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Hard real-time systems are increasingly used in various
areas of human activity justifying their implementation
by means of specialized solutions, mostly of a suitable
hardware�software combination. A frequently adopted
approach to the realization of the hardware part is based
on ASIC, usually a “general purpose” processor which
operates according to real-time constraints. In this work
the modeling of a processor for the hard real-time domain
is described. It is structured as a collection of “task
processors” being supervised by another one dedicated
to the “kernel” functions. Specifically the behavior
of the task processors is modeled using VHDL and
subsequently simulated and tested. The paper also ad-
dresses the modeling process by determining the detailed
requirements on the behavior of the task processor. The
outcome of this step influenced the modeling process
as the tools used were of restricted functionality and
processor behavior enforced a particular decomposition.
Because of a restricted VHDL subset available, it was
necessary to model the task processor on the lowest level
of behavioral abstraction. The task processor has been
tested against chosen test programs written in an appro-
priate assembly language being specially developed for
this purpose.

Keywords: hard-real time, task processor, modeling and
simulation, VHDL

1. Introduction

Although the requirements for and the possibil-
ities in the design of microprocessor-based pro-
cess control systems have significantly changed
over the last decennia, the approach has re-
mained more or less the same since the early
1970s. Typically, there is a CISC microproces-
sor or a microcontroller receiving signals from,

and communicating via computer internal stan-
dard peripheral interfaces with the environment.

It is in the very nature of computer control sys-
tems that certain actions must be performed
within the specified time frames, or else the
action will fail with more or less severe conse-
quences. In the usual applications this is assured
by employing hopefully fast enough control sys-
tems and verified by testing of their temporal
behaviour.

Common microprocessor architectures are ma-
inly designed to meet the classical objective of
maximizing average resource utilization. The
application of the same guiding principle in
hard real time systems design is based on one
of the most common misconceptions pointed to
by Stankovic �23� that real time systems were
equal to fast systems. However, optimization
of resource utilization and average performance
usually contradicts the real time, viz., worst-
case, requirements.

Thus, instead of computer speed, which can-
not guarantee that specified timing requirements
will be met, a different ultimate objective in de-
signing consistent systems for embedded hard
real-time applications was generally accepted:
predictability of temporal behaviour. While,
for the systems usually employed in process
control, testing of conformance to functional
specifications is well established, temporal cir-
cumstances, being an equally important design
aspect, are seldom verified consistently. Al-
most never is it proven at design time that such
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a system will meet its temporal requirements in
every situation that it may encounter.

Determinism and predictability of process ex-
ecution times, however, are unfortunately in
conflict with the common design objective for
universal microprocessor systems, viz., to op-
timize average performance. New paradigms
are needed for the consistent design of control
systems.

Finally, to ensure integrity of safety-critical hard
real-time systems, they should be verified for
their correctness. Complex architectures are
unmanageable by state-of- the-art verification
techniques and tools. E.g., exhaustive verifica-
tion of even the simplest common microproces-
sor with exceptions and�or pipelining presents
an NP-complete problem. Hence, the design
must be kept simple in order to allow for its
verification.

Whereas academic research on the design of
hard real-time systems mainly concentrates on
issues such as scheduling, hardware architec-
tures are widely neglected. They are taken for
granted, and usually assumed to be operating
deterministically. Further, hardware platforms
must support the high level language constructs
and operating systems’ features dealing with
time, which are characteristic for process con-
trol. Particularly in safety critical environments,
apart from consistent designs regarding tempo-
ral circumstances, improved fault tolerance is
required. It is necessary to intensify research in
temporally deterministically behaving embed-
ded computer control systems. In this paper
the design of a processor with fully predictable
temporal behaviour is presented; it thus fits into
the “layer-by-layer approach” �24�: predictabil-
ity of each underlying level in the design of the
real-time control system provides the necessary
precondition for the predictability of the next
subsequent layer.

In Section II the overallmodel of the control sys-
tem will be briefly outlined. Its informal anal-
ysis and specification was given in �2�. Specif-
ically, the paper accounts for the VHDL-based
modeling of a component within its architec-
ture — the task processor �9� — as described in
�10, 2, 3�. As the processor’s VHDL behavioral
model can be parameterized and hencemodified
according to particular needs �17�, it is suitable
for hardware-software co-design �25�. Addi-

tionally, this behavioral model is technologi-
cally independent, thus leading to either FPGA
or standard-cells implementations �22�.

The rest of the paper is structured as follows. In
Section III we describe the tools we have used
for the design process and in Section IV the
proper modeling of the processor. The simula-
tion of the particular processor components is
outlined in Section V. As testing of the proces-
sor as a whole represented an issue, the method
used to overcome it is described in Section VI.
Finally, concluding remarks and directions for
future work are given in Section VII.

2. Concept of Hardware Architecture

There are different obstacles in achieving pre-
dictability of temporal behaviour when design-
ing a control system. One of the major causes
of temporal non-determinism are interrupts. In
our architecture they are dealt with by migrat-
ing the operating system kernel and the associ-
ated interrupt service from the application task
processors to a dedicated OS kernel processor
�10, 2, 3�. Similar approaches were taken by
several other groups �19, 14, 20, 4, 21� as well.

The main idea can be illustrated by an everyday
life example: the job of a manager’s secretary is
to relieve him from the routine work, so that he
hasmore time left formore important tasks. The
secretary also administers the manager’s sched-
ules and prevents him from being interrupted
for unimportant reasons.

In classical computer architectures the operat-
ing systems are running on the same proces-
sor�s� as the application software. In response

Fig. 1. Hard Real-Time Control Computer Model.
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to any occurring event, the context is switched,
system services are performed, and schedules
are determined. Although it is rather likely that
the same process will be resumed, quite a bit
of computer capacity is wasted by superfluous
overhead. This suggests employing a parallel
processor to carry out the operating system ser-
vices. Such an asymmetrical architecture de-
picted in Fig. 1 turns out to be advantageous
since, by dedicating a special-purpose, multi-
layer processor to the real-time operating sys-
tem kernel, the user task processor�s� are re-
lieved from any administrative overhead. The
kernel processor and the task processors are
connected point-to-point by serial links, thus
avoiding collisions on common communication
media as a possible source of non-determinism.

The kernel processor �KP� is responsible for
all operating system services. It maintains a
real-time clock, and observes and handles all
events related to it, to the external signals and to
the accesses to the common variables and syn-
chronizers, each of these conditions invoking
assigned tasks into the ready state. It performs
earliest-deadline-first scheduling on them and
offers any other necessary system services.

External processes are controlled by tasks run-
ning in the task processors �TP� without being
interrupted by the operating system functions.
A running task is only pre-empted if, after re-
scheduling caused by newly invoked tasks as a
consequence of events, it is absolutely neces-
sary to execute one of the arriving tasks imme-
diately in order to allow for all tasks to meet
their deadlines.

3. Selection of Design Tools

The design of a processor is a complex and com-
puting intensive task. The input to the design
process is usually an informal description of the
processor, while the output is its technological
description, e.g. �22�. The latter depends on the
chosen technology and eventually allows the
manufacturing of the processor. Tools nowa-
days used in ASIC design process are highly
sophisticated and quite capable of automating
the design process to a great extent, thus re-
ducing the time to achieve a complete and veri-
fied design. However, though automation saves
time, it makes the design sub-optimal. A partial

solution to this problem is to use more sophis-
ticated tools, which will make the design closer
to the optimal one. On the other hand, opti-
mal design is only possible if it is done entirely
by human designers, who are highly specialized
for particular parts of the design process.

The first task, before starting the design pro-
cess itself, is to find appropriate tools for that
job. By “appropriate” it is meant that the tools
cover the complete design process, support a
high degree of design automation, are relatively
easy to master and, finally, possess an attractive
price�performance ratio. Three reasons made
us turn toward the Internet in search for an ac-
ceptable design toolkit. The first one is that the
Internet has already become the source of many
high quality applications, usually implemented
as results of research projects within academia.
As a general rule, these applications are not ex-
cessively user-friendly but are by all means of
a state-of-the-art quality. The second reason is
the immediate availability to which Internet has
no match. The third reason is a purely eco-
nomical one, since tools found on the Internet
are generally either free of charge or are only
nominally charged. After some search, mainly
on well-known universities’ sites and in news-
groups, all the tools found were grouped into
three categories.

The first category consisted of many different
and small design tools made as proof of a con-
cept, and as such, highly specialized for only
some particular tasks in the whole design pro-
cess, like e.g. finite state machine �FSM� syn-
thesizers. However, in spite of their great capa-
bilities the idea of collecting this kind of tools
was abandoned since integration seemed to rep-
resent a great problem. Also, learning all of
them is exceedingly time consuming, because,
as a rule, they do not conform to any standard.
Nevertheless, it also might happen that some
part of the design process remains uncovered
by the appropriate tool.

The tools that, at least for educational purposes,
were associatedwith somenominal chargemade
the second category. The main representative
to be mentioned here were tools offered by
Berkeley University through its Industrial Liai-
son Program �15�. Although attractive, this al-
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Fig. 2. Task Processor Model.

ternative still meant purchase expenditure, even
for tool evaluation purposes only, and was as
well abandoned from further evaluation.

The third category included tools that were
found to satisfy all of our initial goals and to
be also available for evaluation. Here belong
packages like Alliance CAD �1�, Olympus Syn-
thesis System �5, 13�, and Ocean �8�. After some
evaluation of these tools we finally decided to
use Alliance CAD since it suited our purposes
best.

The Alliance CAD system is a complete set
of tools for developing ASICs �1�. The sys-
tem generates an output suitable for a standard
cell or FPGA implementation and also offers an
environment for model testing. Alliance has
some restrictions though, especially with re-
spect to the supported VHDL subset �12�. Fur-
ther advantage of Alliance is the availability of
different tools for generating behavioral, struc-
tural and physicalmodels of different functional
units. There are generators for adders, Booth
multipliers, barrel shifters, RAM and ROM, as
well as tools for generation of behavioral mod-
els of FSMs and the like.

4. Processor Modeling

The design process should start with behavioral
modeling and simulation of the top-level entity,
in our case the hard real-time processor. Af-
ter this top-level entity is modeled and tested,
it is progressively decomposed into gradually
smaller units up to the point where either the
synthesis tools can be used, or structural mod-
eling can be manually performed. This sce-
nario, however, assumes an appropriate HDL,
like e.g. VHDL �12�, which has to be supported
within the design tool used. Unfortunately, the
VHDL subset supported in Alliance CAD does
not allow such an approach. Instead, the top-
level entity description has to be entered in an
already decomposed form.

As it is shown in Fig. 2, the following global
units within the task processor can be clearly
identified: �i� kernel interface, �ii� task control
unit, and �iii� task process unit. These units are
organized around the usual three busses global
to a processor: the data bus, the address bus,
and the control bus. Internal to the task process
unit are additional busses — two data busses
�d�, d��, and an address bus a�.

1) Kernel Interface: This interface allows the
interaction between the kernel processor per-



Modeling and Simulation of a Hard Real-Time Processor 225

forming operating system functions on the one
side, and the task processors which control real-
time processes, on the other. The respective
specification is the responsibility of the kernel
processor and is not pursued further. To provide
for an adequate kernel processor interfacing, the
internal busses are exposed in this interface.

2) Task Control Unit: This unit controls the
global operation of the task processor. Three
busses �data, address, and control� from Fig. 2
are also internal to this subunit. Namely, for
efficiency reasons no internal task control unit
busses are envisioned: as the task process unit
makes use of private busses �d�, d� and a��
and the kernel interface is inactive during nor-
mal operation of the task processor, this is quite
acceptable. Since Alliance CAD offers only
simple VHDL constructs, the task control unit
has to be further decomposed.

3) Task Process Unit: This unit performs actual
transformations of data. It has its own internal
busses, as stated in previous paragraphs. The
number of busses, as well as their width and
purpose, is determined by requirements placed
upon the task processor during the specification
phase. These requirements encompass execu-
tion of one instruction per cycle and parallel
execution of data processing and flow control
instructions. Since the execution of one in-
struction per cycle meant either some sort of
pipelining or a considerable increase in proces-
sor complexity, some design compromises had
to be done.

It was already stated that the task processor as
a whole is too complex to be modeled with
the available behavioral subset of Alliance’s
VHDL. Thus it has to be recursively decom-
posed into simpler subunits until a point is
reached where some particular subunit is sim-
ple enough to be described with the available
VHDL subset. As a consequence of this de-
composition procedure, it is necessary to pro-
vide for an appropriate subunits’ interconnec-
tion. Within Alliance this is achieved by using
the structural VHDL subset. In Fig. 3 the top-
level structural model of the task processor is
shown. As it can be seen, the respective prim-
itives are the COMPONENTs. Each COMPONENT it-
self can be, and in our model they indeed are,
composed of other COMPONENTs. Eventually, at
the leaf nodes of this decomposition behavioral
COMPONENTs are to be given, because behavior is

ENTITY rttpi IS
PORT �
ck� reset� continuation� int� load�sp�
save�sp� load�pc� save�pc� IN bit�
ack� OUT bit�
data�mem� INOUT mux�vector ��� DOWNTO �� BUS�
address�mem� OUT mux�vector ��� DOWNTO �� BUS�
oe�mem� wr�mem� OUT bit�
ack�mem� vss� vdd� IN bit��

END rttpi�
ARCHITECTURE structural OF rttpi IS
COMPONENT task�procesor�control
PORT �
ck� reset� IN bit�
data� INOUT mux�vector ��� DOWNTO �� BUS�
continuation� int� IN bit� b�read� OUT bit�
b�flag� sync�in� IN bit� sync�out� OUT bit�
load�sp� save�sp� load�pc� save�pc� IN bit�
ack� OUT bit� vss� vdd� IN bit��

END COMPONENT�
COMPONENT processing�unit
PORT �
ck� reset� sync�in� IN bit� sync�out� OUT bit�
get�b�flag� IN bit�
data� IN bit�vector ��� DOWNTO ���
b�bus� INOUT mux�bit BUS�
data�mem� INOUT mux�vector ��� DOWNTO �� BUS�
address�mem�OUT mux�vector ��� DOWNTO �� BUS�
oe�mem� wr�mem� OUT bit�
ack�mem� vdd� vss� IN bit��

END COMPONENT�
SIGNAL data� mux�vector ��� DOWNTO �� BUS�
SIGNAL b�read� bit� SIGNAL b�bus� mux�bit BUS�
SIGNAL sync�in� sync�out� bit�
BEGIN
control� task�procesor�control
PORT MAP �
ck� reset� data� continuation� int� b�read�
b�bus� sync�in� sync�out� load�sp� save�sp�
load�pc� save�pc� ack� vss� vdd��

processing�unit� processing�unit
PORT MAP �
ck� reset� sync�in� sync�out� get�b�flag� data�
b�bus� data�mem� address�mem� oe�mem� wr�mem�
ack�mem� vdd� vss��

END�

Fig. 3. Top-Level VHDL Structural Model
of Task Processor.

not described by structure, but has to be explic-
itly specified. In the following text it will be
assumed that decomposable units possess both
the structural description and, through the re-
spective subunits, the behavioral model as well.
Within this framework Fig. 4 shows a more de-
tailed view of the task processor.

Another point to be discussed, that is related
to �sub�units’ behavior is their mutual synchro-
nization,which can be organized in two possible
ways. In strictly predefined synchronization op-
eration duration can be stated in advance. The
other possible solution is conditional synchro-
nization, when a functional subunit will perform
its operations as long as needed �and instructed
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Fig. 4. Detailed Structure of Task Processor Model.

so by an appropriate control signal�. It was de-
cided to implement the latter approach, mainly
for a practical reason: there was no top-level
task processor behavioral model available.

A. Task Control Unit

As the structure of this subunit was already de-
scribed in �2� all that had to be done was to
further refine it. This subunit consists of a pro-
gram counter, program memory, stack, and con-
trol unit.

1) Program Counter: This is a relatively simple
functional unit. The most difficult part in its
modeling is implementing the contents incre-
ment because Alliance’s VHDL has no arith-
metic operators. After some simple analysis,
the recursive formulae �1� and �2� were imple-
mented, where n stands for the program counter
weight:

new pcn �pcn � �pcn�1 � new pcn�1��

n � 1 �1�
new pc0 �pc0 �2�

2) Stack: The stack is subdivided into two parts:
stack memory and stack control. Since the
memory is quite regular, has a simple structure,
and its capacity is not known in advance, a small
program in C is developed that automatically
generates a VHDL behavioral RAM model with
given capacity and data width. Stack pointer in-
crement is modeled with the same specification
code as for program counter increment; the one
for stack pointer decrement is its slight mod-

ification. The code implements the recursive
formulae �3� and �4�:

dec spn �spn � �spn�1 � dec spn�1��

n � 1 �3�
dec sp0 �sp0 �4�

3) Program Memory: The program memory
is generated by a specially devised C program
�using GNU’s bison �6� and flex �16� tools�
that takes as input a program written in the task
processor assembly language, and produces be-
havioral models of the program memory and of
the local memory that is part of the task process
unit �to be described below�. This approach is
selected in order to overcome the need to run a
number of small test programs for testing par-
ticular aspects of the task processor during the
evaluation phase of the design �7�.

4) Control Unit: The control unit of the task
control unit is implemented usingAllianceCAD
syf tool. This particular tool implements a
subset of VHDL specialized for description of
FSMs. However, syf imposes two restrictions:
�i� any additional memory element as well as
any additional functionality required by the con-
trol unit has to be implemented separately, and
�ii� all signals are considered to be active with
high logical value. Hence, the control unit is
subdivided into three parts: the timer, the in-
struction register and the FSM.

B. Task Process Unit

After the evaluation of required data processing
instructions, and of requirements such as one
instruction per clock cycle as well as of full pre-
dictability of processor behavior, few changes
were made to the original design of the task
process unit as described in �2�. Mixed arith-
metic instructions were removed and two new
instructions introduced. The whole unit is or-
ganized around five busses: two 8-bit address
busses, two 32-bit data busses and a control bus.
The unit consists of the following functional
blocks: a logical unit, an integer arithmetic unit,
a floating-point arithmetic unit, two conversion
units, a local register file, an external data access
unit, and a control unit. Unlike the task control
unit whose functional blocks are relatively sim-
ple, here we have some very complex functional
blocks needing further decomposition.
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During task process unit modeling some of Al-
liance CAD tools for behavioral model gener-
ation were extensively used, accelerating to a
great extent its development. These include
tools like e.g. adder generator, multiplier gen-
erator and barrel shifter generator.

1) Logical Unit: The logical unit was relatively
easy to model, its structure being determined by
the use of the barrel shifter generator included
in the Alliance CAD distribution. I.e. the whole
logical unit was subdivided into a barrel shifter
and a compound operator for the usual logical
operations �AND, NOR, XOR and AND NOT�.

2) Integer Arithmetic Unit: The model of the
integer arithmetic unit was almost completely
generated with the help of Alliance CAD tools.
The single parts of this unit generated in such
a way included the adder�subtractor as well as
the multiplication unit, while the divider �ex-
cept the subtracting subunit� was in part mod-
eled manually. In the process of modeling the
divider, two models representing disparate so-
lutions in terms of time consumption per single
division were devised: one that performs divi-
sion in a single clock cycle �parallel subtrac-
tion� and the other that performs division in 32
cycles �serial subtraction�. In either case, divi-
sion has to be completed in a constant number
of clock cycles to provide for predictability, al-
though the structure of some operands allows
for faster completion. In the final design the
divider will usually be a compromise between
the two extremes, the exact number of clock cy-
cles necessary for completion of division being
determined by the duration of the single clock
cycle. For the present processor, however, no
such requirements were stated.

3)Floating-PointUnit: Themost complex func-
tional block is the floating-point unit, which
is further subdivided into subunits for addi-
tion�subtraction, multiplication and division,
each of which is in turn further subdivided.
Also, some common operations are separated
into distinct units, hence, in addition to the
aforementioned units, there is also one assigned
the checking of correctness of input operands
and of the output result. Multiplication was the
easiest operation to model, basing on an adder
for exponent and an integer multiplier for man-
tissa calculation. The divider is also not too
complex, once the mantissa division is fixed,
but it is the slowest unit in the task processor

and might need to be re-designed, especially af-
ter performing timing analysis on the structural
model. The same that was written for the inte-
ger divider holds also for the floating-point one.
Apart from a divider for the mantissa, there is
also a subtractor for the exponent. The adder
and the subtractor are implemented in the usual
way with the addition of an appropriate barrel
shifter and exponent comparators for mantissa
alignment.

4) Conversion Units: There are two conversion
units in the task processing unit. One transforms
the floating point numbers into integer ones and
the other performs the inverse operation. These
units are made of combinational logic only, but
are quite complex since there are exceptions that
need to be handled separately. The exceptions
arise from the way floating-point numbers are
coded. Also, before conversion, care must be
taken to check for some special values floating-
point numbers can have, like NaN, �11�. These
cases, as well as overflows and underflows are
signaled, thus enabling a proper processing.

5) Register File: This is a simple RAM local
memory that resides on the task processor. Be-
fore execution of some process starts, the ker-
nel processor pre-loads it with the constants the
process needs, and also, during context switch,
saves temporarily the register file contents and
restores it later when the process is restarted.
However, as the kernel processor had not been
available at simulation time, the program that
generated the program memory �described in
the previous subsection� was designed so that
it could also generate VHDL models of local
memory with the constants prewritten into it,
thus obviating kernel processor functions.

6) External Data Access Unit: This unit is the
task processor interface to the external world.
It is separated from the other units, so that the
task processor has a general interface,which can
later be accommodated for particular standard
busses, e.g. IIC �18�. As some interfaces are
asynchronous and some are synchronous, the
external data access is selected to have an asyn-
chronous interface to the task processor, thus
serving both kinds of interfaces.

7) Control Unit: The control unit is structured
as the one supervising the operation of the task
control unit as described above. The VHDL
subset for FSM description is used to specify
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a part of its functionality that is subsequently
translated into the respective behavioral model
using the syf tool.

5. Simulation

After modeling each block, its model was used
to perform simulation testing. Essentially, sim-
ulation applies some test inputs to a model and
compares the outputs with the expected ones
or simply outputs them to some file for later
processing. This leads us to two types of sim-
ulations, which could be dubbed as “manual”
and “automatic”. The difference between the
two is in the way the resulting outputs are ex-
amined. Although it would be ideal to use au-
tomatic tests, there are situations that are not
suitable for such an approach. For example, in
the case of the floating-point unit it was nec-
essary to use manual testing since it was both
simpler and it offered the possibility to circum-
vent C rounding functions. In some other cases
programming output calculations is simply too
demanding and it is simpler to test the results
manually.

Test inputs were prepared by using the genpat

tool that is included into Alliance CAD distri-
bution. genpat is actually a front-end to the C
compiler and linker. The procedure for gener-
ating test inputs is straightforward; a simple C
program is written, that, using macros offered

	 This simple test calculates
	 the following expressinon�
	 a 
 c � b
	

	 Binary code after translating is�
	
	 �x�������
	 �x�������
	 �x�FFFFFFF

a real ���
b real ����
c real ���e��
temp real ��
result real ��

org �

mul a� c� temp
sub temp� b� result
halt

end

Fig. 5. Simple Test Program.

by genpat, declares all input as well as internal
and output signals of interest. After declaration,
the program applies values on input signals, and
optionally— depending on the type of tests �au-
tomatic or manual� — sets the expected values
on the output and internal signals. After that,
genpat is used to compile and run the C pro-
gram, which as a result produces test patterns in
special format files for Alliance’s VHDL simu-
lator asimut.

Fig. 6. Values of Some Internal Signals in Task Process Unit During Simulation.
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Testing the task processor’s individual units for
a correct operation does, however, not guaran-
tee the correct operation of the processor as a
whole. Thus, as the individual parts of the pro-
cessor were modeled, they were gradually in-
terconnected and tested.

Finally, as verification of all the parts of the pro-
cessor was completed, the processor as a whole
was tested through behavioral simulation. As
the processor is a fairly complex unit, and simu-
lations are process intensive, it was decided that
many small different tests will be performed,
each of which checks for a particular proces-
sor feature. Fig. 5 shows an example of a such
a simple program that is translated into behav-
ioral models for program and local memories,
which are then interconnected with the other
parts of the processor and simulated. Some
characteristic processor signals during simula-
tion are shown in Fig. 6.

6. Modeling Program and Data Storage

Both the program memory and the local mem-
ory aremodeled as separateVHDLmodules and
shown as shaded blocks in Fig. 4. It should be
noted that it is not very efficient to hand-code
test programs and manually write the respective
VHDL models: firstly, it is time consuming,
and secondly, memories �in our case both pro-
gram and local� have highly regular structures,
which could be generated automatically. All
this leads us to the conclusion that it is practical

to define an assembler that translates programs
written in the respective task processor assem-
bly language into VHDL models for both the
program and local memory.

A. Assembler Input and Output

The input to the assembler is a file containing a
program written in the task processor assembly
language. The outputs are two distinct VHDL
behavioral models, one containing the model of
the program memory, and the other containing
the model of the local memory with predefined
constants.

B. Input File Syntax

The syntax of the input file is fairly simple: gen-
erally, it starts with variable definitions, contin-
ues with the program code and ends with the
reserved word end. Blank lines and everything
beginning with a hash ��� is ignored up to the
end of the line. Variables are defined with the
following syntax:

variable name type initial value�

where variable name is any sequence of char-
acters, type is one of real or integer, and ini�

tial value is the starting value of the variable.

The original task processor instruction set �2�
was slightly modified prior to behavioral mod-
eling phase. Table 1 lists the available instruc-
tion mnemonics and assembler directives. In
the input file each instruction is placed in its
own input line with the following syntax:

Mnemonic�Directive Mnemonic�Directive
jump <dest> and <source1>, <source2>, <dest>
jumpf <dest> nor <source1>, <source2>, <dest>
jumpt <dest> xor <source1>, <source2>, <dest>
call <dest> and not <source1>, <source2>, <dest>
return move <source>, <dest>
wait <time> rol <source1>, <source2>, <dest>
wait <time>, <dest> ror <source1>, <source2>, <dest>
halt shl <source1>, <source2>, <dest>
add <source1>, <source2>, <dest> shr <source1>, <source2>, <dest>
sub <source1>, <source2>, <dest> org <address>
mul <source1>, <source2>, <dest> integer
div <source1>, <source2>, <dest> real

Table 1. Available Instruction Mnemonics and Assembler Directives.
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label� instruction�

where label is used to mark the line if it is to be
referenced; either label or instruction may
be omitted.

C. Output VHDL Models

Output files, for program and for local mem-
ory, are VHDL models of respective modules
within the task processor. Both of them have
a regular structure built by regular repetition of
basic cells. Also, both models start with the
definition of the interface to the outside world.

ENTITY program�memory IS
PORT �

read�rom� IN bit�
address� IN bit�vector ��� DOWNTO ���
data� OUT mux�vector ��� DOWNTO �� BUS�
vss� vdd� IN bit

��
END program�memory�

ARCHITECTURE behavioural OF program�memory IS
SIGNAL rom�out� BIT�VECTOR ��� downto ���

BEGIN

write�out� BLOCK �read�rom � ����
BEGIN

data �� GUARDED rom�out�
END BLOCK�

WITH address ��� DOWNTO �� SELECT
rom�out �� X�������� WHEN X���������

X��C������ WHEN X���������
X��FFFFFFF� WHEN X���������
X���������� WHEN OTHERS�

END�

Fig. 7. VHDL Model of Program Memory.

Fig. 7 shows the VHDL model of the program
memory with three-instruction contents. The
model is easily extended to accommodate for
larger programs.

Excerpts from the VHDL model of local mem-
ory are given in Figures 8 to 10. The interface
to the outside world, as shown in Fig. 8, is
the same for all the models. Fig. 9 shows
the definition of some of memory locations �al-
though not all of them are shown�: there are all
together 255 of them, along with two internal
read busses. This section is also identical for all
local memory models. Finally, Fig. 10 shows
excerpts from the code that defines behavior of
the local memory.

ENTITY local�memory IS
PORT �
reset� IN bit�
d�� INOUT mux�vector ��� DOWNTO �� BUS�
d�� OUT mux�vector ��� DOWNTO �� BUS�
a�� a�� IN bit�vector �� DOWNTO ���
oe�� oe�� IN bit�
write� IN bit�
vss� vdd� IN bit
��
END local�memory�

Fig. 8. Interface Definition for Local Memory.

D. Implementation

The assembler is implemented in C. Some of
its parts are developed using the language con-
struction tools bison �6� and flex �16�. In
the first phase the assembler builds the inter-
nal representation of the program. Afterwards
the postprocessor is called by the main function
that fixes label addresses, and finally generates
the output VHDL models.

7. Conclusion and Future Work

The goal of the paper was to explore the possi-
bilities to implement consistently the design of a
relatively simple processor for execution of hard
real-time tasks, as proposed in previous works

ARCHITECTURE behavioural OF b IS
SIGNAL cell��� reg�vector ��� DOWNTO �� REGISTER�
SIGNAL cell��� reg�vector ��� DOWNTO �� REGISTER�

�������������������������������������������������
SIGNAL cell���� reg�vector ��� DOWNTO �� REGISTER�
SIGNAL cell����� reg�vector ��� DOWNTO �� REGISTER�

SIGNAL read�� bit�vector ��� DOWNTO ���
SIGNAL read�� bit�vector ��� DOWNTO ���

BEGIN

Fig. 9. Definition of Memory Locations and Internal Busses for Local Memory.
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wr��� BLOCK �write � ��� AND a� � X�����
BEGIN
cell�� �� GUARDED d��
END BLOCK�
wr��� BLOCK �write � ��� AND a� � X�����
BEGIN
cell�� �� GUARDED d��
END BLOCK�
����������������������������������������
wr����� BLOCK �write � ��� AND a� � X�FF��
BEGIN
cell���� �� GUARDED d��
END BLOCK�

a)

WITH a��� DOWNTO �� SELECT
read� �� cell�� WHEN X�����

cell�� WHEN X�����
������������������
cell���� WHEN X�FF��
X���������� WHEN OTHERS�

WITH a��� DOWNTO �� SELECT
read� �� cell�� WHEN X�����

cell�� WHEN X�����
������������������
cell���� WHEN X�FF��
X���������� WHEN OTHERS�

out��� BLOCK �oe� � ����
BEGIN
d� �� GUARDED read��

END BLOCK�
out��� BLOCK �oe� � ����
BEGIN
d� �� GUARDED read��

END BLOCK�

b)

reset��� BLOCK �reset � ����
BEGIN
cell�� �� GUARDED X�����������
END BLOCK�
reset�� BLOCK �reset � ����
BEGIN
cell� �� GUARDED X�����������
END BLOCK�
����������
reset����� BLOCK �reset � ����
BEGIN
cell���� �� GUARDED X�����������

END BLOCK�

c)

Fig. 10. Local Memory: a� Writing Into; b� Reading
From; c� Reset.

�10, 2, 3�. The processor’s ultimate requirement
was thus temporal predictability of instruction
execution. In the paper, it was shown construc-
tively, that such a design is possible with simple
and readily available means.

The fact that no kernel interface had been pre-
defined influenced the present model of the
task processor, which accordingly is not fully
functional and its top-level structural model is
far from being technologically implementable.

After developing this interface, the next step
in the design process would be full structural
modeling �presently only partially done� and
model mapping onto some technology. Struc-
tural modeling could be done with some tools
already available in Alliance CAD, which are
capable of transforming behavioral descriptions
into structural ones. However, these tools have
some restrictions related to synthesis being ap-
plicable to simpler cases only; it would thus be
necessary to rewrite some parts of the existing
VHDL specification in order to allow its au-
tomatic synthesis. In the case that automatic
synthesis is not possible, it might be needed to
manually perform structural modeling. After
mapping the model onto the selected technol-
ogy the two important parameters — maximum
clock rate and required number of transistors
— can be established. However, it should be
noted that there are limitations on the number
of transistors, thus possibly requiring processor
redesign. Generally, more transistors means a
more sophisticated architecture �as parallelism
is possible�, which would allow higher through-
put, and a higher clock frequency as well. The
same holds if the clock frequency resulting from
the selected technology is lower than required.
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tomated Generation of VHDL Behavioral Models
for Testing Purposes, Proc. 21st Int’l Conf. Informa-
tion Technology Interfaces — ITI’99, June, 15–18,
1999, Pula, Croatia, 249–254.

�8� GROENEVELD, P., STRAVERS, P., �1993� Ocean: the
Sea-of-Gates Design System, ftp���metalab�
unc�edu�pub�Linux�apps�circuits�ocean�
ocean docs�tar�gz, Ocean Distribution, 1993.
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University of Zagreb

Faculty of Electrical Engineering and Computing
Unska 3

HR-10000 Zagreb
Croatia

e-mail: sgros�zemris�fer�hr
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