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Abstract: Physiologically Based Pharmacokinetic (PBPK) models can be used to 

determine the internal dose and strengthen exposure assessment. Many PBPK models are 

available, but they are not easily accessible for field use. The Agency for Toxic Substances 

and Disease Registry (ATSDR) has conducted translational research to develop a human 

PBPK model toolkit by recoding published PBPK models. This toolkit, when fully 

developed, will provide a platform that consists of a series of priority PBPK models of 

environmental pollutants. Presented here is work on recoded PBPK models for volatile 

organic compounds (VOCs) and metals. Good agreement was generally obtained between 

the original and the recoded models. This toolkit will be available for ATSDR scientists 

and public health assessors to perform simulations of exposures from contaminated 

environmental media at sites of concern and to help interpret biomonitoring data. It can be 

used as screening tools that can provide useful information for the protection of the public. 

Keywords: volatile organic compounds; VOCs; metals; PBPK; toxicokinetic; National 

Health and Nutrition Examination Survey (NHANES) 
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1. Introduction 

Default consumption values of air, water, soil, and foods are often used to estimate exposures to 

environmental pollutants from different routes of exposure. In addition, there is uncertainty regarding 

the amount of the chemical to which a person is exposed that is absorbed into the body and distributed 

to organs and tissues. Physiologically based pharmacokinetic (PBPK) models are being used to 

duplicate biological and physiological processes. These models may increase the accuracy of 

calculating the internal dose in tissues by use of such measures as blood or urine levels [1–3]. For 

these reasons, PBPK models can be used for extrapolating varied routes, doses, and species [4–7]. 

Even though multiple PBPK models are available they are too complex for field application by 

health risk assessors. An additional challenge is they are in multiple simulation languages for which 

advance education and training is required. Thus, translational research is needed to make such models 

accurate and accessible to workers in easy-to-use formats. The Agency for Toxic Substances and 

Disease Registry (ATSDR) has undertaken a project to convert and recode available, published PBPK 

models from multiple simulation languages into a single one that is easy to learn and operate. A library 

of models for certain ATSDR priority pollutants, such as volatile organic compounds (VOCs) and 

metals, has been developed, employing Berkeley Madonna software version
 
8.01 for Windows, Kagi 

Shareware, Berkeley, CA, USA for simulation and optimization because of its ease of application, 

economical multi-user license, and faster compilation properties [8]. This toolkit will assist researchers 

and risk assessors to assess potential chemical health effects. These models are not intended to be 

state-of-the-art models with metabolites or the latest version of a PBPK model. They should, however, 

be sufficiently vetted to allow health assessors to predict the consequences of complex exposures in 

terms of internal doses and their health implications. The models, including a basic training module, 

will be freely available on the Computational Toxicology and Methods Development Laboratory Web 

page upon the project’s completion. Specifically, ATSDR staff will be provided initial training in the 

advantages and limitations of the models available in the human PBPK toolkit. This article focuses on 

the project achievements to date, including the recoding of human PBPK/PK VOCs and metal  

models [9–11]. 

2. Methods 

We first conducted a review of the literature to identify available human PBPK models for the 

chemicals of interest. The PBPK models varied in their complexity. They contained different numbers 

of compartments (e.g., liver, kidney, and other organs) and metabolites, and they were developed by 

use of different simulation languages, such as MatLab™, Simusolve, and AcslX™. Model selection 

was based in part on the number of data sets used to calibrate and evaluate the model, the model’s 

maturity (number of predecessor models from which the model was derived), and the experience of the 

authors. The models’ availability, performance, accuracy, and reproducibility also played a role [12–23]. 

Each model was constructed by use of flow-limited compartments describing the mass balance of the 

chemicals in multiple tissues. All compartments were described as well-mixed and flow-limited. All 

the recoded models, unless otherwise specified, allow simulation of different routes of exposure, either 

individually or simultaneously.  
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We derived a generic model that could be used for several VOCs, including benzene (BEN), carbon 

tetrachloride (CCl4), dichloromethane (DCM), perchloroethylene (PCE), trichloroethylene (TCE), and 

vinyl chloride (VC). This model was based on an individual model that met the study criteria 

mentioned above [18–23]. Only parent compound data sets and accompanying simulations were 

extracted from figures by use of Grab It! XP2 [24]. Original model simulations for metabolites and 

metabolite data were not included in this version of the PBPK VOCs toolkit development. Including 

metabolites is a critical future improvement for use of the PBPK models in dose-response assessments, 

when toxicity is mediated by metabolite formation. 

For metals, arsenic, cadmium, and mercury models were recorded as original published. Because  

of chemical-specific kinetics differences in each model, no attempt was made to develop a generic  

model [12–17]. 

2.1. Model Structure and Physiological Parameters 

We constructed a seven-compartment generic VOCs model with blood, fat, skin, kidney, liver, 

rapidly and slowly perfused tissue compartments, plus a gas exchange compartment. Elimination and 

absorption were accounted for by incorporating a gas exchange and a skin compartment accounting for 

portal of entry and loss of the VOC from the body; the liver for metabolism, including first pass 

metabolism after oral intake; the fat as a reservoir; and the kidney as a possible target organ and 

potential excretory organ. Distribution to the remaining tissues was grouped on the basis of rates  

of blood perfusion, to maintain mass balance. All compartments were described as well-mixed and  

flow-limited.  

Human physiological parameters used in this study such as tissue volumes, alveolar ventilation, rate 

of metabolism, cardiac output and chemical specific parameters were taken from the literature [18–36]. 

Only TCE [30] and PCE [36] skin:blood partition coefficients have been reported. Thus for the other 

VOCs, the TCE skin:blood partition coefficient values were used. To describe dermal uptake of other 

VOCs dissolved in water, we would need estimates of skin:water partition coefficients and Kp 

(permeability constant) values. The dermal exposure route is available in the model, but lack of 

chemical-specific parameters and human pharmacokinetic data for this route of exposure is a major 

challenge for many of the VOCs. Several approaches, such as Quantitative Structure Activity 

Relationship (QSAR), have been used to fill this data gap and could be employed with these models to 

estimate the dermal contribution to exposure. In the current model version we also did not include 

original-model simulations for metabolites and metabolite data. Nevertheless, a critical future 

improvement for this model’s post-screening use is incorporation of metabolite information, 

particularly when toxicity is mediated by metabolite (s). 

The methylmercury model was patterned after Carrier et al., 2001. This model consists of blood, 

liver, kidney, brain, hair, urine, and feces compartments [13,14]. The arsenic model was patterned after 

El-Masri and Kenyon [12]; this model consists of interconnected sub-models for inorganic arsenic III 

and V and its metabolites, monomethyl arsenic (MMA) and dimethylarsenic (DMA). It includes 

compartments for the lung, liver, GI tract, kidney, muscle, brain, skin, and heart [24]. The cadmium 

model was based on the initial work of Nordberg-Kjellstrom, later modified by Choudhury et al., 2001 

and Diamond et al., 2003 [15,16]. 
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The cadmium toxicokinetics that used differential equations were to describe the inter-compartmental 

transfers of cadmium, and the growth algorithms for males and females and corresponding organ 

weights were used to calculate age-specific cadmium concentrations from tissue cadmium burdens.  

Human physiological and chemical-specific parameters of As, Hg, and Cd were taken from the 

original published model [12–17,27–31]. These models can simulate two routes of exposure, 

inhalation and oral, either individually or simultaneously. 

2.2. Model Evaluation 

Assessment of our generic VOCs PBPK model was first performed by comparison of the published 

human kinetic data for each VOC and our recoded version of the published model. To further insure 

the reliability of our generic VOCs model, the area under the concentration curve (AUC) for blood or 

exhaled breath was calculated for each VOC, using both our generic VOCs model and the original 

model. Predicted AUC values in blood or breath for each VOC were then compared to the data-derived 

AUC values (using the trapezoidal rule) in blood or breath. For each VOC, the fit was expressed as a 

ratio (AUCr) that equaled the AUC value for the published model or for our generic VOCs model 

divided by the AUC value computed from the kinetic data. We recognize shortcomings in using  

data-derived AUC values, in that they may either inflate or deflate the probable AUC values, 

depending on the quality of the data. Nevertheless, our interpretation of the AUC ratios was that the 

closer the value was to one, the better the agreement between measured and model prediction. 

For each kinetic time course dataset, we also calculated the mean of the sum of the squared 

differences (MSSDs) between model prediction and observation. We computed MSSD by squaring the 

difference between a measured data point and the value of the simulation at the corresponding time. 

We summed these squares and then divided the sum by the number of data points. The MSSD was 

thus determined for both the published model and for our generic VOCs model. One interpretation is 

that the lower the MSSD value, the better the fit. However, the absolute values of the data can skew 

the results; thus, professional judgment is considered important in deciding the quality of the fits 

between model prediction and observation. 

Assessment of the PBPK metals models was conducted by comparison of human data sets to 

recoded and published model simulations. We achieved the assessment by calculating a value for 

percent median absolute performance error (MAPE%) on the basis of estimates of performance error 

(PE) [14]. The accuracy of the prediction was measured by root median-square performance  

error (RMSPE%) as: 

2

1

PE
RMSPE%

n

i n
=

= ∑  

where n is the total number of data points. We also calculated the correlation coefficient between 

Cmeasured and Cpredicted. 

The robustness of each of the recoded models was also studied by use of the sensitivity ratio (SR) 

approach. This type of sensitivity analysis shows the strength and relevance of the inputs in 

determining the variation in the output. The SR ratios for each input–output pair of variables were 
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calculated [37]. A positive sensitivity ratio indicates that an increase in the input value results in an 

increase in the output value. A negative sensitivity ratio indicates the opposite effect. 

3. Model Applications 

The Centers for Disease Control and Prevention’s (CDC) National Health and Nutrition 

Examination Survey (NHANES) provides a representative sample of environmental testing on blood 

and urine specimens. With the NHANES data, CDC’s Environmental Health Laboratory conducts 

biomonitoring for over 200 chemicals [38]. All the VOCs as well as metals for which we have recoded 

models in our human PBPK toolkit have been reported in the Fourth National Report on Human 

Exposure to Environmental Chemicals [38]. 

We used our VOCs PBPK model to simulate various Minimal Risk Levels (MRLs) exposures for 

each of the VOCs for which biomonitoring data on human blood levels were available from the Fourth 

National Report on Human Exposure to Environmental Chemicals [38]. MRLs are an ATSDR estimate 

of daily human exposure to a hazardous substance at or below which that substance is unlikely to pose 

a measurable risk of harmful (adverse), noncancerous effects [39,40]. MRLs are calculated for an 

exposure route (inhalation or oral) over a specified period (acute, intermediate, or chronic). MRLs 

simulations were run as a combination of continuous 24 h inhalation and oral ingestion exposures 

(equally spaced four times a day) at the MRLs for acute (14 days), intermediate (365 days), and 

chronic (>365 days) durations. Steady-state VOC concentrations in venous blood were then compared 

to NHANES data by use of these simplified assumptions about exposure frequency and duration. If the 

measured NHANES blood levels are below those estimated from the simulations, the exposures are 

regarded as safe. 

For the metals models, our toxicokinetic recoded model for cadmium was used to interpret the Cd 

urinary concentrations reported in the Fourth National Report on Human Exposure to Environmental 

Chemicals. Oral ingestion exposures were simulated by use of the geometric mean dietary Cd intakes 

for each of the sex-age stratified datasets [9]. 

4. Results and Discussion 

The seven-compartment generic VOCs model we constructed adequately reproduced simulations 

for all the VOCs. The simulations included various exposure scenarios for multiple routes and varying 

times of exposure for exhaled breath and arterial blood concentrations, as determined by the AUC 

ratios (AUCr) and the MSSD values (Table 1). A general acceptability within the modeling community 

is that the closer the value of the AUCr to one, the better the agreement between measured and model 

predictions. Similarly, the lower the MSSD value, the better the fit between the absorption, elimination, 

and steady state curves, as illustrated by the simulations shown for TCE (Figure 1). This figure shows 

the original model’s and our generic VOCs model’s comparative simulations of predicted arterial 

blood concentration following a 4-h, 50-ppm TCE inhalation exposure. These results show that our 

generic VOCs model simulation of TCE inhalation exposure in male humans compared favorably to 

the original model [22]. For both models, the AUCr values were 0.8 (Table 1); the MSSD values were 

similar and low—0.0089 for the original model and 0.0095 for our generic VOCs model. As seen in 
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Table 1, sometimes the models under- or over-predicted, but these differences are within the 

parameters of variability common for exposure assessment in risk assessments. 

Figure 1. Trichloroethylene (TCE) blood concentrations (●) measured over time, 

following a 4 h, 50 ppm TCE inhalation exposure (Fisher et al. 1998 [22]). The original 

simulation (---) and our generic VOCs model simulation (—) are also shown. 

 

Table 1. Physiologically Based Pharmacokinetic (PBPK) volatile organic compounds 

(VOCs) Model Comparison. 

 AUCr MSSD 

VOCs Generic Model Original Model Generic Model Original Model 

BEN 
a
 0.9 1.6 0.0008 0.0009 

CCl4 
b
 2.5 1.9 0.4515 0.2344 

DCM 
c
 1.1 1.1 3.8214 1.1722 

PCE 
c
 0.6 0.8 0.0805 0.0164 

TCE 
c
 0.8 0.8 0.0095 0.0089 

VC 
b
 1.2 1.1 0.1875 0.1831 

BEN, benzene; CCl4, carbon tetrachloride; DCM, dichloromethane; PCE, perchloroethylene;  

TCE, trichloroethylene; VC, vinyl chloride. 
a
 µM; 

b
 ppm; 

c
 mg/L.  

All the recoded metal models adequately simulated experimental human data found in the published 

literature [12–17]. As shown in Figure 2, the arsenic model predicted cumulative urinary excretion of 

total As and its two methylated metabolites in humans adequately, and the arsenic model is in good 

agreement with the original model. Performance evaluation was measured using MAPE%, MPE%, and 

RMSPE% for the three metals [10]. As is true with every PBPK and toxicokinetic model, these models 

try to capture various biological processes of absorption, distribution, metabolism and excretion 

(ADME) on the basis of available experimental data. Such simplifications sometimes can lead to 

shortcomings. Thus, model assumptions should be clearly understood and simulation interpretation 

should be put in perspective, with actual toxicity findings or reported facts. 
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After evaluation of each recoded model, we tried to interpret the findings of the report by using 

these models as a screening tool. The generic VOC PBPK model was used to estimate the blood 

concentrations for the available MRL values of each of the specific VOCs (Table 2), and the 

toxicokinetic Cd model was used to predict the urinary cadmium concentrations for non-smokers in the 

U.S. populations (Table 3). These results illustrate that the human PBPK toolkit can be used as an 

initial screening tool for some of the most prominent VOCs, and it can help direct further detailed 

analysis when such analysis is warranted. The application of the cadmium model demonstrated that it 

too can be used to predict urinary excretion on the basis of cadmium intake across various age groups, 

except for the elderly (>60 years of age), where absorption from the gut is a known compounding 

factor, as shown by other published models [15,16]. 

Figure 2. Total As, monomethyl arsenic (MMA), and dimethylarsenic (DMA) cumulative 

urinary excretion in human volunteers exposed to 100 µg As in the form of sodium arsenate 

(panel a) and sodium arsenite (panel b). Our recoded model simulation (Left, solid line) 

versus the reworked original simulation by El-Masri and Kenyon, 2008 [12] (Right,  

solid line). 
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Table 2. Comparison of Minimal Risk Level (MRL) simulated blood concentration of each 

solvent, assuming simultaneous inhalation (24 h/day) and oral ingestion (4 drinking bouts 

per day) to the measured blood concentration of solvent reported by National Health and 

Nutrition Examination Survey (NHANES) 2003–2004. The simulated solvent exposure is 

set to the MRL for inhalation of the solvent in air and ingestion of the solvent in water. 

 BEN
+ 

CCl4
+ 

DCM
+ 

PCE
+ 

TCE
+ 

VC
+ 

MRL *  0.003/0.0005 0.03/0.007 0.6/0.2 0.3/0.06 0.2/0.05 2/0.2 none 

Exposure 

Duration 
Chronic Intermediate Acute Chronic Acute Acute ---- 

PBPK 

MODEL 
Blood Concentration (ng/mL) 

Predicted 

Peak 
0.04 0.40 18.12 6.70 10.76 111.65 ---- 

NHANES ** Blood Concentration (ng/mL) 

 0.260 

(0.210–0.320) 
<LOD <LOD 

0.140 

(0.091–0.300) 
<LOD ND ** 

Limit of 

Detection 

(LOD) 

0.024 0.005 0.07 0.048 0.012 ND 

Ben
+
, benzene; CCl4

+
, carbon tetrachloride; DCM

+
, dichloromethane; PCE

+
, perchloroethylene; 

TCE
+
, trichloroethylene; VC

+
, vinyl chloride; * Inhalation concentration (ppm)/Oral ingestion rate 

(mg/kg-day); ** NHANES 2003–2004. 95th percentiles of blood concentration (in ng/mL) for US 

population, ND = Not Done. 

Table 3. Dietary cadmium intake, model predictions, and geometric mean urinary 

cadmium concentrations in nonsmoking male U.S. population (National Health and 

Nutrition Examination Survey: NHANES 2003–2004). 

Age  

group 

(years) 

Males  Females 

* Urinary Cd (µg/g creatinine) Cd Intake GM 

(µg/day) 

* Urinary Cd (µg/g creatinine) Cd Intake GM 

(µg/day) Measured Predicted Measured Predicted 

6–11 0.088 

(0.071−0.11) 

0.101 

(0.071−0.11) 
15.0 

0.088 

(0.072−0.108) 

0.172 

(0.152−0.188) 
13.5 

12–19 0.074 

(0.066−0.083) 

0.087 

(0.078−0.095) 
19.7 

0.103 

(0.089−0.118) 

0.163 

(0.136−0.190) 
15.1 

20–39 0.125 

(0.114−0.137) 

0.137 

(0.082−0.190) 
22.4 

0.179 

(0.159−0.202) 

0.285 

(0.182−0.386) 
16.2 

40–59 0.208 

(0.184−0.234) 

0.214 

(0.188−0.241) 
22.1 

0.342 

(0.305−0.383) 

0.427 

(0.377−0.477) 
16.5 

≥60 0.366 

(0.324−0.414) 

0.226 

(0.221−0.232) 
17.6 

0.507 

(0.460−0.558) 

0.453 

(0.447−0.459) 

14.4 

 

* From Choudhury et al., 2001 [15]. GM = geometric mean. 

In this paper, we have reviewed the progress that has been made at ATSDR to make available 

PBPK models by bridging the gap between model development and use. We did this through 

harmonizing efforts of recoding the best available published PBPK models from multiple simulation 
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languages into a single simple simulation language—Berkeley Madonna—that when completed will 

be packaged into a human PBPK toolkit. Currently, the recoded models include three high-ranking 

metals and some commonly encountered VOCs from ATSDR’s priority list of environmental 

contaminants. We have demonstrated that the toolkit can be used in the assessment of biomonitoring 

results as a screening tool. The human PBPK toolkit that is being developed at ATSDR has the major 

advantage that it can be applied in the field by practitioners of risk and health assessments. 

The use and acceptance of computational tools such as the human PBPK toolkit in the  

decision-making process should be acquired through an interaction between the model developers and 

model users. These interactions will lead to an increased application of such tools in the field and an 

increased awareness of their advantages and limitations. Such interactions and awareness will promote 

the integration of the toolkit into the alternative tools available for decision-makers. Their optimal use 

can only be realized through information exchange and shared expertise. The only way to promote 

their use is to make such tools easy to use and apply. We have shown that models available in multiple, 

simulation languages can be recoded into one simulation language. Thus, the end-user has to learn 

only one simple language, rather than a multitude of computer languages, to derive the predictions 

needed for risk assessments. These types of efforts will allow validation and verification of results to 

give the user confidence of their integration in the overall risk assessment processes. 

In conclusion, computational toxicology is a growing field that will produce new and innovative 

tools that will become increasingly available for chemical risk assessment. High throughput screening 

and in vitro testing are drastically changing the testing strategies in toxicology. They are at the 

threshold of creating the next generation of computational tools. Before the nextGen tools become 

available, it is imperative that the risk assessors start using PBPK modeling and similar computational 

tools that have been developed during the past few decades. To keep pace with the changing science, 

we should continue to develop libraries of predictive tools that will help in the hazard identification 

and risk assessment process; otherwise, there is a real concern that the tools that are being employed 

might not keep pace with advances in science or recommendations of such organizations as the 

National Academies of Science (NAS). These organizations are recommending a totally new  

approach, such as pathway analysis, and systems approaches to evaluate the consequences of exposure 

to chemicals.  
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