
Journal of Computing and Information Technology - CIT 10, 2002, 1, 37–53 37

smgn: Rapid Prototyping of
Small Domain-Specific Languages

Holger M. Kienle1�3 and David L. Moore2

1Department of Computer Science, University of Victoria, Canada
2Intel Compiler Lab, Hillsboro, U.S.A.

This paper presents smgn, a grammar-based tool that
provides support for scanning, parsing, and automatic
parse tree construction. The parse tree can be easily nav-
igated and manipulated with a specific macro language
while conveniently generating textual output. smgn is
easy to learn—even for non-compiler experts—and well
suited for rapid prototyping of small domain-specific
languages. It is part of the SUIF compiler system,
where it has been used for the development of the Hoof
domain-specific language. Furthermore, smgn was em-
ployed successfully for the rapid prototyping of another
domain-specific language, called Bauhaus IMDL. We
introduce smgn, describe experiences in using it for DSL
construction and evaluate its usefulness based on these
experiences.

Keywords: domain-specific language, domain-specific
processor, language prototyping, rapid prototyping, SUIF
compiler system

1. Introduction

Domain-Specific Languages �DSLs� are ubiq-
uitous in the computer domain. This fact is of-
ten not realized by programmers and users alike.
Typically, HTML documents, shell scripts, and
X resource files are not perceived as DSLs. Still,
they all have common features that qualify them
as such.

This paper defines a DSL as a small formal �pro-
gramming� language whose expressive power is
limited to a certain application domain and that
does not include many of the features found in
general-purpose programming languages. �Al-
ternative definitions are proposed in �4, 21, 31�.�
A Domain-Specific Description �DSD� is a pro-
gram written in a DSL. Such a program is com-

piled, interpreted, or analyzed by a Domain-
Specific Processor �DSP� �30�. When the DSD
is compiled, the generated output can be in tex-
tual format �e.g., another DSD or a program in a
general-purpose programming language� or in
binary format.

As pointed out in �14�, the design and imple-
mentation of a DSL typically is not trivial and
evolves over time. Thus, frequent changes in
the design and implementation are necessary.
In this context, the ability to rapidly prototype a
DSL is beneficial because such a prototype can
be used to get early feedback from users, for
instance, to uncover missing requirements. For
example, the designers of the Hancock language
�5�, a DSL to describe signatures �i.e., evolv-
ing customer profiles computed from phone call
records�, employed an iterative design process.
A subset of this process consists of �1� language
design, �2� writing of sample DSDs, and �3�
DSP implementation. Both the evaluation of
the written DSDs and the DSP implementation
can lead to changes in the language design. For
Hancock, the designer “found that �they� needed
to iterate through this process many times.” Fur-
thermore, they note: “we also built artifacts
at several intermediate stages. These artifacts
proved useful even though they are not the final
product.”

The SUIF macro generator �18�, called smgn, is
a simple tool well suited for rapid prototyping
of a certain class of DSLs. smgn is a grammar-
based tool that allows the user to parse an in-
put file according to a grammar specification.
The resulting parse tree can then be easily nav-

3Part of this research was conducted as a member of the Bauhaus Group, University of Stuttgart, Germany.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14416756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

38 smgn: Rapid Prototyping of Small Domain-Specific Languages

igated and manipulated with a specific macro
language. While navigating the parse tree, tex-
tual output can be conveniently generated. Thus
smgn is a tool to write DSL compilers that trans-
late a DSD to textual output. Furthermore, the
grammar specification and macro language are
easy and intuitive, which allows even DSL im-
plementors that are not compiler experts to fa-
miliarize themselves quickly with the tool.

Though smgn was originally written for the
SUIF Compiler System �26�, its design is gen-
eral enough to be useful for the translation of
DSLs. smgn is used by SUIF to implement
a DSL called Hoof , which is used to specify
nodes for the SUIF intermediate representation.
Hoof makes it easy for SUIF users to specify
additional nodes �by subclassing from existing
ones� for their own analyses. In the Bauhaus
project, smgn has been employed to implement
a DSL, called IMDL, to describe an internal
graph representation �2�.

1.1. turtle Example

As a running example, we show how to imple-
ment a small DSL, called Turtle, with smgn.
A Turtle program draws a �static� picture by
means of turtle graphics. �The Turtle com-
mands are inspired by Logo turtle graphics
�11�.�

� � triangle�ttl
�
� turtle triangle �
� down�
� turn right by 	
 degrees�
� forward �
�
� turn left by ��
 degrees�
 forward �
�
	 turn left by ��
 degrees�

�
 forward �
�
�� �

Fig. 1. A Turtle program �triangle�ttl�.

Turtle supports the following commands: �1�
raising and lowering of the pen, �2� moving the
turtle forward by a certain number of steps and
�3� turning the turtle to the left or right by a
certain degree. At the beginning, the turtle’s
pen is up and it points northwards. Using these
operations, Figure 1 shows how a triangle can
be drawn. The drawing is depicted in Figure 2.

Fig. 2. Drawing of triangle �specified in Figure 1�.

Our goal is to write a DSL compiler that trans-
lates a Turtle program to PostScript �15� code.
Figure 3 shows a possible translation to Post-
Script of the triangle specified in Figure 1. This
code has been generated automatically with the
smgn macro file given in Appendix A.

� � setlinewidth
� newpath
� �

 �

 moveto
� 	
 sin
� �
 mul
� 	
 cos
� �
 mul
 rlineto
	 ��
 sin

�
 �
 mul
�� ��
 cos
�� �
 mul
�� rlineto
�� ���
 sin
�� �
 mul
�� ���
 cos
�� �
 mul
� rlineto
�	 stroke
�
 showpage

Fig. 3. Generated PostScript code for triangle specified
in Figure 1.

As argued later, Turtle is not an ideal candi-
date for an implementation with smgn since it
does not have a declarative nature—it is instead
a command language. However, it is simple,
small, and intuitive to understand and thus fits
in the paper.

1.2. Contents

The paper is organized as follows. Section 2
introduces smgn using Turtle as a running ex-
ample. Furthermore, smgn’s historical devel-
opment is briefly discussed as well as its ap-
plicability. Section 3 discusses experiences of
three DSL implementations that have been con-
ducted with smgn. Based on these experiences,
strengths and weaknesses of smgn are evaluated.
Section 4 introduces a �rather limited� taxon-
omy for DSL implementation techniques and
classifies smgn according to it. Section 5 gives
related work that is similar in spirit to smgn and
Section 6 concludes with future work.

smgn: Rapid Prototyping of Small Domain-Specific Languages 39

2. smgn’s Features and Scope

First, smgn is briefly introduced to give the
reader a first impression of its capabilities and
features. Then, we identify the properties that
make a DSL suitable for implementation in
smgn.

2.1. Overview

When smgn is invoked, its actions are parame-
terized by the following files, which are given
on the command line:

� grammar file �contains the grammar spec�

� text file �contains the actual input, e.g., the
Turtle program in Figure 1�

� macro file �contains macro language code�.

For example, to invoke smgn to generate Post-
Script output for the example program given in
Figure 1, one types

smgn turtle�grm triangle�ttl �ps�mac

smgn reads in the grammar file �turtle�grm�
and then parses the text file �triangle�ttl�
with the obtained grammar specification. Dur-
ing the parse, a parse tree is constructed. If
no macro file is present, execution stops; other-
wise, the macro file is read in ��ps�mac� and the
macro processor starts interpreting. The macro
file contains code that traverses the parse tree
and generates output depending on the infor-
mation obtained from the parse tree.

Typically, the grammar and macro files are
fixed, whereas text files differ. But this is not
necessarily the case. For example, the same
grammar specification and text file can yield
different outputs, depending on the macro file
used.

In the following, the grammar specification, the
generated parse tree and the macro processor
are introduced in more detail.

2.2. Grammar Specification

Figure 4 shows the grammar specification for
Turtle. The smgngrammar specification is sim-
ilar to BNF, thus no repetitions or optionals are
allowed. The names of nonterminals are encap-
sulated in angle brackets. Terminal symbols are

written literally. Special characters in terminals
are escaped by enclosing them in double quotes.
The start nonterminal of the grammar is the left-
hand-side of the first production �i.e., start in
the Turtle grammar�.

� � turtle�grm
�
� �start� ��� �turtle�
�
� �turtle� ��� turtle �identifier�
� � �cmd�list� �
�
 �cmd�list� ��� �commands� �
	
�
 �commands� ���
�� �command�
�� � �command� �commands�
��
�� �command� ���
�� �turn�
�� � �up�
�� � �down�
� � �forward�
�	
�
 �turn� ��� turn �left�or�right�
�� by �identifier�
�� degrees �
�� �left�or�right� ��� left � right
��
�� �up� ��� up �
�� �down� ��� down �
�� �forward� ��� forward
� �identifier� �

Fig. 4. Turtle Grammar �turtle�grm�.

Most notably, no scanner specification is re-
quired. This scheme is less powerful and flex-
ible than giving an explicit specification of the
scanner tokens, but makes the specification eas-
ier. �A similar idea has been developed for
the lexical source model extractor �LSME� tool
�22�.� This approach helps DSL implementors
that are not compiler experts to develop a first
working grammar in a short time. Since scanner
tokens cannot be given by the user, two special
nonterminals are predefined:

� The �identifier� nonterminal matches in-
put that consists of digits, letters �upper and
lowercase�, and underscores in any order.

� The �verbatim� nonterminal matches any
text up to a certain end-maker. The end-
maker is a terminal symbol that must be
given immediately after �verbatim�.

The latter is useful, for example, to capture the
text that is not supposed to be parsed and sub-
sequently analyzed, but written out later in its
original form. �Arie van Deursen pointed out

40 smgn: Rapid Prototyping of Small Domain-Specific Languages

to us that this construct can be useful to im-
plement a partial parser �e.g., for analyzing a
legacy system� that ignores parts of the input. In
this respect, its functionality is similar to awk’s
�� ��� �� command.�

With this scheme, the token specification is usu-
ally less strict than one would like to have. For
example, �identifier� can be used to match
numbers, but it will also match other strings.

Typically, comments are not specified by the
grammar itself, but handled directly in the scan-
ner. Since scanner support does not exist, the
smgn parser has comments already built in. Any
line starting with a hash ��� is considered a com-
ment.

The parser is implemented as a straightforward
back-tracking parser. This means that gram-
mars that are not LL and not LALR can be
handled, which frees the grammar writer from
the task to take these constraints into account
when developing the grammar. Conflict reso-
lution of grammars �especially LALR� can be
tedious and difficult for non-compiler experts.
On the other hand, if the grammar and the input
force the parser to do a lot of back-tracking, the
performance may suffer significantly. In prac-
tice, it is beneficial to try to develop a grammar
that is close to LL�1�.

If an input file cannot be parsed, smgn outputs
an error message indicating the line number and
the token in the line that caused the parse to fail.
This symbol is normally just above the "high
water mark" of the text that has been parsed.
Sometimes, the syntactic error will actually pre-
cede the point of the diagnostic, possibly by a
large amount, which can make detecting the ac-
tual error difficult.

2.3. Parse Tree

While parsing the input, smgn builds a parse
tree. In this tree, all terminals are removed. Fig-
ure 5 shows a conceptual representation of the
generated parse tree for the input given in Fig-
ure 1 parsed with the grammar given in Figure 4.
�This textual representation is inspired by the
Graph Modelling Language �GML� �13, 10�.�

start �
turtle �

identifier �triangle�
cmd�list �

commands �
command �

down �
text �down�

�
text �down��

�
command �

turn �
left�or�right �
text �right�

�
identifier �	
�
text �turn right by 	
 degrees��

�
text �turn right by 	
 degrees��

�
command �

���
�
���
command �

���
�

�
text �down� ��� forward �
��

�
text �turtle triangle � down� ��� ��

�
text �turtle triangle � down� ��� ��

�

Fig. 5. Parse tree for Turtle program.

Conceptually, every node in the parse tree con-
tains an ordered list of key�value pairs; the key
being the name of a nonterminal and the value
being either another node or a string. In Fig-
ure 5, nodes are represented with square brack-
ets and strings are enclosed in double quotation
marks. A line starts with the name of the key fol-
lowed by its value. In the Figure, strings have
been abbreviated by using ellipses �� � � � and
the original line breaks �which are preserved by
smgn� are removed.

Nonterminals �except for the predefined non-
terminals �identifier� and �verbatim�� have
a special text key, whose value contains the
matched input during the parse for that nonter-
minal. The text key is only present at nonter-
minals that did actually match some input text.

Note that a node can have keys with identical
names. For example, in Figure 5 the commands

smgn: Rapid Prototyping of Small Domain-Specific Languages 41

node contains several command keys �i.e., child
nodes with identical names�. This is the case
for immediate right-recursive rules, i.e., rules of
the following form:

�nt�::�α jα�nt�

where α denotes an arbitrary sequence of ter-
minals and nonterminals. The Turtle grammar
in Figure 4 contains such a rule at lines 10–12
that defines the commands nonterminal.

Hence, the parse tree for immediate right-re-
cursive rules is “flattened” by smgn to an or-
der-preserving list. The macro language has a
special foreach construct �see Section 2.4.3� to
conveniently iterate over such lists.

Since smgn builds the parse tree automatically
during the parse, the programmer need not worry
about programming, maintaining, and docu-
menting explicit tree construction code. Fur-
thermore, the shape of the constructed tree is
unambiguously documented�specified by the
grammar.

On the other hand, automatic tree construction
means that the shape of the resulting tree can-
not be controlled; in particular, the direct con-
struction of an abstract syntax tree �AST� is not
possible. Even though this sounds like a seri-
ous restriction, in practice it is not, since smgn
grammars are typically fairly simple and hence
the resulting �flattened� parse tree is not much
more complex than an AST. Furthermore, the
initial tree can be augmented and transformed
later on with the help of the macro language.

2.4. Macro Language

This section gives an informal �and necessar-
ily incomplete� introduction of the macro lan-
guage. For a more detailed description refer to
�18�.

The macro language follows the imperative pro-
gramming paradigm. It has control flow con-
structs, macro definitions and calls, and expres-
sions. There are commands for text handling,
output management, and parse tree manipula-
tion and traversal. Each of these features are
briefly discussed in the following.

Most programmers are familiar with imperative
programming. smgn builds on this paradigm,
offering specific parse tree manipulation and

traversal mechanisms on top. These concepts
are easier to grasp for non-compiler experts
than, for example, attribute grammars and al-
gebraic specifications.

The term “macro” is rather misleading—it bears
no resemblance with macro processing in C—
since the macro language is in fact rather an
interpreted command language. The name is
kept for historical reasons.

2.4.1. A First Example

Here is the first simple example of a command
sequence:

� Turtle prg name is �turtle�identifier�
� ���
� Program text� �text�
� ���

Text that is not escaped with angle brackets is
written verbatim to the current output buffer
�default is stdout�. Leading white spaces are
ignored. Path expressions �such as turtle�
identifier� given in angle brackets �� � � � are
used to output the contents of a node in the parse
tree. An absolute path expression, such as the
two above ones, starts at the root of the parse
tree �omitting the leading nonterminal, which is
unambiguous�. The “���” command outputs a
newline.

If a path expression denotes a non-existing node,
smgn generates a warning message and ignores
the expression. �This behavior is helpful for
debugging.� If the path expression leads to a
node that does not contain a string value �i.e., it
is not a leaf node�, no warning is given and no
output is generated.

The generated output for the above macro file
applied to the Turtle program given in Figure 1
is as follows:

Turtle prg name is triangle
Program text�

turtle triangle �
down�
���
forward �
�

�

The turtle�identifier path expression de-
notes the node in the parse tree that contains
the string “triangle.” The text path expres-
sion denotes the string that contains the whole
parse.

42 smgn: Rapid Prototyping of Small Domain-Specific Languages

2.4.2. Macro Definitions

The above code can be rewritten by putting it
in a macro definition �which corresponds to a
subprogram� with two subsequent macro calls:

� �def p txt node�
� �txt�� �node����
� �enddef�
�
� �p �Turtle prg name is � turtle�identifier�
� �p �Program text� text�

The macro p takes two formal parameters, txt
and node. A formal parameter can either repre-
sent a string or a node in the parse tree. In the
latter case, the formal parameter can be used as
the starting node of a relative path expression.
Recursive macro calls are possible.

2.4.3. Control Flow

For control flow, smgn has a

� if�expr� � � � �� else � � � �� endif �

construct. Typically, expr is a boolean ex-
pression that is used for string comparisons of
nodes, or existence checks of nodes with the
exists predicate. For convenient iteration over
nodes that have identical path expressions, the
foreach construct is provided:

� �foreach cmd in
� turtle�cmd�list�commands�command�
� �pos cmd�� �cmd�text����
� �endfor�

All nodes that match the given path are visited,
one at each iteration. The cmd parameter de-
notes the current node of the iteration and can
be used in foreach’s body. The Turtle pro-
gram in Figure 1 consists of seven commands,
thus the path expression finds seven matching
nodes �see also Figure 5�:

� down�
�� turn right by 	
 degrees�
���
�� forward �
�

The pos command outputs the current number
of iterations �starting from zero�. Besides pos,
inside foreach the predicates first and last
can be used to determine if the current iteration
processes the first and last node, respectively.

The foreach construct can be extended with a
such that clause, which takes a boolean ex-
pression to put a restriction on the nodes to be
iterated. For example, extending the previous
example to only iterate over forwardcommands
that advance by 50 steps, one can write:

� �foreach cmd in ��� such that
� �cmd�forward�identifier �� ��
���
� ���

2.4.4. Parse Tree Manipulations

To introduce new nodes into the parse tree, the
set construct is used:

� �set brand�new�node
� to �turtle�identifier��
� �set turtle�identifier
� to A different string�

The first set creates a new node �actually three
nodes are created: brand, new, and node�. brand
is attached as a child of start, the implicit root
node. The contents of node is initialized with
the string that the node turtle�identifier
holds �i.e., “triangle”�. Thus, the first set has
the same effect as writing “�set brand�new�

node to triangle�.”

The second set overrides the contents of an ex-
isting node. �This is only possible if the node
holds a string.� For a node initialization with
set, only strings can be given.

Since path expression can become rather lengthy,
aliases can be given for them with the let con-
struct. For example, the above set statements
can be rewritten as follows:

� �let tid be turtle�identifier�
� �set brand�new�node to �tid��
� �set tid to A different string�
� �endlet�

The introduced alias �tid� is visible inside the
let construct. Dynamic name binding applies.

So far all path expressions were literal. How-
ever, it is also possible to build path expressions
dynamically. The name of a node in a path ex-
pression can be built from the string contents
of any node or parameter. This indirection is
achieved by giving the node name in square
brackets:

smgn: Rapid Prototyping of Small Domain-Specific Languages 43

� �def insert key val�
� �set arr��key�� to �val��
� �enddef�
�
� �insert �dog� �fido��
� �insert �cat� �mimi��

This code inserts two new nodes with the path
arr�dog and arr�cat with the string values
�fido� and �mimi�, respectively. In a path ex-
pression, literal nodes and nodes given in square
brackets can be freely interchanged. Both nodes
dog and cat have arr as their parent node.
Hence, this constructs effectively realizes an as-
sociate array, the key being the node name. To
iterate over all values of arr, one can write:

� �foreach val in arr���
� �val����
� �endfor�

The “�” in the path expression is a wildcard
that matches a single child node of arr. Given
in combination with foreach, it can be used to
iterate through all child nodes of arr.

Finally, there is also a map construct, which is a
combination of set and let. It is similar to set
in the sense that it defines a �new� node in the
parse tree, and similar to let in the sense that
an alias to another node is established.

2.4.5. Text Substitutions

Square brackets are also used for in-line text
substitution. The constructs written between
square brackets are processed and replaced with
the output that they produce. The contents in-
side the brackets can be arbitrary complex, but
in practice a path expression or a single macro
call is used.

Text substitution can be used with a macro call
to obtain a string result from a macro defini-
tion. For example, the following macro defini-
tion performs a string equality test and outputs
either “true” or “false:”

� �def eq s� s��
� �eval �s���s���
� �enddef�

Now, if a call to this macro is done with text
substitution, the generated string is not written
to stdout, but substituted in-line. Thus, the re-
sult can be used in a boolean expression such as
the following:

� �if �� ���eq �foo� �bar������
� Not identical������
� �endif�

In this case, “	�eq �foo� �bar��
” will be
substituted with “false” and the negation ���
evaluates the whole expression to true. Another
example of text substitution is an indirect macro
call. Here is an example:

� �set themacro to eq�
� ���themacro�� �foo� �bar��

2.4.6. Polymorphism

One of the more interesting features is smgn’s
support for polymorphic macro calls. The left-
hand-sides of grammar productions have a type
associated with them. In the following produc-
tion

�nt�::� � � �

the nonterminal �nt� is associated with the type
nt. A parse tree, which is constructed from the
typed grammar, is typed as well. The type of a
�parent� node that represents the application of
a production in the derivation has the same type
as the left-hand-side of that production.

Formal parameters of macro calls can be given
types to restrict the applicability of the macro.
The �optional� type is given after the formal pa-
rameter, separated with a colon. For example,
the following macros handle the different kinds
of Turtle commands:

� �def dp cmd�turn�
� I handle turn������
� �enddef�
�
� �def dp cmd�up� ��� �enddef�
� �def dp cmd�down� ��� �enddef�
� �def dp cmd�forward� ��� �enddef�

	 �def dp cmd�
�
 I should never be called�
�� �endef�

The macro that is actually called during exe-
cution time depends on the type of the actual
parameter. If no matching type is found, the
last macro �which has no type restriction� is
chosen. �Such an untyped macro can be used
as a fall-back mechanism to implement default
behavior or as a “guardian” that raises an error

44 smgn: Rapid Prototyping of Small Domain-Specific Languages

to indicate that a macro for a certain type has
not been implemented.�

Typically, a type restriction is placed only on
the first parameter. This corresponds to sin-
gle dispatch and can be conveniently used when
iterating over a list of different types:

� �foreach cmd in
� turtle�cmd�list�commands�command���
� �dp cmd�
� �endfor�

The foreach iterates over the different types of
Turtle commands and the macro call inside dis-
patches to the definition that has a matching type
during runtime. Note that it is now quite easy
to add another Turtle command. One simply
needs to extend the grammar and write another
macro definition.

One can place type restrictions on any number
of formal parameters. This corresponds to mul-
tiple dispatch.

Types are not organized hierarchically �i.e., smgn
has no concept of type inheritance�. �Except
that one can view the absence of a type as ac-
tually denoting the common supertype all the
other types inherit from.� Because no type hi-
erarchy exists, a polymorphic call has to find a
macro definition with precisely matching types.
That is why polymorphic calls can always be
resolved unambiguously �which is not true of
languages with polymorphic calls and type in-
heritance, such as Cecil �6��.

2.4.7. Output Management

In all of the above examples, the generated out-
put was directed to stdout. smgn has a file

command that redirects subsequent output to a
given output buffer. This is especially useful if
more than one file needs to be generated �e.g.,
�h and �c files�.

It can be awkward to generate sequential output.
Sometimes one would like to insert output at a
certain position in the output buffer rather than
being restricted to only appending at the end.
In such a case, the use construct can be used
to subdivide the buffer into different sections.
Output can then be redirected to a specific sec-
tion within a buffer. In the following example

� �use sec��
� �use sec��
� This goes in section �����
� �use sec��
� This goes in section �����

the first line defines �and also activates� sec�.
The second line defines and activates sec�,
whose output will be appended after sec�. This
section will be active until a subsequent use
command activates another one. This happens
at the fourth line. Since sec� is already known,
it is not defined, but only activated. Hence the
generated output reads

This goes in section ��
This goes in section ��

2.4.8. Text Formatting

smgn has several commands to ease the text for-
matting of the output. Text indentation can be
changed �relatively and absolutely� and names
can be transformed before they are output. In
the following example the text is output with
an additional indentation of two relative to the
previous indentation:

� Previous indent
� ��������
� Additional indent of �
� ��������
� Back to the previous indent���

2.4.9. Command Line Invocation

When smgn is invoked, information can be pas-
sed to the macro file on the command line with

�Dname�str

Before the execution starts, the node name is
put at the root of the parse tree with the string
value str.

2.4.10. Iterators with Callbacks

As can be seen from the above examples, during
execution, the macro file uses path expressions
to access the parse tree—path expressions drive
the execution. But this means that a change
in the grammar must be reflected by changing
the corresponding path expressions, which is
not desirable. Implementing iterators that take
callbacks help to mitigate this problem:

smgn: Rapid Prototyping of Small Domain-Specific Languages 45

� �def iter callback�
� �foreach cmd in
� turtle�cmd�list�commands�command�
� ���callback�� cmd�
� �endfor�
� �enddef�

The iterator traverses the commands in a Turtle

program and calls a callback macro for every
command. The callback gets the current node
�which represent the command� as an argument.
The iterator can then be used as follows:

� �def p cmd�
� �pos cmd�� �cmd�text����
� �enddef�
�
� �iter �p��

The behavior of this code is identical with
the code given in Section 2.4.3, but is more
reusable. Thus, if iterators are employed, after a
grammar change often only a single path expres-
sion in the iterator needs to be changed. This
concept has been extensively used at the imple-
mentation of Bauhaus IMDL �see Section 3�.

It would be beneficial to introduce high-level
constructs into the macro language that specify
the traversal of the tree structure. These con-
structs, analogous to the visitor pattern, separate
navigation from tree node computation and al-
low reuse of traversal patterns. Ovlinger and
Wand present such a traversal specification lan-
guage for use with the visitor pattern �25�.

2.5. Historical Development

smgn started as a small macro processor for gen-
erating Web pages from lists. �That is why its
syntax is determined by angle brackets.� When,
in the context of the SUIF project, the ability to
generate C�� from Hoof was needed, the sec-
ond author hooked up a back-tracking parser
�which had been developed before for another
purpose� and added the tree flattening capability
discussed in section 2.4.3 to make the existing
foreach construct work. Since an already exist-
ing back-tracking parser was reused opportunis-
tically, its BNF-style grammar description was
kept. In retrospect, the parser could have intro-
duced a more convenient, EBNF-style list con-
struct instead of flattening the right-recursive
rules.

Over time, constructs were added as convenient.
While we tried to be as consistent as possible
in syntax, the language as it exists today was
grown rather than designed, and, as a result, is
rather idiosyncratic and cumbersome. Also, the
text formatting capabilities lack elegance and
generality. These shortcomings �and the ones
discussed in Section 3.4� should be fixed in a
second version of smgn.

2.6. Implementation

smgn is implemented with about 4500 lines of
C�� code. We used the UNIX wc to determine
the line count, but omitted empty lines. The
code is rather sparsely documented. The imple-
mentation uses common data structures �such as
stacks and strings� that are part of the SUIF base
system. These data structures are not included
in the above line count.

No compiler construction tools �such as lex�-
yacc� have been used. Instead, both scanner
and parser are hand-crafted. The macro inter-
preter directly interprets the macro file; pars-
ing and macro interpretation are intertwined
and handled on-the-fly. �That is why smgn

requires macro definitions to appear textually
before their usage.� An alternative implemen-
tation could parse the macro file and construct
an intermediate representation before interpre-
tation starts. Such an approach would certainly
be beneficial from a performance point of view.
Our current approach of hand-crafting the parser
has the drawback that no formal grammar of the
macro language exists. Even though the need
for such a grammar did not arise because of
our implementation strategy, constructing one
would certainly be feasible. Furthermore, cur-
rent implementation has an additional drawback
in that the generated output is kept in-memory
and written out after processing. Hence, if a
lot of output is generated, the memory footprint
can become large. The current implementa-
tion is rather a prototype and proof of the con-
cept. Nevertheless, the implementation is stable
and has adequate performance to handle typical
DSLs �see next Section�.

46 smgn: Rapid Prototyping of Small Domain-Specific Languages

2.7. Scope

Now that the reader is more familiar with smgn,
the type of DSLs that are good candidates for an
implementation based on smgn are discussed. A
suitable DSL should have the following proper-
ties:

� The DSL should have be of declarative na-
ture. Examples of declarative DSLs are
SCATTER �4�, lex, yacc, and ASDL �32�.
This requirement follows the philosophy that
DSLs should not be designed to describe
computation, but rather to express facts �from
which computations can be derived�. Fur-
thermore, declarative DSLs are well suited
for compilation, which is not always the case
for DSLs with execution semantics.

� The transformation from the source to the
target language should be fairly simple �e.g.,
every construct in the source language di-
rectly corresponds to a construct in the target
language�. Complex transformations are not
well supported because smgn does not offer
pattern matching on the parse tree. Instead,
pattern matching rules have to be explicitly
programmed with the macro language in an
imperative style.

� DSDs written in the DSL should be rather
small—about up to several thousand lines
of code. The reasons for this limitation are
lack of syntax checks �which make debug-
ging difficult� and performance issues �as
discussed in Section 2.6� of the current im-
plementation. Since a declarative style re-
sults in more concise code, this should not
pose a serious restriction. For example, the
DSD sizes of 15 DSLs discussed in �27�
range from 42 to 2490 lines of code �LOC�.
The Hoof DSL has DSDs that range from
400 to 2000 LOC. Bauhaus IMDL has about
2000 LOC.

� The DSL should be expressible with a rather
small grammar �i.e., no more than 100 pro-
ductions�. The grammar is kept in a single
file. This is adequate for a small grammar;
however, for a larger grammar it is desirable
to split it up into several files. A declarative
DSL usually means a less complex gram-
mar. For example, arithmetic expressions
and control structures need not be modeled.
Hoof has 58 and Bauhaus IMDL has 51 pro-
ductions.

� The DSL must be compilable and the gener-
ated output must have a textual form. This
is the case for DSLs that get translated to
another DSL or programming language.

� Fast compilation is not a paramount require-
ment. However, since the input files tend to
be small, a reasonable compile time can be
expected.

To summarize, we believe that smgn is useful
for rapid prototyping of small DSLs that require
rather simple transformation to textual output.

3. Experiences

This section describes experiences based on
three independent DSL projects that have been
conducted with smgn.

3.1. Hoof

smgn was designed and developed with the ex-
plicit goal to support Hoof. Hoof is a DSL that
is employed in the SUIF compiler system �26�
to specify SUIF’s intermediate representation
�IR�, which is used by front ends and optimiza-
tion passes. The IR consists of node definitions,
which are organized in a specialization hierar-
chy. A node definition introduces a new node
type. It can be concrete �i.e., instantiable� or
abstract. Nodes can have fields, which are ei-
ther primitive �e.g., integer or string�, or hold a
typed reference to an IR node. To realize func-
tionality that is not covered by Hoof, it is also
possible to specify C�� code in-line, which
is verbatimly pasted into the generated output
code. Here is an example of a simplified node
definition:

concrete IfStatement � Statement �
Expression � condition�
Statement � then�part�
Statement � else�part�

��

Nodes have common services, such as instantia-
tion, annotation, reading, writing, printing, and
cloning. Hoof is translated to C��, the above
definition causing the generation of about 100
LOC.

smgn: Rapid Prototyping of Small Domain-Specific Languages 47

One of SUIF’s primary goals is extensibility,
which means that applications that are not part
of the standard SUIF distribution can further re-
fine the IR hierarchy. Hoof is easy to grasp and
thus makes the introduction of a new IR node
very convenient, shielding the intricacies of the
underlying C�� implementation from the user.

Since the development of smgn is tied to Hoof,
it is a justified question whether it is suited in
general to implement DSLs. Experiences of
the two projects described below give the first
answer.

3.2. Hoof for Java

The JSUIF project �17�, which has been con-
ducted independently from SUIF, ports SUIF
from C�� to Java. For this port, the macro
files for Hoof had to be rewritten to generate
Java code instead of C��. �Note that ideally
neither the Hoof grammar nor the Hoof DSD
requires change.� The author, Radu Iosif, who
ported the macro files, had no prior experience
with smgn, but was able to familiarize himself
with it in about two to three days. The tree nav-
igation was felt to be intuitive; dynamic path
expressions and text substitution are hardest to
grasp. On the downside, the constructs that
smgn provides for generating debugging output
were perceived as rather confusing. JSUIF’s
author got a positive impression of smgn and
would consider using it for other DSL-related
projects.1

For the port, most of the original structure of
the macro code could be retained. The most
intrusive change occurred at the output file han-
dling. JSUIF generates a separate Java file for

each node definition, whereas SUIF uses a sin-
gle C�� file. To interface with the Java Native
Interface �JNI�, it was necessary to generate
names mangled according to the JNI conven-
tion. Since this is not supported by smgn, a
single new construct realizing the mangling had
to be introduced. For Hoof itself, the grammar
had to be extended with a single production that
allows to specify Java code in-line �in addition
to the already supported C���.

3.3. Bauhaus IMDL

To give further insight into the question whether
smgn is suited for DSL construction in gen-
eral, it was used for the development of another
DSL, called IMDL, which is part of the Bauhaus
toolset �2�.

Bauhaus, developed at the University of Stut-
tgart, is a reverse engineering toolset that facil-
itates program understanding of C legacy code.
Bauhaus assists a reengineer in deriving the ar-
chitecture of the system under examination. Be-
fore the system is analyzed, it is first compiled
with the Bauhaus C front end. The front end
targets Bauhaus InterMediate Language �IML�,
which is essentially a persistent attributed tree
representation. The previous implementation
modeled the tree data structure manually in
Ada95. The introduction of a new tree node was
accomplished with copy-and-paste from other
existing nodes. Because of the resulting main-
tenance problems, it was decided to design a
DSL called InterMediate Description Language
�IMDL�, that specifies the tree nodes.

As an experiment, it was decided to implement
IMDL with smgn. The architecture of the sys-
tem is depicted in Figure 6. The IMDL file

imdl.grm
imdl.mac

*.ads

visitors.ad[sb]

168

IMDL DSD

(iml1.imdl)
smgn

IML
nodes

misc.

c_interface.c inh−tree.gml

...
*.adb

168

Fig. 6. Architecture of Bauhaus IMDL.

1 Private email communication with Radu Iosif, Politecnico di Torino, January 2001.

48 smgn: Rapid Prototyping of Small Domain-Specific Languages

�iml��imdl� describes 168 tree nodes and is
about 2000 LOC. From this description sev-
eral output files are generated. For each spec-
ified tree node the corresponding Ada95 code
is generated—on average about 300 LOC for
both specification ��ads� and implementation
��adb� file. Other files are generated as well,
for example, an Ada95 visitor class for nodes
traversal, interface functions for accessing the
nodes from C, and, for documentation, a repre-
sentation of the node inheritance �described in
the GML graph format �13, 10��.

Command line options govern which output
files are generated. Output generation is split
up in different macro files. If certain output
needs to be generated, the startup macro file
�imdl�mac� loads the corresponding macro file
on-the-fly and starts to interpret it. Thus, the
generation of additional output files can be eas-
ily realized by writing a new macro file and
registering it with the startup macro file. Macro
files use the library of macro definitions that
provides support for output string generation
and tree traversals with callbacks.

The design process of IMDL turned out to be
highly iterative. In fact, our experiences were
similar to those of the designers of the Hancock
language �5�. Experimental constructs were
first introduced in the grammar and used in the
node specifications �without output generation�
to evaluate their merit. Once the expressive-
ness of a construct turned out to be appropri-
ate, output for it was generated. Output gen-
eration sometimes also caused redesign of the
construct. Since IMDL’s grammar was incre-
mentally enhanced, it turned out to be beneficial
that smgn does not pose constraints on the gram-
mar. smgn’s limited lexical capabilities did not
cause any problems. During the development,
other Bauhaus members with no prior knowl-
edge of smgn could easily fix bugs and further
enhance IMDL’s functionality. Even though we
implemented a new DSL and generated output
for Ada95, smgn proved to be well suited for
this task. Specifically, it was not necessary to
enhance smgn’s functionality.

smgn’s runtime performance is adequate. A run,
that outputs all files shown in Figure 6, takes
about 90 seconds on a Sun Ultra-2 with 512MB
RAM running Solaris 2.5.1. The files contain
about 60000 lines, each line containing on av-
erage 28 characters.

3.4. Deficiencies of smgn

While working with smgn, the following defi-
ciencies were noticed:

� The grammar specification and the path ex-
pressions in the macro code are tightly cou-
pled. Thus, a change in the grammar usually
means changes in the macro code. �As dis-
cussed in Section 2.4, using callbacks can
mitigate this problem.�

� It is not possible to abstract from the concrete
syntax given by the grammar �e.g., with an
AST�.

� smgn can only parse a single DSD file and
does not offer a built-in include mechanism
at the language level. Hence, the DSL must
be designed such, that each DSD consists of
a single file. However, a preprocessing step
�e.g., with m or the C compiler preprocessor
cpp� can be employed that alleviates this re-
striction. For example, in the SUIF system a
Makefile ensures that each Hoof file is pre-
processed with cpp. Thus, other Hoof files
can be textually included with cpp’s �in�

clude directive.

� There is little syntax checking of the macro
files. For syntax errors, smgn typically fails
unpredictably.

� There is no good support to generate error
messages. Most notably, no line number in-
formation is preserved in the parse tree.

� It is not possible to call external programs
�“shell escape”�. An even better approach
would be to interface to other �scripting� lan-
guages.

� No extensibility mechanisms are offered, for
example, to define new constructs for out-
put mangling. �This can be easily achieved
with the aid of dynamically loaded shared
libraries.�

The last four points are deficiencies of the
current implementation rather than conceptual
shortcomings.

smgn: Rapid Prototyping of Small Domain-Specific Languages 49

4. Classification

smgn provides support for scanning, parsing,
and construction of the parse tree, which means
that its support is limited to standard, well-
known generator techniques as they are typi-
cally supported by compiler toolkits �e.g., Eli
�8� and Cocktail �7��. Thus, smgn is less ambi-
tious than language development systems which
employ formal semantics to automatically gen-
erate tools �12�. For example, the ASF�SDF
language development system uses an algebraic
specification with conditional rewrite rules �29�.
From such a specification, tools �such as scan-
ner, parser, pretty-printer, type-checker, and in-
terpreter� are generated.

Language development systems are typically
complex �sometimes with several different spec-
ification languages� and require a fair amount
of time to learn. Long-term benefits of these
systems can outweigh the effort of learning the
language, but potential implementors of a DSL
are not always willing to pay the initially high
price of familiarizing themselves with such a
system—especially if at the beginning of the
design and implementation phase it is not clear
whether a DSL will prove to be beneficial in
the first place. �This paper neither covers the
risks of developing a DSL nor discusses alter-
natives to DSLs. These topics are addressed in
�21, 23, 30, 31�.�

On the other side of the scale, DSLs are still
often built with no or only rudimentary tool

support. Typically, a scanner generator �e.g.,
lex� and a parser generator �e.g., yacc� are em-
ployed, but this means that �1� abstract syntax
trees �or parse trees� must be implemented by
hand, �2� there is no convenient, high-level in-
terface to navigate the tree, and �3� the gener-
ation of �textual� output is awkward if the im-
plementation language does not offer high-level
string processing. These reasons can cause pro-
grammers to refrain from building an experi-
mental DSL because it is hard to design, build
and maintain such an implementation.

smgn lies somewhere in the middle of these two
approaches. It provides support for easy gram-
mar construction, automatic tree construction,
and a high-level macro language for tree traver-
sal�manipulation and convenient output gener-
ation. Furthermore, the macro language is easy
to grasp for programmers. These features ren-
der smgn more suitable for rapid prototyping
than the lex�yacc-style. This point is illus-
trated by Figure 7. In the lex�yacc-style, the
programmer has to write two separate specifi-
cations for the scanner and parser, has to imple-
ment the data structures for the AST, and finally
has to insert the appropriate calls for the AST
construction in the parser’s actions. There is no
tool support for tree traversal and code genera-
tion. With smgn a single �unrestricted� grammar
specification suffices along with a macro file to
generate the target output.

Fig. 7. DSP Architectures: lex�yacc-Style vs. smgn.

50 smgn: Rapid Prototyping of Small Domain-Specific Languages

5. Related Approaches

This section discusses other approaches that are
also suitable for rapid prototyping of DSLs.
Considering the classification introduced in Sec-
tion 4, these approaches are similar to smgn be-
cause they provide more sophisticated support
for DSL construction than the lex�yacc-style
while being less general than fully-fledged lan-
guage development systems.

The approach of �1� is based on an extensible
compiler framework written in Python. The
framework provides support for scanning, pars-
ing, and AST construction and traversal. It is
customized by means of subclassing from dedi-
cated base classes and can be used for interpret-
ing as well as compiling the DSL. The parser
uses the Earley parsing algorithm, which frees
the user from intricate grammar design. Tree
traversal of the AST can be used for semantic
analysis and code generation. This approach
is similar to the lex�yacc-style of developing
DSLs, offering mainly support for scanning and
parsing. Similar to smgn and in contrast to yacc,
the grammar writer need not worry about gram-
mar constraints. ASTs must be constructed
manually and tree navigation is only supported
by means of tree traversals. In order to use
the framework, a sound knowledge of Python is
required.

Jargons �23� are domain-specific extensions im-
plemented on top of a base interpreter. The com-
mon base syntax consists of jargon expressions,
which are associated with actions. During in-
terpretation of an expression, its corresponding
action is executed and the expression’s prod-
uct is appended to an output buffer. Jargons
are rapidly developed because neither a scanner
nor a parser must be constructed since the syn-
tax is already prescribed. The authors state that
the syntax is versatile enough to be applicable
to various domains. Because of these features,
jargons are well suited for rapid development
and prototyping. The authors state: “We have
found that developers who cannot make a little
language can easily make a jargon in a day or
two.” Jargons can have multiple semantics cus-
tomized by their actions. Thus a single jargon
can have many different products. smgn can be
employed similarly by running the macro inter-
preter with the same grammar and input file, but
with different macro files.

The Khepera system �9� translates a DSL by
specifying a sequence of tree transformation
rules. In fact, it is a transformation system such
as TXL �28� and DMS �3�. The rules are given
in a transformation language that operates upon
an AST. Khepera provides library routines for
AST construction. Scanner and parser tools
can then be employed to translate a DSD into
the corresponding AST. For target output gen-
eration and pretty-printing, the user can give a
short description in a printf-like syntax for ev-
ery node type in the AST. By decoupling the
three stages of the translation process, Khepera
“is better able to accommodate changes during
the evolution of the DSL syntax and semantics.”
Its features “facilitate the problem of rapid DSL
prototyping and the problem of long-term DSL
maintenance.” Khepera does not simplify the
scanner and parser implementation for a DSL,
but rather sits on top of them.

The Depot4 �19� application generator is a gram-
mar-based tool that combines parsing with se-
mantic actions. The grammar �which must not
be left-recursive� is described in EBNF. The
grammar rules can be augmented with control
expressions that, for example, describe the num-
ber of repetitions or which alternative has been
taken during the parse. These control expres-
sions can also be used as constraints on the
grammar constructs, for example, to force a
specific number of repetitions. Thus, it is pos-
sible to describe a context-sensitive language.
For every EBNF production, a translation rule
can be given that maps the parsed entities in
the grammar rule to the desired textual out-
put format. The translation rules manage to
hide the underlying complexity. Depot4’s “ap-
proach stresses fast and easy usability by non-
experts.” Its application domain “come�s� from
areas where rapid implementation is essential,
as in prototyping.”

Another implementation strategy is the embed-
ding of DSLs into higher-order, typed �HOT�
languages �16, 20, 24�. When embedding a DSL
into a host language, the DSL has to adhere to
the syntactic limitations imposed by the host
language. In �24�, the functional decomposi-
tion caused “aesthetic problems when reading”
the code. If the host language is employed to
type-check the DSL �as implemented in �20��
the resulting error messages can be hard to de-
cipher by a programmer not intimately familiar

smgn: Rapid Prototyping of Small Domain-Specific Languages 51

with the host language. On the positive side, the
host language adds to the expressiveness of the
DSL, because DSL code can be intermingled
with host language code.

6. Future Work

A reimplementation of smgn, which would also
provide a cleaner implementation and remedy
its current deficiencies �see Section 3.4�, could
incorporate several design changes as discussed
below.

The typing system of the parser needs to be
made first class. Only having types associ-
ated with the results of parsing �refer to Section
2.4.6� is limiting. This could also be used in
making grammars look like macros; one would
add right-hand-sides to a left-hand-side �a type�
through derivation.

Furthermore, separation of the grammar and
macro language should be eliminated. One
should be able to use the language for round-
trip engineering. For this purpose, one needs to
be able to drive the grammar “backwards” �in
the thermodynamic sense�, to be able to manip-
ulate the tree, and then automatically output the
new text. There would have to be no logical
distinction between a grammar production and
a macro. Similarly, the language should not
have a fixed representation. Instead, a round-
trip parser working in whatever representation
could be employed. Rather than having to trans-
late back into smgn, the smgn parser should be
written in smgnand you should be able to replace
it.

Finally, one should be able to control the flat-
tening process. An obvious possibility would
be to attempt to use attribute grammars for this
purpose.

Acknowledgments

Jörg Czeranski and Thomas Eisenbarth were in-
volved in the design and initial prototype imple-
mentation of IMDL. Thanks to Radu Iosif for
sharing his experiences in developing JSUIF.

Thanks to Arie van Deursen for many sugges-
tions that helped greatly to improve the paper.
Thanks to Burkhard Burow, Urs Hölzle, and Er-
hard Plödereder for recommendations and for
proofreading an earlier version of the paper.
Last but not least, thanks to the anonymous ref-
erees for further recommendations and proof-
reading.

A. Macro File for PostScript Generation

The following is a larger example in smgn’s
macro language. It generates �näıve� PostScript
output for Turtle programs �see Section 1.1�.
To keep the code as concise as possible, no it-
erators with callbacks �refer to Section 2.4.10�
are used. A solution that uses iterators—and is
thus easier to maintain—is given in �18�.

Several new nodes are introduced that act as
variables and keep the turtle’s state. The an�

gle node holds the current orientation of the
turtle and pen contains either the string “up” or
“down.” For a real implementation, it is better
to keep the turtle’s state in the target language
�e.g., using PostScript variables�, but this imple-
mentation is better suited to demonstrate smgn’s
abilities.

� �def turn left�or�right newangle�
� �if �left�or�right �� �left���
� � Reverse the sign
� �set newangle to �eval �
 � newangle���
� �endif�
�
� � Compute new angle
 �set angle to �eval �angle � newangle���
	 �enddef�

�

�� �def forward length�
�� � Compute new position of pen�
�� � sin�angle� � length � cos�angle� � length

52 smgn: Rapid Prototyping of Small Domain-Specific Languages

�� �angle� sin���
�� �length� mul���
�� �angle� cos���
�� �length� mul���
�
�	 �if �pen �� �up���
�
 rmoveto���
�� �elseif �pen �� �down���
�� rlineto���
�� �endif�
�� �enddef�
��
�� �file out�ps�
�� �set pen to up�
� �set angle to
�
�	
�
 � setlinewidth���newpath���
�� �

 �

 moveto���
��
�� �foreach cmd in turtle�cmd�list�commands�command�
�� �if �exists cmd�turn��
�� �turn cmd�turn�left�or�right�text cmd�turn�identifier�
�� �elseif �exists cmd�up��
�� �set pen to up�
� �elseif �exists cmd�down��
�	 �set pen to down�
�
 �elseif �exists cmd�forward��
�� �forward cmd�forward�identifier�
�� �endif�
�� �endfor�
��
�� stroke���showpage���

References

�1� JOHN AYCOCK, Compiling Little Languages in
Python, Seventh International Python Conference,
pages 69–77, November 1998.

�2� Projekt Bauhaus,http���www�informatik�uni�
stuttgart�de�ifi�ps�bauhaus.

�3� IRA D. BAXTER, Design Maintenance Systems,
Communications of the ACM, 35�4�:73–89, April
1992.

�4� JON BENTLEY, Little Languages, Communications
of the ACM, 29�8�:711–721, August 1986.

�5� DAN BONACHEA, KATHLEEN FISHER, ANNE ROGERS
AND FREDERICK SMITH, Hanckock: A Language for
Processing Very Large-Scale Data, 2nd Conference
on Domain-Specific Languages (DSL ’99), pages
163–176, October 1999.

�6� CHRAIG CHAMBERS AND THE CECIL GROUP, The
Cecil Language: Specification and Rationale, De-
partment of Computer Science and Engineering,
University of Washington, Seattle, Washington,
USA, December 1998.

�7� Cocktail Toolbox Home Page, http���www��
cocolab�de�html�cocktail�html.

�8� Eli Home Page, http���www�cs�colorado�edu�
��eliuser�.

�9� RICKARD E. FAITH, LARS S. NYLAND AND JAN F.
PRINS, Khepera: A System for Rapid Implemen-
tation of Domain Specific Languages, Conference
on Domain Specific Languages, pages 243–255,
October 1997.

�10� Graphlet Homepage, http���fmi�uni�passau��
de�Graphlet.

�11� BRIAN HARVEY, Berkley Logo User Manual, Uni-
versity of California Berkley, 1993.

�12� JAN HEERING AND PAUL KLINT, SEMANTICS OF PRO-
GRAMMING LANGUAGES: A TOOL-ORIENTED AP-
PROACH, ACM SIGPLAN Notices, 35(3):39–48,
MARCH 2000.

[13] MICHAEL HIMSOLT, GML: GRAPH MODELLING
LANGUAGE, UNIVERSITY OF PASSAU, GERMANY,
UNPUBLISHED, DECEMBER 1996.

[14] PAUL HUDAK, BUILDING DOMAIN-SPECIFIC EM-
BEDDED LANGUAGES, ACM Computing Surveys,
28(4ES):ARTICLE NO. 196, DECEMBER 1996.

[15] ADOBE SYSTEMS INCORPORATED, PostScript LAN-
GUAGE: TUTORIAL AND COOKBOOK, Addison-
Wesley, 1986.

�16� JAMES JENNINGS AND ERIC BEUSCHLER, Verische-
melog: Verilog embedded in Scheme, 2nd Con-
ference on Domain-Specific Languages (DSL ’99),
pages 123–134, October 1999.

�17� JSUIF Home Page, http���www�dai�arc�
polito�it�dai�arc�manual�tools�yav�
�jsuif.

smgn: Rapid Prototyping of Small Domain-Specific Languages 53

�18� HOLGER M. KIENLE, The smgn Reference Man-
ual, Technical Report TRCS00–22, Department of
Computer Science, University of California Santa
Barbara, November 2000.

�19� JÜRGEN LAMPE, Depot4 – A generator for dynami-
cally extensible translators, Software – Concepts &
Tools, 19�2�:97–108, 1998.

�20� DAAN LEIJEN AND ERIK MEIJER, Domain Specific
Embedded Compilers, 2nd Conference on Domain-
Specific Languages (DSL ’99), pages 109–122,
October 1999.

�21� MARJAN MERNIK, UROS NOVAK, ENIS AVDICAUE-
VIC, MITJA LENIC AND VILJEM ZUMER, Design and
Implementation of Simple Object Description Lan-
guage, In 16th ACM SAC2001 symposium on Ap-
plied computing, pages 590–595, 2001.

�22� GAIL C. MURPHY AND DAVID NOTKIN, Lightweight
Lexical Source Model Extraction, ACM Trans-
actions on Software Engineering and Methology,
5�3�:262–292, July 1996.

�23� LLOYD H. NAKATANI, MARK A. ARDIS, ROBERT G.
OLSEN AND PAUL M. PONTRELLI, Jargons for Do-
main Engineering, 2nd Conference on Domain-
Specific Languages (DSL ’99), pages 15–24, Octo-
ber 1999.

�24� KURT NØRMARK, Programming World Wide Web
Pages in Scheme, ACM SIGPLAN Notices,
34�12�:37–46, December 1999.

�25� JOHAN OVLINGER AND MITCHELL WAND, A Lan-
guage for Specifying Recursive Traversals of Ob-
ject Structures, Conference on Object Oriented
Programming Systems Languages and Aplications
(OOPSLA ’99), pages 70–81, November 1999.

�26� The SUIF2 Compiler System, http���suif��
stanford�edu�suif�suif�

�27� DIOMIDIS SPINELLIS AND V. GURUPRASAD,
Lightweight Languages as Software Engineering
Tools, Conference on Domain Specific Languages,
pages 67–76, October 1997.

�28� TXL Home Page, http���www�txl�ca.

�29� A. VAN DEURSEN, J. HEERING AND P. KLINT, edi-
tors, Language Prototyping, volume 5 of AMAST
Series in Computing, World Scientific, 1996.

�30� ARIE VAN DEURSEN AND PAUL KLINT, Little Lan-
guages: Little Maintenance?, Journal of Software
Maintenance: Research and Practice, 10�2�:75–92,
March�April 1998.

�31� ARIE VAN DEURSEN AND PAUL KLINT AND JOOST
VISSER, Domain-Specific Languages: An An-
notated Bibliography, ACM SIGPLAN Notices,
35�6�:26–36, June 2000.

�32� DANIEL C. WANG, ANDREW W. APPEL, JEFF L.
KORN AND CHRISTOPHER S. SERRA, The Zephyr
Abstract Syntax Description Language, Conference
on Domain-Specific Languages, pages 213–228,
October 1997.

Received: July, 2001
Revised: October, 2001

Accepted: November, 2001

Contact address:

Holger M. Kienle
Department of Computer Science

University of Victoria
Room ELW 342, Engineering Lab Wing

Canada
Phone: �1 250 721 7294

e-mail: kienle�csr�uvic�ca

David L. Moore
Intel Compiler Lab

Hillsboro, OR 97124
U.S.A.

e-mail: David�Moore�intel�com

HOLGER M. KIENLE received his Master of Science degree in Com-
puter Science from the University of Massachusetts Dartmouth �1995�
and his Diploma in Computer Science from the University of Stuttgart,
Germany �1999�. He received a two year Post Graduate Research Fel-
lowship �1997–1998� from the University of California Santa Barbara
to work as a member of Professor Hölzle’s Object-Oriented Compil-
ers group. He is currently a Ph. D. candidate in Computer Science at
the University of Victoria, Canada, where he is a member of Professor
Müller’s Rigi group. His interests include software reverse engineer-
ing, programming languages, program analyses, and domain-specific
languages.

DAVID MOORE received his B. Sc. �1973� in Mathematics and Physics
from the University of Queensland and M. Sc. �1983� in Computer
Science from Queensland Institute of Technology. He is involved in
the National Compiler Infrastructure �NCI� Project, working as project
manager at PGI. Smgn, of which he is the chief designer, is a part of
the NCI project. He is currently a software engineer with Intel. He has
been a long time student of type safe programming languages, an early
evangelist for Pascal and the implementor of a Modula-2 compiler and
environment for CP�M-80 and MSDOS machines.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

