
Journal of Computing and Information Technology - CIT 10, 2002, 1, 19–35 19

Transforming XML Documents
using fxt

Alexandru Berlea and Helmut Seidl
University of Trier, Germany

As XML spreads to various application domains, trans-
formation tasks on XML documents are accomplished by
an ever increasing number of non-programmers. In this
respect, rather than providing just a collection of basic
operations via a library in a special purpose language, it is
useful to provide a more intuitive, rule-based approach to
XML transformation. The rule-based approach requires
pattern-matching for identifying parts of the document to
be processed. As XML document processing is basically
a subarea of tree processing for which the functional
programming style is very natural, we choose SML as
implementation language. The functional style implies a
processing model in which navigation is possible only to
subtrees of a tree. This restriction can be compensated by
using a tree pattern-matcher able to relate to ancestors,
successors, as well as to siblings of a match. On top of the
powerful fxgrep XML pattern-matcher, we build fxt, a
transformation tool for XML documents. The functional
processing model that fxt uses, allows an implementation
more efficient than implementations permitted by the
processing model of the popular XSLT, where navigation
in the input tree can proceed in arbitrary directions.
Usual transformations are specified in fxt in an intuitive,
declarative way. More elaborate transformations can
be flexibly achieved by the hooks provided to the full
functionality of the SML programming language, as well
as by the fxt’s variable mechanism.

Keywords: XML transformations, XML pattern match-
ing with regular expressions, XSLT, fxt, fxgrep, SML,
functional document model, functional programming

1. Introduction

From the very beginning, the application do-
main of processing hierarchically structured doc-
uments has been attracted by the functional pro-
gramming style of declarative specifications.
So, SGML- as well as XML-syntax quite heav-
ily resembles Lisp expressions. Also, the docu-
ment querying and specification language
DSSSL �12� originally has been designed as a

superset of Lisp. The aim was to specify trans-
formations of documents in a way which can be
created and understood also by non-expert users
who typically neither know nor care about exe-
cution models and implementations.

This goal, however, was only partly achieved.
In the end, DSSSL has a very complicated se-
mantics which cannot be easily understood in-
dependently of the operational behavior of a
DSSSL-processor. The same holds true for the
successor transformation language XSLT �30�
�see �32� for an effort of formally defining the
semantics of patterns in XSLT�. In particular,
XSLT has the following drawbacks:

� The document model: The XSLT model of a
document is a tree, yet this is not the “func-
tional” view of a tree. Instead of a structured
term, the document is conceptually viewed
as a collection of linked nodes in order to al-
low the required arbitrary navigation in this
graph. Such free navigation makes it diffi-
cult to reason about meaning independently
of the order of the relative navigation steps.

� The pattern language: On the one hand
side, it is very weak as it basically identifies
nodes in the document tree only by specify-
ing tree relationships among them. For pat-
tern matching, XSLT uses XPath �31� whose
operational model is based on successive se-
lecting and filtering sets of tree nodes. The
matching of a pattern may require as many
traversals as the number of steps in the pat-
tern. On the other hand, however, it is also
overly strong, by allowing arbitrary tests to
be performed on the selected set of nodes,
and by providing such features as indexing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14416755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

20 Transforming XML Documents using fxt

of matches and arbitrary navigation in the
document.

Conceptually, XML documents are textual rep-
resentations of trees. Thus, XML processing
mainly reduces to tree processing. Typically,
modern functional programming languages have
built-in support for manipulating tree-like data-
structures. Several attempts have been made to
integrate XML processing into functional pro-
gramming �16, 33, 10�. A short overview can
also be found in �21�. The direction of our pro-
posal is somewhat different. On the one hand,
we want to support XML processing for func-
tional programmers. On the other, however, we
also want to provide the non-specialist user with
a tool by which transformational ideas can be
expressed conveniently, i.e., without resorting
to a general-purpose programming language.

In this paper we therefore present another trans-
formation tool for XML documents. We build
on the the modern, statically typed functional
programming language SML �18, 1�. Our three
main design goals are:

� to provide an as declarative specification of
the intended transformation as possible;

� to provide only primitives, in particular for
pattern matching, which can be implemented
efficiently;

� to allow maximal flexibility by fully inte-
grating an external programming interface.

In the following sections we describe concepts
of our tool and critically compare them with the
corresponding features of XSLT, the most com-
monly used XML transformation language.

2. DSL Approach

Transformation
Specification Transformerfxt

Figure 1: The fxt generator of XML Transformers.

As depicted in Figure 1, fxt �Functional XML
Transformer� is in fact a generator of XML
transformers. It generates and compiles SML

code for the execution of a specified transforma-
tion. An fxt stylesheet �the transformation spec-
ification� is translated into an SML program
which then can either be further used directly
by an application programmer or compiled and
used as a stand-alone application.

Clearly, this kind of architecture for a domain
specific language is not new. In fact, system de-
sign and implementation here follows the pre-
processing paradigm for DSL implementation
as sketched in �6�. The advantage of such an
approach is obvious: it clearly liberates us from
re-implementing compiler support for standard
programming language features. In particular,

� we participate in all general enhancements
of compiler implementation for free;

� engineering, extending and re-engineering
of our prototypical language design could
very rapidly be implemented;

� embedding SML code into specifications
�where needed� becomes essentially trivial.

The drawback of this approach, however, is also
apparent: certain non-syntactical errors are cur-
rently catched not in the pre-processing phase,
but only in the follow-up compilation phase —
where the original source of mal-function is
more difficult to track. This problem is partly al-
leviated in our system by generating comments
which points back from the generated code to
the corresponding fxt source locations.

Another popular solution to extending func-
tional languages to specific domains is to en-
rich them with a library of combinators. Com-
binators are higher-order functions, uniformly
defined such that they can be flexible combined
with another. A small core of functions are
defined in terms of which all the functional-
ity required by the specific domain should be
possible to express. A number of combinators
libraries exist for XML processing �33�, parsing
�24�, pretty-printing �11�, computer music, and
many others �see �23� for a discussion on this
approach�. One advantage of the combinator
approach in general is that a number of alge-
braic laws of combinators can be derived, which
could be used for code optimizations. However,
even though a set of operators can be defined
to improve the readability, the syntax remains
limited to the syntax of the implementation lan-
guage, which in particular is not suitable for
describing XML content. Furthermore, writing

Transforming XML Documents using fxt 21

Annotated
XML
Tree

(match
patterns)

Matcher
Pattern

Output
XML
Input

patterns)

Matcher
Pattern

(select

Transformer

Figure 2: Phases of an XML Transformers.

transformations in terms of combinators leads
itself to not especially readable code, making
the approach prohibitive for users from outside
the functional community. We therefore think
that, at least for XML processing, a library of
combinators alone is not satisfactory.

3. Processing Model

The processing model of the XML transforma-
tions that we consider in this paper is that of “re-
cursive transformers”. A recursive transformer
is specified by a set of rules. Each rule con-
sists of a match pattern �the where�, identify-
ing sub-documents from the input to which the
rule applies and a corresponding action spec-
ifying how to transform these sub-documents
�the what�. An action constructs a piece of
XML content, typically by using parts of the
matching sub-document and by selecting fur-
ther sub-documents from the input and recur-
sively applying the transformation on them. The
sub-documents for recursive processing may be
selected using select patterns in the context
of the sub-document on which the transforma-
tion is being currently applied �the current sub-
document�.

The result of the transformation is given by
executing the action associated with the first
match pattern in the specification matched by
the root of the input document. When the trans-
formation is to be applied on sub-documents
selected for recursive processing, the selected
sub-documents are processed according to the
match pattern that they match in the initial input
tree. Note here, that match patterns always refer
to the initial input tree. One can therefore think
of such a transformation as consisting of two
phases. In the first phase, the pattern-matching
phase, a pattern matcher annotates each node of
the input tree with the corresponding matched

patterns. In the second phase, the transforma-
tion phase, the annotations are used as a guide
as for what actions are to be taken.

As an example of a recursive transformation,
consider the following specification of an fxt
transformation, which, given an XML docu-
ment, produces a list of titles of the sections
in the document:

�fxt�spec�
�fxt�pat�����fxt�pat�
�ul�
�fxt�apply��

��ul�

�fxt�pat���section�title�����fxt�pat�
�li�
�fxt�current��

��li�

�fxt�pat�default��fxt�pat�
�fxt�apply��

��fxt�spec�

Here, the fxt:pat elements contain the match pat-
terns of the rules, whereas the action parts span
from their trigger pattern to the following fxt:pat
element �or the end�. In the given example,
the topmost element of every document to be
transformed matches the first pattern, i.e. /*.
The corresponding action specifies that the re-
sult must be an element of type ul, whose content
is given by recursively transforming the content
of the topmost element. The second rule says,
that whenever text is found inside the title ele-
ment of a section, a new li element should be
created whose content is the matched text. The
rule for the default pattern says, that otherwise,
the transformation should simply proceed to the
sub-documents in the content of the current sub-
document.

The processing model of recursive transforma-
tion as described so far is used both by XSLT
and fxt and seems quite natural for basic XML
processing applications. The main differences
between XSLT and fxt consist in the classes of
match and select patterns which are supported.

22 Transforming XML Documents using fxt

4. Match Patterns

For matching the trigger patterns of rules, the
XML transformation language XSLT relies on
the pattern language XPath �31�. The key idea
of XPath is to use a directory tree like analogy to
document trees and use specifications of paths
to locate subtrees. So, e.g., a/b/c specifies a path
which starts in an a element, proceeds to an im-
mediate descendent element b and from there
to the ultimate target element c. Clearly, paths
are not very expressive, in particular if the only
iteration operator allowing for deep matching is
“//” �arbitrary descendent�. Therefore, in order
to enhance expressiveness, XPath also allows
non-regular features like checking the number
of a match and applying an arbitrary predicate
to it.

We take a completely different approach here.
In our perspective, non-regular features are dif-
ficult to understand �and also difficult to im-
plement efficiently�. Therefore, these should
be avoided in the pattern language. Thus, we
provide support for regular matching only, i.e.,
for patterns which are related to regular forest
languages. Also, we see no point in unneces-
sarily restricting the patterns to the very weak
XPath core language. Instead, we build on the
pattern matching facilities as provided by the
functional XML querying tool fxgrep �7�. In
principle, fxgrep admits arbitrary regular for-
est grammars as patterns �20, 19�. These are
implemented by one or two deterministic push-
down forest automata. The key implementation
trick then is, not to compute the transition ta-
bles of the automata in advance — but only
“on demand” as transitions are used during the
matching process. Thus, the total number of
transitions which are actually computed is at
most linear in the size of the input document
�in practice, we found that typically only few
of all possible transitions are computed�. The
complexity of pattern matching therefore does
not depend on the structural complexity of pat-
terns. Details about the capabilities and the
implementation of fxgrep can be found in �19�.

We doubt, however, that the power of regular
forest grammars could be exploited by a non-
expert fxgrep or fxt user. Therefore, fxgrep
and hence also fxt provides a pattern language
whose syntax is similar in spirit to the abbre-
viated syntax of XPath but additionally allows

more precise specifications of paths as well as
of left and right context of paths.

� Structural conditions for a node may be
specified as regular expressions over tree
patterns. The children of a node to which a
structural constraint refers must then be such
that they fulfill the regular expression. Struc-
tural conditions on content are given be-
tween brackets following the node to which
they refer. For example, the pattern a[b*c[d*]]
is fulfilled by an a element that has one or
more b children followed by a c child that
itself has only d children.

� Contextual conditions

— Vertical contextual conditions can be used
to specify properties of paths in document
trees. Opposed to the simple path expres-
sions of XPath, fxgrep provides full reg-
ular expressions for the vertical context.
For example, (a/)+b identifies a b node,
where each ancestor �at least one� is an a
node. This kind of deep matching clearly
exceeds the expressiveness of XPath.

— Horizontal contextual conditions may al-
so be specified as regular expressions
over the siblings of a node. A contextual
constraint consists of two regular condi-
tions l and r, given as [l#r] following a node
pattern. Suppose that the node pattern is
followed by a tree pattern. Then the child
of the node that matches the node pattern
in which the matches of the following
tree pattern are found must be such that
its left siblings structurally match l and its
right siblings structurally match r. Here
are a few examples that illustrate the use
of horizontal contextual conditions:

� b[c*#d*]/a matches in a tree with type
b the a children such that its left sib-
lings are all of type c and its right
siblings are all of type d.

� //*[#]/a matches all the a elements
that are the first child of their fa-
thers. The � node test is fulfilled
by all element types. denotes an
arbitrary sequence of nodes.

� //*[b*#]/a matches a elements that are
the last child of their fathers if pre-
ceded only by b elements. Note that
the first star here is the wild-card

Transforming XML Documents using fxt 23

node test, while the second is the
operator for regular expressions.

Despite their similar syntax, the operational
models of XPath and fxgrep are completely dif-
ferent. fxgrep locates matches in at most two
passes. In the first pass, a right to left traver-
sal of the input tree determines candidates for
matches as nodes where structure and right con-
text match. In the second pass a left to right
traversals identifies from the candidates, those
matches for which the left context also matches.

In contrast, in the operational model of XPath,
matches are located in a number of successive
steps. Each such location step selects in turn
nodes which find themselves in a specified rela-
tionship with the nodes selected by the previous
step. The nodes selected by a location step
may be subsequently filtered via predicates us-
ing arbitrary XPath expressions. For example
a[@b=“x”]//c is �conceptually� evaluated as fol-
lows. First, all a elements are selected. From
these, the [@b=“x”] predicate filters those having
a b attribute with value x. // selects further all
the descendants of the remaining a elements.
Finally, the nodes with type c are filtered from
the nodes selected by the previous step.

5. Select Patterns

While processing a node from the input doc-
ument, a recursive transformation can produce
XML content by recursively transforming a set
of selected nodes. These nodes are selected
through a pattern matching process — which,
however, now does not �necessarily� start at
the root node of the input document but de-
termines the matches relative to the node be-

ing currently processed. The patterns for this
“dynamic” matching process are called select
patterns. For selection, the transformation lan-
guage XSLT again relies on XPath patterns. Be-
yond the navigation operators, however, which
can be used in match patterns, select patterns
also may go upward in the document tree to
ancestors of the current node.

In our perspective such arbitrary navigation in
the document is likely to cause confusion about
the intended meaning of a transformation and
error-prone as the user easily gets conceptually
lost. It is for this reason that fxt allows exactly
the same patterns for selection as for match-
ing — implying that every fxt transformation
proceeds strictly top-down over the hierarchical
structure of the input document.

There are, however, transformations which can-
not be achieved by simply proceeding top-down
and exclusively selecting descendants of the
current node for recursive processing. Consider,
for example, an input document in which con-
secutive repetitions of the same XML content
are avoided by using a special place-holder de-
noting previously defined content. Now, a trans-
formation should process the XML input and re-
place the definition as well as the place-holder
elements by the result of processing this XML
content. Suppose the XML content whose rep-
etition is avoided is enclosed in an element def
whereas the place-holder is the element lastdef.
In XSLT, such a transformation could be imple-
mented by using selection of non-descendants
nodes �in this case the next preceding def ele-
ment� as depicted in the transformation below.

This kind of backtracking obviously cannot be
achieved by using the fxt selection mechanism.
It turns out, however, that this transformation

��xml version��	
����
�xsl�stylesheet xmlns�xsl��http���www
w�
org�	�XSL�Transform� version��	
���

�xsl�template match��def��
�DEF��xsl�apply�templates����DEF�

��xsl�template�

�xsl�template match��lastdef��
�xsl�apply�templates select��preceding��def�	����

��xsl�template�

�xsl�template match�����
�xsl�copy��xsl�apply�templates����xsl�copy�

��xsl�template�

��xsl�stylesheet�

24 Transforming XML Documents using fxt

can still be achieved in fxt through variables
and even — at least to our taste — much more
elegantly and efficiently.

6. The Transformation Language

An fxt transformation itself is specified by an
XML document, as seen in the example in Sec-
tion 3. The fxt specification must have fxt:spec
as document element type and essentially con-
sists of a sequence of rules. Each rule starts
with an fxt:pat element containing the triggering
match pattern which is followed by the corre-
sponding sequence of actions.1 Patterns must
be specified in the pattern language of fxgrep. A
pattern default can be used for matching any sub-
document in an XML document. If the current
sub-document matches the specified pattern of a
rule, the corresponding action should be taken.
In case patterns of more than one rule match,
the earlier defined rule takes precedence. Here,
we deviate from the XSLT philosophy where
the “most specific” pattern succeeds. In our
opinion, our rule is not only much easier to im-
plement but also much easier to understand.

When designing a specification language for the
action part, we follow the approach chosen in
XSLT as well as in XMλ �16�: by default, ele-
ments together with their attributes constitute
parts of the output. Calls to transformation
primitives as well as potentially embedded for-
eign language code must be escaped. In our
case, we use the prefix fxt: for identifying fxt
actions. Basic actions are provided by fxt for:

� Copying parts from the matching sub-do-
cument like element tags �fxt:copyTag�, at-
tributes �fxt:copyAttributes� or content �fxt:co-
pyContent�;

� Inserting new XML content like element
tags �fxt:tag�, attributes �fxt:attribute, fxt:repla-
ceAttribute, etc.�, text �fxt:text�, and others.
The output to be produced by these elements
is specified as values for special attributes;

� Recursive application of the transformation:
the element fxt:apply outputs the sequence
of sub-documents obtained by applying the
transformation recursively to the children of
the current node. The nodes to be further

processed can be explicitly selected through
an fxgrep pattern given as value for a select
attribute.

Consider the transformation from Section 3 with
the list of section titles from an XML document.
When running on the input document:

�document�
�title�Sections��title�
�section�

�title�Section One��title�
�content�Here is section 	

��content�

��section�
�section�

�title�Section Two��title�
�content�Here is section �

��content�

��section�
��document�

the transformation proceeds as follows. It starts
at the root node which has matched the trigger
pattern of the first rule. The corresponding ac-
tion creates an ul element whose content is given
by the fxt:apply action. fxt:apply concatenates the
results of recursively applying the transforma-
tion on the children of the current tree. As the
children of the root node have all matched the
default pattern, the application of the transfor-
mation on each of them recursively descends to
the children if any available, as specified by the
fxt:apply action for the default pattern. When
the transformation arrives at the text node of
a title within a section, matching the second
pattern in the specification, the transformation
returns an li element whose content is the text
being currently matched. The result tree of the
transformation is depicted in Figure 3.

ul

li li

"Section One" "Section Two"

Figure 3: The result tree.

The XML syntax of the fxt specification lan-
guage allows for a natural way of expressing the
output of a transformation. The nesting struc-
ture of the output as well as the XML elements
which appear literally in the output can both
be directly recognized in the fxt specification.

1 A more formal description of the syntax of the specification of an fxt transformation can be found in Appendix A in form of a
pseudo DTD.

Transforming XML Documents using fxt 25

This convenience should be contrasted to ap-
proaches which are based on XML libraries for
general purpose programming languages like,
e.g., HaXML �33� for Haskell, where non-trivial
specifications soon become incomprehensible.

7. Variables and Tables

Complex transformations can be generated, by
specifying different rules for different sub-do-
cuments and by using recursion. The limitation
of such transformations, however, is that at ev-
ery step, the transformer only has access to the
sub-document currently under consideration. In
order to access information obtained earlier dur-
ing the transformation, it would be nice to have
the possibility of simply storing certain data for
later use. Therefore, we decided to include a
notion of global variables into fxt.

As a simple example of the use of fxt variables,
recall the XSLT specification of the transfor-
mation presented in Section 5. When process-
ing a lastdef element, the XSLT transformation
needed to search backward for the last occur-
ing def element and to recursively transform it.
Opposed to that, fxt remembers the result of
processing the last def element in a forest vari-
able. This value then just has to be looked up
when transforming subsequent lastdef elements:

�fxt�spec�
�fxt�global name��res� type��Forest���
�fxt�push name��res� val��emptyForest���

�fxt�pat���def��fxt�pat�
�fxt�setForest name��res��
�DEF��fxt�apply����DEF�

��fxt�setForest�
�fxt�get name��res���

�fxt�pat���lastdef��fxt�pat�
�fxt�get name��res���

��fxt�spec�

Processing hierarchically nested elements in-
curs the need for introducing scopes for vari-
ables. One way of doing so is to allow local
variables which are visible just during process-
ing a specific XML element. Re-structuring
transformations, however, asks for more flex-
ible scoping rules. Therefore, we decided to
organize every variable as a stack — meaning
that we support push and pop operations on vari-
ables. A push operation introduces a new scope
whereas a pop leaves this scope again. So, the

single fxt:push element in our example above
creates the first instance of the variable and ini-
tializes it to the empty forest.

Besides for pushing and popping, fxt actions
are provided for setting or outputting the val-
ues of the topmost elements. Special actions
like fxt:setForest are provided for the comfort-
able use of Tree and Forest variables.

The following specification generates a trans-
formation that, given an XML document con-
taining imbricated li elements �list items�, adds
before every li an integer representing the num-
ber of the list item on its imbrication level:

�fxt�spec�
�fxt�global name��i� type��int���
�fxt�push name��i� val������

�fxt�pat���li��fxt�pat�
�fxt�get name��i����
�fxt�copyTag�

�fxt�inc name��i���
�fxt�push name��i� val������
�fxt�apply��
�fxt�pop name��i���

��fxt�copyTag�

��fxt�spec�

The global variable i is declared of type int.
Whenever an li element is transformed, the last
value of i is output using fxt:get, and the li tag
is copied to the output. Before proceeding to
the transformation of the sons, the current value
of i is incremented, and a new level of imbri-
cation is opened. This is achieved by means
of the fxt:push element which introduces a new
instance of the variable i which is initialized
with 0. After processing the contents of the li
element, the last instance of i is popped again
using fxt:pop.

It should be noted that XSLT also provides some
notion of variables. XSLT variables, however,
are lexically scoped, can have either global or
local visibility and can be bound to values of
any type returned by XSLT expressions. They
never change their value, therefore being merely
named constants.

Some XML documents like, e.g., XML rep-
resentations of graphs, have an inherent cross-
reference structure which cannot be represented
directly in the XML document tree. Attributes
of type ID or IDREF may be used in XML in
order to provide an XML document with some
cross-reference structure. In order to deal with

26 Transforming XML Documents using fxt

such documents, fxt provides keys, which are
a generalization of XML IDs. The key mecha-
nism allows to collect sub-documents from the
initial document in a table which later can be
accessed via keys.

As an example, consider the following XML
input document:

�graph�
�node id��	��Trier��node�
�node id�����Bonn��node�
�edge from��	� to������

��graph�

A specification of a transformation which lists
the connections between the cities could then
look as follows:

�fxt�spec�
�fxt�key name��cities� select����node�

key��id���

�fxt�pat���edge��fxt�pat�
There is a way from�

�fxt�copyKey name��cities� key��from���
to�

�fxt�copyKey name��cities� key��to���

�fxt�pat�default��fxt�pat�
�fxt�apply��

��fxt�spec�

The fxt:key element declares a table with keyed
access called cities. Elements of type node re-
siding everywhere in the document are stored
therein with keys given by their id attribute val-
ues. Whenever an edge is seen, the source and
the destination of the edge are retrieved from
the table, using as key the value of the attribute
from and to respectively. The document above
is therefore transformed into:

There is a way from�
�node id��	��Trier��node�

to�
�node id�����Bonn��node�

fxt offers the possibility to apply the transfor-
mation to the sub-documents associated with a
key. Furthermore, it is possible to store, instead
of a whole tree, some arbitrary Unicode string
which, typically, is obtained from processing
that tree.

8. Interfacing with SML

We expect the features provided by fxt to be
rich enough to satisfy the basic needs of a non-
expert user of our system. But obviously, not
all potential uses, in particular of XML process-
ing specialists are foreseeable. It is for such
advanced and elaborated applications, that we
have embedded into fxt an escape mechanism
into the full programming language SML. In or-
der to do so in a clean way, an interface is needed
which abstracts from the implementation details
of documents.

There are two main types of interfaces: tree-
based and event-based. Through the event-
based interface the application has a serialized
view of the document. Each syntactical com-
ponent of the document triggers an event. The
application can register a handler for each type
of events. The document can thus only be in-
spected once in a pre-determined order. One ex-
ample of such an interface is the programming
hooks as provided by the functional XML parser
fxp �19, 8� or the SAX interface for object-
oriented languages �15�.

While event-based interfaces are well-suited
for one-pass applications, tree-based interfaces
also support applications that need multiple
passes over the input. In the tree-based case,
an abstract data type is specified. The most
commonly used interface is the Document Ob-
ject Model �DOM� �29�. Though claiming to
be designed for any programming language,
the DOM is committed to the object-oriented
paradigm: it defines class interfaces for access-
ing XML documents. Also, it views the doc-
ument tree as a graph within which arbitrary
navigation is possible.

8.1. The Functional Document Model

A different interface is necessary for a func-
tional style of XML processing. One such col-
lection of types and useful functions for Haskell
is HaXML �33�. For SML and specific use with
fxt, we define the interface FDM �Functional
Document Model� and provide an implementa-
tion for it.

One practical problem of SML here is that XML
documents may contain any legal Unicode char-
acter �25�, while SML supports only 8-bit char-

Transforming XML Documents using fxt 27

signature FDM �
sig

type Tree
type Forest � Tree vector

�� testing type and content ��
val isElement � Tree �� bool
val isText � Tree �� bool
val hasElementType � Unicode
Vector �� Tree �� bool
val hasTextContent � Tree �� bool
val hasAttribute � Unicode
Vector �� Tree �� bool

�� constructing node types ��
val element � Unicode
Vector �� Attribute list �� Tree vector �� Tree
val text � Unicode
Vector �� Tree

�� accesing constitutive parts ��
val getElementType � Tree �� Unicode
Vector
val getTextContent � Tree �� Unicode
Vector
val getAttribute � Unicode
Vector �� Tree �� Unicode
Vector

�� transforming forests ��
val map � �Tree �� �a� �� Forest �� �a vector
val foldl � �Tree � �a �� �a� �� �a �� Forest �� �a
val deleteAll � �Tree �� bool� �� Forest �� Forest
val deleteFirstN � int �� �Tree �� bool� �� Forest �� int � Forest
val filterFirst � �Tree �� bool� �� Forest �� Tree

�� outputting ��
val putTree � Tree �� string �� string option �� unit
val putForest � Forest �� string �� string option �� unit

end

acters and has no notion of Unicode. There-
fore a Unicode library is provided inside FDM
declaring types for the Unicode characters and
strings, along with basic functions for manip-
ulating them, as well as conversion functions
from and to SML strings.

The types Tree and Forest are provided as ab-
stractions of XML sub-documents and of se-
quences of XML sub-documents, respectively.
Functions are provided for testing the type or
content of a node, for accessing its constitu-
tive parts and for constructing different node
types. Basic functionality is supplied for trans-
forming sequences of trees �forests�, like, e.g.,
for mapping, successive composition �folding�,
filtering, sorting or outputting trees or forests.
The functional concept of higher-order func-
tions makes it possible to elegantly obtain com-
plex processing from combining basic functions
provided by the FDM.

Consider the depicted excerpt from the FDM
interface above.

The names of the FDM functions are mostly
self-explaining. filterFirst,for example, is a func-
tion which expects a predicate over trees as its
first argument and a forest as the second ar-
gument. It returns the first tree in the forest
satisfying the predicate. Consider the call:

filterFirst hasTextContent

where hasTextContent tests whether a node has
plain text content. Then a function is returned
which takes a forest and returns the first tree in
the forest having only text content.

In the call:

filterFirst �hasElementType �String�Vector
�alfa���

(String2Vector "alfa") returns the Unicode string
alfa. The application of hasElementType to this
Unicode string returns a predicate testing whe-
ther a tree has the specified type. The applica-
tion of filterFirst returns thus a function which
takes a forest and returns the first tree in the
forest having element type alfa.

28 Transforming XML Documents using fxt

�fxt�spec�
�fxt�pat������fxt�pat�

�fxt�tag
nameExp��

let
val name � getElementType current

in
if Vector
length name �gt� � then Vector
extract �name�����
else name

end��
�fxt�apply��

��fxt�tag�
��fxt�spec�

8.2. Embedding SML Code into
Transformations

SML code is embedded into an fxt specification
via attributes of fxt actions. The values for these
attributes are SML expressions. Their evalua-
tion can provide XML content to be used in the
output, predicates for filtering XML forests, or
even functions for application onto document
components.

The stylesheat presented above is the specifi-
cation of a transformation that replaces every
element name containing more than six charac-
ters by its first six characters.

The fxt:tag outputs an element whose name is
given as the value of an attribute nameExp,
which must be an SML expression evaluating to
a Unicode string. The reserved FDM name cur-
rent always refers to the current sub-document.
Thus, getElementType current returns the name
of the current element. The content of the out-
put element is given by the content of the fxt:tag
element. If, as above, a default pattern is not
specified, a default action is considered added
for trees which do not match any of the spec-
ified patterns. This default action copies the
root of the current tree and recursively applies
the transformation on its children, or outputs
them if they are text nodes.

9. Typeful Transformations

Currently, fxt transformations are “un-typed”
in the sense that no guarantee is given that the
newly created documents conform to some spe-
cific document type. In fact, it is possible to
produce even non-XML output, and we have
extensively made use of this feature in order
to create the HTML pages of our tools’ online
documentations.

There are, however, situations perceivable where
guarantees on the relationship between the doc-
ument types of input and output are indeed desir-
able. Several suggestions in this direction have
been recently made. One approach is to build
type safety into the transformation language it-
self. This approach is pursued by the language
proposal XMλ which sketches an enhancement
of the Haskell type-checking mechanism guar-
anteeing conformance of element forests to con-
tent models �16�. Based on finite tree automata,
Hosoya and Pierce have developed a type sys-
tem for the small tree transformation language
XDuce �10�. They provide an exponential-time
algorithm for statically inferring the types of all
program expressions. Their language, however,
similar to XMλ , provides only very restricted
forms of pattern matching. Neither does it deal
with attributes or dynamic modification of ele-
ment tags.

Another approach is to abstract the transforma-
tional model into a formal device for which gen-
eral typing algorithms can be provided. This is
advocated by Suciu �17�. Suciu proposes the
formal concept of a “k-pebble transducer” and
proves a decidability result. The best currently
known upper complexity bound of the decision
procedure, however, is way beyond what is fea-
sible in practice. Also, it is not clear yet whether
this model can deal with fxt-type pattern match-
ing as well — not to speak about dynamic modi-
fication of element tags. Yet another approach is
suggested by Lämmel and Lohmann �14�. They
propose to trigger the transformation on the doc-
ument level by a reorganization of the document
type itself. It is an interesting topic of future re-
search in how far this idea can be integrated into
a general XML transformation language.

Transforming XML Documents using fxt 29

10. Traversals and Strategies

fxt transformations proceed in several traversals
over the input document. Up to two traversals
are used for determining the matches of the trig-
gering match patterns of the rules. Possibly,
further traversals allow to fill tables for random
access to selected document parts. Finally, the
main traversal produces the output. This seems
to suffice for most standard document process-
ing needs.

We think, however, that in future applications,
more complicated traversal organization might
be needed. In particular, it could become de-
sirable to compose several transformations of
different kinds. Experiences with calculi for
for such compositions have been collected in
the area of term rewriting languages. Term
rewriting languages are another area of tree pro-
cessing, usually applied in program transforma-
tion. Programs are represented as terms, built
from variables, constant and function symbols.
Transformations are also specified through rules,
where the form of rules is similar to that of fxt
or XSLT rules. The left hand side is a term
pattern, while the right hand side is a term tem-
plate. The template is instantiated when the rule
is applied on a term matching the left hand side.
The application of the rule is controlled by a
strategy which in a certain sense corresponds to
one of our traversals. Typically, term rewriting
uses a standard, fixed strategy. In term rewrit-
ing languages like Stratego �27��26��28�, how-
ever, the user can provide his�her own strate-
gies. In Stratego, a strategy is an operation
that transforms a term into another term or fails.
Basic building blocks in strategies are match-
ing terms, building terms and variable bindings.
More complex strategies can be obtained by us-
ing strategy operators. These can be divided
into operators for sequential programming and
operators for term traversals. Rules are ab-
breviations that allow to conveniently specify
basic strategies. The separation of matching
and construction of terms from the building of
scopes for variable bindings allows for a pat-
tern matching more expressive than that of func-
tional programming languages like ML �where
pattern matching is done by simultaneously rec-
ognizing structure and binding variables to sub-
terms�. For example, a pattern match can be
passed on to a local strategy to match sub-terms
at a variable depth in the subject term. Another

feature of Stratego is the possibility of express-
ing patterns that describe recursive structure.
ELAN �3� is another term rewriting language us-
ing strategies. One of its features is the support
for associative-commutative pattern matching.
Like in Stratego, there is no special support for
XML processing.

11. Comparing fxt with XSLT
Implementations

In order to assess the time performance of fxt
we compared it with three XSLT processors.
These were the Xalan processors �part of the
Apache XML Project �22�� Xalan Java 2 and
Xalan C�� 1.2 and the Saxon 6.4.4 processor
written in Java also �13�.

We considered the following benchmark trans-
formations:

� Birds

— XML Input �10 KB�: Description of classes
of birds

— Output: Plain text file presenting the
information in the input in an indented
manner

� GCA Paper

— XML Input �60 KB�: An fxt presentation
conforming to the DTD for GCA XML
Conference Proceedings �5�

— Output: An HTML layout of the paper

� Lines

— XML Input �200 KB�: Shakespeare’s
"All’s Well That Ends Well" play �4�

— Output: The collection of all the lines in
the play

� Baseball

— XML Input �600 KB�: Baseball statistics
�9�

— Output: HTML tables containing pro-
cessed information about baseball play-
ers.

� T1 and T2

— XML Input �200 KB�: Shakespeare’s play
as above

— Output: The collection of matches of
complex patterns

30 Transforming XML Documents using fxt

Application Size Transformer Parsing Processing Stylesheet Transforming Total

Xalan C�� 0 0.010 0.010 0.020

fxt 0.022 0.578 0.006 0.692Birds 10 KB
Saxon 0.086 0.692 0.196 1.075

Xalan Java 0.144 1.233 0.416 2.310

Xalan C�� 0.120 0.030 0.050 0.200

fxt 0.120 2.559 0.200 3.186GCA Paper 60 KB
Saxon 0.538 0.761 0.369 1.770

Xalan Java 1.250 1.358 0.691 3.985

Xalan C�� 0.200 0.010 0.140 0.350
fxt 0.469 0.479 0.191 1.486Lines 209 KB

Saxon 0.398 0.640 0.495 1.633

Xalan Java 0.738 1.202 1.319 3.917

Xalan C�� 0.760 0.030 0.870 1.660

fxt 1.699 2.758 1.469 7.266Baseball 655 KB
Saxon 0.590 0.731 0.851 2.272

Xalan Java 0.928 1.326 3.060 6.299

Table 1: Transformation times (seconds).

The benchmarks were executed under Linux
�Kernel 2.4.9� on a AMD Athlon 800 MHz pro-
cessor. The JVM used to run the benchmarks
with the Java XSLT implementations was the
Sun JVM implementation Java version 1.3.

The times listed are measured for a single run
of the corresponding transformation. The to-
tal times for fxt include thus the time needed
to generate and compile SML code to achieve
the transformation. The total times for the
XSLT processors also take into account the
time needed for processing the stylesheets. It
is likely that one stylesheet source is used to
transform multiple XML sources. In this case
the stylesheet needs to be processed only once
before the first transformation. It is therefore
sensible to individually list the time taken by
the processing of the stylesheets.

As the time spent for parsing the XML input is
significant, it is individually listed in the results.
Times for startup for the JVM and for the SML
runtime-system were also not considered.

The patterns used in the first three transforma-
tions are very simple. For them fxt proved to
be in general faster than the Java processors and
able to keep up with Xalan C��. Table 1 shows
the results for the first three transformations.

T1 and T2 contain more elaborate but completely
meaningful patterns. A play is a sequence of
ACTs, each of them containing a sequence of
SCENEs. A SCENE has a sequence of SPEECHes,

each of them containing a SPEAKER and a se-
quence of LINEs containing plain text. T1 col-
lects all the lines in the speeches of LAFEU
appearing in scenes where BERTRAM is also
present. Given the DTD for Shakespeare plays
we have used, these lines are matched by the
XPath pattern:

SCENE�
��SPEAKER��BERTRAM���SPEECH�SPEAKER
��LAFEU���LINE

The corresponding fxgrep pattern is:

��SCENE�����SPEAKER��BERTRAM�����
SPEECH���SPEAKER��LAFEU�����LINE���

Note the differences in the patterns above due to
the fact that the structural conditions within the
brackets are expressed in XPath as XPath predi-
cates, while in fxgrep they are regular conditions
to be fulfilled by the sons of the preceding node.
Thus, the first XPath predicate above is a com-
parison of the node-set selected by .//SPEAKER
with the string BERTRAM, and is true if the string
content of some SPEAKER descendant of the
SCENE element is equal to BERTRAM. The cor-
responding structural constraint in fxgrep tells
that the children of the SCENE element must
consists of an arbitrary sequence of trees �as
specified by the wildcard�, followed by a node
containing a descendant SPEAKER containing
the text BERTRAM, followed by an arbitrary se-
quence of trees.

Transforming XML Documents using fxt 31

Application Transformer Parsing Processing stylesheet Transforming Total

Xalan C�� 0.200 0.010 0.780 0.990

fxt 0.427 0.480 0.271 1.376T1

Saxon 0.401 0.681 1.213 2.395
Xalan Java 0.774 1.210 1.326 3.812

Xalan C�� 0.200 0.010 7.500 7.710

fxt 0.432 0.475 0.365 1.485T2

Saxon 0.405 0.672 3.839 5.020

Xalan Java 0.767 1.211 5.657 8.131

Table 2: Transformation times when using elaborate patterns (seconds).

T2 collects all the speeches in scenes contain-
ing a line having the word “husband” and be-
ing in an act containing a line having the word
“abundance”. The XPath and the functionally
equivalent fxgrep patterns that were used are:

ACT�
��LINE�contains�
��abundance�����
SCENE�
��LINE�contains�
��husband�����SPEECH

and respectively:

��ACT�����LINE��abundance�����
SCENE�����LINE��husband�����SPEECH

We suppose that the XPath implementation in
the XSLT processors reflect more or less the
processing model of XPath imposing multiple
tree traversals which incur a lot of processing
time. The processing times for T1 and T2 are
presented in Table 2. fxt performs significantly
faster even than the C�� XSLT implementa-
tion.

For T1 and T2 we also considered the depen-
dency of the transformation time on the size
of the input document. The input document
was augmented by duplicating the ACTs of the
play, which is doubling the breadth of the input
tree. The expected effect on both the fxt and
the XSLT transformations is that of doubling of
the transformation steps. The size-time depen-
dency showed to be indeed linear.

12. Conclusions

In this paper we have presented fxt, a trans-
formation language for XML documents. fxt
combines the efficiency of the pattern matching
provided by fxgrep with a simple, yet power-
ful set of transformation primitives and a clear
programming interface to the functional pro-
gramming language SML. Besides the features

we have mentioned here, fxt offers a number
of further features which allow for more con-
venient and expressive specifications. Among
these are:

� conditional processing, allowing to specify
that a sequence of actions is to be considered
only if some condition is fulfilled;

� attribute insertion, deletion and replacement;

� using SML code for inserting processing in-
structions with computed content as well as
arbitrary Unicode content;

� sorting and filtering of forests generated dur-
ing the transformation;

� using command line arguments within trans-
formations.

For details we refer to the online documentation
�2�.

To our experience, the expressivity of our pattern-
language together with the additional features
of fxt such as stackable variables more than
compensate for fxt’s restrictions on navigation
through the input document. This restriction,
however, allowed us to provide an elegant and
understandable specification language for doc-
ument transformation, whose implementation
often outperforms comparable implementations
of XSLT.

13. Acknowledgments

The development of fxt is supported by the DFG
Research Foundation. We are very grateful to
the referees for the CIT Journal Issue on DSLs
for their valuable comments on a previous ver-
sion of this article.

32 Transforming XML Documents using fxt

A The syntax of an fxt specification

���� An action can be some XML character data� one of the listed fxt
actions or any other literal XML element ���

��ENTITY � ACTION
��PCDATA
�fxt�addAttribute�fxt�apply�fxt�applyKey�fxt�attribute
�fxt�copyAttributes�fxt�copyContent�fxt�copyKey�fxt�copyTag
�fxt�copyTagAddAttribute�fxt�copyTagApply�fxt�copyTagDeleteAttribute
�fxt�copyTagReplaceAttribute�fxt�copyType�fxt�cr�fxt�current
�fxt�currentText�fxt�deleteAttribute�fxt�getTableItems�fxt�ht
�fxt�if�fxt�literate�fxt�pi�fxt�pop�fxt�push�fxt�pushForest
�fxt�replaceAttribute�fxt�set�fxt�inc�fxt�setForest�fxt�sml�fxt�sp
�fxt�switch�fxt�tag�fxt�text�ANY��

���� A declaration is specified by one of the following fxt elements ���
��ENTITY � DECLARATION �fxt�arg�fxt�global�fxt�key�fxt�open�fxt�push

�fxt�pop�fxt�set�fxt�inc�fxt�table��

���� A rule is a pattern� specified by an fxt�pat element
followed by an arbitrary number of actions ���

��ENTITY � RULE �fxt�pat� ��ACTION�����

���� A specification consists of a number of declarations followed by
an arbitrary number of rules ���

��ELEMENT fxt�spec ���DECLARATION������RULE�����

���� A pattern is specified as the XML character data content of an
fxt�pat element ���

��ELEMENT fxt�pat ��PCDATA��

���� The folowing fxt�actions have empty content ���
��ELEMENT

�fxt�addAttribute�fxt�apply�fxt�applyKey�fxt�arg
�fxt�attribute�fxt�copyAttributes�fxt�copyContent
�fxt�copyKey�fxt�copyTagApply�fxt�cr�fxt�current
�fxt�currentText�fxt�deleteAttribute�fxt�getTableItems
�fxt�ht�fxt�pi�fxt�pop�fxt�push�fxt�replaceAttribute
�fxt�set�fxt�inc�fxt�sml�fxt�sp�fxt�table�fxt�text�

EMPTY�

���� The following fxt�actions can have as content an arbirary
sequence of fxt actions ���

��ELEMENT
�fxt�case�fxt�copyTag�fxt�copyTagAddAttribute
�fxt�copyTagDeleteAttribute�fxt�copyTagReplaceAttribute
�fxt�copyType�fxt�default�fxt�if
�fxt�pushForest�fxt�setForest�fxt�tag�

���ACTION�����

���� fxt�literate may have only character data content ���
��ELEMENT fxt�literate ��PCDATA��

���� fxt�switch has zero or more case branches and a branch for
the default ���

��ELEMENT fxt�switch �fxt�case��fxt�default��

���� Attributes of the fxt actions ���
��ATTLIST fxt�addAttribute

�name�nameExp� NMTOKEN �REQUIRED
�val�valExp� NMTOKEN �REQUIRED�

��ATTLIST fxt�apply
test NMTOKEN �IMPLIED
�selectselectExp� NMTOKEN �IMPLIED�

��ATTLIST fxt�applyKey
name NMTOKEN �REQUIRED
�key�keyExp� NMTOKEN �REQUIRED�

��ATTLIST fxt�arg name NMTOKEN �REQUIRED�
��ATTLIST fxt�attribute name NMTOKEN �REQUIRED�
��ATTLIST fxt�case test NMTOKEN �REQUIRED�
��ATTLIST fxt�copyTagAddAttribute

�name�nameExp� NMTOKEN �REQUIRED
�val�valExp� NMTOKEN �REQUIRED�

��ATTLIST fxt�copyTagDeleteAttribute
�name�nameExp� NMTOKEN �REQUIRED�

Transforming XML Documents using fxt 33

��ATTLIST fxt�copyTagReplaceAttribute
�name�nameExp� NMTOKEN �REQUIRED
�val�valExp� NMTOKEN �REQUIRED�

��ATTLIST fxt�deleteAttribute
�name�nameExp� NMTOKEN �REQUIRED�

��ATTLIST fxt�getTableItems
name NMTOKEN �REQUIRED
�key�keyExp� NMTOKEN �REQUIRED�

��ATTLIST fxt�global
name NMTOKEN �REQUIRED
type NMTOKEN �REQUIRED
toForest NMTKEN �IMPLIED�

��ATTLIST fxt�if test NMTOKEN �REQUIRED�
��ATTLIST fxt�key

name NMTOKEN �REQUIRED
select NMTOKEN �REQUIRED
�key�keyExp� NMTOKEN �REQUIRED�

��ATTLIST fxt�open
structure NMTOKEN �REQUIRED
file NMTOKEN �IMPLIED�

��ATTLIST fxt�pi
procesor NMTOKEN �REQUIRED
data NMTOKEN �REQUIRED�

��ATTLIST fxt�pop name NMTOKEN �REQUIRED�
��ATTLIST fxt�push

name NMTOKEN �REQUIRED
val NMTOKEN �REQUIRED�

��ATTLIST fxt�pushForest name NMTOKEN �REQUIRED�
��ATTLIST fxt�replaceAttribute

�name�nameExp� NMTOKEN �REQUIRED
�val�valExp� NMTOKEN �REQUIRED�

��ATTLIST fxt�set
name NMTOKEN �REQUIRED
val NMTOKEN �REQUIRED�

��ATTLIST fxt�inc
name NMTOKEN �REQUIRED�

��ATTLIST fxt�setForest name NMTOKEN �REQUIRED�
��ATTLIST fxt�sml code NMTOKEN �REQUIRED�
��ATTLIST fxt�table

name NMTOKEN �REQUIRED
select NMTOKEN �REQUIRED
�key�keyExp� NMTOKEN �REQUIRED
item NMTOKEN �REQUIRED�

��ATTLIST fxt�tag nameExp NMTOKEN �REQUIRED�
��ATTLIST fxt�text code NMTOKEN �REQUIRED�

References

�1� Standard ML of New Jersey, Home Page, 1989–
2001. Available online at http���cm�bell�
labs�com�cm�cs�what�smlnj�.

�2� ALEXANDRU BERLEA, Fxt, Online Documenta-
tion, 2001. Available online at http���www�
informatik�uni�trier�de�� aberlea�Fxt�.

�3� PETER BOROVANSKY, CLAUDE KIRCHNER, HE-
LENE KIRCHNER PIERRE-ETIENNE MOREAU AND
CHRISTOPHE RINGEISSEN. An overview of ELAN. In
Electronic Notes in Theoretical Computer Science,
volume 15, Elsevier Science Publishers, 2000.

�4� JON BOSAK, editor, The Complete Plays of Shake-
speare, Marked up in XML, 1999. Available online
at http���metalab�unc�edu�xml�examples�
shakespeare.

�5� ALEXANDRU BERLEA AND HELMUT SEIDL, fxt - A
Transformation Language for XML Documents. In
XML Conference And Exposition 2001, 2001.

�6� A. VAN DEURSEN, P. KLINT AND J. VISSER, Domain-
Specific Languages: An Annotated Bibliography,
ACM SIGPLAN Notices, 35�6�:26–36, June 2000.

�7� ANDREAS NEUMANN, fxgrep1.4.1, Source Code,
2001. Available online at http���www�infor
matik�uni�trier�de��aberlea�Fxgrep�.

�8� ANDREAS NEUMANN, fxp1.4, Source Code,
2001. Available online at http���www�
informatik�uni�trier�de��aberlea�Fxp�.

�9� ELIOTTE R. HAROLD, editor, 1998 Baseball Statis-
tics – XML Sample Files, 1999, Available online
at http���metalab�unc�edu�xml�examples�
����validstats�xml.

�10� HARUO HOSOYA AND BENJAMIN C. PIERCE,
XDuce: A Typed XML Processing Lan-
guage, In Proceedings Of The Third Interna-
tional Workshop on the Web and Databases
(WebDB2000), Dallas, Texas, pages 111–
116, May 2000. Available online at http�
��www�cis�upenn�edu��hahosoya�xduce�.

34 Transforming XML Documents using fxt

�11� JOHN HUGHES, The Design of a Pretty-printing Li-
brary. In John Jeuring and Erik Meijer, editors,
Advanced Functional Programming, Tutorial text of
the First international spring school on advanced
functional programming techniques, Båstad, Swe-
den, volume 925 of Lecture Notes in Computer
Science, pages 53–96, Springer, Heidelberg, 1995.

�12� International Organization for Standardization, In-
formation technology – Processing Languages –
Document Style Semantics and Specification Lan-
guage (DSSSL). Ref. No. ISO�IEC 10179:1996�E�,
1996.

�13� MICHAEL KAY, Saxon, Software Documen-
tation, 2001. Available online at http���
saxon�sourceforge�net.

�14� RALF LÄMMEL AND WOLFGANG LOHMANN, Format
Evolution. In Proc. 7th International Conference
on Reverse Engineering for Information Systems
(RETIS 2001), volume 155 of books@ocg.at, OCG,
2001.

�15� DAVID MEGGINSON ET ALIAS, editors, SAX 1.0: The
Simple API for XML. Online Documentation, Meg-
ginson Technologies, May 1998. Available online at
http���www�megginson�com�SAX�index�html.

�16� ERIK MEIJER AND MARK SHIELDS, XMλ : A Func-
tional Language for Constructing and Manipulating
XML Documents, �Draft�, 1999.

�17� TOVA MILO, DAN SUCIU AND VICTOR VIANU, Type-
checking for XML Transformerd. In Proceedings
of the ACM Symposium on Principles of Database
Systems, 2000, 2000.

�18� ROBIN MILNER, MADS TOFTE, ROBERT HARPER
AND DAVID MACQUEEN, The Definition of Stan-
dard ML (Revised), MIT Press, 1997.

�19� ANDREAS NEUMANN, Parsing and Querying XML
Documents in SML, PhD thesis, University of Trier,
Trier, 2000.

�20� ANDREAS NEUMANN AND HELMUT SEIDL, Locat-
ing Matches of Tree Patterns in Forests. In V.
Arvind and R. Ramamujan, editors, Foundations
of Software Technology and Theoretical Computer
Science, (18th FST&TCS), volume 1530 of Lec-
ture Notes in Computer Science, pages 134–145,
Springer, Heidelberg 1998.

�21� BIJAN PARSIA, Functional Programming and XML.
Online Article, XML.com, 2001. Available online
at http���www�xml�com�pub�a����������	�
functional�html.

�22� Apache XML Project, Xalan, Software Doc-
umentation, 2001. Available online at http�
��xml�apache�org�xalan�index�html.

�23� D. S. SWIERSTRA, P. AZERO AND J. SARAIVA, De-
signing and implementing combinator languages, In
D. S. Swierstra, P. R. Henriques and J. N. Oliveira,
editors, Third International Summer School on
Advanced Functional Programming, Braga, Por-
tugal, 1998, volume 1608 of Lecture Notes in
Computer Science, pages 150–206, Springer, Hei-
delberg, 1998.

�24� D. S. SWIERSTRA AND L. DUPONCHEEL, Determin-
istic, Error-Correcting Combinator Parsers. In John
Launchbury, Erik Meijer and Tim Sheard, edi-
tors, Advanced Functional Programming, volume
1129 of Lecture Notes in Computer Science, pages
184–207, Springer, Heidelberg, 1996.

�25� The Unicode Consortium, The Unicode Standard,
Version 2.0, Addison Wesley Developers Press,
Reading, Massachusetts, 1996.

�26� EELCO VISSER, Strategic Pattern Matching. In
Rewriting Techniques and Applications (RTA ’99),
Trento, Italy, volume 1631 of Lecture Notes in
Computer Science, pages 30–44, Springer, 1999.

�27� EELCO VISSER, The Stratego Reference Manual.
Tehnical report, Institute of Information and Com-
puting Science, Universiteit Utrecht, Utrecht, The
Netherlands, 1999.

�28� EELCO VISSER, Stratego: A Language for Program
Transformation Based on Rewriting Strategies. In
To Appear in Rewriting Techniques and Applica-
tions (RTA ’01), Utrecht, The Netherlands, Springer,
2001.

�29� VIDUR APPARAO, STEVE BYRNE AND MIKE CHAM-
PION, et alias, editors, Document Object
Model (DOM) Level 1 Specification, Ver-
sion 1.0, W3C Recommendation, World Wide
Web Consortium, October 1998. Available on-
line at http���www�w
�org�TR������REC�DOM�
Level�����������.

�30� JAMES CLARK, editor, XSL Transformations
(XSLT) Version 1.0, W3C Proposed Rec-
ommendation, World Wide Web Consor-
tium, November 1999. Available online at
http���www�w
�org�TR�xslt.

�31� JAMES CLARK AND STEVE DEROSE, editors. XML
Path Language (XPath) Version 1.0, W3C
Recommendation, World Wide Web Consor-
tium, November 1999. Available online at
http���www�w
�org�TR�xpath.

�32� PHILIP WADLER, A formal semantics of
patterns in XSLT, Markup Technolo-
gies, Philadelphia, to appear, December
1999. Available online at http���cm�bell�
labs�com�cm�cs�who�wadler�papers�xsl�
semantics�xsl�semantics�ps.

�33� MALCOLM WALLACE AND COLIN RUNCIMAN,
Haskell and XML: Generic combinators or type-
based translation? In Peter Lee, editor, Proceedings
Of The International Conference on Functional
Programming 1999, Paris, France, pages 148–259,
ACM Press, New York, Sept. 1999.

Received: July, 2001
Revised: October, 2001

Accepted: November, 2001

Transforming XML Documents using fxt 35

Contact address:

Alexandru Berlea, Helmut Seidl
Department of Computer Science

University of Trier
Germany

e-mail: faberlea�seidlg�psi�uni�trier�de

ALEXANDRU BERLEA is a Ph. D. candidate at the University of Trier,
Germany. He has graduated in 1999 from the Computer Science and
Engineering Department of the Politehnica University of Bucharest,
Romania with the final thesis written at the Delft University of Tech-
nology in The Netherlands. His research interests include document
processing, functional programming, tree automata and garbage collec-
tion.

HELMUT SEIDL graduated in Mathematics �1983� and received his Ph.
D. degree in Computer Science �1986� from the University of Frank-
furt�Main, Germany. He received his Dr. Habil. �1994� from the Uni-
versity of Saarbrücken and is currently full Professor at the University of
Trier. His research interests include fixpoint algorithms, program anal-
yses, tree automata, document processing and tele-teaching. He has
published extensively, both in high-level conferences such as STOC,
POPL, LICS, SAS, ICALP and ESOP, as well as in established journals
like SIAM Journal of Computing, TCS, Science of Computer Program-
ming, Journal of Logic Programming, Information Processing Letters,
Journal on Parallel Programming and Nordic Journal of Computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

