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Abstract

Inferring disease transmission networks is important in epidemiology in order to understand and prevent the spread of
infectious diseases. Reconstruction of the infection transmission networks requires insight into viral genome data as well as
social interactions. For the HIV-1 epidemic, current research either uses genetic information of patients’ virus to infer the
past infection events or uses statistics of sexual interactions to model the network structure of viral spreading. Methods for a
reliable reconstruction of HIV-1 transmission dynamics, taking into account both molecular and societal data are still lacking.
The aim of this study is to combine information from both genetic and epidemiological scales to characterize and analyse a
transmission network of the HIV-1 epidemic in central Italy. We introduce a novel filter-reduction method to build a
network of HIV infected patients based on their social and treatment information. The network is then combined with a
genetic network, to infer a hypothetical infection transmission network. We apply this method to a cohort study of HIV-1
infected patients in central Italy and find that patients who are highly connected in the network have longer untreated
infection periods. We also find that the network structures for homosexual males and heterosexual populations are
heterogeneous, consisting of a majority of ‘peripheral nodes’ that have only a few sexual interactions and a minority of ‘hub
nodes’ that have many sexual interactions. Inferring HIV-1 transmission networks using this novel combined approach
reveals remarkable correlations between high out-degree individuals and longer untreated infection periods. These findings
signify the importance of early treatment and support the potential benefit of wide population screening, management of
early diagnoses and anticipated antiretroviral treatment to prevent viral transmission and spread. The approach presented
here for reconstructing HIV-1 transmission networks can have important repercussions in the design of intervention
strategies for disease control.
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Introduction

Understanding the dynamics of infectious disease spreading

demands a holistic approach [1]. Social interactions as well as

genetic diversity of the transmitted viral agent among individuals

dictate the dynamics of infectious disease spreading in a

population. Hence, the infection transmission can be investigated

at different spatio-temporal scales, from molecular to epidemio-

logical levels.

At the epidemiological level, scientists have been trying to study

the spread of infectious diseases using social or sexual contact

networks, modelling the population as a complex network (where

nodes are individuals and links are relationships) and running

models of disease spread on top of that. In the case of type HIV-1

infection, these models have been used to understand the

complexity of HIV-1 transmission and spread of viral drug

resistance [2–8]. However, these models require estimation of

many parameters such as frequency of sexual actions, transmission

probability per action, and parameters that shape the network

structure. For example, even though there is uncertainty about the

network structures formed by social/sexual contacts, the network

structure of ‘men who have sex with men’ (MSM) is assumed to be

approximately scale-free with an exponent value in the range from

1.5 to 2.0 [6,9]. Therefore, the degree distribution follows a

power-law with a scaling factor equal to the exponent. A power-

law distribution implies that low-degree nodes are many, whereas

high-degree nodes are few [10,11]. These assumptions however,

are subject to change in different communities and cultures.

Therefore the primary assumptions on the network structure and

the choice of the uncertain parameter values to build a sexual

contact network are still controversial.
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Phylogenetic analysis has been employed to study the evolution

of HIV-1 both at the population and intra-host level during

different stages of the disease, using molecular sequences [12,13].

Phylogenetic theory exploits genetic information of viruses and

other species using mathematical methods of molecular evolution

[14,15]. Phylogenetic trees show the evolutionary relationships

among genetic sequences in a population, where topology and

branch lengths can be estimated via likelihood-based, parsimony-

based or distance-based methods. Genetic isolates are placed at

the leaves of these trees and the internal nodes are considered as

hypothetical ancestors under a species’ coalescence paradigm.

Phylogenetic trees can be used to infer transmission clusters

[16,17], as well as temporal and spatial dynamics of the species’

evolution, in a so-called phylodynamic framework [18,19]. However,

phylogenetic methods may not necessarily accurately represent the

evolution of species and transmission of disease, both due to strong

assumptions of the underlying mathematical models, and due to

noise in the data. For instance, evolution of species is not always

reducible to a tree form and a hierarchical tree may not represent

the evolution of a species, such as in the case of recombination

events [20]. Moreover, the agreement between phylogenetic

reconstruction and epidemiological evidence of transmission

events can be decreased due to other factors: in the case of

HIV-1 infection, these include the long period of infectivity and

convenient sampling (i.e. biased, non-uniform sampling in terms of

locations or periods) [20,21,22].

This work proposes a new approach to combine information

present at both genetic and epidemiological levels in order to

obtain a more comprehensive picture of HIV-1 transmission. A

filter-reduction method is applied to infer a meta-network of HIV-

1 sequences based on the corresponding patient’s demographic

and medical information. For this meta-network, we use the term

contact network as it contains all the contacts that are socially and

sexually possible contact between infected individuals in the

population. In contrast to standard network methods, no

assumptions are being made on the network structure. An

intersection of such contact network with a genetic distance

network is subsequently computed, from which a hypothetical

transmission network is inferred. The method is then applied to

identify the HIV-1 subtype B transmission networks in central

Italy. The structure of the inferred networks for the MSM and

heterosexual risk groups is in agreement with the recognized

network structures for social and sexual contacts in the HIV-1

infected population [23]. Moreover, highly connected patients in

the network are found to be significantly correlated with longer

periods without antiretroviral treatment.

Considering population level data beside genomic data is

essential for understanding the true nature of infectious disease

transmission networks, as was alluded to by DeGruttola et al. [24].

The approach presented here is, to the best of our knowledge, the

first attempt to use both genetic and social information in order to

characterise transmission networks for HIV-1.

Results

Characteristics of the study population
A dataset of 895 HIV-1 infected patients from a regional study

cohort in Rome, Italy (see methods) was used in this study. Patients

were divided into two separate groups according to their viral

subtype: B and non-B subtype. One-hundred-twenty-two (13.5%)

patients with a non-B subtype were excluded from the analysis. Of

the 773 (86.5%) subtype B patients, 118 (15.3%) patients who had

an unknown/other entry for the transmission group were also

excluded from the analysis. Of the 655 patients included in the

analysis, 65.0% were males and 35.0% females; HIV transmission

risk categories were 27.0% MSM, 39.0% heterosexual contacts,

33.0% injecting drug users (IDU), 1.0% infected through blood

products; 84.4% were Italian-born, 10.4% non-Italian born, while

for 5.2% nation of birth was unknown. The median interquartile

range (IQR) age was 48 (43–53) years; the median (IQR) calendar

year of estimated seroconversion, an estimate of the start of the

infection, was 1996 (1993–2000); the median (IQR) calendar year

of viral genotyping was 2004 (2001–2007). At the time of viral

genotyping, the overall median (IQR) plasma viral load was 4.1

log10 HIV RNA copies/ml (3.5–4.7). The percentage of therapy-

naive patients was 19.3%, whilst 80.7% were antiretroviral

therapy-experienced. The median (IQR) time from the estimated

seroconversion date to the first viral sequence date was 8 (4–11)

years. In the subset of therapy-experienced patients, the median

(IQR) time from the estimated seroconversion date to the first

therapy date was 3 (1.25–5) years, and the median (IQR) time

passed from the first therapy date to the viral sequencing date was

4 (1–8) years.

Filter-reduction method and network construction
We proposed a new filter-reduction method to infer networks of

HIV infected patients, taking into account patients attributes and

parameters from literature. The filter-reduction method was

defined as follows. Consider a social-sexual network as a graph/

network composed of N nodes, V(N). We started with an

undirected fully-connected network of V(N) in which there is a

link between each pair of nodes. A set of filters F was applied to the

fully-connected network, reducing the number of edges through

the filtering process. Depending on the data and type of the

network the filtering process could vary. For building the network,

we used HIV-1 sequence data that were annotated with

demographical information and we applied a set of social filters

(Table 1). The social filters were basic epidemiological criteria such

as belonging to a similar age range (filter 1) and similar

transmission risk group (filter 2), and the effect of treatment in

reducing the transmission probability (filter 3). A direct connection

between every two nodes that did not satisfy the epidemiological

criteria was removed from the network. Table 1 summarizes the

specific filtering rules used for reduction of the associated contact

network (For details on the filtering process see Material and

Methods). An undirected contact network is derived through the

filtering process. For the heterosexual population a bipartite

network is derived. This is an effect of rule b in of the second filter,

in which we consider two populations with different genders, males

(g1) and females (g2), and only links between different genders are

allowed. A seroconversion function is applied to convert the

undirected network to a directed one. The seroconversion function

is based on patient’s estimated seroconversion date and assigns the

direction from a patient with an older seroconversion date to a

patient with a more recent seroconversion date. The function

results in having no directed cycles in the networks, meaning that

there is no way to start at some vertex v and follow a sequence of

edges that loops back to v again. Hence, the inferred network is a

directed acyclic graph (DAG), a directed graph with no directed

cycles [25]. DAGs are suitable to study and model processes in

which information flows in a consistent direction through the

network such as disease transmission [26,27]. In the case of HIV-

1, a ‘‘super-infection’’ may rarely occur, in which a patient is

infected twice with two different virus strains (from different

donors). However, it is highly unlikely that a patient is infected

back with a variation of its own virus. In DAG, it is possible that

nodes receive more than one incoming-link (the case of super-

infection) but, since there are no directed cycles in the network, a

Reconstruction of HIV-1 Transmission Networks
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node would never be re-infected with a variation of its own virus.

Figure 1 shows the workflow for constructing networks using the

filter reduction method.

Analyzing characteristics of the contact network
To analyse the inferred networks we fist visualized the networks

and plotted the degree distributions. Figure 2 shows the network

for the entire population that consists of three sub-networks

corresponding to the major HIV-1 transmission risk groups

(MSM, heterosexual, IDU). There were a few patients with

‘‘blood product’’ mode of infection which were isolated from other

risk groups. We analyzed the degree distribution of the network as

a whole (i.e., for all risk groups) and the degree distribution of each

sub-network separately. The cumulative degree distributions of the

contact networks of the total-, in- and out-degrees are plotted (log

scale) and shown in Figure 3. In-degree is the number of incoming

edges to a node and out-degree is the number of outgoing edges

from a node. The total degree is the sum of in- and out-degrees.

The degree distributions presented in Figure 3 are based on

social and demographical information and are intermediate results

before incorporating the genetic data. From the distributions

however, one can see that the degree of highly connected patients

in IDU is significantly higher than those in MSM and patients

acquiring infection through heterosexual contacts. To further

investigate the structural differences between networks of the three

risk groups, we measured additional network properties including

fraction of removed edges, average degree, average path length,

global and local clustering coefficients and assortativity, (Table 2).

The percentage of removed edges from the MSM and

heterosexual networks is almost twice as the percentage of

removed edges from the IDU network. This implies that the

MSM and heterosexual contact networks are sparser than the IDU

and although the same filters were applied to all risk groups, the

nodes in the IDU contact network remains more connected and

the network structure is more compact. These observations

together with the discrepancies in the degree distributions

(Figure 3) and measurements in Table 2 implies that there are

structural differences in the contact networks and therefore HIV-1

transmission dynamics between the IDU, MSM and heterosexual

populations. The higher degree in the IDU population can be

understood from the fact that the IDU was one of the first risk

groups affected by the HIV epidemic in Northern Italy and had

the highest risk of HIV infection in 1985 [28].Moreover, needle

sharing among IDU has a much higher probability of transmission

per single act and therefore it is plausible that, besides the

differences in trend over time and access to treatment over time

regarding the epidemics among the different risk groups, the mode

of transmission within IDU by itself might also have contributed to

the observed higher degree of distribution. The heterosexual

population has a bipartite contact network and therefore the

clustering coefficients are zero. Bipartite networks are representa-

tive of heterosexual contact networks for sexually transmitted diseases

(STDs) such as HIV/AIDS, since the infection only transmits

between males and females and not between individuals with the

same gender [29].

We used community detecting methods based on the leading

eigenvector of the community matrix to identify community

structures in the network [30]. The method helps to identify parts

of a network where nodes are densely connected to each other but

are sparsely connected to other nodes in the network. The results

confirmed the existence of two major communities in the MSM

and Heterosexual risk groups (Figure S1). We explain the

appearance of these communities from an epidemiological point

of view. Formation of communities in a network is due to a local

Figure 1. Workflow for constructing networks using the filter-
reduction method. Starting from an undirected fully-connected
network of all HIV sequences in the data, a set of social/sexual filters is
applied to obtain an undirected filtered network. To convert the
network to a directed one a seroconversion function is applied, deriving
a contact network.
doi:10.1371/journal.pone.0046156.g001

Table 1. Social/sexual filters for constructing a contact
network.

For patients1 and 2:

Filter 1 If (maximum_age_range,|age12age2|) connection = 0

Filter 2 Rule a: If (r1 is not equal to r2) connection = 0
Rule b: If(r1 = r2 = ‘‘Heterosexual’’ & g1 = g2) connection = 0
Rule c: If ( r1 = ‘‘Blood products’’ or r2 = ‘‘Blood products’’)
connection = 0

Filter 3 If (t1 is older than s2) connection = 0
If (t2 is older than s1) connection = 0

Rules for social/sexual filters. gender (g), risk group (r), therapy date (t),
estimated seroconversion date (s).
doi:10.1371/journal.pone.0046156.t001

Reconstruction of HIV-1 Transmission Networks
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increase in the connectivity between nodes in some parts of the

network. Knowing that the connectivity of patients within a

community is higher than between communities suggests that

people residing in one community had a higher possibility of

having contacts and infecting each other. To explore the possible

reasons of a higher chance of having infection transmission events

between people residing in one community, we mapped the

patient’s estimated seroconversion years to colour codes from cyan

to red. An interesting trend was observed suggesting that the first

community (blue to green) contains patients who were infected

from 1980 to the late 1990s, while the second community (yellow

to red) contains patients who were infected more recently, after the

year 2000 (Figure 4). The temporal separation of the communities

may reflect the influence of the introduction of more potent and

effective anti-retroviral therapies during the second half of the 90 s

[31]. The observed trend in the estimated seroconversion year also

showed that the HIV-1 incidence in the IDU population

decreased over time after the late 80 s (see Figure 4). This is

inline the observed decrease in spreading of HIV among the IDU

population in Italy after the 80 s as reported by Rezza et al. [32].

However, the trend of HIV infections through different modes of

transmissions in our data set (see Figure S2) did not necessarily

respect the overall Italian trends [33,34] and a more representative

sample is needed if we want to extend the results from the county/

regional to the national scale.

Next we studied the relationship between the untreated

infection period and the connectivity of the patients in the

network. For that we defined an untreated infection period (UIP)

for each patient which is computed by:

UIP~first available therapy date{estimated seroconversion date

UIP is the period that the patient was infected but had not started

antiretroviral therapy yet (either because of being unaware of

infection or not fulfilling the immuno-virological criteria to be

eligible for treatment or not willing to be treated). We detect a

correlation between the untreated infection period and the

number of out-going edges from a node (out-degree) in the

network. The correlation is strongest for the MSM population

with a high statistical significance (r = 0.90, 95% confidence

interval, CI (0.87, 0.93), p-value,2.2e-16), where r is the Pearson’s

product-moment correlation. The correlation was less strong but

still highly significant for the heterosexual contacts (r = 0.74, 95%

CI (0.68, 0.79), p-value,2.2e-16), IDU (r = 0.86, 95% CI (0.83,

Figure 2. The contact network. Visualization of the contact network consisting of three sub-networks corresponding to the major HIV-1
transmission risk groups: MSM (yellow), Heterosexual (red), and IDU (green).
doi:10.1371/journal.pone.0046156.g002
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0.89), p-value,2.2e-16) and the overall population (r = 0.83, 95%

CI (0.81, 0.85), p-value,2.2e-16). The UIP versus the out-degree of

nodes is plotted in Figure 5 and one can clearly see that nodes with

higher out-degree tend to have longer UIPs. The inferred networks

are direct outcome of the filters we applied. To test the effect of

filters on the detected correlations, we rebuilt the networks by each

time removing one filter from the filtering process and measured

the correlations again. We see that removing the age and risk

group filters does not significantly change the correlations. By

removing the treatment filter, the correlations decrease but are still

statistically significant (data shown in Table S1).

Constructing the hypothetical transmission networks
To construct a hypothetical transmission network we coupled

information from both genetic and epidemiological scales. To this

aim, we computed the intersection of the contact network with a

genetic network which was obtained from a genetic distance

matrix [16,35]. The genetic distance matrix gives a weighted fully

connected network which connects all sequences with each other

using their genetic distances as weights (see Dataset S1). The

connection between every two nodes with a genetic distance

higher than a certain threshold was removed from the network.

We used the threshold value of 0.04 nucleotide substitutions per

site and derived a genetic network (See Figure S3 and Figure S4).

Figure 3. Degree distributions of the contact network. The cumulative total- (black), in- (blue), and out-degree (pink) distributions for the
entire network (all risk groups), MSM, Heterosexual, and IDU risk groups plotted in log-log scale.
doi:10.1371/journal.pone.0046156.g003
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The threshold of 0.04 corresponds to the 15th percentile of the

overall distance distribution measured through the phylogenetic

tree. The sense is that all retained links include sequences that are

closer than the 85th percentile of the all pairwise comparisons (see

[17] for a discussion on the optimal threshold). Additionally, we

measured the fraction of removed edges from the genetic network

by varying this parameter in a range from 0.02 (1st percentile) to

0.05 (35th percentile). We observed that by increasing the

threshold value, the percentage of removed edges gradually

decreases for the MSM. But, for the heterosexual, IDU and all risk

groups the percentages drop under 50% for threshold value 0.05

(Table S2). Subsequently, the genetic network was overlaid with

the contact network and the intersection network was computed.

The resulting social-genetic intersection network, as a hypothetical

transmission network, satisfied both genetic and epidemiological

criteria for transmission events. Figure 6 shows the hypothetical

transmission network of the entire population. To analyse the

characteristics of the inferred network, we plotted the degree

distributions (Figure 7) and measured the network properties

presented in Table 3.

Table 2. Properties of the contact network.

MSM Heterosexual IDU
All risk
groups

fraction of
removed edges

80.4% 91.2% 45.7% 91.3%

average degree 34.7 22.30 117.1 56.7

average path
length

2.16 2.83 1.48 2.20

clustering
coefficient
(global)

0.59 0.00 0.76 0.71

clustering
coefficient (local)

0.70 0.00 0.82 0.47

assortativity
(degree)

0.04 20.20 20.11 0.45

doi:10.1371/journal.pone.0046156.t002

Figure 4. The inferred contact network coloured based on estimated year of seroconversion. The colouring trend in the patient’s
estimated seroconversion year, ranging from 1982 (blue) to 2008 (red).
doi:10.1371/journal.pone.0046156.g004
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In Figure 7, the cumulative degree distributions of the

hypothetical transmission networks for the MSM, heterosexual,

IDU and for all risk groups are shown. For the MSM and

heterosexual populations, the cumulative out-degree distributions

were fitted to a straight line, in log-scale, with slopes equal to

2.6560.43 and 1.8860.31. Fitting to a straight line in a log-log

scale suggests that the degree distribution follows a power-law with

a scaling factor equal to the slope [10,11]. To ensure the fit to the

power-law distribution we performed a statistical test, using

maximum-likelihood fitting methods with goodness-of-fit tests

based on the Kolmogorov-Smirnov statistic [10]. We followed the

procedure proposed by Newman et al. (2007) [11] to test for

power-law distribution of the data. The method uses maximum

likelihood estimators for fitting the power-law distribution to the

data, along with the goodness-of-fit based approach to estimate the

lower cutoff for the scaling region. The uncertainty in the fitted

parameters was estimated using a function that implements the

nonparametric approach for estimating the uncertainty in the

estimated parameters for the power-law fit. To calculate the p-

value for the fitted power-law model, we use a function that

implements the Kolmogorov-Smirnov test (which computes a p-

value for the estimated power-law fit to the data) for the power-law

model. If the resulting p-value is greater than 0.1 the power law is

Figure 5. Untreated infection period (UIP) versus out-degree. UIP vs. the out-going degree of nodes in the MSM, Heterosexual, IDU and all
risk groups populations. The Pearson’s correlation coefficients, 95% confidence intervals and p-values are depicted on each graph.
doi:10.1371/journal.pone.0046156.g005
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a plausible hypothesis for the data, otherwise it is rejected (See

Table 4).

Then we performed statistical tests (via a likelihood ratio test) to

compare the power-law again alternative (Exponential and

Poisson) distributions for the data. For each alternative distribu-

tion, we computed a likelihood ratio shown in Table 5. If the

calculated likelihood ratio is significantly different from zero, then

its sign indicates whether the alternative is favored over the power-

law model or not. The statistical tests results and positive likelihood

ratios show that the MSM out-degree distribution is a good fit to

the power law model in comparison to Exponential and Possion

distributions.

Transmission network and phylogenetic clusters
We compared the inferred transmission network with a set of

genetic clusters obtained through phylogenetic analysis of the

corresponding viral sequences (see Materials and Methods and

Figure S5). A total of 61 clusters (from size 2 to 52) were identified,

where 39% of all patients were included in these clusters (see

Figure S6 for the cluster size distribution). Nodes, representing

individual viral isolates, residing in the same cluster are identified

to be genetically close and therefore, possibly transmitted the virus

to each other. For every two nodes in a same genetic cluster we

tested if they were connected (directly or indirectly) in the

transmission network. The percentage of genetically close nodes

that were connected in the transmission network was 37% for

MSM, 55% for heterosexual, and 95% for IDU. The high

percentage of genetically close nodes in the IDU population also

supports the idea that the needle sharing does play an important

node in the transmission of HIV in the resulting contact network.

Factors associated with super-spreaders
High out-degree nodes in the network have a higher probability

of out-spreading the virus to more contacts. In a population these

nodes can play the role of super-spreaders with lot of connections

[36–39]. In Table 6, we report the results of a multivariable linear

Figure 6. The hypothetical transmission network. The hypothetical transmission network of the entire population obtained from computing
the intersection of the contact and the genetic network. Patients are colored based on their risk groups: MSM (yellow), Heterosexual (red), IDU (green)
and blood products (cyan).
doi:10.1371/journal.pone.0046156.g006
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regression analysis conducted to identify factors associated with

super-spreaders or higher out-degree nodes in the network. In all

populations a longer untreated infection period and a higher

number of incoming links were associated with super-spreaders.

The risk of being a super-spreader was also associated with a

higher viral load and an older age in the MSM population. The

risk in males was higher than females in the heterosexual

population and in all risk groups. We also performed a univariable

regression analysis to identify the independent effect of covariates

with respect to super-spreaders (See Figure S7).

Comparison with random networks
To compare the hypothetical transmission networks with

random graphs, we generated random networks of the same size

(nodes and edges) as the inferred transmission networks for each

population (MSM, heterosexual, IDU and all risk groups). For this,

we used the fraction of remaining edges in each network, as a

probability to generate an edge in the random network. Table 7

compares the properties of the inferred transmission networks with

random networks. One can see that the inferred networks are

different from random networks of their own size by having lower

average path lengths, higher clustering coefficients and higher

assortativity coefficients.

Figure 7. Degree distributions of the hypothetical transmission network. Cumulative total- (black), in- (blue), and out- (pink) degree
distributions of the hypothetical transmission network of the MSM, heterosexual, IDU and all risk groups plotted in log-log scale.
doi:10.1371/journal.pone.0046156.g007
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Discussion

A new method for inferring hypothetical HIV-1 transmission

networks is introduced using information from both genetic and

epidemiological scales. This study constitutes, to the best of our

knowledge, the first attempt to combine social and genetic data to

characterise transmission networks for HIV-1. We propose a new

filter-reduction method for network construction and used it to

build a network of HIV-1 sequences based on their connected

social and demographical information. To characterise the

hypothetical transmission networks we compute the intersection

of the social network with the genetic network obtained from the

genetic distance matrix of Italian patients. Standard network

approaches consider a predefined network structure with certain

parameter values to build a network, such as scale-free structure

with an exponent in the range of 1.5 to 2.0 for the MSM

population in HIV transmission [5,6]. The main advantage of the

method presented here is that it does not require any pre-

assumption on the network structure. The network structure itself

is an emergent characteristic of our approach. The power-law

distribution for the MSM and heterosexual out-degree distribu-

tions yields a scale-free structure for these networks with exponents

equal to 2.65 and 1.88. This means that the structure of the

hypothetical transmission network for the MSM and heterosexual

population is heterogeneous, consisting of a majority of ‘peripheral

nodes’ that have only a few sexual interactions and a minority of

‘hub nodes’ that have many sexual interactions. This finding is in

line with the results obtained from analysis of the degree

distribution of HIV transmission networks for the MSM popula-

tion in the UK [23].

Interestingly, we uncover a positive correlation between the

duration of untreated infection periods and the out-degree of the

nodes in the network. This important finding may be explained by

the fact that untreated individuals have higher viral loads and are

therefore more infectious; moreover not being on therapy is

generally associated to a higher probability of not being diagnosed

or not being compliant to treatment and prevention messages

conveyed by health care providers. This finding underscores the

importance of case finding, early diagnosis and anticipated

antiretroviral treatment as tools to prevent HIV-1 transmission

and spread [40,41].

The delay between the median estimated seroconversion and

the start of genotyping may have caused the older half of infections

to be a bias sample, as in the pre-HAART (highly active

antiretroviral therapy) era when only the slow progressors survived

to be genotyped later. To investigate this effect, we perform the

analysis on a subset of recent infections, by only considering

instances with first positive test after 1998 calendar year. There

were 202 patients with a recent infection in the data in which 79

were MSM, 99 were Heterosexual, 24 were IDU. The correlation

between the untreated infection period and the out-degree of

nodes in the contact network still holds (Figure S8). However, the

degree distributions of the transmission network did not pass the

statistical test for fit to a power-law. The number of 202 recent

infections in our current dataset is relatively a small sample. Doing

the analysis on recent infections is worthwhile but requires having

access to recently collected data, which will definitely be

considered in our future studies.

Super-spreaders are highly infectious individuals with a high

viral load and a high rate of partner change [36,42]. Identifying

and controlling these super-spreaders is crucial for stopping the

spread of disease in a population [43,44]. The identified factors

associated with super-spreaders highlighted in the results section

Table 3. Properties of the hypothetical transmission network.

MSM Heterosexual IDU
All risk
groups

fraction of removed
edges

98.1% 98.0% 74.4% 96.7%

average degree 3.32 4.86 55.30 21.10

average path length 2.86 3.27 1.78 2.22

clustering coefficient
(global)

0.36 0.00 0.60 0.59

clustering coefficient
(local)

0.50 0.00 0.74 0.45

assortativity (degree) 20.07 20.17 20.22 0.11

doi:10.1371/journal.pone.0046156.t003

Table 4. Basic parameters of the data and the power law fit.

quantity n Degree Data Power law (p)
goodness-of-fit
p-value

,x. s xmax a
^

x
^

min

MSM 176 Total in out 3.32 1.66 1.66 5.62 3.05 3.58 27 18 27 1.82 (0.54)
2.09 (0.38)
2.65 (0.43)

11 (1.80)
2 (1.26)
5 (1.61)

0.0040 0.0590
0.1730

Heterosexual 255 Total In out 4.86 2.43 2.43 7.68 3.56 5.67 49 17 39 3.50 (0.61)
2.50 (0.48)
1.88 (0.31)

18 (4.78)
4 (1.71)
2 (1.87)

0.6130 0.0030
0.1020

IDU 217 Total in out 55.30 27.65 27.65 43.43 23.90 33.54 175 90 146 3.50 (0.12)
3.50 (0.31)
1.96 (0.47)

69 (5.23)
42 (6.02)
15 (12.37)

0.0170 0.0000
0.0000

All risk groups 655 Total in out 21.10 10.55 10.55 35.15 18.47 23.08 175 90 146 3.5 (0.82)
1.6 (0.51)
2.0 (0.29)

69 (27.84)
5 (3.91)
14 (7.24)

0.0160 0.0000
0.0000

Basic parameters of the data (total-, in- and out-degree distributions of the MSM, heterosexual, IDU and all risk groups), along with their power-law fits and the
corresponding p-value. Goodness-of-fit tests compare the observed data to the hypothesized power-law distribution. If the resulting p-value is greater than 0.1, power-
law is plausible for the data (statistically significant values are denoted in bold).
doi:10.1371/journal.pone.0046156.t004
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could help to achieve this goal. The identified correlation

presented in this paper also suggests the association of hubs in

the network (super-spreaders) with not being on antiretroviral

treatment for longer periods. The stages of infection between the

seroconversion, the detection of the infection, and the initiation of

therapy are crucial in driving the transmission epidemics.

Individuals who do not test regularly and have a risky sexual

behaviour can more easily become hubs or super-spreaders, along

with those who do not initiate a therapy early after the first positive

test and do not change at risk behaviours. The fact that, in this

study, networks’ hubs were those with a longer untreated period

confirms this hypothesis. Until recently, the initiation of antiret-

roviral treatment has not been decided by a transmission

prevention policy, but rather by considering patient’s immuno-

logical conditions [HIV-AIDS treatment 2011 guidelines: http://

www.aidsinfo.nih.gov/contentfiles/adultandadolescentgl.pdf].

Our observation, along with data presented from recent clinical

studies [40,45], strongly suggests that early treatment should be

considered in order to prevent transmission, although the cost-

benefit of such a strategy must be further assessed in different

populations and epidemiological scenarios.

The transmission of HIV drug resistance is another important

clinical and epidemiological concern which induces treatment

failure. Approximately 10% of newly diagnosed patients with

HIV-1 infection in Europe are infected with a drug resistant virus

[46,47]. Therefore, there is an urgent need for prevention

strategies in order to block the transmission of drug resistant

virus. Characterisation of the HIV transmission networks

proposed in this paper is a first step that can facilitate the

investigations on the transmission of viral drug resistance.

In this study we have limited ourselves to transmission within

the three main risk groups, omitting transmission between risk

groups which are also observed in the phylogenetic analysis [17].

The reason for that was having no access to reliable social and

behavioral data to include transmission between risk groups and

we will consider extending our current study in that direction upon

availability of the required data.

We believe that the new approach presented here for inferring

transmission networks can have important repercussions in the

design of intervention for disease control not only for HIV, but

potentially for a wide range of viruses and emerging pathogens.

Materials and Methods

In this study, we combined information from both genetic

(derived from HIV-1 RNA sequences) and epidemiological scales

to characterize a transmission network of the HIV-1 epidemic in

central Italy. The study population included HIV-1 infected

patients, with viral genotyping between 1997 and 2009, enrolled

and followed up at the Clinic of Infectious Diseases of the Catholic

University of the Sacred Heart in Rome, Italy. Inclusion criteria

were to have at least one viral genotype sequence performed for

each patient, allowing multiple observations for patients with more

than a viral genotype available. We applied a novel filter-reduction

method to infer a network of HIV-1 sequences based on the

corresponding patient’s epidemiological information, obtaining a

potential contact network. The method is based on real patient

data and no pre-assumptions are made on the network structure.

To characterize the transmission network of HIV-1, the intersec-

tion of the contact network with a genetic network based on a

genetic distance matrix was computed.

Table 5. Test of power law behavior in the data and likelihood ratios of alternative distributions.

Power law (p-
value) Poisson Exponential

Support for power
law

LR p-value LR p-value

MSM (out-degree) 0.1730 2.31 0.02 0.35 0.72 good

Heterosexual (total-degree) 0.6130 4.08 ,0.01 22.67 0.01 moderate

Heterosexual (in-degree) 0.1020 3.28 ,0.01 1.85 0.06 good

For each degree distribution we give a p-value for the fit to the power-law model and likelihood ratios (LR) for the alternatives. We also quote p-values for the
significance of each of the likelihood ratio tests. Significant p-values are denoted in bold. Positive values of the likelihood ratios indicate that the power-law model is
favored over the alternative. The final column of the table lists the judgment of the statistical support for the power-law hypothesis for each distribution. ‘‘Moderate’’
indicates that the power-law is a good fit but there are other plausible alternatives as well; ‘‘good’’ indicates that the power-law is a good fit and that none of the
alternatives considered is plausible.
doi:10.1371/journal.pone.0046156.t005

Table 6. Factors associated with out-degree nodes.

Factor/risk group MSM Heterosexual IDU All risk groups

Coef Std P value Coef Std P value Coef Std P value Coef Std P value

Age (years) 0.02 0.01 0.0078 0.01 0.01 0.7788 0.03 0.00 ,0.0001 0.02 0.00 ,0.0001

Viral load (copies/ml) 0.02 0.06 0.7450 20.03 0.04 0.5242 20.06 0.01 0.0001 20.08 0.01 ,0.0001

UIP (years) 0.22 0.01 ,0.0001 0.24 0.01 ,0.0001 0.13 0.00 ,0.0001 0.17 0.00 ,0.0001

Gender (Male/Female) - - - 0.39 0.10 0.0001 0.09 0.03 0.0044 0.31 0.03 ,0.0001

In-degree 0.12 0.01 ,0.0001 0.15 0.01 ,0.0001 0.01 0.00 ,0.0001 0.03 0.00 ,0.0001

Results of a multi-variable regression analysis showing the factors associated with high out-degree nodes. The out-degree is the dependent variable in the analysis, and
age, viral load, UIP, gender, and In-degree are independent variables.
doi:10.1371/journal.pone.0046156.t006
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The Data
HIV-1 RNA sequences from a region-wide cohort study of

HIV-1-infected people in Rome and Lazio region, Italy, were used

[The database is a part of the three national HIV data cohort in

Italy: ARCA (www.hivarca.net), Icona (http://www.

fondazioneicona.org), and Master (http://www.mastercohort.it)].

The viral sequence information encompassed the HIV pol gene

region, covering the whole protease and most of the reverse

transcriptase gene (at least the first 1–250 amino acids). Sequence

data was annotated with corresponding patient’s demographics

and treatment information, including: sequence id (numeric), viral

subtype, sequence calendar year (numeric), patient’s gender

(male/female), age (numeric), mode of HIV transmission (MSM,

heterosexual, IDU, blood products, other/unknown), country of

origin (Italian/non-Italian/unknown), ART status (ART-experi-

enced/ART-naive), seroconversion year (median time between

last HIV-1 negative test date and first HIV-1 positive test date),

calendar year of first HIV positive test and of first available

antiretroviral therapy (numeric), plasma HIV-RNA load (numeric)

at viral sequencing time, presence of resistance mutations for

nucleoside-tide/non-nucleoside reverse transcriptase inhibitors

and protease inhibitors in the HIV-1 sequence (binary). The

unknown/other risk group members were excluded from the

analysis. In the case of missing values for the last negative test date,

in order to estimate the seroconversion we take the first positive

test date minus one year which is the average time difference

between the estimated seroconversion date and first positive test in

the data. For a number of patients in the dataset, multiple

sequences were recorded at different time points, but we only

considered the earliest sequence per patient for social/epidemio-

logical analysis. The sequence data was used for phylogenetic

analysis and subsequent inference of transmission clusters, while

the annotated demographical and treatment information were

used for social network construction. The statistics of patient’s

characteristics are presented in Table 8.

Phylogenetic analysis
HIV-1 sequences matching the inclusion criteria were aligned

using MUSCLE software [48] and the resulting multiple

alignments were edited in order to remove drug-resistance

associated mutations [IAS-USA list 2010 (http://www.iasusa.

org/pub/topics/2010/issue5/156.pdf)] that can lead to a conver-

gent evolution bias in the phylogenetic tree estimation. A

phylogenetic tree was then estimated using the maximum

likelihood FastTree software [49], assessing node reliability via

the built-in Shimodaira-Hasegawa test. Transmission clusters were

extracted from the phylogenetic tree using the PhyloPart java

application [17]. The PhyloPart uses a depth-first algorithm to

extract a crisp partition (i.e. clustering) from an input phylogenetic

tree, constraining its search on the comparison between sub-tree

(i.e. potential clusters) and whole-tree patristic distance distribu-

tions, plus additional ancillary topologic criteria. When the sub-

tree is highly (.90%) supported by bootstrap (or posterior

probability or other statistical test), when at least two distinct

patients are in the sub-tree, and when the median patristic distance

is below a percentile threshold of the whole-tree distance

distribution, then a cluster is found. If the depth-first search

reaches a leaf node without finding any cluster, then the instance is

classified as a singleton. Additionally, a genetic distance matrix was

calculated with the MEGA software using the LogDet function

[50].

Filtering process in the filter-reduction method
The filter-reduction method was used to build a contact network

from the dataset. Each node in the network represents a viral

sequence isolate of HIV-1 obtained from a patient. Starting from

an undirected fully-connected network of all patients, a set of

social/sexual filters was applied. These filters considered patients’

demographical and treatment information. A direct connection

between every two nodes that did not satisfy the epidemiological

criteria was removed from the network (the percentage of removed

edges from the network by applying each filter is presented in

Table S3). In what follows the social filters for building the contact

network are described in more detail:

N Filter 1: The age filter indicates the maximum age range for

an individual to be socially or sexually interactive with another

individual. If the age difference between two patients exceeds

the maximum age range the direct connection between them is

filtered. The age difference is a free parameter and can be

changed. We used a value of 10 years for this parameter based

on a study on age-disparate and intergenerational sex in South

Africa [51]. We also perfrmend a sensitivity analysis on this

parameter by varying the value between 2 to 20 years (data

shown in Table S4).

N Filter 2: This filter considers the patient’s gender (g) and risk

group (r). Three rules are implemented: Rule a: the connection

Table 7. Properties of the hypothetical transmission network against random networks.

MSM Heterosexual IDU All risk groups

Inferred Randomized Inferred Randomized Inferred Randomized Inferred Randomized

average degree 3.32 3.24 4.86 5.02 55.30 55.35 21.10 21.50

average path
length

2.86 4.38 3.27 3.59 1.78 1.74 2.22 2.44

clustering
coefficient
(global)

0.36 0.02 0.00 0.02 0.60 0.25 0.59 0.032

clustering
coefficient (local)

0.50 0.02 0.00 0.01 0.74 0.25 0.45 0.032

assortativity
(degree)

20.07 20.02 20.17 0.03 20.22 20.02 0.11 ,20.01

Both inferred and randomized networks are of the same size in terms of number of nodes and edges. The properties of the randomized network is an average over the
properties of 5 random networks.
doi:10.1371/journal.pone.0046156.t007
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between patients from different risk groups is filtered, this results

in creation of three separate sub-networks corresponding to the

major HIV transmission risk groups (MSM, Heterosexual, and

IDU). Rule b: for the heterosexual risk group the connection

between patients with the same gender is filtered. Rule c: The

‘‘Blood product’’ risk groups are isolated from the population, as

they were not infected through sexual relationships.

N Filter 3: Observational studies suggest that the transmission

probability of HIV-1 decreases by 80–98% after a patient

starts treatment [52,53]. This is mainly due to the smaller

amount of viral particles in the genital secretions and mucosa

after treatment and the behavioural changes in the patients

sexual and social habits when they become aware of their

disease. Following this observation, we filtered connections to a

patient A from any other patient whose therapy initiation date

(t) predated patient A’s estimated seroconversion date (s).

Network visualization
The network visualizations in this article were produced using

an in-house developed interactive visualization tool, called

‘‘Twilight’’, which is based on the igraph software package for

complex network research [54]. The layout for all graphs was

produced using an implementation of Fruchterman-Reigngold

algorithm provided by igraph [55]. A demo of network

visualization is shown in Video S1 and more information on

Twilight can be found at http://uva.computationalscience.nl.

Supporting Information

Figure S1 Communities in the MSM and heterosexual
populations. Two main communities (green and blue) identified

in the MSM and heterosexual populations using community

structure detecting methods based on the leading eigenvector of

the community matrix. The red edges are connecting different

communities.

(TIF)

Figure S2 Prevalence of mode of transmission groups
stratified by calendar year in the study population.

(TIF)

Figure S3 Visualization of the genetic network. The

genetic network is built based on the genetic distance matrix.

There is a link between every two patients in the network if their

genetic distance is smaller than the threshold value of 0.04 ns/s.

Patients are coloured based on their corresponding risk group:

MSM (yellow), heterosexual (red), IDU (green) and blood products

(cyan).

(TIF)

Figure S4 Degree distributions of the genetic network.
Cumulative total- (black), in- (blue), and out-degree (pink)

distributions of the genetic network plotted in log-log scale for

the MSM, Heterosexual, IDU and all risk groups.

(TIF)

Figure S5 Phylogenetic tree and genetic clusters. Phylo-

genetic tree with the leaves colored as cluster Ids (nodes residing in

one genetic cluster have the same cluster Id). The colors have been

generated by dividing the RGB spectrum into specific intervals,

corresponding to the number of distinct clusters. The red leaves

scattered through the whole tree are ‘‘singletons’’ (i.e. unclustered

isolates).

(TIFF)

Figure S6 Genetic clusters size distribution. Genetic

clusters extracted from the phylogenetic tree analysis. A total of

61 clusters (from size 2 to 52) were identified and 39% of all

patients were included in these clusters.

(TIF)

Table 8. The statistics of patients characteristics (total n = 655, subtype B patients, excluding entries with unknown risk group).

Data statistics
Number of unknown/
missing data entries

Risk group
22.8% MSM
(n = 176)

33.0% heterosexual
(n = 255) 28.0% IDU (n = 217)

0.9% blood
products (n = 7) -

Gender 65% male (n = 426) 35.0% females (n = 229) -

country of origin 84.0% Italian (n = 553) 10.4% non-Italian (n = 68) 5.2% unknown (n = 34)

Antiretroviral therapy 19.3% therapy-naı̈ve (n = 127) 80.7% therapy-experienced (n = 528) -

median (IQR)

Age 48 (43–53) years -

Estimated seroconversion date 1996 (1993–2000) calendar year 79.0% unknown (n = 517)

Last negative test date 1995 (1991–1999) calendar year 78% unknown (n = 515)

First available positive test date 1995 (1991–2000) calendar year -

viral genotyping date 2004 (2001–2007) calendar year 0.4% unknown (n = 3)

First available therapy date 1998 (1995–2003) calendar year -

plasma viral load (At the
time of viral genotyping)

4.1 log10 HIV RNA copies/ml (3.5–4.7) 0.4% unknown (n = 3)

time from estimated
seroconversion date to
the first therapy date

3 (1.25–5) years 79.0% unknown (n = 517)

time from estimated
seroconversion date to the
first viral sequence date

8 (4–11) years 79.0% unknown (n = 517)

doi:10.1371/journal.pone.0046156.t008
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Figure S7 Univariable regression analysis of factors
associated with super-spreaders. Plots of numerical factors

(age, viral load, UIP and in-degree) versus the out degree of nodes

in the MSM, heterosexual, IDU and all risk groups. The

correlation coefficients depicted on the graphs show the strength

of a linear relationship between independent factors with respect

to super-spreaders.

(TIF)

Figure S8 Untreated infection period (UIP) versus out-
degree of recent infections. UIP vs. the out-going degree of

nodes in the MSM, Heterosexual, IDU and all risk groups

populations, for recent infections in the dataset (instances with first

positive test after 1998 calendar year). The Pearson’s correlation

coefficients, 95% confidence intervals and p-values are depicted on

each graph.

(TIF)

Table S1 Correlation between the UIP and out-degree
of the nodes by removing each filter from the filtering
process in network construction. None implies that all filters

are applied and none is removed from the filtering process.

(DOC)

Table S2 Fraction of removed edges from the genetic
network using different genetic thresholds. Each threshold

value corresponds to a percentile of the overall distance

distribution measured through the phylogenetic tree.

(DOC)

Table S3 Percentage of edges filtered from the network
by applying each different filter and all filters.
(DOC)

Table S4 Sensitivity analysis on the ‘‘maximum age
difference’’ parameter.
(DOC)

Dataset S1 Genetic distance matrix. Excel file of the

measured genetic distance between every two viral sequences in

the Italian patient dataset.

(CSV)

Video S1 Appearance of risk group clusters in a contact
network. The video shows the construction of a contact network

and appearance of three clusters corresponding to the three major

HIV risk groups (MSM, heterosexual, IDU).

(RAR)
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