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Story link detection is part of a broader initiative called
Topic Detection and Tracking, which is defined to be the
task of determining whether two stories, such as news
articles or radio broadcasts, are about the same event,
or linked. In order to mine more information from the
contents of the stories being compared and achieve a
more high-powered system, motivated by the idea of the
word co-occurrence analysis, we propose our dynamic
co-occurrence, which is defined to be a pair of words that
satisfy certain relation restriction. In this paper, relation
restriction refers to a set of features. This paper evaluates
three features: capital, location and distance. We use
dynamic co-occurrence in the similarity computation
when we apply it in the story link detection system.
Experimental results show that the story link detection
systems based on the dynamic co-occurrence perform
very well, which testifies the great capabilities of the
dynamic co-occurrence. At the same time, we also find
that relation restriction is critical to the performance of
dynamic co-occurrence.

Keywords: topic detection and tracking, story link de-
tection, word co-occurrence, dynamic co-occurrence,
relation restriction, detection cost

1. Introduction

Topic Detection and Tracking (TDT) is a new
line of research pursued by the National In-
stitute of Standards and Technology (NIST),
which embraces a variety of technical chal-
lenges for information retrieval: Story Segmen-
tation, Topic Tracking, Topic Detection, First
Story Detection and Story Link Detection.

This paper focuses on the story link detection,
which is defined to be the task of determin-
ing whether two stories, such as news arti-
cles or radio broadcasts, are about the same
event, or linked. In TDT, an event is defined

as “something that happens at some specific
time and place" [1,2]. For example, a story
about an earthquake in Japan in October and
another story about an earthquake in Japan in
May should not be classified as linked because
they are about different events, although they
both fall under the same general “topic" of nat-
ural disasters. Story link detection is thought of
as the basis for other event-based topic analysis
tasks, such as topic tracking, topic detection,
and first story detection [1].

Because the story link detection task is focused
on the streams of news stories where new events
occur relatively frequently, and comparisons of
interest are focused on events that are not known
in advance. One consequence of this is that the
prior knowledge we can use is poor, so in order
to achieve a high-powered story link detection
system, we must make the best of the content of
the stories being tested, and minemore informa-
tion from them. To do so, motivated by the idea
of the word co-occurrence analysis, we propose
our dynamic co-occurrence, which refers to a
pair of words appearing in a story at the same
time and satisfy certain relation restriction. In
this paper, relation restriction is defined to be a
set of features.

The structure of the paper is as follows. Section
2 is about a short overview of the current ap-
proaches used in story link detection. Section
3 covers our basic model for story link detec-
tion. Section 4 lays a strong emphasis on the
dynamic co-occurrence. Section 5 focuses on
the story link detection system based on the dy-
namic co-occurrence. Section 6 discusses the
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experimental results and analyses. Section 7
gives the conclusions inferred from our work.

2. History and Related Work

2.1. Concise History of TDT

The basic idea for TDT originated in 1996,
when the Defense Advanced Research Projects
Agency (DARPA) realized that it needed tech-
nology to determine the topical structure of
news streams without human intervention. The
domain of the TDT’s interest is all broadcast
news, i.e., written and spoken news stories in
multiple languages (English, Chinese and Ara-
bic).

The TDT tasks and evaluation approaches were
developed by a joint effort between DARPA, the
University of Massachusetts’ Center for Intel-
ligent Information Retrieval, Carnegie Mellon’s
LanguageTechnology Institute, andDragonSys-
tems. In 1997, a pilot study laid the essential
groundwork, producing a small corpus and es-
tablishing feasibility. Between 1998 and 2004,
TDT research blossomed, with new and more
challenging tasks,manymore participating sites,
and considerably larger multilingual corpora
(adding Chinese data in 1999 and Arabic data
in 2002).

LDC provided five corpora to support TDT re-
search. These are namely the TDT Pilot cor-
pus, the TDT2, TDT3, TDT4 and TDT5 cor-
pora. These corpora are collections of news,
including both text and speech, from a num-
ber of sources and languages. Each story in
the TDT2, TDT3, and TDT4 corpora is tagged
according to whether it discusses each of the
defined topics.

2.2. Related Work

A number of research groups have developed
story link detection systems. The best current
technology for link detection relies on the use
of Cosine similarity between document terms
vectors with TF-IDF term weighting [3,4,5]. In
a TF-IDF model, the frequency of a term in a
document (TF) is weighted by the inverse doc-
ument frequency (IDF), the inverse of the num-
ber of documents containing a term. UMass has

examined a number of similarity measures in
the link detection task [6,7], including weighted
sum, language modeling and Kullback-Leibler
divergence, and found that the cosine similar-
ity produced the best results. Motivated by the
performance improvement observed in the clas-
sifier combination [8], Francine Chen explored
the combination of similarity measures for im-
proving story link detection system [4]. In order
to make the best of the content of stories, Ying-
Ju Chen applied many NLP and IR approaches
to monolingual and multilingual story link de-
tection, which include story expansion, topic
segmentation, and so on [9].

Because story link detection is the basis for
other event-based TDT tasks, some other re-
searchers research into the relations between
story link detection task and other TDT tasks
[10,11,12].

Word co-occurrence analysis has been widely
used in various forms of research concerning
the domains of content analysis, text mining,
construction of thesauri and query expansion,
etc. [13]. In general, its aim is to determine
related word or terms and to find similarities of
meaning between word pairs.

In order to mine more information from the
contents of the stories, motivated by the perfor-
mance improvements of theword co-occurrence
analysis,we explored the dynamic co-occurrence
in the story link detection.

3. The Basic Model for Story Link
Detection

3.1. Basic Architecture

Our basic story link detection algorithm is shown
as follows.

• Pre-processing to create a vector with TF-
IDF weighting to represent each story in a
given pair;

• Using the Cosine function to compute the
similarity between two stories;

• Employing a predefined threshold to decide
whether two stories discuss the same topic
or not. That is, if the similarity is larger than
the predefined threshold, then two stories are
on the same topic, or else they are not linked.
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3.2. Pre-processing and Story Model

Before a story is modeled, we apply pre-proces-
sing to it, which includes removing stopwords
and lemmatizationb.

In the basic model, stories are expressed by
Vector Space Model (VSM). Suppose S is a
story which has been pre-processed, and term1,
term2, ..., termk are distinct words that ap-
pear in S. Then S can be expressed by S =
(term1, w1; term2, w2; ...; termk, wk), where wi
is the weight of termi in S and is calculated by
the incremental TF-IDF method showed in (1):

wi = tf i × log(
N
ni

+ 0.01) (1)

Where tf i is the frequency of termi in S, N is the
total number of stories seen so far, and ni is the
document frequency of termi in all the stories
seen so far.

3.3. Similarity Measure

We use classical Cosine function to compute
the similarity between two stories in a pair. As-
sumews11, ws12, ..., ws1n andws21, ws22, ..., ws2n
are weights of features δ1, δ2, ..., δn in story S1
and topic S2, respectively. Then the similarity
between S1 and S2 is calculated as follows:

Cos(S1, S2) =
∑n

k=1 ws1k × ws2k√∑n
k=1 w2

s1k ×
∑n

k=1 w2
s2k

(2)

4. Dynamic Co-occurrence

Themotivation for proposing dynamic co-occur-
rence is to mine more information from the con-
tents of the stories and make the best of the con-
tents of the stories, as a result of which we will
gain a more portable story link detection system
with better performance. In this paper, dynamic
co-occurrence is defined as follows:

Definition 1 A Dynamic Co-occurrence (DC)
is a pair of words which appear in a story and
satisfy certain relation restriction. A DC can
be formalized as a three-tuples 〈W1, W2, RR〉 ,

where W1 and W2 represent the words, and RR
denotes the relation restriction satisfied by W1
and W2.

Definition 2 Relation Restriction is a set of fea-
tures, and can be formalized as ∅ or {f 1, f 2, ...},
where f 1 and f 2 denote features.

When RR = ∅, any pair of words is a DC, as
a result of which is that we get lots of DC, but
many of these DC are redundant. On the other
hand, from [14] we can conclude that a news
story tends to focus on the important words and
phrases to distinguish between different news
events. So, in order to capture these useful dy-
namic co-occurrences successfully, we evaluate
the performance of the following features in our
experiments:

• Capital: In English news stories, the initials
of names (people, location and organization)
are usually capital, and these names are the
key words to differentiate the similar topics
[15,16]. Based on this, this paper chooses
“capital" as a feature used in the relation re-
striction. In the experiments, we use C to
denote “Capital".

• Location: News stories have the top-heavy,
inverse-pyramidal structure, and usually put
the important content in the former part. So
we think that the words in the former part
of the story are more important than those
in the latter part. So we choose “location"
as a feature, and use L to denote it in the
experiments.

• Distance: Distance, or window size, is an
important feature used in the word co-occur-
rence analysis, so it’s reasonable for us to be-
lieve that distance is a useful feature in the
dynamic co-occurrence. In our DC method,
the distance between two words is defined to
be the number of words appearing between
these two words. For example, the story
content after pre-processing is “well United
State celebrate Independence Day", and the
distance between well and United is 0, and
the distance between State and Day is 2. We
will use D to denote “Distance" in this paper.

The above features can combine with each other
to produce composite features. As a result, we
will evaluate the followingRR in the experiment
section all in all:
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• RR = {C}: Each pair of words whose ini-
tials are capital forms a DC;

• RR = {D}: Each pair of words within cer-
tain distance forms a DC, and the distance
can be specified by the parameter D. In our
experiment, D = α means that the distance
between two words is equal to α, where
1 ≤ α ≤ ω − 2, and ω is the length of
the story.

• RR = {L}: Each pair of words located in
a certain former part of the story forms a
DC, and the certain part can be specified by
the parameter L. In the experiment, L = β
means that the words appear in the former β
part of the story, where 1 ≤ β ≤ ω , and ω
is the length of the story.

• RR = {C, D}: Each pair of words within
certain distance, and the initials of which are
capital, forms a DC.

• RR = {C, L}: Each pair of words located
in a certain former part of the story, and the
initials of which are capital, forms a DC.

• RR = {D, L}: Each pair of words located in
a certain former part of the story, and within
certain distance, forms a DC.

• RR = {C, D, L}: Each pair of words located
in a certain former part of the story, within

certain distance and the initials of which are
capital, forms a DC.

In this paper, we remove stop-words before ex-
tracting dynamic co-occurrence.

In order to explain the definition in more de-
tail, we give the following example: for the
story content after pre-processing : well United
State celebrate Independence Day, the dynamic
co-occurrence under each relation restriction is
listed in Table 1. In order to save space, we only
give the words in the dynamic co-occurrences,
and the relation restrictions are listed in the first
column all together.

5. Story Link Detection Based on Dynamic
Co-occurrence

5.1. Using Dynamic Co-occurrence

We use dynamic co-occurrence information in
the similarity computation. Suppose DC(S1)
and DC(S2) are the numbers of the dynamic
co-occurrences in the story S1 and story S2 re-
spectively, and SameDC(S1, S2) is the number
of the mutual dynamic co-occurrences between
story S1 and story S2. The similarity based on
the dynamic co-occurrence between story S1

RR Dynamic Co-occurrence

{C} 〈United,State〉 ; 〈United,Independence〉 ; 〈United,Day〉 ;
〈State,Independence〉 ; 〈State,Day〉 ; 〈 Independence,Day〉

{D=0} 〈well,United〉 ; 〈United,State〉 ; 〈State,celebrate〉 ;
〈 celebrate,Independence〉 ; 〈 Independence,Day〉

{L=1
2} 〈well,United〉 ; 〈well,State〉 ; 〈United,State〉

{C, D=0} 〈United,State〉 ; 〈 Independence,Day〉
{C, L=1

2} 〈United,State〉
{D=0, L=1

2} 〈well,United〉 ; 〈United,State〉
{C, D=0, L=1

2} 〈United,State〉

Table 1. Examples of dynamic co-occurrence under different relation restriction.
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and story S2, DCSim(S1, S2), is as follows:

DCSim(S1, S2) =
2 ∗ SameDC(S1, S2)
DC(S1) + DC(S2)

(3)

5.2. Link Detection System Based on
Dynamic Co-occurrence

The architecture of story link detection system
based on the dynamic co-occurrence is shown
as follows:

• Pre-processing to create a vector with TF-
IDF weighting to represent each story (S1
and S2)in a given pair;

• Extracting the dynamic co-occurrences ap-
pearing in story S1 and story S2, respectively.

• Measuring the similarity between S1 and S2
based onCosine and dynamic co-occurrence,
respectively.

• Computing the final similarity between S1
and S2 as follows:

FinalSim(S1, S2) = Cos(S1, S2)
+ DCSim(S1, S2)

(4)

• Employing a predefined threshold to decide
whether S1 and S2 discuss the same topic or
not.

6. Experiments

6.1. Corpora

We manually created the training corpora and
the test corpora from the TDT Pilot Corpus.

The TDT Pilot Corpus, covering the period
from July 1, 1994 to June 30, 1995, was the

first benchmark evaluation corpus for TDT re-
search. This corpus contains 15,863 English
stories which are represented as a stream of text.
A set of 25 target topics are defined, which span
a variety of topic types and cover a subset of all
the topics discussed in the corpus stories. There
are about 43 stories per topic on the average.
Each story is assigned a label of YES, NO or
BRIEF for each of the 25 topics.

We use only the topic 1 to topic 8 to create the
corpora for the story link detection evaluation,
where topic 1 to topic 5 is adopted to create
the training set, and topic 6 to topic 8 is used
to create the test set. The creation process of
the corpora is as follows: (1) Every two stories
which are related (the label is YES) to the same
topic are a linked pair; (2) Every two stories
which are related (the label is YES) to differ-
ent topics are a un-linked pair. As a result, the
training set and the test set are listed in Table 2.

6.2. Evaluation Measures

We adopt the evaluation methodology defined
in TDT to evaluate our system performance.
The cost function for the task defined by TDT
is shown as follows. The better story link de-
tection, the lower detection cost. In this paper,
all experimental results are evaluated by this
metric.

CDet = CMiss × PMiss × Ptarget

+ CFA × PFA × Pnon−target (5)

Where PMiss is the probability of missing a
story; PFA is the probability of a false alarm;
Ptarget is the probability of seeing a new story
in the stream; CMiss is the cost of missing a new
story; Pnon−target is the probability of seeing an
old story, Pnon−target = 1 − Ptarget; CFA is the
cost of a false alarm. A miss occurs when a
linked story pair is not identified as linked by

Training Set Test Set

Number of the Linked Pairs 1545 2644

Number of the Un-Linked Pairs 4126 2816

Total 5671 5460

Table 2. Corpora used in the story link detection evaluation.
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the system. A false alarm occurs when a pair
of stories that are not linked are identified as
linked by the system. In our experiments, we
followed TDT’s tradion, CMiss, CFA, and Ptarget
are set to 1.0, 0.1, and 0.02, respectively.

The cost for each topic is equally weighted and
normalized so that for a given system,“(CDet)Norm
can be no less than one without extracting in-
formation from the source data”[1].

(CDet)Norm

=
CDet

min(CMiss × Ptarget, CFA × Pnon−target)
(6)

6.3. Experimental Results and Analysis

We firstly evaluate the basic model of the story
link detection, which gains the results: PMiss =
0.0783, PFA = 0.0071, (CDet)Norm = 0.1131.
Then, in order to evaluate the performance of
dynamic co-occurrence, we do several exper-
iments on the link detection system based on
dynamic co-occurrence with different relation
restriction. All the parameters are trained using
the training corpora. Table 3 listed the experi-
mental results.

All the performances of the story link detection
based on the dynamic co-occurrence are bet-
ter than those of the baseline, which proves the
validity of dynamic co-occurrence.

In order to compare the performance of the fea-
tures used in this paper in more detail, we give

the following two figures: Figure 1 and Figure
2, where D and L are set to different values.

Figure 1. Performance of RRisD and RRisCD under
different D.

Figure 2. Performance of RRisL and RRisCL under
different L.

From all the above results, we can see:

• From the performances of theRRisC,RRisD
and RRisL, we can see that the features used
in the relation restriction are very successful;

RR PMiss PFA (CDet)Norm Experiment Name

{C} 0.0386 0.0089 0.0821 RRisC

{D=0} 0.0609 0.0078 0.0992 RRisD

{L=1/9} 0.0753 0.0071 0.1101 RRisL

{C,D=20} 0.0257 0.0103 0.0762 RRisCD

{C,L=1/3} 0.0480 0.0082 0.0881 RRisCL

{D=0,L=1/4} 0.0643 0.0075 0.1008 RRisDL

{C,D=10,L=1/3} 0.0556 0.0075 0.0921 RRisCDL

— 0.0783 0.0071 0.1131 BaseLine

Table 3. Comparison between performance of DC-based Story Link Detection System and of Baseline.
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• From contrast betweenRRisD andRRisCD,
as well as RRisL and RRisCL, we can see
that the capital feature ismore useful. This is
because the initials of names (people, loca-
tions and organizations) are usually capital,
these names are the key words to differenti-
ate similar topics;

• From the results, we can conclude that the
location feature is not as good as the capital
feature and the distance feature. We think
that the reason is the dynamic evolution of
the topic [17].

7. Conclusions and Future Work

In order to mine more information from tested
stories, we propose a new technology, dynamic
co-occurrence, which is defined to be a pair of
words satisfying some relation restrictions.

Experimental results indicate that dynamic co-
occurrence is a useful method in the story link
detection. We also find that the features used in
the relation restriction is very important. This
paper uses capital, location and distance as the
features which are tested to be successful.

An obvious extension to the current work would
findmore helpful features in the creation of rela-
tion restriction, and research into more effective
usage of the dynamic co-occurrence.
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