Figure 3.1A, to maintain a strong intuition about the relationships across the 

variables, we normalized each variable to range from 0–1 using the min-max range 

normalizing method [54, 55]. This enabled a straight-forward interpretation of the edges in 

the network such as being able to compare the maximum value in one variable, to the 

maximum in another variable (see Appendix A for more details and rationale for the min-

max range normalization method). Next, we identified outliers in each variable using the 

Grubb’s test [56], and discussed with the domain expert (typically a biologist with extensive 
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experience in the domain of the data) whether the identified outliers were biologically 

feasible (and therefore important to preserve in the data), or an error in measurement (in 

which case it was removed, and the min-max normalization repeated).

Next, as shown in Figure 3.1B, the normalized data were transformed into a network 

representation. Similar to Figure 2, nodes represented subjects or molecules, and edges 

represented normalized molecular measurements. Additionally, the size of the nodes was 

made proportional to the sum of the edges that connected to them, which provided a visual 

cue about the variance of the molecular expressions. For example, large nodes represented 

either subjects who had high overall cytokine expressions, or cytokines that were highly 

expressed across the subjects.

Because Euclidean inter-node distance is an effective channel to represent similarity [25], as 

shown in Figure 2.1C, we used a force-directed algorithm called Kamada Kawai [57] in the 

network analysis tool called Pajek [50] to lay out the nodes. This algorithm results in 

pushing together nodes with similar edge weight profiles, and pushing apart those with 

dissimilar profiles. Layouts generated through force-directed algorithms are approximate 

and designed to reveal overall topologies, rather than to show exact distances between 

nodes.

The overall network topology (Figure 3.1D) was then inspected by a domain expert to 

identify the nature of the heterogeneities in the data. Examples of topologies with 

heterogeneities include: (1) distinct clustering where subject clusters are associated with one 

or more molecule clusters, and (2) a core-periphery topology where there exists a network 

core consisting of subjects with high expression of some or all variables, and a network 

periphery consisting of subjects with low expression of the same variables.

2. Quantitative Verification and Validation

As shown in Figure 3.2A, the topology identified in the network was used to guide the 

selection of appropriate quantitative methods for verification and validation. For example, if 

there were distinct clusters in the network, we used modularity [32] to identify the number 

and boundaries of the clusters. However, if there were more complex topologies in the 

network such as a core-periphery, then we used hierarchical clustering [55] which we have 

found to be more successful in distinguishing the core from the periphery [58, 59]. The 

topologies were then compared to 1000 random permutations of the data to test whether the 

patterns could have occurred by chance [54]. Once the subgroups of patients and molecules 

were identified and validated, the cluster boundaries were superimposed onto the bipartite 

network either by making the nodes in a cluster the same color, or by drawing outlines 

around the node clusters to denote the boundaries (Figure 2.2B).

Because the subject clusters were determined based on their molecular profiles, we 

integrated the clinical variables by analyzing which of them was significantly different 

across the clusters. This can be done using univariate statistical methods such as Kruskal-

Wallis [55], or a multivariate analysis using regression to determine for example which 

combination of clinical variables best distinguish one patient cluster from the others. To 

further explore the association of clinical and molecular variables, significant categorical 
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(e.g., gender) and continuous variables (e.g., systolic blood pressure) were superimposed 

onto the original network using color and node size respectively (Figure 3.2C–D).

3. Inference of Heterogeneity and Biological Mechanisms

The ultimate goal of our analytical method was to generate data-driven hypotheses about the 

molecular and clinical heterogeneities. Towards that goal, we used databases such as 

Ingenuity Pathway Analysis [60] and STRING [44] to identify pathways that included some 

or all of the molecules that co-occurred in the identified clusters. This analysis helped the 

translational team to recognize pathways that were either already known to be activated in 

the disease being analyzed, or those known to be activated in another disease, and therefore 

novel for the current disease. If no known pathway was found, then the biologist proposed a 

new pathway that was activated for the patient subgroup identified (Figure 3.3A).

The translational team then integrated the inferred pathways that were significantly 

associated with specific patient subgroups, with the significant clinical variables across the 

subgroups to define a hypothesis for the heterogeneities (Figure 3.3B). The resulting 

heterogeneities and pathways pinpointed hypotheses which could be tested through future 

laboratory experiments, or in other datasets of the same disease.

APPLICATIONS OF THE SUBJECT-PROTEIN NETWORK ANALYSIS METHOD

We have used the above general methodology on several biomedical datasets [54, 58, 59], of 

which two are briefly described here because (1) the respective bipartite networks had 

distinctly different topologies demonstrating the power of the methodology to identify 

important associations in the data, and (2) the hypotheses of heterogeneity and molecular 

pathways generated from these topologies were considered by domain experts to be novel 

contributions worthy of publication. While both of these analyses have been published 

before [54, 58], we briefly present the results here to highlight and compare the kinds of 

topologies and inferences that can be made using subject-protein networks, with the goal of 

identifying their strengths for analyzing proteomic heterogeneity.

(a) Asthma—The asthma network consisted of 83 asthma patients, 18 candidate cytokines, 

and 9 lung function variables (see Figure 3 for the intermediate steps of the analysis, and 

Supplementary Material A for details of the data and steps of the method). The analysis 

(Figure 4) revealed three distinct patient clusters that had a complex but comprehensible 

association with three distinct cytokine clusters: Patient-Cluster-1 and Patient-Cluster-3 

were associated with two separate cytokine clusters and different levels of expression, but 

Patient-Cluster-2 had high expression of two cytokine clusters, resulting in a complex but 

comprehensible inter-cluster relationship among patients and cytokines.

Analysis of the clinical variables revealed that the three patient clusters were significantly 

different based on six lung function variables (e.g., FEV1, a measure of the lung capacity). A 

biologist and pulmonologist integrated the molecular-based clustering with the clinical 

variables and inferred three separate subgroups of patients with activation of different 

biological mechanisms [54]. For example, Patient-Cluster-3 had high co-expression of 

eotaxin and IL-4, significantly lower co-expression of the other cytokines, and significantly 
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lower lung function. The domain experts therefore inferred that these patients with 

significantly lower lung function have a Th2 lymphocyte skewed immune response resulting 

in the secretion of IL-4, which induces eotaxin production by bronchial epithelial cells. This 

in turn results in downstream actions including the activation and recruitment of tissue-

resident eosinophils, a marker of early stage asthma, suggesting a different approach to their 

treatment compared to patients in other clusters.

(b) Rickettsial Infections—The rickettsia network consisted of 49 Mediterranean 

Spotted Fever (MSF) patients, 36 Dermacentor spp.-borne necrosis-erythema 

lymphadenopathy (DEBONEL) patients, and 26 candidate cytokines (see Supplementary 

Material B for details of the data and steps of the method). The DEBONEL infection is 

considered milder compared to the MSF infection, and the goal was to analyze how the 

candidate cytokines were expressed across both phenotypes.

The analysis (Figure 5) revealed a core-periphery network topology where there were 12 

MSF patients with high overall cytokine expression of 5 cytokines in the network core, and 

the remaining patients of both phenotypes with low overall cytokine expression were 

distributed in the network periphery [58]. Furthermore, 7 of the 12 patients in the core had 

evidence of thrombocytopenia, and the 5 cytokines in the core were implicated in pro-

inflammatory pathways. A pulmonologist from the translation team integrated the 

molecular-based clustering with the clinical variables and inferred that the patients in the 

core had an amplification of inflammatory responses, resulting in diffused endothelial injury 

and vascular leakage, and therefore at highest risk of severe disease [58].

Discussion—The above two applications of subject-protein network analysis revealed two 

substantially different types of heterogeneity in proteomic data. The asthma network 

revealed patients characterized by three distinct multivariate combinations of cytokine 

expression. These profiles resulted in three patient clusters with a complex but 

comprehensible relationship with three cytokine clusters. Furthermore, by integrating this 

network topology with the clinical variables, the translation team inferred three distinct 

proteomic heterogeneities, each with their respective mechanisms [54]. In contrast, the 

rickettsia network had one patient group that had high expression of 5 cytokines and low 

expression of the remaining 21 cytokines, and another patient group that had low expression 

of majority of the 26 cytokines. In other words, both patient groups had similarly low 

expression for most cytokines, but one patient group had substantially higher co-expression 

of just 5 cytokines. These two profiles resulted in the core-periphery topology reflecting the 

high overlap between the two groups. This result enabled the translational team to integrate 

four types of information: (1) associations revealed by the bipartite network topology as 

described above, (2) relationship of the topology to the clinical variables of the patients, (3) 

prior domain knowledge that only a small percentage of patients with rickettsial infections 

have severe reactions, and (4) the mechanisms implied by the 5 strongly-expressed 

cytokines. This led the team to infer that only the patients in the core had an amplification of 

inflammatory responses (as evidenced by the 5 highly expressed cytokines also in the core) 

in a phenomenon referred to as a cytokine storm [58]) resulting in a severe form of the 

disease. This phenomenon was largely absent in the periphery patients.
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In summary, the bipartite network layout in both projects revealed a topology consisting of 

all subjects, proteins, and their relationships together in the same external representation. 

This externalization of key elements and relationships in the data into a unified visualization 

was designed to leverage the parallel processing power of the visual cortex to detect and 

comprehend complex patterns among the represented elements and relationships. 

Practically, it enabled the translational team to derive a holistic understanding of how the 

subjects were similar or different based on their proteomic profiles, leading to a cogent 

understanding of the heterogeneity and mechanisms involved.

As we have argued elsewhere [15], such complex differences in molecular profiles across 

subjects are difficult to discover and comprehend from the heatmap representation 

commonly used to analyze bipartite molecular relationships. This is because heatmaps have 

only one degree of freedom on each of the vertical and horizontal axes, allowing a row or 

column (e.g., representing subjects and variables respectively) to be adjacent to a maximum 

of two other columns or rows. This severely restricts the kinds of inter-cluster relationships 

that can be easily discovered. In contrast, networks have two degrees of freedom where 

nodes can move in the x-axis and y-axis simultaneously enabling the discovery of complex 

inter-cluster relationships that are comprehensible as demonstrated by the asthma and 

rickettsia networks.

CONCLUSIONS AND FUTURE RESEARCH

In response to a growing realization that current methods to analyze proteomic data might be 

missing critical aspects of biological complexity such as molecular and phenotypic 

heterogeneity, we explored why and how methods from visual analytics could help 

translational teams overcome this hurdle. A review of the theoretical foundations of visual 

analytics suggests that although there exist many heuristics, principles, and frameworks 

from cognitive psychology, computer science and graphic design that inform visual 

analytics, integrated theories for this field have yet to emerge. Furthermore, a review of how 

network visualization and analysis have been used to model and infer biological phenomena 

helped to identify the properties of networks exemplified by subject-protein networks that 

are particularly useful for the analysis of proteomic heterogeneity. Given the growing 

realization that both target and patient selection play a critical role in the success of clinical 

trials [61], we believe that subject-protein networks could be used to identify subgroups of 

patients (e.g., those with and without activation of the IL-5 signaling pathway) as 

inclusionary criteria in clinical trials that target a specific biological pathway.

Reflecting on our experience in using subject-protein networks to identify heterogeneities in 

complex diseases [54, 58, 59], we have come to appreciate two factors that are critical for 

the successful application of this method. First, we believe that the bipartite representation 

itself should be used consistently to layer different types of information during the 

exploratory, verification, and inferential stages. This representational consistency enables 

translational teams to comprehend the complex associations between the molecular and 

clinical information. While this fact can be derived from cognitive theories related to 

external representations [10, 12], most projects either transform bipartite networks into 

unipartite networks often for the convenience of analysis, or use the bipartite representation 
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as a way to present results of analyses conducted without the use of the representation. 

Second, the use of bipartite networks (and for that matter the use of many other visual 

representations) is dependent on the involvement of a domain expert who is willing to 

complement the dominant paradigm of hypothesis testing (which tends to focus on micro 

phenomena such as single molecules or pathways) with a willingness to explore the macro 

phenomena about a disease, of which heterogeneity is a prime example.

However, bipartite networks currently have several theoretical and practical limitations. 

Theoretically, while subject nodes can simultaneously represent a few variables such as 

gender, blood pressure, and phenotype using color, size, and shape respectively, there is an 

upper limit on the number of variables that can be simultaneously visualized. We have 

explored alternate representations such as Circos [62–64] which overcomes this limitation, 

but which have important trade-offs such as being unable to show patient or protein clusters 

through positioning in the Euclidean plane, an important channel provided by network 

layouts. Therefore, there is a need for integrative frameworks which could for example help 

to determine which combination of visual representations are best suited for different tasks 

such as discovering heterogeneities. Furthermore, force-directed layout algorithms often fail 

to show any patterns in the data resulting in what is colloquially called a “hairball”. In such 

cases, the nodes appear to be randomly laid out, and which are often arbitrarily removed in 

the search for network structure. Therefore we need more systematic, defensible, and 

transparent methods to discover hidden structures in network hairballs.

Another limitation of the method in its current form is that it has been used to model only 

one type of molecular data, namely protein levels in the same network. However, there are 

increasing opportunities and need to conduct multi-omics analysis such as the integrated 

analysis of protein levels, gene expression, and metabolite concentrations across a cohort of 

subjects. Our current research is therefore exploring two natural extensions for analyzing 

such multi-omics data: (a) the bipartite network could represent subject clusters based on the 

primary molecular type such as proteins, and a regression analysis could be used to 

determine which combination of the other omics variables are significantly expressed across 

the subject clusters; (b) the bipartite network could represent subjects and all the molecular 

types using a normalization method that enables each molecular type to have the same 

interpretive range (e.g., 0=lowest value, 0.5=middle value, 1=highest value, for a specific 

molecule across the subjects) to enable comparison across the different omics types. If such 

approaches are successful, the concept of subject-protein networks could be generalized to 

subject-molecule or even subject-variable networks to model a wide range of variables 

ranging from genes to co-morbidities across subjects.

Practically, visual analytical tools tend to be designed for analysts, often requiring 

substantial programming and knowledge to generate appropriate visualizations, and 

therefore limiting the use of the methods by biologists and clinicians. This limitation 

motivates the need for tools that enable biologists and clinicians to explore data on their own 

so that they can better leverage their domain knowledge in interpreting the patterns in the 

data. Furthermore, as visual analytics progressively becomes a necessary part of data-driven 

hypotheses generation, there is a need to include the skills of generating and interpreting 

integrated visual analytics in biomedical informatics curricula. Such theoretical, practical, 
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and pedagogical advances have the potential for accelerating the identification of molecular 

and phenotypic heterogeneities in complex diseases, which is an important step towards the 

design of biomarker-based clinical trials, and for achieving the goals of personalized 

medicine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An example of how symbolic data in a spreadsheet (A) when converted into a visual 

representation (B) leverages the parallel processing abilities of the visual cortex which 

enables faster comprehension of patterns in the data. Because visual processing is parallel in 

nature, it scales to handle large amounts of data. When the same data is sorted by gender 

(C), the visual representation reveals yet another pattern demonstrating how interaction with 

the data is a critical aspect of visual analytics, and can guide the verification of the patterns 

using the appropriate quantitative measures.
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Figure 2. 
An example of a bipartite network where edges exist only between two different types of 

nodes. Here nodes represent either subjects (cases = pink, controls = blue, or cytokines 

(black), and the undirected weighted edges connecting the two represent gene expression.
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Figure 3. 
The three analytical stages of subject-protein network analysis for identifying proteomic 

heterogeneities in complex diseases. These stages are often iterative such as when the 

inference stage triggers new hypotheses about subject-molecular relationships, which in turn 

require quantitative verification and validation.
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Figure 4. 
Results of the subject-protein network analyses showing a complex but understandable 

clustering of patients and their associations with cytokine clusters. The cytokine-based 

clusters were integrated with clinical variables to help infer the proteomic heterogeneities 

and their biological mechanisms.
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Figure 5. 
Results of the subject-protein network analyses showing a core-periphery topology of 

patients with rickettsial infections, and cytokines clusters. The cytokine-based clusters were 

integrated with clinical variables to help infer the patient heterogeneities and their biological 

mechanisms.
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