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This paper presents a new front-end for robust speech
recognition. This new front-end scenario focuses on
the spectral features of the filtered speech signals in the
autocorrelation domain. The autocorrelation domain is
well known for its pole preserving and noise separation
properties. In this paper, a novel method for robust
speech extraction is proposed in the autocorrelation
domain. The proposed method is based on a novel rep-
resentation of the speech signal corrupted by an additive
noise. Initial filtering stage is used to reduce the additive
noise when computing the speech features followed by
extraction of the autocorrelation spectrum peaks. Robust
features based on these peaks are derived by assuming
that the corrupting noise is stationary in nature. A task of
speaker-independent isolated-word recognition is used to
demonstrate the efficiency of these robust features. The
cases of white noise and colored noise such as factory,
babble and F16 are tested. Experimental results show
significant improvement in comparison to the results
obtained using traditional front-end methods. Further
enhancement has been done by applying cepstral mean
normalization (CMN) to the above extracted features.

Keywords: robust speech recognition, autocorrelation
domain, spectral peaks

1. Introduction

Noise robustness is one of the most challeng-
ing problems in automatic speech recognition.
The performance of automatic speech recogni-
tion (ASR) systems, trained with clean speech,
may drastically degrade in realistic environ-
ments. The main reason for this degradation
is the acoustic mismatch between the training
and testing environments due to environmental
effects. Many techniques have been proposed

to overcome this degradation problem [1]. The
robustness of the speech recognizer can be ac-
complished in three ways: (1) Using speech
enhancement technique to increase the signal
to noise ratio (SNR) [2] (2) extracting the ro-
bust parametric representation of speech signal
to minimize the effect of noise [3,4] and (3) us-
ing model adaptation technique to dynamically
adapt the speech recognition models to noisy
speech [5,8]. The goal of robust speech recog-
nition is to improve the performance of speech
recognition in such adverse environments. The
environmental effects are often determined by
noise and channel distortion. The noise is usu-
ally additive in the spectral domain while chan-
nel distortion is multiplicative. One approach
to attack the effects of environment is to have a
separate training set for each noise type. How-
ever, this approach is not practical due to large
diversity of noise types encountered in real envi-
ronments. In order to remove the effect of noise,
some methods have been found useful and ex-
tensively studied in the literature, such as spec-
tral subtraction (SS), Non-linear spectral sub-
traction (NSS) [9], Linear-logarithmic RelAtive
SpecTrA (Lin-log RASTA) [3], Differentiated
Power Spectrum (DPS) [10], Parallel Model
Combination (PMC) [5] and Minimum Vari-
ance Distortionless Response (MVDR) [11].
Furthermore, various techniques have been de-
veloped to suppress the channel distortion such
as Cepstral Mean Normalization (CMN), Rel-
Ative SpecTrAl (RASTA) [3] and Blind Equal-
ization (BE) [12].
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Although these techniques demonstrate the com-
parable performance, some weaknesses may
restrict their practical applications. The SS
method suppress the background noises by first
estimating non-speech intervals followed by their
subtraction from the noisy speech. Recently, the
parameters extracted using autocorrelation se-
quence of the noisy signal have been found use-
ful for robust speech recognition. Some exam-
ples include magnitude spectrum of higher lag
autocorrelation coefficients [13] whereas other
methods are based on Relative Autocorrelation
Sequence (RAS) method [14,15]. Furthermore,
according to [16], preserving spectral peaks is
very important in obtaining a robust set of fea-
tures in the speech recognition.

In this paper we propose a new approach, uti-
lizing peaks obtained from the autocorrelation
spectrum of the speech signal. This approach
preserves the autocorrelation spectral peaks. We
propose the following front-end description for
robust feature extraction. Firstly, we calculate
the autocorrelation of the noisy signal. As the
temporal autocorrelation of noise is a DC or
slowly varying signal, its effect is suppressed
by a high-pass filter, such as RAS filter [15].
Then, following the DPS concept, relative au-
tocorrelation sequence spectrum is computed
from RAS and differentiated with respect to
frequency. This new spectrum is referred to as
differentiated relative autocorrelation sequence
spectrum (DRASS). Finally, from the magni-
tude of DRASS, the mel-scale frequency cep-
stral coefficients (DRASS-MFCC) are derived
by passing the DRASS through a mel-frequency
filter-bank followed by the discrete cosine trans-
form (DCT).

We can exploit properties of CMN, and combine
the proposed robust features DRASS-MFCC
with the CMN to further improve the recogni-
tion accuracy. The features based on ourmethod
are showing remarkable increase in recognition
accuracy, especially in noisy environments.

The remainder of this paper is organized as fol-
lows. Mathematical fundamentals for extract-
ing RAS and DRASS are derived in Section 2.
Proposed method with front-end diagram is de-
scribed in Section 3. In Section 4. experiments
conducted in clean and noisy environment with
different front-ends are discussed and compared
with the proposed front-end method. Finally a
conclusion is given in Section 5.

2. Robust Features Extraction

2.1. Calculation of the Autocorrelation for
Noisy Signal

Any noisy speech signal y(m, n) can be written
as

y(m, n) = x(m, n) + u(m, n),
0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1

(1)

where u(m, n) is the additive noise, x(m, n)
noise-free speech signal, N is the frame length
(in our case 256 samples), n is the discrete time
index in a frame, m is the frame index and M is
the number of frames.

If x(m, n) and u(m, n) are assumed uncorrelated,
then the autocorrelation of the noisy speech can
be expressed as

ryy(m, k) = rxx(m, k) + ruu(m, k),
0 ≤ m ≤ M − 1, 0 ≤ k ≤ N − 1

(2)

where ryy(m, k), rxx(m, k) and ruu(m, k) are the
short-time autocorrelation sequences of the noisy
speech, clean speech and noise, respectively,
and k is the autocorrelation sequence index
within each frame.

The one-sided autocorrelation sequence of each
frame can be calculated using a biased estimator
as:

ryy(m, k) =
N−1−k∑

i=0

y(m, i)y(m, i + k),

0 ≤ k ≤ N − 1

(3)

Since additive noise is assumed to be stationary,
its autocorrelation sequence can be considered
to be identical for all frames. Hence the frame
index, m, can be dropped out, and (2) becomes

ryy(m, k) = rxx(m, k) + ruu(k),
0 ≤ m ≤ M − 1, 0 ≤ k ≤ N − 1

(4)

2.2. Filtering of One-sided Autocorrelation
Sequence

As described above, our aim is to reduce the
effect of additive noise on the extraction of pa-
rameters of the speech signal. If the autocorrela-
tion trajectory of noise is DC or slowly varying,
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the noise effect is suppressed by calculating the
Relative Autocorrelation Sequence (RAS). The
RAS of the noisy speech at the mth index can
be found by applying a high pass filtering in
the time domain to reduce the effects of addi-
tive noises on signal (4) for all indices m and k.
Hence consider the differences

Δryy(m, k) = Δrxx(m, k),
0 ≤ m ≤ M − 1, 0 ≤ k ≤ N − 1

(5)

where

Δryy(m, k) = ryy(m + 1, k), ryy(m − 1, k)

and

Δrxx(m, k) = rxx(m + 1, k), rxx(m − 1, k)

The sequence, {Δryy(m, k), 0 ≤ k ≤ N − 1}, is
referred to as the RAS of the noisy speech at the
mth frame. Denote the output of this temporal

filtering in the time domain as Z(m, n), we can
write

z(m, n) = x(m, n) + v(m, n),
0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1

(6)

where x(m, n) and v(m, n) are the clean speech
and the remaining noise after filtering, respec-
tively.

2.3. Extraction of DRASS

The autocorrelation function of the filtered speech
signal given in (6) can be written as

rzz(m, k) = rxx(m, k) + rvv(m, k),
0 ≤ k ≤ N − 1

(7)

Provided that the noise and the clean speech
signal are assumed mutually uncorrelated, we

Figure 1. (a) A sample speech signal (b) Autocorrelation magnitude of a 16 msec. frame (c) Relative autocorrelation
magnitude of a 16 msec. frame (d) Relative autocorrelation power spectrum of 16 msec. frame (The power spectrum

is estimated through 256- point FFT) and (e) Differentiated relative autocorrelation spectrum.
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Figure 2. (a) A sample speech signal, and (b) the autocorrelation spectrum magnitude and the differentiated
autocorrelation spectrum magnitude of the same signal with a 256-point FFT. For clarity, only 128 points of the

spectrum are shown.

can calculate the relationship between relative
autocorrelation power spectrum of noisy speech
signal, clean speech signal and noise by using
short time DFT to both sides of equation (7), as
follows:

DTF{rzz(m, k)} = DTF{rxx(m, k)}
+ DTF{rvv(k)}, or

Z(ω) = X(ω) + V(ω)
(8)

WhereDFT[ ] denotes the discrete Fourier trans-
form, and ω is the frequency in radians. Fur-
ther enhancement can be obtained by comput-
ing differentiation of the relative autocorrelation
power spectrum for extracting spectral peaks.
The differential power spectrum is defined as:

DZ(ω) =
dZ(ω)

dω
=

dX(ω)
dω

+
dV(ω)

dω
= DX(ω) + DV(ω)

(9)

Where DX(ω) and DV(ω) are the differen-
tial relative autocorrelation power spectra of
the clean speech signal and the noise respec-
tively. DZ(ω) is referred to as the Differenti-
ated Relative Autocorrelation Sequence Spec-
trum (DRASS) of noisy speech.

This approach combines advantages of RAS
and DPS. Figure 1(a) depicts a sample speech
signal, its autocorrelation magnitude (b) and
relative autocorrelation magnitude (c) for a 16
msec. frame. Figure 1 clearly shows that ini-
tial filtering in terms of RAS retains the signal
information and filters out the additive noise at
primary level. Figure 1(d) and 1(e) show rela-
tive autocorrelation spectrum and the differenti-
ated relative autocorrelation spectrum estimated
by the 256-point DFT. As shown in the Figure
1 and Figure 2, by differentiation the flat parts
of the spectrum are transformed to values that
are approximately zero. The spectral peaks are
preserved, except each peak is split into the pos-
itive and negative parts. The spectral peaks that
convey the most important information in the
speech signal are preserved, and thus, no im-
portant information is lost in the process.

3. Description of the Proposed Method

In this section, wedescribe the proposedmethod
for robust feature extraction for the speech recog-
nition. First, the speech signal is divided into
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frames of 256 samples each, and a pre-emphasis
filter is applied on each frame. A Hamming
window is used, and then, the autocorrelation
sequence of the frame signal is obtained using a
biased estimator, as given by eq. (4). A tempo-
ral filtering is then applied to the autocorrelation
sequence to obtain the relative autocorrelation
sequence (RAS) in order to suppress the ad-
ditive noise. When speech is corrupted by an
additive noise, the noise component is additive
to the speech not only in the autocorrelation do-
main, but also in the power spectrum domain. In
the next step, differentiated relative autocorrela-
tion sequence spectrum (DRASS) is calculated
by taking the differentiation of the power spec-
trum of the relative autocorrelation coefficients
(RAS). Differentiation of the autocorrelation
spectrum of the noisy speech signal preserves
the spectral peaks, however, each peak has now
positive and negative parts. In addition, the flat
part of the power spectrum is approximately
zero. Figure 2 depicts a sample speech signal,
its short-time autocorrelation spectrum and the
differentiated short-time autocorrelation spec-
trum. This sample signal corresponds to one
frame of sample speech. In order to simplify
the spectrum representation, only the signifi-
cant lower-frequency parts of the spectrum have
been shown and the non-significant parts have
been omitted. As shown in Figure 2 and as men-
tioned above, the flat parts of the filtered auto-
correlation spectrum have been transformed to
zero by differentiation and each peak has two

parts, positive and negative. Since the spectral
peaks convey the most important information in
the speech signal, this fact that the differential
power spectrum retains spectral peaks means
that we will not lose the important information
of the speech signal. Furthermore, since the
noise spectrum is often flat and the differenti-
ation either reduces or omits the relatively flat
parts of the spectrum, it will lead to omission
of the effect of the noise on the signal lead-
ing to more robust features. A set of robust
mel-frequency cepstral coefficients (DRASS-
MFCC) can be derived from the magnitude of
the differentiated relative autocorrelation power
spectrum by applying it to a conventional mel-
frequency filter-bank and finally passing its log-
arithm to the DCT block. MFCC feature vector
set of dimension 39 is formed by concatenating
energy feature, Delta MFCC and Delta-Delta
MFCC. CMN (Cepstral mean normalization)
is used for removing the effect of channel dis-
tortion on robust feature vector set. Figure 3
displays the proposed front-end diagram of our
method.

4. Experiments

Adigital database of 200Hindi words spoken by
30 speakers (Table 1) has been used for the ex-
periment of speaker- independent isolated word
recognition system.
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Figure 3. A Front end diagram for feature extraction.
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The spoken samples are recorded by 15 male,
10 female and 5 child speakers in the studio
environment using the Sennheiser microphone
modelMD421 and a tape recordermodel Philips
AF6121. Each speaker pronounced 5 repeti-
tions of words. The resulting database was
partitioned for the use of training and testing.
2500 utterances from 20 speakers were used for
training of the HMM model. The test set also
contains similar data from 10 speakers that were
not included in the training set.

1. Language : Standard Hindi (Khari Boli)
2. Vocabulary Size : A set of 200 most frequently

occurring Hindi words
3. Speakers : 30 speakers
4. Utterances : (15 male, 15 female and

5 children) 5 repetitions each
4. Audio Recording : Recording on a cassette tape in

studio SNR>40dB
5. Digitization : 16KHz. Sampling, 16 bit

quantization.

Table 1. Hindi speech database for a vocabulary of 200
words used in the experiment.

The features in all the cases of training and test-
ing are computed using 16 millisecond frames
with 8 millisecond frame shifts. Pre-emphasis
coefficient used is 0.9375. For each speech
frame, a 20-channel mel-scale filter bank is
used. Optimum seven state Hidden Markov
Model [17] has been used for training and test-
ing. Features vector sets of size 39 are extracted
using different front-ends: MFCC (for compar-
ison purposes), RAS-MFCC and our method
DRASS-MFCC. With these features vector sets,
the word models of training database for differ-
ent front-ends are created. Afterwards, word
recognition rates for testing database are com-
puted with all the above front-ends and com-
pared with the traditional MFCC. Another com-
parison ismade by enhancing the above features
with cepstral mean normalization (CMN)

Testing on clean speech

The purpose of this experiment is to evaluate
the performance of MFCC, RAS-MFCC and
DRASS-MFCC, when training data and the
testing data are in a clean environment, i.e.,
assuming 40 dB signal to noise ratio (SNR).
The results in Table 2 are the baseline results
for comparison purposes. We observe that

the recognition rates are approximately iden-
tical for MFCC and RAS-MFCC. While us-
ing DRASS-MFCC, the recognition rate is im-
proved to 99.6% when compared to 98.24%
of RAS-MFCC. As the mel frequency cepstral
coefficients are enhanced by CMN, the word
recognition rates always show an improvement.
It is true for all the cases (MFCC, RAS-MFCC
and DRASS-MFCC). This shows that the cep-
stral mean normalization is useful in overcom-
ing the other distortions in speech signal effec-
tively.

Feature type Recognition rate (%)

MFCC 98.241
MFCC CMN 99.270
RAS-MFCC 98.246
RAS-MFCC CMN 99.324
DRASS-MFCC 99.642
DRASS-MFCC CMN 99.842

Table 2. Comparison of clean-train and clean test
recognition rates for various features.

Testing on noisy speech

The polluted testing utterances are generated
by adding the artificial noises at five SNR lev-
els. The white noise is generated by a random
number generator program, and other colored
noises such as factory noise, F16 noise, and bab-
ble noise, are extracted from the NATO RSG-
10 corpus [18]. The noises are added to the
clean speech signal at 20, 15, 10, 5 and 0 dB
of SNR. Both RAS-MFCC and DRASS-MFCC
are evaluated and the word recognition rates
are compared with the traditional MFCC front-
end. Another comparison is made by taking
into consideration the effect of cepstral mean
normalization. Figures 4(a)-(d) show the re-
sults obtained using MFCC, RAS and DRASS
front-ends respectively. For the case of white
noise in Figure 4(a), the performance of MFCC
degrades most significantly among all features.
Although the MFCC with cepstral mean nor-
malization can make some improvement, its
performance is still worse than RAS-MFCC and
DRASS-MFCC. It is obvious that RAS-MFCC
and DRASS-MFCC are quite robust to the ad-
ditive noises. Their performance has been fur-
ther improved by combining it with the cepstral
mean normalization.
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Figure 4a. Recognition rate (%) for testing speech
corrupted by a white noise.

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4c. Recognition rate (%) for testing speech
corrupted by F16 noise.

Figures 4(b), (c) and (d), show the perfor-
mance when the testing speech is corrupted by
factory, F16, and babble noises, respectively.
These figures indicate that the performance of
MFCC degrades significantly. The best perfor-
mance comes from DRASS-MFCC combined
with cepstral mean normalization. Generally,
the DRASS-MFCC with CMN is better than
RAS-MFCC with CMN in all the cases. This is
due to the peak preserving property in the power

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4b. Recognition rate (%) for testing speech
corrupted by a factory noise.

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4d. Recognition rate (%) for testing speech
corrupted by a babble noise.

spectrum which helps the speech recognition in
noisy environment. The normalization in the
frequency domain also provides compensation
of the additive noise, when the testing speech is
corrupted by a colored noise. The average rates
of word recognition are computed with differ-
ent types of front-ends (MFCC, RAS-MFCC,
DRASS- MFCC) at different levels of noises
and are displayed in Table 3.

Feature type Noise levels (dB)

40 20 15 10 5 0
MFCC 98.24% 83.88% 55.87% 29.38% 10.5% 3.7%
MFCC CMN 99.27% 85.81% 58.97% 32.81% 14.05% 6.40%
RAS-MFCC 98.24% 93.19% 84.13% 56.31% 29.11% 9.35%
RAS-MFCC CMN 99.32% 94.52% 86.11% 59.20% 30.71% 9.97%
DRASS-MFCC 99.64% 98.39% 95.43% 82.26% 48.42% 15.08%
DRASS-MFCC CMN 99.84% 98.01% 95.19% 84.48% 51.02% 16.96%

Table 3. Average recognition rates (%) for various feature types with different SNR levels .



302 Role of Spectral Peaks in Autocorrelation Domain for Robust Speech Recognition

5. Conclusion

In this paper, cepstral features derived from au-
tocorrelation spectral domain are proposed in
order to improve the robustness of the speech
recognition systems. The concept of DRASS
introduces a new set of cepstral features, ex-
ploiting the benefits of RAS and DPS, for im-
proving the robustness of speech recognition.
In the case of noisy environment, CMN con-
tributes to better performance in terms of speech
recognition. Experimental results show that the
proposed approach DRASS-MFCC with CMN
is more effective in overcoming additive noises
which are stationary in nature as well as it al-
lows to reduce the effects of channel distor-
tion at low SNR’s. Since the proposed method
eliminates additive noise in two stages, it out-
performs the well known RAS approach. The
use of DRASS can significantly increase the
word recognition rates especially at low SNR,
for example, by 9.08% at 15dB, 3.49% at 20 dB
compared to RAS. Furthermore, this proposed
method works well for different types of noises
including white, babble and factory noise. Fur-
ther improvement of speech recognition by fea-
ture extraction will be considered in future work
since it is likely to have great influence on the
ASR system performance.
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