
Journal of Computing and Information Technology - CIT 11, 2003, 4, 263–270 263

Selection and Assignment of Machines:
a Parallel Approach

José Francisco Ferreira Ribeiro
Department of Computer Science, University of São Paulo at São Carlos, Brazil

In this paper, a two-phase method is presented for
selection of machines to be kept on the shop floor
and assignment of parts to be manufactured on these
machines. In the first phase, dynamic programming or a
heuristic procedure identifies a set of feasible solutions
to a knapsack problem. In the second phase, implicit
enumeration technique or a greedy algorithm solves an
assignment problem. The proposed method is written
in language C and runs on a parallel virtual machine
called PVM-W95. The results obtained from the parallel
implementation on several examples which are found in
the literature, as well as examples generated at random,
were used to establish a comparison with the sequential
algorithm and to perform a speedup analysis.

Keywords: job shop production, assignment problem,
optimization techniques, parallel virtual machine.

1. Introduction

This article proposes a parallel implementation
of a two-phase method including optimization
algorithms for solving �1� the problem of the
selection of machines to process jobs on parts
in a job shop production system and �2� the
problem of the assignment of parts to be manu-
factured in the shop to the machines chosen in
phase �1�. These two problems belong to the
class of NP-complete combinatorial problems
�1�. Polynomial algorithms are available for
reduced size instances only; however, these re-
duced size instances can be optimally solved by
complete search. This approach cannot be used
for solving large-scale instances and the use of
heuristic algorithms �2� for solving large-scale
instances becomes a widely employed rule.

The method implemented here desires to use
available resources in the best manner. For this

purpose, it attempts to find the best matching be-
tween parts and a subset of available machines
in the shop. The machines are selected among
those available and parts are assigned to these
machines, leading to the construction of an inci-
dence matrix �parts�machines�. This problem
is solved in two steps: searching feasible solu-
tions to the knapsack optimization problem for
the choice of the set of machines, followed by
an implicit enumeration procedure or a greedy
algorithm for the assignment of parts to the ma-
chines chosen, leading to a solution which is
either optimal or feasible �2�. Parameters such
as duration of operations and machine capacity
are taken into account.

Parallel implementation of the proposed method
is performed in this work with the objective to
solve simultaneously all optimization problems
on the types of machines available in the shop.
In fact, for the types of machines available in
the shop, such as lathe, miller, drill, etc., a prob-
lem X�i� completely independent of the problem
X�j�, where i and j are two different types of ma-
chines, must be solved. In terms of computa-
tional time, the gain is considerable: for solving
m problems related to m types of machines, the
computational time is approximate to the time
spent to solve the biggest of these problems, if
m nodes of processing are available.

The proposed two-phase method was written in
language C and was executed on the Parallel
Virtual Machine for Windows95, called PVM-
95 �3�. The PVM-W95 is a software system that
permits a PC-compatible computer network to
be used as a single large parallel computer.

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14416695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


264 Selection and Assignment of Machines: a Parallel Approach

2. Problem Statement

The problem consists in finding an assignment
of the parts to the machines available in the
shop. Consider a set of r parts and a set of m
machine types:

(1) For each part i �i � 1 to r�:

� nb�i� is the number of units to be manufac-
tured.

� g�i� is the number of operations of the pro-
duction sequence.

� type�i� k�, k � 1 to g�i� is the type of machine
used for the kth operation on part i.

� Note that any type of machine may appear
many times in the production sequence of
part i.

� duration�i� k�, k � 1 to s�i�, is the duration of
the kth operation on part i, given with respect
to the reference machine of the correspond-
ing type.

(2) For each type of machine j �j � 1 to m�:

� t�j� is the number of machines available.

� sr�j� s�, s � 1 to t�j�, is the speed ratio of the
sth machine of type j, given with respect to
the reference machine.

� Speed ratio of the reference machine equals
1.

� cap�j� s� � sr�j� s�� period is the capacity of
the sth machine of type j, s � 1 to m.

� Reference machine capacity is the lowest in
the type.

� Period is the total duration of work in the
shop.

� cost�j� s�, s � 1 to t�j�, is the utilization cost
of the sth machine of type j.

� p�j� s�, s � 1 to t�j�, is the penalty weight for
the sth machine use.

Tables I and II show an example where nb�i� � 1
�i � 1 to r�. This example will be used through-
out this paper to illustrate the proposed method.

Part Production Sequence Duration of the operation
1 2 4 5 6 1,0 2,0 3,0 3,0
2 2 3 5 6 7 5 1,0 4,0 1,0 2,0 3,0 2,0
3 3 6 7 6 1,0 1,0 3,0 1,0
4 1 2 3 1 4 5 1,0 3,0 2,0 1,0 1,0 2,0
5 1 3 4 5 4 3,0 1,0 2,0 1,0 2,0
6 2 3 4 4,0 1,0 2,0
7 1 2 4 5 7 4 1,0 2,0 1,0 3,0 1,0 1,0
8 1 2 3 5 7 2,0 2,0 3,0 1,0 3,0
9 1 2 3 5 7 3 2,0 2,0 3,0 2,0 1,0 2,0

Table I. Production sequences and duration.

Type of Machine Number of Machines Speed Ratio
N1 N2 N3 N4

1 2 1,0 1,2
2 3 1,0 1,3 1,2
3 4 1,0 1,2 1,2 1,1
4 3 1,0 1,1 1,0
5 2 1,0 1,1
6 2 1,2 1,0
7 3 1,0 1,1 1,1

Table II. Machines and speed ratios.



Selection and Assignment of Machines: a Parallel Approach 265

3. Load Matrix [Parts� Types of Machines]

Given the production sequences of the parts
to be manufactured, the duration of operations
and the number of units to be manufactured
for each part, the elements of the load matrix
�parts � machines� are given by:

load�i� j� � nb�i��
X

duration�i� k� �1�

k j type�i� k� � j

In the example proposed the load matrix is given
in Table III.

T 1 T 2 T 3 T 4 T 5 T 6 T 7
Part 1 0,0 1,0 0,0 2,0 3,0 3,0 0,0
Part 2 0,0 1,0 4,0 0,0 3,0 2,0 3,0
Part 3 0,0 0,0 1,0 0,0 0,0 2,0 3,0
Part 4 2,0 3,0 2,0 1,0 2,0 0,0 0,0
Part 5 3,0 0,0 1,0 4,0 1,0 0,0 0,0
Part 6 0,0 4,0 1,0 2,0 0,0 0,0 0,0
Part 7 1,0 2,0 0,0 2,0 3,0 0,0 1,0
Part 8 2,0 2,0 3,0 0,0 1,0 0,0 3,0
Part 9 2,0 2,0 5,0 0,0 2,0 0,0 1,0

Table III. Load matrix �parts � types of machines�.

4. Selection of Machines

First, the machines which will remain effective
in the workshop are chosen, irrespective of the
process of assignment of parts to machines, but
only in accordance with the global load accepted
by each type of machine �see Table III�.

The choice of machines is done separately for
each type of machine j. This choice is made
for feasible solutions to the knapsack problem
�KNS� detailed below.

� KNS

Minimize
t�j�P
s�1

c�j� s�� ms �2�

subject to
������
�����

t�j�X
s�1

cap�j� s�� ms �
rX

i�1

load�i� j� �3�

ms �

�
1 if machine s is chosen
0 otherwise

�4�

where c�j� s� is an optimization criterion, for ex-
ample:

� number of machines in the workshop

c�j� s� � 1 �j � 1 to t�j�� �5�

� total capacity of machines in the workshop

c�j� s� � cap�j� s��j � 1 to t�j�� �6�

� total utilization cost of machines in the work-
shop

c�j� s� � cost�j� s��j � 1 to t�j�� �7�

Objective-function of KNS minimizes the se-
lected optimization criterion. Constraint �3�
insures that the workshop machine capacity is
sufficient to carry out the global part workload
and the constraint �4� yields the possible values
of ms.

The search for a solution is performed by sub-
jecting possible combinations of machines to
the principal constraint using dynamic program-
ming or heuristic enumeration and by listing
feasible combinations according to their de-
creasing objective-function value. Some of the
combinations found feasible for this problem
are set aside a posteriori verification of the as-
signment of parts.

Dynamical programming generates all the pos-
sible combinations of machines and is used for
small size problems �less than 100 variables�.
This technique is based on the Belman’s opti-
mality principle: an optimal trajectory is com-
posed of optimal parts �2�. Then all the optimal
parts are generated and the best trajectories are
recovered from the list with best solutions. A
heuristic procedure is used when the dimension
of the problem requires very large calculating
time. It uses the branch and bound technique
�2�, and stops the execution after a limited time



266 Selection and Assignment of Machines: a Parallel Approach

�5 minutes� or after reaching a determined num-
ber of feasible solutions �10 solutions�.

Once the machines are chosen, the assignment
issue is of a size less than, or equal to that of the
assignment problem to be solved when all the
initially available machines are taken into ac-
count. The existence of a feasible assignment of
parts to the machines chosen must subsequently
be verified.

5. Assignment of Parts to Machines

The assignment of parts to machines from the
combination proposed by KNS is obtained
through the solution of the problem PM01j

stated bellow.

� PM01j

Minimize
rP

i�1

t�j�P
s�1

p�j� s�� xis �8�

subject to
�����������
����������

rX
i�1

load�i� j� � xis � cap�j� s� �s � 1 to t�j�� �9�

t�j�X
s�1

xis � 1 �i � 1 to r� �10�

xis �

�
1 if part i is assigned to machine s
0 otherwise

�11�

where p�j� s� is a penalty weight for the sth ma-
chine use. Such weights can be introduced in

the objective function of PM01 to direct assign-
ment of parts to some machines �e.g. the fastest
or least expensive ones� at the operator’s choice.
Constraint �9� ensures that each machine is able
to produce the parts it has been attributed with;
constraint �10� establishes indivisible nature of
the operations that have to be performed on the
parts; constraint �11� yields possible values of
xis.

Solution of PM01 is obtained by implicit enu-
meration �2� if the number of variables is less
than approximately fifty. Otherwise, a greedy
algorithm �2� is used to obtain the assignment.
In the case where the assignment is not valid for
the first KNS solution, the second is tried, and
so on, until a successful assignment is achieved.

Implicit enumeration was proposed by Balas
�2� for the resolution of integer problems with
variables 0�1 in a faster manner. Greedy algo-
rithm �2� allows to solve an integer program-
ming problem very quickly, because it does not
re-evaluate the decisions taken at each step. The
greedy procedure consists of taking the best de-
cision at each step and making this decision
final, obtaining, then, solutions very quickly,
without guaranteeing optimality.

Incidence matrix �part � machines� represent-
ing the assignment obtained is then presented
to the operator �see Table IV, where all penalty
weights equal 1�. The latter may modify the
assignment and introduce new machines, etc.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12
T1 T2 T2 T3 T3 T4 T4 T5 T5 T6 T7 T7
N1 N1 N3 N1 N4 N1 N3 N1 N2 N2 N1 N2

P1 0,0 1,0 0,0 0,0 0,0 2,0 0,0 3,0 0,0 3,0 0,0 0,0
P2 0,0 1,0 0,0 4,0 0,0 0,0 0,0 0,0 2,8 2,0 3,0 0,0
P3 0,0 0,0 0,0 0,0 0,9 0,0 0,0 0,0 0,0 2,0 3,0 0,0
P4 2,0 3,0 0,0 2,0 0,0 1,0 0,0 2,0 0,0 0,0 0,0 0,0
P5 3,0 0,0 0,0 1,0 0,0 4,0 0,0 1,0 0,0 0,0 0,0 0,0
P6 0,0 0,0 3,3 0,0 0,9 0,0 0,2 0,0 0,0 0,0 0,0 0,0
P7 1,0 2,0 0,0 0,0 0,0 2,0 0,0 3,0 0,0 0,0 1,0 0,0
P8 2,0 2,0 0,0 3,0 0,0 0,0 0,0 1,0 0,0 0,0 3,0 0,0
P9 2,0 0,0 1,7 0,0 4,6 0,0 0,0 0,0 1,8 0,0 0,0 0,9

Table IV. Incidence matrix �parts �machines�.



Selection and Assignment of Machines: a Parallel Approach 267

6. Parallel Approach

The use of parallel computing for solving se-
lection and the assignment problems described
above is evident: for each machine j in the
workshop �j � 1 to r�, i.e., for each column
of the incidence matrix �parts � machines� an
optimization problem must be solved. These
problems are completely independent and its
treatment can be made simultaneously if a par-
allel computer is available.

6.1. Parallel Virtual Machine

Distributed parallel computing offers a higher
performance to the applications that do not need
a large parallel machine, but demand a higher
power than these offered by a sequential ma-
chine �4, 5, 6�. The PVM – Parallel Virtual Ma-
chine and the MPI – Message Passing Interface
are two examples of environment for message
passing that allow us to build parallel virtual
machines in workstations, generally machines
RISC with Unix operational system �6, 7�.

Although personal computers �PCs� and Win-
dows operational system are nowadays being
widely used, research works exploiting parallel
computing in this environment have been re-
ported only recently. Three works have been
reported so far: WPVM �8� from the Univer-
sity of Coimbra, Portugal; the WPVM from the
PVM-team �9�, USA; and the PVM-W95 �3�
from the University of São Paulo, Brazil. These
works present alternative solutions for possess-
ing parallel computing on a network of PCs
running the Windows of 32 bits.

6.2. PVM-W95

The PVM-W95 is a message passage environ-
ment that offers required resources for develop-
ing concurrent programs using the C or C��
programming language, on a network of PCs
running the Windows95�NT operating systems.
This environment is entirely compatible with
the original PVM platform for UNIX systems
�3�. The PVM-95 was developed entirely based
on the original source code. The significant

difference between the PVM-95 and the origi-
nal PVM resides in the use of object-oriented
concepts: abstraction, encapsulation, polymor-
phism and inheritance �10�. The PVM-95 is
composed of two main modules: a daemon and
a library of routines with the PVM interface �3�.

7. Parallel Implementation

The proposed method was written in language C
and was executed in the PVM-W95. Computer
network has NS processing nodes: one is re-
sponsible for the master process and the others
for slave processes. These NS-1 nodes execute
the method for solving the assignment problem
for each type of machine.

In order to establish the minimum number of
processors necessary for solving the problem,
one of the processors realizes a test on the set
of feasible solutions obtained by the solution
of KNS for all types of machines and verifies
if the optimal solution is evident without ne-
cessity to solve PM01j. Otherwise, this pro-
cessor builds the corresponding mathematical
problems to solve PM01j for each type of ma-
chine and calculates their number of variables
and constraints: based on this data, the pro-
gram distributes the problems to solve to the
available processors. If the number of types of
machines is greater than NS-1, distribution of
these supplementary problems is obligatory, al-
locating them first to the processors responsible
for solving the problems of smaller size, and to
the others afterwards.

The objective-function chosen for KNS is the
number of machines in the shop and the penalty
established for the machines in PM01j is equal
to 1 for all machines. The mathematical model
KNS is solved by dynamic programming and
PM01j by implicit enumeration when the opti-
mal solution for the assignment is not evident.

Communication between the master process and
slave processes makes use of the routines which
are specific for each kind of data. Such routines
transform certain data �e.g., an integer value�
into a chain of characters in ASCII. A header
is coupled to that chain of characters, also in
ASCII, which specifies the kind of variable that
is being sent. Next, these data are processed



268 Selection and Assignment of Machines: a Parallel Approach

using an inverse routine, which takes the data in
ASCII and gets the same integer value that was
sent.

The pseudo code s&a-par, below, summarizes
the main steps of the parallel implementation.

pseudo code s&a-par

� construction of KNS mathematical models

� KNS solving �by dynamical programming
or heuristic procedure�

� allocation of machine types to the processors

� for each type of machine j

1. construction of the PM01j mathematical
models

2. model solving �by implicit enumeration
or greedy algorithm�

� end for

end pseudo code s&a-par

8. Computational Results

Parallel implementation was tested in 10 job
shop production systems found in the litera-
ture and in 2 examples generated at random
�R1� R2�. Table V below shows the result of

computational tests realized. In the 1st col-
umn, reference of the problem chosen is given
�there can be more than one tested example from
the same reference: 2 examples were extracted
from the references �12, 15, 17��; in the 2nd the
triplet �m� t�j�� r�, where m is the number of
the type of machines available in the shop, t�j�
is the number of machines available for plan-
ning and r is the number of parts; in the 3rd

the total number of jobs to process is given. In
the other columns, Tdp is the time to run the
sequential program, spent for the choice of ma-
chines by dynamic programming and The is the
time by heuristic enumeration; Tie is the time
spent for the assignment of parts to machines
by implicit enumeration and Tgr is the time of
the greedy algorithm. In this Table, the cha-
racter ��� means computational time less than
0,01. Computational times are given in seconds
�all PCs utilized in the PVM-W95 are Pentium,
200 MHz, 64 Mbytes�.

Table VI compares the time, in seconds, to run
the program using one processor and the num-
ber of processors initially established.

Table VII describes the speedup of the algo-
rithm �Sp � Sequential Time � Parallel Time�.
Table VIII gives the Efficiency �Sp � Number
of Processors�.

Example �m� t�j�� r� Jobs Tdp The Tie Tga

�11� �5� 12� 7� 29 ��� ��� 2� 36 ���

�12�� 1st �7� 13� 9� 45 ��� ��� 0� 28 ���

�12�� 2nd �7� 21� 9� 45 ��� ��� 2� 42 ���

�13� �15� 30� 10� 46 ��� ��� 5� 16 ���

�14� �10� 25� 20� 49 ��� ��� 2� 75 ���

�15�� 1st �20� 26� 20� 79 ��� ��� 4� 62 ���

�15�� 2nd �12� 24� 30� 131 ��� ��� 18� 07 ���

�16� �30� 50� 41� 128 ��� ��� 53� 94 ���

�17�� 1st �16� 19� 43� 127 ��� ��� 10� 27 ���

�17�� 2nd �16� 20� 43� 127 ��� ��� 10� 27 ���

R1 �20� 35� 30� 240 ��� ��� 18� 23 ���

R2 �10� 30� 30� 270 ��� ��� 26� 15 ���

Table V. Examples tested and computational time.



Selection and Assignment of Machines: a Parallel Approach 269

Example �11� �12� �12� �13� �14� �15� �15� �16� �17� �17� R1 R2
Sequential

Time 2,40 0,31 2,49 5,20 2,82 4,65 18,15 53,98 10,34 10,34 18,32 26,30
Parallel
Time 1,76 0,11 2,25 4,61 1,93 4,28 5,55 38,72 5,49 5,49 5,55 5,82

Number of
Processors 2 3 2 2 2 2 4 2 2 2 5 5

Table VI. Comparison between sequential and parallel computational times.

Example �11� �12� �12� �13� �14� �15� �15� �16� �17� �17� R1 R2
Sp 1,36 2,82 1,11 1,13 1,46 1,09 3,27 1,39 1,88 1,88 3,30 4,52

Table VII. Speedup.

Example �11� �12� �12� �13� �14� �15� �15� �16� �17� �17� R1 R2
Efficiency 68,0 94,0 55,5 56,5 73,0 54,5 81,8 69,5 94,0 94,0 66,0 90,4

Table VIII. Efficiency �%�.

9. Conclusions

With parallel implementation of the two-phase
method proposed for solving the assignment
problem of parts to machines, some important
conclusions were reached:

� The method presented here allows to obtain
good results while maintaining algorithmic
simplicity and making effective use of par-
allel computing facilities.

� The method uses a combination of exact
and approximate algorithms for solving the
problem and obtaining an optimal or feasible
solution within a very reasonable computa-
tional time.

� Implementation is efficient, because in the
tests accomplished, efficiency in most of the
examples was above 66%.

� Implementation has better performance when
the size of the problems increases.

Acknowledgment

This work has been supported by the Ministry
of Science and Technology of Brazil through
CNPq – Brazilian Center for Research and De-
velopment of Science and Technology.

References

�1� M.R. GAREY, D.S. JOHNSON, Computers and in-
tractability: a guide to the theory of NP-complete-
ness, Freeman, 1979.

�2� C.H. PAPADIMITRIOU, K. STEIGLITZ, Combinatorial
optimization: algorithms and complexity, Prentice
Hall, 1982.

�3� M.J. SANTANA, P.S.L. SOUZA, R.H.C. SANTANA,
S.R.S. SOUZA, Parallel Virtual Machine for Win-
dows95, Proceedings 3rd EuroPVM’96, 1996.

�4� G.S. ALMASI, A. GOTTLIEB, Highly parallel com-
puting, Benjamin Cummings, 1994.

�5� A. GEIST, A. BEGUELIN, J. DONGARRA, W. JIANG,
R. MANCHEK, V. SUNDERAM, PVM: Parallel Virtual
Machine – a user’s guide and tutorial for networked
parallel computing, MIT Press, 1994.

�6� A. GEIST, A. BEGUELIN, J. DONGARRA, W. JIANG, R.
MANCHEK, V. SUNDERAM, PVM3 User’s guide and
reference manual, Technical Report Oak National
Laboratory, 1994.

�7� O.A. MCBRYAN, An overview of message passing
environments, Parallel Computing, 20 �1994�, pp.
417–444.

�8� A. ALVES, L. SILVA, J. CARREIRA, J.G. SILVA,
WPVM: parallel computing for the people, Pro-
ceedings HPCN’95, 1 �1995�, pp. 582–587.



270 Selection and Assignment of Machines: a Parallel Approach

�9� M. FISHER AND J. DONGARRA, Another architec-
ture: PVM on Windows95�NT, Proceedings 3rd

EuroPVM’96, 1996.

�10� K. IRVINE, C++ and Object-Oriented Program-
ming, Prentice Hall, 1997.

�11� J.F.F. RIBEIRO, B. PRADIN, A methodology for cel-
lular manufacturing design, International Journal
of Production Research, 31�1993�, pp. 235–250.

�12� A.B. NORONHA, J.F.F. RIBEIRO, C.M. RIBEIRO, Job
Shop Scheduling with Disjunctive Constraints,
Brazilian Journal of Management and Production
�in Portuguese�, 3 �1996�, pp. 204–219.

�13� H.M. CHAN AND D.A. MILNER, Direct clustering
algorithm for group formation in cellular manufac-
ture, Journal of Manufacturing Systems, �1� 1981,
pp. 399–416.

�14� G. SRINIVASAN, T.T. NARENDAN, B. MAHAVEDAN,
An assignment model for the part-families prob-
lem in group technology, International Journal of
Production Research, 28�1�:145–152 �1990�.

�15� G. HARHALAKIS, R. NAGI AND J.M. PROTH, An ef-
ficient algorithm in manufacturing cell formation
for group technology applications, International
Journal of Production Research, 28 �1990�, pp.
185–198.

�16� K.R. KUMAR AND A. VANELLI, Strategic subcon-
tracting for efficient disaggregated manufacturing,
International Journal of Production Research, 25
�1987�, pp. 1715–1728.

�17� J.L. BURBIDGE, The introduction of group techno-
logy, John Wiley, 1975.

Received: January, 2003
Accepted: December, 2003

Contact address:

José Francisco Ferreira Ribeiro
USP – University of São Paulo

Department of Computer Science
Av. Trabalhador SaoCarlense, 400

13560-970 Sao Carlos
Brazil

e-mail: jffr�icmc�usp�br

JOSÉ FRANCISCO FERREIRA RIBEIRO is a professor at the University
of São Paulo at São Carlos, SP, Brazil. His research field is parallel
computer and mathematical programming.


