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Abstract

We present an unbiased method to globally resolve RNA structures through pairwise contact 

measurements between interacting regions. RNA Proximity Ligation (RPL) uses proximity 

ligation of native RNA followed by deep sequencing to yield chimeric reads with ligation 

junctions in the vicinity of structurally proximate bases. We apply RPL in both baker's yeast 

(Saccharomyces cerevisiae) and human cells and generate contact probability maps for ribosomal 

and other abundant RNAs, including yeast snoRNAs, the RNA subunit of the signal recognition 

particle, and the yeast U2 spliceosomal RNA homolog. RPL measurements correlate with 

established secondary structures for these RNA molecules, including stem-loop structures and 

long-range pseudoknots. We anticipate that RPL will complement the current repertoire of 

computational and experimental approaches in enabling the high-throughput determination of 

secondary and tertiary RNA structures.

The folding of RNA species into complex secondary and tertiary structures is central to 

RNA's catalytic, regulatory, and information-carrying roles 1. Pioneering approaches for 

elucidating RNA structure—including crystallography2, electron microscopy3, and 

spectroscopy4—are technically complex and difficult to scale, motivating the development 

of computational algorithms for RNA structure prediction5–7. Current algorithms have 

limited predictive power, particularly for long-range interactions such as pseudoknots 

(secondary structures involving intercalated stem loops).With the advent of massively 

parallel sequencing8, less laborious experimental techniques have been developed for the 

global interrogation of RNA secondary structures. These include methods relying on 

structure-specific chemical modifications9–11, such as DMS-seq and SHAPE-seq, as well as 

methods involving digestion with structure-specific RNases12–14, like PARS-seq and Frag-

seq. Although these methods probe the extent to which individual bases participate in 

secondary structures, they do not directly query which specific pairs of bases or regions 

interact to form these structures. To address this, recent efforts have combined systematic 

mutagenesis and structure-specific probing to generate pairwise information for inferring 
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RNA folds15,16. However, despite considerable progress, the high-throughput determination 

of RNA secondary and tertiary structures remains a challenging problem.

Here we show that proximity ligation is a straightforward means of generating global 

pairwise data about RNA secondary and tertiary structure. Proximity ligation records the 

physical proximity of two nucleic acid termini through their ligation, and has been applied to 

detect DNA aptamer-bound proteins17, to probe protein-protein interactions via antibody-

bound oligonucleotides18, and for targeted or global chromosome conformation capture 

(3C)19,20. Proximity ligation has also been applied in conjunction with crosslinking and 

either affinity purification or immunoprecipitation to characterize snoRNA-rRNA 

interactions21 and Ago-mediated miRNA-target interactions22. However, these efforts have 

primarily focused on assessing specific trans interactions, rely on low-efficiency 254 

nanometer UV crosslinking, and require time-consuming purification steps.

RPL (‘ripple’) globally assesses which pairs of regions are interacting to form 

intramolecular RNA structure (Fig. 1).Similar to 3C methods for DNA conformation, RPL 

uses digestion and re-ligation of RNA, but omits crosslinking, relying instead on the 

inherent spatial proximity of RNA nucleobases in secondary structural features (i.e. stem-

loops). To generate RPL libraries, we performed RNase digestion in situ (or, for yeast, took 

advantage of endogenous single-stranded RNases), followed by treatment with exogenous 

T4 RNA Ligase I under non-denaturing conditions. These steps result in chimeric molecules 

formed from RNA strands intra-molecularly ligating across digested loops (Fig. 1a, inset). 

By deeply sequencing these resulting fragments and quantifying the relative abundance of 

specific intramolecular ligation junctions, we are able to create pairwise contact maps that 

reflect the short- and long-range stem-loop and pseudoknot interactions of intramolecular 

RNA secondary structures.

First we tested RPL in the budding yeast S. cerevisiae. To create libraries, we spheroplasted 

whole yeast cells for 1 h with zymolyase (dissolved in 1X PBS without DTT to allow 

endogenous RNases to remain active). We then treated the resulting slurries with T4 

polynucleotide kinase (PNK) to convert 5′-hydroxyl to 5′-phosphate termini, and diluted and 

incubated these mixtures overnight in the presence of a single-stranded RNA ligase (T4 

RNA Ligase I) under non-denaturing conditions. We then purified total RNA using acid 

guanidinium-phenol, and carried out a standard RNA-seq library preparation. Sequencing 

(Illumina) yielded 304 million (M) concatenated reads for a (+) ligase sample, and 342M 

concatenated reads for a (−) ligase control sample (Methods).

To identify candidate ligation junctions in these sequencing reads, we adapted an algorithm 

for identifying novel RNA isoforms from RNA-seq data23, relaxing constraints on splice-

site composition to more generally recognize intramolecular chimeric reads that map 

discontinuously to a single RNA sequence (Methods). To quantify the enrichment of 

candidate ligations in our samples, we first examined the distribution of spanned distances 

of intramolecular chimeric reads (i.e. gap sizes), per million reads, in both (+) and (−) ligase 

samples. Although the overall fraction of reads corresponding to candidate intramolecular 

ligation junctions is low, the (+) ligase sample is enriched for these across a broad range of 

Ramani et al. Page 2

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spanned distances (0.28% in (+) ligase sample vs. 0.011% in (−) ligase sample; 

Supplementary Fig. 1).

Potential sources of technical artifacts in these data include the formation of chimeric 

molecules by reverse transcriptase (RT) template switching, systematic mapping artifacts, 

PCR-mediated duplicates and non-specific ligation events. To reduce the impact of RT 

template switching, we discarded candidate ligation junctions with >5 nucleotides (nt) 

microhomology, as well as those mapping to opposite strands. To remove PCR-mediated 

duplicates, we collapsed all reads with identical mapping coordinates and CIGAR alignment 

strings. To reduce the impact of systematic mapping artifacts caused by errors within our 

reference transcriptome (for example, gross deletions, un-annotated splice junctions), we 

conservatively discarded candidate ligation junctions containing the highest 1% of ligation 

counts, for each RNA species analyzed. Finally, to quantify the extent of nonspecific 

ligation, we performed an experiment in duplicate wherein human cells were taken through 

a modified version of the RPL protocol (Methods) and spiked into yeast slurries 

immediately before proximity ligation. The resulting data demonstrate marked enrichment 

for intraspecies, intramolecular chimeric reads (Supplementary Fig. 2).

We first analyzed RPL data in the context of the complex but extensively validated 

secondary structures of the yeast ribosomal RNAs (rRNAs). The yeast ribosome is 

comprised of the 60S large subunit (LSU), which includes the 3.4 kb 25S rRNA and short 

5.8S and 5S rRNAs, and the 40S small subunit (SSU), which includes the 1.8 kb 18S rRNA. 

To assess whether RPL captures the proximity implied by secondary structure base-pairing, 

we tallied candidate ligation junctions in a 500 base-pair window centered on known base 

pairs of the established rRNA structures, effectively quantifying ligation probability as a 

function of distance (in linear sequence) from known base pairs (in secondary structure). We 

observe an enrichment of candidate ligation junctions immediately proximal (i.e. within 10 

nt) to known base pairs in both the 5.8S/25S rRNAs (~9-fold; Fig. 1b) and 18S rRNA (~6-

fold; Fig. 1c). Furthermore, in the case of the 5.8S/25S rRNAs, which contain many long-

range base-pairing interactions, this enrichment is maintained even if we restrict analysis to 

candidate ligation junctions that span >100 bases in the linear sequence (Supplementary 
Fig. 3).

The observed signal is entirely dependent on the inclusion of ligase, and is not explained by 

sequencing errors, mapping artifacts or by proximity in sequence space (as opposed to 

structure space). As such, we conclude that it primarily derives from intramolecular ligation 

events between structurally proximal bases. Nonetheless, the signal shown in Fig. 1b,c is 

“noise-averaged” over all base pairs in these rRNA structures. Consistent with the stochastic 

nature of individual ligation events, we observe weaker enrichment when repeating our 

analysis with a randomly selected subset of 10, 25, or 50 paired bases in either the LSU or 

SSU rRNAs (Supplementary Fig. 4). The ligation junctions that we observe are also clearly 

affected by other biases, including the bias against G/C extremes routinely seen with 

Illumina sequencing, as well as more subtle base composition preferences at the ligation 

junction (Supplementary Fig. 5). We also observe that ligation junctions are enriched for 

single-stranded bases in the LSU and SSU rRNAs (Odds Ratio (OR) = 2.24; P < 2.2E-16, 
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Fisher's Exact Test). This bias, and the noisiness of the raw data, is evident when ligation 

junctions are overlaid onto a known secondary structure (Fig. 2a).

Given these observations, we concluded that the signal of RPL likely arises from the 

combinatorial digestion and ligation of predominantly unpaired ribonucleotides across 

broken loop structures. Considering this, along with the stochastic, biased nature of 

individual ligation events, we speculated that our ability to resolve secondary structure 

would improve by calculating the frequency of ligation events between pairs of sliding 

windows (21 nt each), effectively capturing a combinatorial diversity of ligation events 

surrounding secondary structural elements. Concurrent with this, we adapted normalization 

methods developed for Hi-C matrices24 to account for other one-dimensional biases (for 

example, sequence biases of RNA ligase and PCR) (Methods). We then visualized these 

normalized RPL scores, calculated for pairwise windows, by directly overlaying them onto 

known secondary structures. RPL scores broadly mirror the secondary structures of the 

5.8S/25S LSU rRNAs (Fig. 1d, Fig. 2b; Supplementary Fig. 6a) as well as the SSU 18S 

rRNA (Supplementary Fig. 6b). Furthermore, we observe signal corresponding to distal 

tertiary structures, including long-range “pseudo-knots” in the LSU rRNAs (Fig. 1d, right 

inset)25.

We next sought to evaluate the correspondence between proximity ligation events and the 

structures of non-ribosomal RNA transcripts. Because we are limited by sampling depth, we 

focused on well-characterized, abundant RNAs; specifically, the snoRNA snR86 (Fig. 3a), 

which guides uridylation of the LSU rRNA, the U1 spliceosomal RNA (snR19) (Fig. 3b), 

the RNA component of the signal recognition particle (SCR1) (Fig. 3c), and the U2 

spliceosomal RNA homolog (LSR1) (Supplementary Fig. 7). In “contact probability maps” 

for these RNAs (based on the normalized RPL scores described above), we observe a 

striking anti-diagonal pattern, reminiscent of signal observed at known stems in the 

5.8S/25S and 18S rRNAs. When comparing our contact probability maps to secondary 

structure predictions generated with INFERNAL26 using covariance models taken from 

Rfam27, our observations are consistent with conserved stems in both snR86 and snR19 

(Fig. 3a,b). In RPL measurements for snR19, we also observed signal indicative of stem 

formation in the region comprising bases 320-510—MFE predictions suggest that this 

region can form a helix, raising the possibility that this structure is present endogenously.

We also analyzed RPL measurements in the context of a non-ribosomal RNA with a solved 

structure, the RNA subunit of the signal recognition particle (SCR1). Again, we observed 

broad agreement between RPL scores and regions containing paired bases (Fig. 3c), though 

we do find that certain expected long-range interactions (for example, folding between the 

molecule termini) are not seen. Further work will be needed to determine whether this is 

simply an artifact of insufficient depth-of-coverage, or is symptomatic of some other bias 

with respect to the classes of structural elements that proximity ligation can resolve.

Finally, our observations for LSR1 (Supplementary Fig. 7) are consistent with previous 

work employing cross-linking, affinity-purification, and proximity ligation of RNA21, which 

found ligation products supporting stem-formation between the two termini. In agreement 
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with this cross-linking based approach, our data support the formation of both proximal (for 

example, stem formation at bases 1100 – 1150), and distal folds.

We next explored the value of RPL scores as a predictive tool for classifying pairs of 

interacting regions within a structured RNA. To show that RPL scores can be used in this 

manner, we examined their positive predictive value (PPV) at varying quantile thresholds 

for the gold-standard 5.8S/25S and 18S rRNAs (Fig. 4a,b). This is a challenging 

classification problem (92,392 true positive interacting windows out of 6,317,235 possible 

interacting windows for the LSU rRNAs (1.5%); 41,981 true positive interacting windows 

out of 1,620,900 possible interacting windows for the SSU rRNA (2.6%)). The highest RPL 

scores are strongly enriched for true positive interacting windows (LSU rRNA: PPV of 54% 

using the top 1% of RPL scores; SSU rRNA: PPV of 61% using the top 1% of RPL scores). 

Plotting PPV as a function of threshold illustrates the tradeoff with sensitivity (Fig. 4c,d). 

For example, at a sensitivity of 50%, RPL scores have a PPV of 43% for the LSU rRNA and 

27% for the SSU rRNA, for predicting structurally interacting pairs of regions.

The high-throughput, unbiased identification of intermolecular RNA-RNA interactions is of 

strong interest in the RNA biology field. Recent work has shown that psoralen-mediated 

crosslinking may be used in tandem with anti-sense purification to capture trans RNA-RNA 

interactions28. In principle, RPL should be able to provide complementary information, as 

interacting RNAs may form ligation products at a higher rate than non-interacting RNAs. 

Although we observed a modest enrichment for intermolecular yeast ligation junctions in the 

species mixing experiment (Supplementary Fig. 2), this enrichment in our yeast RPL 

experiment derives primarily from ligation products between the small and large ribosomal 

subunits (Supplementary Fig. 8). While no inter-subunit RPL scores approached those of 

strongly interacting intramolecular windows, it remains possible that a combination of 

methodological improvements to reduce background and deeper sequencing of RPL libraries 

may enable global surveys of trans RNA-RNA interactions (for example, the signal 

recognition particle-ribosome interaction; subunit interactions in the translating ribosome).

We next sought to adapt RPL to generate secondary structure information corresponding to 

RNAs in human cells. Most notably, we replaced the zymolyase treatment with a limited in 

situ digestion with exogenous single-stranded RNases A and T1. In analyzing the resulting 

data in the context of the well-studied human ribosomal RNAs, we again observed 

correlation of high RPL scores with known interacting regions (Supplementary Fig. 9). 

However, an RNase (−), ligase (−) control also demonstrated signal that correlated with 

secondary structure, albeit much more weakly and possibly reflecting endogenous nuclease 

and ligase activity (Supplementary Fig. 10). The possibility that endogenous enzymatic 

activity may contribute to the formation of chimeric RNAs is not novel; recent work using a 

cross-linking approach to characterize the miRNA interactome of C. elegans curiously 

found that expected ligation products could form in the absence of exogenous T4 RNA 

Ligase I29.

We anticipate several directions for improving RPL. First, RPL libraries require deep 

sequencing to reliably map interacting regions, even for highly abundant RNA species. The 

sufficient sampling of lower-abundance RNA species of interest (for example, mRNAs) 
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might be achieved by optimizing the enzymatic steps of the protocol, by adopting hybrid 

capture enrichment or subtraction, or simply by brute force deep sequencing.

Second, given the high predictive value9,15,16,30 of in vivo structure probing methods (for 

example, DMS-seq, SHAPE-seq) in determining the pairedness of individual bases in 

secondary structures, a framework that integrates two-dimensional, lower-resolution RPL 

data with one-dimensional, higher-resolution structure probing data seems highly attractive. 

Ideally, computational predictions would be integrated at the same time, thereby taking 

advantage of three largely orthogonal approaches to maximize the accuracy of RNA 

structural predictions.

The current repertoire of high-throughput empirical assays for RNA secondary structure 

provides us with a deep, but ultimately one-dimensional window into the structural 

landscape of RNA molecules. In contrast, RPL globally captures information with respect to 

pairwise interactions within RNA secondary structures. Through its integration with 

complementary computational and experimental approaches, we anticipate that RPL will 

facilitate the high-throughput elucidation of RNA secondary structures in diverse organisms.

METHODS

Cell culture

S. cerevisiae strain FY3 was struck out on YPD plates and grown at 30 °C. Mammalian cells 

(lymphoblastoid cell line GM12878; Coriell) were cultured at 37 °C, 5% CO2 in RPMI-1640 

supplemented with 1X Anti-Anti (Gibco), 1X Plasmocin (Invivogen), and 15% FBS 

(Gibco).

RNA Proximity Ligation (RPL)

Individual yeast colonies were added directly to 0.5 U Zymolyase in 10 uL 1X phosphate 

buffered saline (PBS) (Gibco) w/ 0.2% IGEPAL (Sigma) and incubated at 37 °C for 60 min 

to spheroplast while maintaining endogenous RNase activity. Spheroplasted yeast were 

immediately transferred to ice, and mixed with 0.5 uL SuperASE-In (Ambion), 2.5 uL T4 

PNK (NEB), 5 uL 10X T4 DNA Ligase Buffer w/ 10 mM ATP (NEB), and 32 uL 1X PBS 

w/ 0.2% IGEPAL, after which the slurry was incubated at 37 °C for 30 min. Following end-

repair, complexes were immediately transferred to 450 uL ligation reaction mix (50 uL 10X 

T4 DNA Ligase Buffer w/ 10 mM ATP (NEB); 5 uL SuperASE-In (Ambion), 12.5 uL T4 

RNA Ligase I (NEB), 382.5 uL 1X PBS w/ 0.2% IGEPAL), and incubated overnight in a 16 

°C water bath, after which complexes were added to 1.5 mL TriZOL (Ambion). Samples 

were then purified using Direct-ZOL spin columns (Zymo) according to manufacturer's 

protocols. For mammalian experiments a modified version of RPL was performed wherein 

2E6 whole human lymphoblastoid cells (GM12878, Coriell) were treated in situ with 0.2 uL 

of RNace-IT (Agilent) diluted in 9.8 uL 1X PBS w/ 0.2% IGEPAL for 10 min at 22 °C, after 

which the RPL protocol was followed, beginning with PNK treatment.

T4 PNK is known to have minimal 3′ phosphatase activity under the buffer conditions we 

use during our end-repair step31. To ensure that phosphatase activity was not limiting 

ligation efficiency, we also repeated our yeast RPL experiments using a low pH imidazole 
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buffer (50 mM imidazole-HCl, pH 6.0, 10 mM MgCl2, 1 mM ATP, and 10 mM DTT) for 

our PNK reactions. We observed comparable ligation efficiencies independent of the use of 

low pH buffer (0.28% of analyzed reads in our sample compared to 0.21% and 0.14% in 

imidazole experiments performed in duplicate).

For spike-in experiments, an individual yeast colony and 5E5 human lymphoblastoid cells 

were treated with respective RPL treatments described above. Following PNK treatment, the 

two slurries were mixed and treated with T4 RNA Ligase I overnight, after which complexes 

were purified as described above.

To quantify the extent of RNA degradation during the yeast RPL protocol, we repeated the 

yeast RPL experiment, isolating RNA after PNK treatment, as well as after overnight 

incubations both in the presence and absence of T4 RNA Ligase I. We then analyzed the 

integrity of these RNA products using an RNA 6000 Nano Lab-on-Chip (Agilent), finding 

our products were mildly degraded following PNK treatment (RIN Score of ~7), though this 

degradation appears to have been halted before ligation (Supplementary Fig. 11).

Library Preparation

Libraries were prepared according to standard Illumina TruSeq RNA guidelines, with minor 

changes. Notably, polyA-selection steps were skipped, RNA fragmentation (Elute, Prime, 

Fragment) was carried out for 2.5 min, and PCR amplification of the final library was 

carried out using qPCR for 8-12 cycles on a BioRad OpticonMini to prevent library 

overamplification. Two biological replicate libraries were generated and sequenced for (+) 

ligase yeast experiments, one of which was selected for deep sequencing and analyzed 

further in this paper. Two biological replicate libraries each were generated for imidazole 

and species-mixing experiments, for both (+) and (−) ligase samples.

Sequencing and sequence alignment

Sequencing of libraries was carried out using the Illumina MiSeq, NextSeq 500, and HiSeq 

2000 instruments, generating paired-end 80 bp and 101 bp reads. All raw sequencing data 

and processed data files are accessible at GEO Accession GSE69472.

FASTQ Post-processing—Raw paired-end FASTQ files were adaptor-trimmed and 

merged with SeqPrep (https://github.com/jstjohn/SeqPrep) to account for all read pairs that 

contain redundant information (i.e. sequence) content. We then took the resulting 

“singleton” forward and reverse reads (i.e. those that did not contain sufficient overlap to be 

fused) and concatenated them along with fused reads to yield 304M (for the treated sample) 

and 342M (for the negative control) concatenated reads, which were then analyzed.

Alignment—These resulting FASTQ files were aligned to references generated from either 

a manually curated list of yeast transcripts with duplicated transcripts removed, taken from 

the Saccharomyces Genome Database (http://yeastgenome.org), or a selected list of 

deduplicated RefSeq human transcripts, using the STAR aligner with the following 

parameters:

–outSJfilterOverhangMin 6 6 6 6
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–outSJfilterCountTotalMin 1 1 1 1

–outSJfilterDistToOtherSJmin 0 0 0 0

–alignIntronMin 10

–chimSegmentMin 15

–chimScoreJunctionNonGTAG 0

–chimJunctionOverhangMin 6

Bioinformatic Analyses

Secondary structures in BPSEQ format for S. cerevisiae were downloaded from the 

Comparative RNA Website32 and RNA structures were visualized through a modified 

version of VARNA. H. sapiens rRNA structures were inferred from a published cryo-EM 

structure33, using 3DNA34. STAR-generated output was analyzed with custom Python and 

R scripts to generate contact probability maps (All custom scripts used to analyze aligned 

data are provided in Supplementary Scripts). First, STAR alignments were deduplicated by 

collapsing all alignments with identical start coordinates and CIGAR strings. These 

deduplicated alignments were then converted to “splice junction” and “chimer” files using 

awk, and ligation junctions were parsed from these files. For specific species of interest, 

these ligation counts were then filtered further to remove the highest 1% of counts between 

individual pairs of bases. To calculate the distribution of ligations around known base-pairs, 

we looked at all pairs of bases (i,j) in our secondary structure BPSEQ files, and calculated 

the abundance of ligation events between (i, j – 250) to (i, j + 250) for each base. For sub-

sampling experiments, we randomly sampled 10, 25, or 50 paired-bases and repeated these 

calculations.

To compute RPL scores, which measure the extent of ligation between two regions of a 

molecule, we first considered the sparse matrix M where Mij is the ligation count between 

base i and base j. To generate the RPL score matrix M*, we compute the coverage at each 

base i and j (ci; cj) and generate a normalized matrix Mnorm such that:

We then use this normalized matrix to generate M* by binning all normalized scores:

Classification analyses were performed as follows: we thresholded the RPL scores resulting 

from the above smoothing by quantiles, with a quantile step size of 0.001, and classified true 

positive interacting windows as those interacting 21 nt windows with RPL scores greater 

than our specified threshold, that also contain at least 1 set of paired bases.
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To generate secondary structures for snR86 and snR19, we downloaded covariance models 

from Rfam (snR86 Accession: RF01272; snR19 Accession: RF00488), aligned respective 

yeast sequences to their covariance models using the cmalign method from INFERNAL 

v1.1.1, and converted the resulting Stockholm alignment files to BPSEQ format using 

VARNA.

Structures of the yeast ribosome (PDB Accession: 4V88) were visualized using PyMol 

(http://www.pymol.org/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. RNA Proximity Ligation identifies structurally proximate regions within the complex 
secondary structures of S. cerevisiae ribosomal RNAs. a.)
A schematic representation of the RPL method. Whole cells are spheroplasted with 

zymolyase and RNA is allowed to react with endogenous RNases. RNA ends are repaired in 

situ via T4 PNK to yield 5′-phosphate termini. Complexes are ligated overnight in the 

presence of T4 RNA Ligase I. Ligation products are cleaned up via acid guanidinium-phenol 

and subsequent DNase treatment, and subjected to Illumina TruSeq RNA-seq library 

preparation. These libraries are sequenced to map and count ligation junctions; b.-c.) We 

examined the distribution of ligation junctions as a function of distance from known base-
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pair partners in the 25S/5.8S rRNA and 18S rRNAs. Ligation products capture the structural 

proximity implied by base-pairing relationships, as evidenced by the enrichment for ligation 

junctions immediately near paired bases. Y-axes are shown as ligation counts per million 

reads analyzed. d.) Contact probability map for the eukaryotic 5.8S/25S rRNA based on 

RPL scores, which are calculated from the frequencies of ligation events between pairs of 21 

nt windows (Methods). Lower inset: Ligation events, shown for bases 1300 to 1475 of the 

LSU rRNA in orange, primarily occur across digested single-stranded loops. RPL scores 

effectively smooth this noisy signal and are enriched for pairs of interacting regions. Plotted 

here are the 8,463 ligation events where both nucleotides fall within the displayed domain 

(compared to 17,029 ligation events where one nucleotide falls within the displayed domain 

and one does not, not shown). Right inset: RPL scores localize known pseudo-knots in the 

LSU rRNA structure, such as the interaction between bases 1727-1812 (shown in red) and 

bases 1941 – 2038 (shown in blue).
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Figure 2. 
Smoothing of ligation junction data results in ligase-dependent signal around known stem-

loop formations. a.) The 10,000 most abundant ligation pairs for the LSU rRNA (red) 

overlaid onto the known secondary structure (blue). While signal across stem-loops is 

evident, there is considerable noise. b.) Top 25,000 interacting windows based on RPL 

scores, which are calculated from the frequencies of ligation between pairs of 21 nt windows 

(Methods), for the LSU rRNA in the (+) ligase sample (red), again overlaid onto the known 
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secondary structure (blue). Lines are drawn between the central bases of two interacting 21 

nt windows. For b.), the shading of the red lines is proportional to the ligation frequency.
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Figure 3. 
2D RPL contact probability maps recapitulate known and predicted non-ribosomal RNA 

structures. a.) Contact probability map for snR86 mirrored against interacting windows 

containing paired bases, based on conserved secondary structure. b.) Contact probability 

map for snR19 mirrored against interacting windows containing paired bases, based on 

conserved secondary structure. RPL signal indicating the formation of a stem-loop in bases 

320-510 within the molecule is supported by MFE predictions, but not conservation. c.) 
Contact probability map for SCR1 mirrored against interacting windows containing paired 
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bases, based on the known structure of SCR1. For all analyses shown here, RPL scores were 

calculating using a window size of 21 nt.
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Figure 4. RPL scores demonstrate modest positive predictive value for pairs of interacting 
windows in RNA secondary structure. a-b.)
Plots of number of true positive interacting windows versus number of false positive 

interacting windows for the (a) 5.8SS/25S rRNAs and (b) 18S rRNA, at various quantile 

thresholds on RPL scores. This analysis shows that RPL scores have predictive value in 

classifying interacting regions containing at least one set of paired bases within RNA 

secondary structure. c-d.) Plots of the positive predictive value (green) and sensitivity 

(purple) of RPL-based classification of interacting regions, as a function of quantile 
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threshold used for (c) 5.8S/25S and (d) 18S rRNAs. The quantile step size used for all 

analyses shown in this figure was 0.001.
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