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Abstract

Traumatic brain injuries are among the most common severely disabling injuries in the United 

States. Construction helmets are considered essential personal protective equipment for reducing 

traumatic brain injury risks at work sites. In this study, we proposed a practical finite element 

modeling approach that would be suitable for engineers to optimize construction helmet design. 

The finite element model includes all essential anatomical structures of a human head (i.e. skin, 

scalp, skull, cerebrospinal fluid, brain, medulla, spinal cord, cervical vertebrae, and discs) and all 

major engineering components of a construction helmet (i.e. shell and suspension system). The 

head finite element model has been calibrated using the experimental data in the literature. It is 

technically difficult to precisely account for the effects of the neck and body mass on the dynamic 

responses, because the finite element model does not include the entire human body. An 

approximation approach has been developed to account for the effects of the neck and body mass 

on the dynamic responses of the head–brain. Using the proposed model, we have calculated the 

responses of the head–brain during a top impact when wearing a construction helmet. The 

proposed modeling approach would provide a tool to improve the helmet design on a 

biomechanical basis.
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Introduction

Traumatic brain injuries (TBIs) are among the most common severely disabling injuries in 

the United States. During 2002–2006, approximately 1.7 million cases occurred in civilians 
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annually.1 A total of 7294 work-related TBI fatalities were identified during 2003–2008, 

which accounted for 22% of all occupational injury fatalities.2 Among the leading causes of 

work-related TBI death, falls and contact with objects/equipment occupied 47%.2 The work-

related TBI fatalities due to fall or contact with objects may potentially be reduced using 

proper helmets. The finite element (FE) method has been widely used to understand the 

injury mechanism of TBI.3 In order for the FE method to generate reliable simulations, the 

models must include realistic geometries, reliable material properties, and physiological 

boundary/loading conditions of the biological systems.

Over the last three decades, tremendous progress has been made in the development of FE 

models in the investigation of injury mechanisms and in the design of head protective 

systems. The human head–brain modeling has progressed from early models with linear 

material properties and simplistic geometries4,5 to the current sophisticated models 

including nonlinear and time-dependent material properties, realistic geometries, and 

detailed anatomical structures.6–8 FE models have been applied in solving practical 

problems. For example, Patton et al.9 developed a detailed FE head model to simulate 

unhelmeted concussion in sport; Tse et al.10,11 developed subject-specific models to 

numerically reconstruct accidents to investigate the relations between traumatic facial 

injuries and brain injuries. Most of these head–brain models are used for frontal impacts and 

do not include the neck. It is widely believed that the effects of the neck and body mass on 

the brain responses during short impact intervals (duration less than 7 ms) are 

negligible;12,13 however, the effects of the neck and body mass have not been quantified.

Afshari and Rajaari14 developed FE models to study the protective effectiveness of the 

helmet during the head–ground impact of a motorcyclist. Teng et al.15 developed FE models 

of a bicycle helmet with foam liners and validated their model with impact tests. Although 

these models included detailed helmet geometries and material properties, they did not 

include realistic anatomical structures of the human head. Yang and Dai16 developed FE 

models to study the ballistic helmet impact; their models included realistic geometries and 

material properties of the helmet and human head. Their models have been further developed 

by Long et al.17 to assess the performance of construction helmets.

The helmets used by construction site workers18,19 are mainly designed for protection from 

objects, usually with a larger mass, that are dropped on the top of helmet in a vertical 

direction.20 Ballistic helmets are mainly used for the protection from object impact or 

penetration, where the object has a smaller mass and impacts with the front of the helmet.16 

The head–helmet stiffness in the top impact may be greater than that in the frontal impact, 

because of the effects of the neck and body mass. Our hypothesis is that the neck and body 

mass will have effects on the head–brain responses for top impact of a construction helmet. 

Our goal is to develop a practical FE model that would be suitable for engineers to optimize 

construction helmet design. The FE model will include all essential anatomical structures of 

a human head (i.e. skin, scalp, skull, cerebrospinal fluid (CSF), brain, medulla, spinal cord, 

cervical vertebrae, and discs) and all major engineering components of a construction helmet 

(i.e. shell and suspension system).
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Method

Head model

The FE meshes of the head–brain–neck complex were developed using a commercially 

available database (Materialise, Leuven, Belgium). The FE models were constructed using a 

commercially available software ABAQUS (version 6.9, Dassault Systèmes, Walthamn, MA, 

USA). The surface scans of the skin (Figure 1(a)), skull (Figure 1(b)), and brain (Figure 

1(c)) were applied to generate the FE meshes in this study. These scans were obtained by 

computed tomography (CT) scans of living subjects and the dimensions of these surface 

meshes represent approximately the 50th percentile of Caucasian males.

The head–brain–neck complex consisted of scalp, skin tissues, skull, cervical vertebrae (C1, 

C2, and C3), discs, brain, medulla, CSF, and spinal cord (Figure 1(d)). The brain tissues 

included the cerebrum, cerebellum, and a part of the brainstem (midbrain and pons) (Figure 

1(a)). The spinal cord included the surrounding pia mater. The CSF was considered to cover 

the entire external surface of the brain, medulla, and the spinal cord (Figure 1(d)). The discs 

contained both annulus fibrosus and nucleus pulposus. Within each of these components (i.e. 

brain, medulla, CSF, spinal cord, and discs), the material was considered homogeneous. The 

connections between the tissues were assumed to be perfect bond, without relative sliding 

during deformation. The CSF had a thickness of 1.3 mm and was constructed using 

membrane elements (element: M3D4), whereas all other components were constructed using 

three-dimensional (3D) continuous elements (element: C3D4). The entire head model 

contains 34,970 elements and 72,185 degrees of freedom (DOFs).

Helmet and falling object models—The helmet model consisted of a shell and a 

suspension system. The shell geometry was obtained by scanning a representative, 

commercially available construction helmet (Model V-Gard; MSA Safety Inc., Pittsburgh, 

PA, USA). The geometry of the suspension system was constructed using commercially 

available software (Autodesk, Inc., San Rafael, CA, USA). The 3D geometries of the shell 

and suspension were then imported into ABAQUS to generate FE meshes (Figure 2(a) and 

(b)). The model of the helmet shell was constructed using shell elements (element: S4), 

whereas that of the suspension system was generated using 3D continuous elements 

(element: C3D8R). The suspension system was constrained to the helmet shell at four plug 

locations. The head–brain–helmet complex model is shown in Figure 2(c) and (d). The 

falling object was cylindrical (diameter: 28.5 mm, length: 100 mm) and was modeled using 

3D continuous elements (element: C3D8R).

Material properties

Mechanical properties of the hard and soft tissues—The scalp, skull bone, cervical 

discs, and vertebral bone were considered to be linearly elastic. The elastic modulus and 

Poisson’s ratio of the scalp were assumed based on the experimental data by Galford and 

McElhaney21 and the viscous deformation was neglected. The material properties of the 

cervical discs were based on the test data by Schmidt et al.;22 the effects of the interstitial 

fluid were neglected. The same elastic material properties were applied to the skull and 
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vertebral bone.23 The CSF was considered as a weak, elastic, and nearly incompressible 

medium.8

The skin, brain, medulla, and spinal cord were considered to be hyperelastic and 

viscoelastic. The finite deformation formulation was used in describing the constitutive 

models due to large tissue deformations. The hyperelastic properties of the skin, brain, 

brainstem, and spinal cord tissues were modeled using a generalized Mooney–Rivlin 

equation, which is governed by a strain energy potential

(1)

where Ī1, Ī2, and J are the first and second deviatoric strain invariants and the volumetric 

ratio, respectively; C10, C01, C11, and D1 are the material parameters.

The elastic stress in the tissues (Cauchy stress), , is related to the strain energy density by

(2)

where Fij and Cij are the tensors of the deformation gradient and the right Cauchy–Green 

deformation, respectively.

Neglecting the volumetric viscoelastic deformation, the shear viscoelastic properties of the 

tissues were determined by three-term Prony series

(3)

where gi and τi (i = 1, 2, 3) are shear and relaxation time parameters, respectively.

The total tissue stress (Cauchy stress), σij(t), was composed of an elastic stress [ ], 

representing instantaneous tissue response, and a viscous stress ( ), representing 

delayed tissue response

(4)
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where  is the elastic stress deviator, which is defined as  with δij 

being the Kronecker delta.

The nonlinear elastic properties of the skin were determined using the in vivo test data of 

human skin by Hendriks et al.;24,25 the viscoelastic properties of the skin were determined 

based on Wu et al.26 The nonlinear elastic and viscoelastic parameters of the brain were 

determined based on the dynamic test data by Rashid et al.27 The viscous properties of the 

medulla were assumed to be identical to those of the brain, whereas the nonlinear elastic 

parameters were determined based on the data by Arbogast and Margulies.28 The nonlinear 

elastic and viscoelastic properties of the spinal cord were determined based on the data by 

Bilston and Thibault29 and Mazuchowski and Thibault.30 All material parameters of the 

hard and soft tissues are listed in Table 1.

Mechanical properties of the helmet and falling object—The helmet shell was 

considered to be made of typical acrylonitrile butadiene styrene (ABS) plastic.31 The 

suspension’s top belt side ring was considered to be of high strength polymers. The front 

cushion of the suspension system was of soft foam material. The falling cylinder was 

considered to be made of steel (E = 210GPa, ν = 0.3, and specific density = 7.8) and had a 

mass of 2 kg. All these materials were considered to be linearly elastic and the material 

parameters are listed in Table 1.

Simulation procedures

Two series of numerical simulations were performed in this study. The first series of the 

numerical tests was to calibrate and verify the head–brain–neck model using the 

experimental data by Nahum et al.32 The second series of numerical tests was to investigate 

the responses of the head–brain to the impact of an object on top of the helmet. Of special 

interest was an evaluation of the effects of the neck and body mass on the responses of the 

head–brain during the impact.

Calibration and verification of the head–brain model—The numerical test was to 

mimic the set-up of the cadaveric tests by Nahum et al.,32 as illustrated in Figure 3. The 

head model was tilted forward, such that the Frankfort anatomical plane was inclined by 45° 

to the horizontal plane. The object was impacted at the head at the frontal bone and in the 

mid-sagittal plane. A point mass of 10 kg was connected to the vertebral bone at the neck, 

simulating the portion of the body mass participating in the dynamic responses. The 

impacting object was cylindrical and had a diameter of 50 mm and a height of 30 mm. The 

impact force, which was measured in the experiment,32 was applied uniformly at the back of 

the cylindrical impact pad (Figure 3). The simulations were conducted in a force-controlled 

manner; no boundary conditions were applied on the model. In the impact tests by Nahum et 

al.,32 the intracranial pressures were measured at the frontal, parietal, occipital, and posterior 

fossa locations of the brain, which will be used to calibrate the current FE model. The 

pressures in the brain tissues at these four locations as well as the head accelerations 

calculated using the proposed model will be compared with those measured experimentally.
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Simulations of top impact on the helmet—The helmet was fitted onto the head due to 

its own weight. Initially, the cylinder was at a height of 3.27 m above the helmet top. For t > 

0, the cylinder was released and fell due to gravity; it reached a speed of 8 m/s just before 

impacting with the helmet (Figure 4). The falling object made the contact with the helmet 

shell at the center. The simulations were performed using an implicit dynamic procedure.

In order to investigate the effects of the neck and body mass on the head–brain responses 

during the impact, three numerical tests with different neck boundary conditions were 

performed. In impact simulation A (Figure 4(a)), no constraint boundary conditions were 

applied and the effects of the neck on head–brain responses became negligible. In impact 

simulation B (Figure 4(b)), a point mass of 10 kg, which represented the effects of the body, 

was connected to the vertebral bone at the neck, whereas no boundary condition was 

applied. In impact simulation C (Figure 4(c)), the neck was constrained in all three 

directions, whereas the soft tissues (spinal cord and skin tissues) at the neck were 

constrained only in the vertical direction. Consequently, the soft tissues at the neck remained 

in a flat plane, while its cross-sectional shape could vary during the impact deformation.

None of simulations A, B, or C represents true physiological conditions. In simulation A, the 

effects of the neck were completely ignored. The boundary at the neck was over-constrained 

in simulation C, whereas it was under-constrained in simulation B. The boundary at the neck 

for the real physiological conditions may be between those for simulations B and C. 

Therefore, the solutions obtained from simulations B and C may represent the upper and 

lower bounds of the true solution. If the difference between the solutions of simulations B 

and C is small, the true solution can be reasonably estimated using the average of those for 

simulations B and C.

Head injury criteria—Severity of the impact for each of the numerical tests has been 

evaluated using the head injury criteria (HIC),33,34 which is defined by

(5)

where a is the resultant head acceleration measured in g and t0 and t1 are the beginning and 

end of the time interval, respectively. The time interval used for the HIC calculation is 

required to be less than 36 ms. HIC score was calculated by an iterative search to find the 

time interval (t0, t1), at which the HIC score is maximized.

An HIC score of 1000 is considered as the “safe” limit for human tolerance, based on the 

studies of sports surfacing and shock attenuation performance.35 The relationship between 

HIC scores and the probability of head injuries has been established and widely used in the 

automotive industry to estimate the injury risk.36,37 An impact with an HIC score of 1000 

will represent less than 3% chance of getting a critical or fatal head injury.37
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Results

Model calibration and verification

The responses of the head and brain during impact that were predicted using the current 

head–brain FE model (Figure 3) were compared with those measured in Nahum et al.’s32 

experiments (Test #37 in Nahum et al.32). The calculated time histories of the contact force 

between the impact cylindrical pad and the head and the corresponding head accelerations 

are compared with the experimental data, as shown in Figure 5(a) and (b). The contact force 

calculated via the FE model is consistent with the test data, except for the first 0.5 ms, where 

the curve for the test data is smooth, whereas the calculated curve shows some jitters. This is 

due to the process of the establishment of the initial contact between the impacting object 

and front of the head.

The comparisons of the calculated and measured intracranial pressures32 during the impact 

at frontal, posterior fossa, parietal, and occipital positions are shown in Figure 6(a)–(d), 

respectively. There are two measurements for the occipital pressures32 and both are shown in 

Figure 6(d). In the FE modeling, the mechanical pressures in the brain tissues were 

considered as the intracranial pressures.

Responses of the head and brain to impact when wearing a helmet

The time histories of the contact force between the scalp and the helmet suspension during 

the impacts with helmet are shown in Figure 7(a). The peak contact force was found around 

2.85 ms and to be 6119.9, 7328.7, and 7345.8 N for impact simulations A, B, and C, 

respectively. Correspondingly, the time histories of the head acceleration magnitude during 

the impacts are shown in Figure 7(b). The head accelerations reach maximum around 3.65 

ms and peaked at 1350.9, 1244.9, and 1188.1m/s2 for impact simulations A, B, and C, 

respectively. The head accelerations are predominantly in the vertical direction.

The time histories of the brain pressures at the parietal and posterior fossa locations are 

shown in Figure 7(c) and (d), respectively. The maximal and the minimal brain pressures 

during the impact were found at the parietal and posterior fossa regions, respectively, and 

around 3.65 ms, when the accelerations reached the maximum. The distributions of the brain 

pressures at t = 3.65ms, when the extreme values occurred, for impact simulations A, B, and 

C are shown in Figure 8(a)–(c), respectively.

Based on the time histories of the head accelerations (Figures 5(b) and 7(b)), HIC scores for 

the calibration and impact simulations were calculated and are shown in Table 2. The time 

intervals (t0 and t1) used to calculate the HIC score, together with the maximal accelerations 

and impact forces for the numerical tests, are also shown in Table 2.

Discussion and conclusion

For biomedical engineering applications, it is difficult to precisely account for the effects of 

the neck and body mass on the dynamic responses of the head–brain in FE modeling,38 

because FE modeling usually does not include the entire human body. In this study, we have 

established reasonable upper and lower bounds of the precise solutions for this particular 
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problem. The stiffness of the neck for a real person should be higher than that for model B 

(Figure 4(b)), whereas lower than that for model C (Figure 4(c)). Our analysis indicated that 

the first peaks of the acceleration and impact force of the head obtained using the model B 

differ by less than 1% from those obtained using model C. Therefore, a good estimation for 

the precise solution is obtained by an average of the solutions obtained using models B and 

C (Table 2).

Using the proposed approach, the estimated HIC score, peak acceleration, and peak contact 

force for the impact with helmet are calculated to be 213.8 s, 1206.5m/s2, and 7337.3 N, 

respectively (Table 2). If the effects of the neck and body mass are neglected (i.e. model A), 

HIC score and the peak head acceleration are overestimated by 33% and 12%, respectively, 

whereas the peak impact force is underestimated by 17%. The effects of the neck and body 

mass on the second peaks of the acceleration and impact force are more dramatic (Figure 7); 

however, these parameters are not important for the injury criterion.

Our analysis indicated that exclusion of the effects of the neck and body mass not only 

caused an overestimation by 6%–12% of the peak brain pressures at the parietal and 

posterior fossa locations (Figure 7), but also varied the patterns of the time histories of the 

brain pressures. For the simulations with the neck effects (models B and C), the parietal 

pressure tends to reverse from positive to negative and reaches a bottom around 7.5 ms; the 

posterior fossa pressure tends to reverse from negative to positive and reaches an apex 

around the same time. However, when the neck effects are neglected (model A), the brain 

pressures did not reverse and tended to monotonically reduce to zero with an increase in 

time.

The comparison of the model prediction with the tests in the calibrations demonstrated good 

agreement between the predicted brain pressures and the experimental measurements at all 

four locations (Figures 5 and 6) and thus confirmed the reliability of the proposed head–

brain model. The maximal head acceleration and HIC score are predicted to be 1905m/s2 

and 775 s, compared to the corresponding experimental data of 2000m/s2 and 744 s, 

respectively. The difference between the calculated and the experimentally measured 

parameters values is within 5%.

The CSF plays an important role in absorbing the dynamic energy transmitted to the brain 

during the impact. The effects of the CSF are clearly demonstrated in the predicted brain 

pressures. When the CSF was included, the predicted frontal pressure goes to the peak and 

then reduces to zero monotonically (Figure 6(a)); however, when the CSF was not included, 

the frontal pressure would go to the negative region after reaching the peak and gradually 

reduce to zero after several cycles.17,32 Nevertheless, the CSF seems to have little effects on 

the first peak magnitudes of the predicted brain pressures.17

The HIC score for the top impact with helmet was estimated to be 214 (Table 2) using the 

proposed model, and it is comparable to the HIC(d) (226) (normalized HIC) whereas it is 

substantially greater than the raw HIC score (79) obtained by a previous study.17 These 

differences may be caused by the difference in the modeling of the helmet suspension 

system. The material and structural variations of the suspension system will substantially 
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vary the performance and characteristics of a helmet. In this helmet model, representative 

material and structural properties have been assumed. For practical applications, the helmet 

suspension systems need to be more precisely modeled, real structural and material 

properties should be applied, and the models need to be calibrated with experimental data.

In this study, the cervical discs were considered as isotropic and linearly elastic. The cervical 

discs are complex in mechanical properties; they are not only biphasic, composed of a solid 

and a fluid phase, but also anisotropic due to the reinforce effects of the distributed collagen 

fibers within the tissues.39 If the major concern is the injury mechanism of the cervical discs, 

it is necessary to know the loading share between the fluid and solid phases; in that case, the 

interstitial fluid and collagen become non-negligible effects. However, in this study, we need 

to only know the mechanical response of the cervical discs when subjected to shock load; 

we are not interested in the detailed stress/strain distributions within the tissues. In this 

scenario, it is reasonable to simplify the cervical discs as isotropic and linearly elastic.

Typical falling objects in construction site are small and have a mass less than 2 kg, such as 

hand tools, bricks, bolts. The mass and dimension of the falling object simulated in this 

study are representatives for real situations. In the simulations, we selected an impact 

velocity of 8 m/s for the falling object, which is approximately correspondent to a fall height 

of 5 m, assuming a worker has a height of 1.8 m. This height is typical at construction sites 

of residential buildings in the United States. The purpose of this study is to develop a model; 

once the model is validated, it can be applied to analyze or numerically reconstruct the 

accidents in construction sites.

In summary, we proposed an approach to estimate the effects of the neck and body mass on 

the dynamic responses of the head–brain during impacts. Using the proposed approach, we 

have calculated the responses of the head–brain during a top impact when wearing a 

construction helmet. The proposed modeling approach would make it possible to improve 

the helmet design on a biomechanical basis.
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Figure 1. 
FE model of the human head: (a) brain, medulla, and spinal cord; (b) skull, vertebrae, and 

discs; (c) scalp and skin tissues; and (d) cross-sectional view of the entire head model.
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Figure 2. 
FE model of the head–helmet complex: (a) helmet shell, (b) helmet suspension system, (c) 

cross-sectional view in the sagittal plane, and (d) cross-sectional view in the coronal plane.
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Figure 3. 
Set-up of the numerical calibration test. A concentrated mass of 10 kg was attached to the 

neck bone; a distributed load was applied on the back of the cylindrical impact pad; no 

boundary constraints were applied to the model during the impact.

Wu et al. Page 14

Proc Inst Mech Eng H. Author manuscript; available in PMC 2017 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Set-up of the helmet impact simulations with different boundary conditions at the neck: (a) 

model for impact simulation A: was free, (b) model for impact simulation B: a concentrated 

mass of 10 kg was attached to the neck bone; no boundary constraints were applied, and (c) 

model for impact simulation C: the neck bone was fixed in all three directions. A cylindrical 

object fell from a height of h = 3.27m and impacted with the helmet at a speed of 8 m/s.
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Figure 5. 
(a) The comparison of the impact force and (b) head acceleration calculated using the FE 

model with those measured in the experiment.32
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Figure 6. 
The comparison of the brain pressures at the (a) frontal, (b) posterior fossa, (c) parietal, and 

(d) occipital locations calculated using the FE model with those measured in the 

experiment.32
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Figure 7. 
The time histories of the impact force, acceleration, and brain pressure for impact 

simulations A, B, and C: (a) vertical impact force, (b) acceleration magnitude, (c) parietal 

pressure, and (d) posterior fossa pressure.
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Figure 8. 
The distributions of the brain pressures at t = 3.65ms: (a–c) the results obtained in the impact 

simulations A, B, and C, respectively. The maximal and minimal pressure values occurred in 

the parietal and posterior fossa regions, respectively.
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