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Abstract

Significant strides have been made in optimizing the design of filtration and pressurization 

systems used on the enclosed cabs of mobile mining equipment to reduce respirable dust and 

provide the best air quality to the equipment operators. Considering all of the advances made in 

this area, one aspect that still needed to be evaluated was a comparison of the efficiencies of the 

different filters used in these systems. As high-efficiency particulate arrestance (HEPA) filters 

provide the highest filtering efficiency, the general assumption would be that they would also 

provide the greatest level of protection to workers. Researchers for the U.S. National Institute for 

Occupational Safety and Health (NIOSH) speculated, based upon a previous laboratory study, that 

filters with minimum efficiency reporting value, or MERV rating, of 16 may be a more appropriate 

choice than HEPA filters in most cases for the mining industry. A study was therefore performed 

comparing HEPA and MERV 16 filters on two kinds of underground limestone mining equipment, 

a roof bolter and a face drill, to evaluate this theory. Testing showed that, at the 95-percent 

confidence level, there was no statistical difference between the efficiencies of the two types of 

filters on the two kinds of mining equipment. As the MERV 16 filters were less restrictive, 

provided greater airflow and cab pressurization, cost less and required less-frequent replacement 

than the HEPA filters, the MERV 16 filters were concluded to be the optimal choice for both the 

roof bolter and the face drill in this comparative-analysis case study. Another key finding of this 

study is the substantial improvement in the effectiveness of filtration and pressurization systems 

when using a final filter design.

Introduction

When most health and safety professionals think today about filtration efficiencies and their 

correlation with protecting workers’ health, the normal assumption is the higher the 

efficiency of a filter, the greater the protection afforded to the workers. The next logical step 

is to believe that filters meeting the high-efficiency particulate arrestance (HEPA) standard 

deliver the greatest protection for workers because they provide the highest filtering 

efficiency. Obviously, high-efficiency intake filters are a necessity for an effective cab 

filtration and pressurization system on mobile mining equipment, but what is the optimal 

Disclaimer
Mention of any company or product does not constitute endorsement by NIOSH. The findings and conclusions in this report are those 
of the authors and do not necessarily represent the views of NIOSH.

HHS Public Access
Author manuscript
Min Eng. Author manuscript; available in PMC 2016 August 12.

Published in final edited form as:
Min Eng. 2016 August ; 68(8): 50–58.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



filter efficiency for achieving high levels of cab protection factor (PF) performance over the 

service life of filters? To address this question, an in-depth U.S. National Institute for 

Occupational Safety and Health (NIOSH) laboratory research study was performed over 

several years with numerous simultaneous field studies to retrofit enclosed cabs in use on 

mobile mining equipment with newer and more effective filtration and pressurization 

systems.

Table 1 summarizes the minimum efficiency reporting values, commonly known as MERV 

ratings, and filtration efficiencies corresponding to three size ranges of dust/contaminant 

particles, obtained from the American Society of Heating, Refrigerating and Air-
Conditioning Engineers Handbook (ASHRAE, 2012), with the HEPA efficiency added at the 

bottom for comparison. A MERV rating is a value designated by ASHRAE to compare the 

effectiveness of different air filters, while HEPA is the most common filtration term known 

today, recognized by most nonhealth and safety professionals.

To be rated as HEPA quality, filters must meet specifications set by the U.S. Department of 

Energy and must be capable of filtering at least 99.97 percent of particles sized 0.3 µm and 

larger, and Table 1 shows a considerable jump in filtration efficiency for 0.3-µm particles 

and larger from ≥95 percent for MERV 16 filters to ≥99.97 percent for HEPA filters. Along 

with their wide recognition comes the assumption that HEPA filters should be used in nearly 

all applications. However, these filters are more costly and restrictive than MERV 16 filters, 

placing additional demands on the overall filtering system, including the intake fan. The 

increased restriction and pressure drop across HEPA filters result in decreased intake airflow 

and lower positive pressure within the cab, both of which are detrimental to the overall 

system performance. This situation also raises the likelihood of leakage around the filter if 

the design and construction of the filter housing has minor imperfections.

When dealing with mobile equipment used in the mining and construction industries, 

because of the constant movement, vibration and stress placed on the enclosed cab over 

years of use, the likelihood of stress cracks and leakage points in the heating, ventilating and 

air conditioning (HVAC) and filtration system becomes more of an issue. Based upon the 

results of a previous NIOSH laboratory study analyzing diesel particulate matter, we 

hypothesized that a MERV 16 intake filter using a mechanical filter media would be the 

optimal design for the majority of enclosed cabs for mining applications, rather than a HEPA 

filter (Cecala et al., 2016; Cecala et al., 2014; Noll, Cecala and Organiscak, 2011, 2014).

When the research to improve air quality in the enclosed cabs of mobile equipment was 

started about 15 years ago, NIOSH’s Pittsburgh Mining Research Division conducted the 

analysis by performing gravimetric sampling and using light-scattering nephelometers to 

obtain instantaneous measurements inside and outside of the enclosed cabs during in-mine 

testing. This sampling process was time consuming, as well as complicated, because it 

included the time periods when the equipment operator was entering and exiting the cab, 

which allowed dust and contaminants to enter (Cecala et al., 2007; Heitbrink et al., 2000).

In recent years, particle counters have advanced in many ways, becoming more economical 

and simple to use, and these instruments have improved the accuracy of the testing in this 
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research. The current study was performed using particle counters during nonproduction 

time periods while the roof bolter and face drill were located outside the mine. We believe 

these static conditions provide much more reliable results and the most favorable and 

comparable PF values for each enclosed cab. We also believe that this study is the first of its 

kind, attempting to compare HEPA and MERV 16 filters in the same enclosed cabs of 

mining machinery used in the industry.

Testing

A comparative evaluation was performed of the air quality in the enclosed cabs of a roof 

bolter and a face drill (J.H. Fletcher & Co., Huntington, WV) using MERV 16 and HEPA 

filters. Identical test protocols were implemented for each test series to achieve, as close as is 

practical, identical tests over the study period. Figure 1 shows the filtration and 

pressurization unit on the face drill along with a plan view of the system design, which was 

identical on the roof bolter. Each filtration and pressurization unit used a RESPA-CF Vortex 

HyperFLOW intake air filtration pressurizer unit (Sy-Klone International, Jacksonville, FL) 

and a final panel filter (J.H. Fletcher & Co., Huntington, WV) inside the HVAC component, 

through which all the intake and recirculation air flowed before entering the cab. The intake 

air filter pressurizer contained a cyclonic precleaner that used a centrifugal design to expel 

dust particles sized greater than 5.0 µm and prevent them from depositing on the filter, thus 

minimizing dust loading and extending filter life. Standardsize RESPA-CF filter cartridges, 

15.24 cm (6 in.) in diameter and 20.32 cm (8 in.) high, were used throughout the study. The 

J.H. Fletcher & Co. final panel filter, with width of 28.91 cm (11.38 in.), height of 44.45 cm 

(17.5 in.) and thickness of 9.53 cm (3.75 in.), was mounted at the exhaust discharge of the 

HVAC system. All cab testing was conducted with the pressurizer unit operating and the 

HVAC system fan on the high flowrate setting. A matrix evaluation of several filter system 

configurations was also performed as a secondary study component, as well as a comparison 

of new versus used filters.

The study was conducted at the new Shelly Materials underground limestone mine near 

Zanesville, OH. At the end of the daylight shift, the equipment operators would bring their 

equipment outside the mine to service. When servicing was completed, the operators would 

park the roof bolter or face drill outside the mine and turn it over to us to perform our 

testing. At no time in the study did the operators and mine personnel clean or replace any 

filters associated with this testing. The two most important measurements of the NIOSH test 

protocol were particle count, to determine a PF value for the filtration and pressurization 

system’s effectiveness for each of the enclosed cabs, and airflow, to determine intake and 

recirculation air volumes during each test that were compared over time as the filters loaded 

with dust. Engine hours were also recorded each month during testing to provide a relative 

measure of equipment use and dust loading on the filters over time. At the beginning of the 

testing, we installed a pressure monitoring device and datalogger in the enclosed cab of the 

face drill and that of the roof bolter to determine and record the positive cab pressure created 

by the filtration and pressurization system, aimed at documenting how the positive pressure 

decreased over time as the filters loaded with dust and created additional filter differential 

pressure, which would cause the airflow to decrease. The datalogger was attached to the 

pressure monitor and could record one-minute pressure averages for 28 days. We returned 
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within the 28 days to download the positive pressure data and conduct particle count and 

airflow measurements.

Testing was performed in a static mode, meaning the equipment was running without anyone 

in the enclosed cab to stir up or create any in-cab dust sources. This provided the highest 

possible PF for each of the enclosed cabs. From May through November of 2013, roughly 

on a monthly basis, testing was performed using MERV 16 intake and final filters. The 

testing was then repeated from May through November of 2014 using HEPA intake and final 

filters.

Particle count measurements

Two ARTI/Met One HHPC-6 particle counters (Hach Ultra Analytics, Grants Pass, OR) 

were used to simultaneously sample and record the inside and outside cab particle size 

concentrations for one-minute periods over a 30-minute test (NIOSH, 2008; Organiscak and 

Cecala, 2008; Organiscak, Cecala and Noll, 2013). These instruments count airborne 

particles in six size channels from 0.3 to greater than 5.0 µm. The test medium was airborne 

particles present in the ambient air surrounding the unoccupied stationary cab enclosure with 

the filtration system operating on the high fan setting. The inside and outside cab 

instruments were then alternated for another 30-minute test to average out any instrument 

sampling biases for each test. The last 15 minutes of data from each test were used to 

calculate the average outside and inside cab concentrations during the lowest steady-state 

particle count conditions. The PFs were determined from the cumulative submicrometer 

(0.3–1.0 µm) particle concentrations because most of the ambient air particles resided in this 

size range (NIOSH, 2008; Organiscak, Cecala and Noll, 2013). A PF for each test replicate 

was determined by dividing the average outside particle concentration by the average inside 

particle concentration. The calculated PF for the cab was the average of these two test 

replicates. The 95 percent confidence levels of the PFs were determined by calculating the 

propagation of standard error estimates (for a two-variable ratio) during each test replicate 

and pooling these standard errors using Satterthwaite’s standard error approximation 

(Organiscak, Cecala and Noll, 2013). Because of the comparative nature of this study, any 

effects from extraneous factors from testing at a mine site are believed to be minimal. The 

PF represents a reduction ratio of all the exterior and interior particles removed by dividing 

the outside concentration by the inside concentration and is the same calculation used when 

determining the effectiveness of personal protective equipment such as respirators.

Airflow and cab pressure measurements

Airflow readings were taken for the intake and recirculation circuits of the cab enclosures’ 

filtration system for various filter combinations. During the field study, a VelociCALC 8346 

hotwire anemometer (TSI Inc., Shoreview, MN) was used to measure the centerline air 

velocity in the middle of a 76.2-cm (30-in.)-long section of a smooth PVC pipe with 

diameter of 6.10 cm (2.4 in.) that was added to the outlet of the intake filtering unit. For the 

recirculation component, one-minute moving traverse velocity measurements were taken 

with a vane anemometer (Davis Instruments, Vernon Hills, IL) over the recirculation filter 
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inlet area. A more detailed description of these measurements can be found in Cecala, 

Organiscak and Noll (2012).

The cabs’ inside-to-outside differential static pressures were also measured to ensure that 

cab pressurization was achieved. During the MERV 16 filter testing in 2013, the KT-

CABPRES-EL1-ENG electronic pressure monitor system 0.0–200 Pa (0.8-in. water gauge) 

(Sy-Klone International, Jacksonville, FL) was used. During the HEPA filter testing in 2014, 

the DM-2003-LCD differential pressure transmitter 0.0–125 Pa (0.500-in. water gauge) 

(Dwyer Instruments, Inc., Michigan City, IN) was used. Both of these static pressure 

monitors had electronic outputs. The pressure data were downloaded to a HOBO U12-006 

datalogger (Onset Computer Corp., Pocasset, MA) and stored on the datalogger as one-

minute pressure averages for up to a 28-day period.

Results

Figure 2 shows the PFs determined for the enclosed cabs of the face drill and roof bolter, as 

well as the intake airflows with the MERV 16 filters and the HEPA filters. The PF values, 

plotted on a log-normal scale, show significant improvements in air quality achieved with 

both types of filters for both the face drill and the roof bolter. There are three missing data 

points: the first two for the face drill and the roof bolter in October 2013 due to a several-

week federal government shutdown that started on Oct. 1, and the third for the test on Aug. 

27, 2014, in which the face drill was not operational.

The PFs for the face drill ranged from 612 to 6,337 for the MERV 16 filters and 685 to 8,133 

for the HEPA filters. This compares with PFs for the roof bolter of 77 to 1,021 for the 

MERV 16 filters and 182 to 1,425 for the HEPA filters. Based upon these ranges, the 

assumption would be that the HEPA filters provided higher PFs than the MERV 16 filters, 

but when all the values were averaged over the entire test period, this was not the case, as 

shown in Fig. 3. For the face drill, the average PF was 3,898 with the MERV 16 filters, 

slightly higher than the average PF of 3,677 with the HEPA filters. For the roof bolter, the 

average PF was 573 with the MERV 16 filters, slightly lower than the average PF of 681 

with the HEPA filters. Statistically, at the 95 percent confidence level, there is no difference 

between the PF values for either the face drill or the roof bolter between the two types of 

filters. This conclusion is based on insignificant differences found between the filter types 

when using a two-tailed parametric t-test, assuming unequal variances, and a nonparametric 

Wilcox test. The 95 percent confidence levels for the cab PFs are also shown in Fig. 3 and 

illustrate no significant differences between the filters used on each cab. There is, however, a 

significant difference in the PF values when comparing the enclosed cabs on the face drill 

with the roof bolter, which will be discussed in the following section.

The first point to note in the results is the extremely high Comparison of the average PF 

values for the face drill and roof bolter with the MERV 16 filters and the HEPA filters. PF 

values for both the face drill and the roof bolter, especially the face drill, indicating the 

tremendous improvement in air quality in the enclosed cabs. These PF values are the highest 

recorded in any of NIOSH’s field testing to date, and it is believed that the static test 

conditions and the use of a final filter were the two significant contributing factors. In 
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Organiscak, Cecala and Noll (2014), it was stated that any filtration and pressurization 

design that directs all the intake and recirculation airflow through a final filter significantly 

increases the system’s effectiveness, which was the case for the J.H. Fletcher design in both 

the roof bolter and face drill (Fig. 2).

Another interesting point to note is that for the MERV 16 filters, when the PF values for new 

filter conditions in May 2013 are compared with the values for the following two readings in 

June and July, the results show the intake and final filters loading with dust and becoming 

more efficient. For the face drill, the PF was 612 with new filters, increasing to 4,106 for 

June and 6,337 for July. Similarly, for the roof bolter, the PF was 300 with new filters, 

increasing to 790 for June and 1,021 for July. Averaging the PF values for June and July, 

when the filters were loaded with dust, shows the substantial increase in filtering efficiency 

for both the face drill and the roof bolter, with improvement factors of 8.5 and 3.0 times the 

original, or clean filter, values, respectively.

This was not the case when considering the results of the HEPA filter testing, performed in 

2014. At the start of the test, there were new intake and final filters in both the face and the 

roof bolter. The intake filters loaded with dust as testing progressed, and once the intake 

airflow dropped below the 0.71-m3/min level (25 cfm), a new intake filter was installed in 

the system. For the HEPA testing, there were five instances when new intake filters were 

used: three for the face drill and two for the roof bolter. In only one of these five instances 

was there a significant PF increase for the same two-month post-analysis used for the MERV 

16 comparison. This occurred for the first HEPA filter test on the roof bolter, when there was 

a 3.2-times increase in the PF when the average of the two post-month values was compared 

with the PF value with all new filters. For the three instances of new intake filters on the face 

drill, there was one case of a very slight improvement of 1.1 times the original PF value.

The last point to highlight is the changes in intake airflow values shown in Fig. 2. In Cecala 

et al. (2014), it was stated that in order to provide a sufficient quantity of intake air to ensure 

the equipment operator does not become asphyxiated from being in an enclosed area, a 

minimum quantity of at least 0.71 m3/min (25 cfm) is recommended to dilute the carbon 

dioxide exhaled by the operator (American Society of Agricultural and Biological 

Engineers, 2013). Based upon this value, it was determined during this study that whenever 

the intake airflow of either the face drill or the roof bolter reached or dropped below the 

0.71-m3/min (25-cfm) level, a new intake filter would be installed. When this occurred, after 

taking the particle count and airflow measurements with the old filter, the new intake filter 

was installed, and the particle count and airflow measurements were repeated. For the testing 

of the MERV 16 filters, there were no intake filter changes necessary, although a new filter 

would have been needed on the face drill if the test had continued past November. For the 

HEPA filters, new intake filters were necessary on two occasions for the face drill on July 29 

and Sept. 24, and on one occasion for the roof bolter on July 29. By comparing the declines 

in intake airflows for the MERV 16 filters with those for the HEPA filters on the face drill 

and on the roof bolter, it is seen how quickly the HEPA filters were loaded with dust and 

diesel particles, and needed to be replaced. This is also apparent in Fig. 4, which plots the 

cab pressures and intake airflows for the face drill with the MERV 16 filters and with the 

HEPA filters. The figure shows the starting points for the intake airflows and the cab 
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pressures for both filter types, and then how the values declined as both the intake and final 

filters loaded with dust. Figure 4 underscores the superior operating life cycle of the MERV 

16 filters compared with the HEPA filters, with higher cab pressure throughout the life cycle, 

as well as how an in-cab pressure monitor can be used to indicate the need for filter changes. 

Recirculation airflows for both cabs were between 4.08 and 7.0 m3/min (144 and 247 cfm) 

for the MERV 16 final filter and between 3.82 and 5.86 m3/min (135 and 207 cfm) for the 

HEPA final filter with the HVAC on the highest fan setting during the study.

Discussion

Although this study showed no long-term significant difference in a cab’s PFs when using 

the MERV 16 filters and the HEPA filters, it did show a significant difference between the 

roof bolter’s and the face drill’s PFs when using identical filters. This difference is 

speculated to be the result of sealing or integrity deviations between the mechanical 

structures of the two identical HVAC/filtration systems. Additional evidence to this effect 

was observed early in the testing of the MERV 16 filters on the roof bolter, when particle 

count measurements were taken with several extra filter combinations, after 257 hours of 

operation, to examine the mathematical modeling of these system changes (Organiscak, 

Cecala and Noll, 2014). The filter combinations tested included adding a used recirculation 

filter to the system and removing the final filter from the system. Figure 5 shows the results 

of these tests as well as the test when the intake and final MERV 16 filters were new. This 

figure also shows the modeled PFs developed in Organiscak, Cecala and Noll (2014) under 

these test configurations using their specified filter efficiencies, including intake, final, 

recirculation, new and used; measured airflows, for intake and recirculation; and an assumed 

intake air leakage of 2 percent, or 0.02, with zero wind infiltration, which was assumed for 

positive cab pressurization. The recirculation filters used in the current study, whose 0.3–1.0 

µm particle collection efficiencies were previously measured in the laboratory, significantly 

reduced the recirculation airflows of the HVAC system (Organiscak, Cecala and Noll, 2014). 

These smaller recirculation filters, 7.62 cm (3 in.) high, 40.64 cm (16 in.) wide and 5.08 cm 

(2 in.) thick, were placed in the recirculation filter location near the floor of the cabs for the 

additional testing (see Fig. 1).

As illustrated in Fig. 5, the measured PFs were notably lower than the modeled PFs. In order 

to achieve agreement between them, the intake air leakage into the system would have to be 

greater than 65 percent, or 0.65. This would appear to be an extreme amount of air leaking 

around the MERV 16 intake air filter through small cracks or gaps in the HVAC system, and 

it is more logical to surmise that there were probably additional air leakages around the other 

filters in the system. Visual inspection of the HVAC system with the filters removed on the 

roof bolter showed dust deposits downstream of the intake and final filters, indicating 

multiple leaks in the HVAC system around the filters. A more refined cab filtration system 

model was formulated by node analysis with these additional leaks (Cecala et al., 2016). 

This model is represented by the following equation:
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where PF is the cab protection factor; C is the outside contaminant concentration penetrating 

the filtration system; x is the inside cab contaminant concentration; η is the filter reduction 

efficiency, fractional; 1 − η is the filter penetration, fractional; Q is the airflow quantity; l is 

the air leakage, fractional; and the subscripts F indicate final, I intake, R recirculation and W 

wind.

The equation provides for a more sensible proportioning of air leakages throughout the 

filtration system. Face drill air leakages that were modeled bypassing the new intake, 

recirculation and final filters were 4, 2 and 2 percent, or 0.04, 0.02 and 0.02, respectively, 

which were doubled for modeling used filters at these locations. Roof bolter air leakages 

used in the model were further doubled over those used for the face drill, given its 

significantly lower cab PF field measurements. Additional two- and three-filter system 

combinations – intake filter with final and/or recirculation filter; MERV 16 and HEPA 

filters; new and used – were also tested on both of these cabs throughout this long-term 

study and were modeled using their measured airflow quantities and assumed proportional 

air leakages described above. For the two-filter systems, zero efficiency was used in the 

equation for the missing filter, thereby removing its air filtering effect from the model.

Figure 6 shows a comparison of the measured cab PFs and the modeled cab PFs, with 

reasonable agreement along a unity line. The spread in the data is presumed to be primarily a 

result of the actual unknown field leakage deviations from the assumed modeled leakages. 

The figure also shows that the lowest PFs were measured and modeled when no final filter 

was used. Additionally, the opening points in the figure show there was no observable cab 

PF benefit to adding the recirculation filter into this system when using the final filter. 

Adding the recirculation filter into the system significantly reduced the recirculation airflow 

and cab PF, as illustrated in Fig. 5. A negative aspect of not having the recirculation filter in 

the system is that dirt and dust from inside the cab would get drawn into and deposited in the 

HVAC system, thereby increasing maintenance issues. An alternative solution to improving 

this cab filtration system would be to increase the size of the recirculation filter to increase 

its airflow capabilities. Finally, leakages in the HVAC/filtration system have a significant 

impact on cab PFs, as shown when comparing the measured and modeled PFs of the two 

vehicle cabs. Therefore, the cab HVAC/filtration system needs to be well-sealed to extract 

the benefits of using high-efficiency dust filters.

Conclusion

A NIOSH comparative study was performed to evaluate the filtering efficiency and air 

quality inside the enclosed cabs of a roof bolter and a face drill being used at an 

underground limestone mine when using MERV 16 filters and HEPA filters. The face drill 

and the roof bolter were each fitted with a filtration system composed of an intake filter and 

a final filter. The final filter provided a second filtering of the intake air, along with filtering 

all the air recirculated from within the enclosed cab. The testing showed there was no 

statistical difference between these two filter types at the 95 percent confidence level for the 

face drill and the roof bolter. In almost all cases when testing the HEPA filters, the PFs were 

at their highest when the filters were first installed. As testing progressed and these filters 

loaded with dust, the PFs, as well as the intake airflows, continually decreased until the 
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system was not able to provide a sufficient intake airflow and the filters needed to be 

changed.

In contrast to the HEPA filters, the MERV 16 filters showed improved filtering efficiency 

over time and use as the filters loaded with dust. Because the MERV 16 filters were less 

restrictive and provided greater cab pressure, they did not have to be replaced as often as the 

HEPA filters. This testing also showed the benefits of using a mechanical filtering media, 

which becomes more efficient with dust loading and the creation of a filter cake. For both 

the face drill and the roof bolter used in this comparative study, the MERV 16 mechanical 

filter design was the optimal choice, not only for performance but also for cost. As MERV 

16 filters are less expensive than HEPA filters and do not need to be changed as often, which 

significantly lowers maintenance labor costs, this equates to significant cost savings.

Another key component of this testing was the validation of the substantial improvement in 

the effectiveness of filtration and pressurization systems when using a final filter design. The 

final filter adds another level of filtration to remove particulates that leak around the other 

filters in the HVAC system. However, filters used in the HVAC system should be adequately 

sized so as not to restrict airflow, thus lowering the system’s effectiveness. This was shown 

not only through the modification expansion of NIOSH’s model to include multiple filter 

applications but also from the actual test matrix performed on the filtration and 

pressurization systems of the face drill and the roof bolter.
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Figure 1. 
Actual filtration and pressurization unit on an enclosed cab (left) with corresponding plan-

view design drawing and airflow pattern (right).
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Figure 2. 
PFs determined from particle countings of the enclosed cabs of the face drill and the roof 

bolter, and comparison of the intake airflows with the MERV 16 filters and the HEPA filters.
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Figure 3. 
Comparison of the average PF values for the face drill and roof bolter with the MERV 16 

filters and the HEPA filters.
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Figure 4. 
Comparison of the intake airflows and positive cab pressures for the face drill with the 

MERV 16 filters and the HEPA filters.
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Figure 5. 
Roof-bolter cab performance changes with respect to different filters used in the system.
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Figure 6. 
Measured and modeled PFs of the face drill and the roof bolter during the filter field study.
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Table 1

MERV ratings and filtration efficiencies for three size ranges of dust particles (ASHRAE, 2012), and HEPA 

efficiency.

Average particle size efficiency
(PSE)

Group MERV
rating

0.3–1.0
µm

1.0–3.0
µm

3.0–10.0
µm

1 <20%

1 2 <20%

3 <20%

4 <20%

5 20–34.9%

2 6 35–49.9%

7 50–69.9%

8 70–84.9%

9 <50% ≥85%

3 10 50–64.9% ≥85%

11 65–79.9% ≥85%

12 80–89.9% ≥90%

13 <75% ≥90% ≥90%

4 14 75–84.9% ≥90% ≥90%

15 85–94.9% ≥90% ≥90%

16 ≥95% ≥95% ≥95%

HEPA ≥99.97% ≥99.97% ≥99.97%
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