
Journal of Computing and Information Technology - CIT 14, 2006, 3, 225–241
doi:10.2498/cit.2006.03.06

225

Storing Linked XML Documents
in Object-Relational DBMS

Pensri Amornsinlaphachai�, Nick Rossiter and M. Akhtar Ali
School of Computing, Engineering & Information Sciences, Northumbria University, Newcastle upon Tyne, UK

Currently, several researchers have proposed mapping
both structure and constraints of XML documents to
an object-relational database �ORDB�. However, these
researches cannot be conducted because of the lim-
ited range of constraints in available object-relational
DBMSs. We therefore propose mapping rules that are
practicable in available technologies. Normally, an
XML document is treated as a database, so much data
redundancy occurs. To solve this problem, we keep
non-redundant data in several separate XML documents,
link the data dispersed in these documents together by a
mechanism called ‘rlink’ and then map this mechanism
to ORDB. Finally we perform a case study in Oracle9i
to illustrate the mapping of XML to ORDB according to
our rules. Our contribution is that we find that mapping
linked XML documents to traditional databases such as
�O�RDB makes it easier to join several documents and
to update several documents in one update command.

Keywords: XML, semi-structured data, constraints,
linked XML documents, ORDB

1. Introduction

When XML �Extensible Markup Language�
became an effective standard for representa-
tion of structured and semi-structured data on
the Web, researches were undertaken to store
�10, 23�, query �13, 10, 8, 6, 7� and publish
�30, 4, 11� XML documents. A dominating ap-
proach for storing XML documents is apply-
ing traditional databases: relational database
�RDB�, object-oriented database �OODB� and
object-relational database �ORDB� to manage
XML documents. Mapping XML documents
to RDB is a most popular research �39, 19�.
However, the structure of XML documents is
hierarchical whereas relational structure is flat;
thus it is not a good fit. To fit the structure

of XML documents to traditional databases, it
seems that OODB �1� is suitable; nevertheless,
some constraints such as not null and delete cas-
cade are not supported by OODB �5�. In ORDB,
constraints are inherited from RDB; neverthe-
less, not every feature in ORDB supports con-
straints. Our motivation comes from three rea-
sons as follows.
� There is some research �26, 20� presented to

map XML documents to ORDB, but it is not
practicable though researchers �26� claim to
use SQL4. One open problem is that avail-
able DBMSs have not supported all the fea-
tures of SQL4.

� Usually, an XML document is treated as a
database keeping all data in one document;
thus data redundancy always occurs. The
problem of data redundancy can lead to data
inconsistency and low performance when
updates are performed. Some work �9, 3�
presented the technique of reducing data re-
dundancy during mapping XML documents
to RDB by using XML functional depen-
dencies. However, with this method, data
in the XML documents differ from the data
in the database; thus it becomes difficult to
maintain different data sets between the two
storages.

� Updating several XML documents or per-
forming joins between XML documents in
one update command is not easy and thus,
presently, no work proposes a methodology
for this task. This will be discussed in Sec-
tion 7.

In our approach, we will demonstrate how to
map both structure and constraints of XML doc-

�This work was supported by the Royal Thai Government via Nakhonratchasima Rajabhat University.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14416618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

226 Storing Linked XML Documents in Object-Relational DBMS

uments to ORDB with awareness of practica-
bility in available technologies whereby several
object-relational features can be exploited. We
store non-redundant data in separate XML doc-
uments and then propose a mechanism for link-
ing these separate documents together and pro-
pose the rules for mapping these linked XML
documents to ORDB. The result derived from a
case study by mapping XML to ORDB is con-
ducted through Oracle9i.

The rest of this paper is organized as follows.
Related work is discussed in Section 2 and a
mechanism for linking XML documents is pro-
posed in Section 3. Section 4. describes the
rules for mapping linked XML documents to
ORDB and Section 5. describes the rules for
mapping constraints to ORDB. We present the
preserving of order of XML elements in Sec-
tion 6. and a case study in Section 7. Finally,
conclusion and further work are discussed in
Section 8.

2. Related Work

There are a number of researches concentrat-
ing on mapping XML documents to traditional
databases. These researches can be separated
into two categories: automatic mapping and
non-automatic mapping. The non-automatic
mapping method �14� requires users to spec-
ify how to map the structure of XML to the
schema of a database and this method is pro-
posed by several commercial DBMSs such as
IBM DB2 and Oracle database server �28�. Our
work focuses on the automaticmapping ofXML
documents to traditional databases proposed by
several previous workers as follows.

For RDB, �31� utilized a DTD graph to repre-
sent a DTD and to find a good mapping strategy.
The researchers proposed three approaches: ba-
sic inlining, shared inlining and hybrid inlining
techniques to map DTD to relational schema.
They indicated that the hybrid inlining tech-
nique is superior to basic inlining and shared
inlining techniques. �10� adapted a data min-
ing algorithm to identify supported patterns
for storage in relations and combined semi-
structured and relational techniques to process
semi-structured data by using OEM model and
RDB to store and manage semi-structured data.
�12� evaluated several mapping techniques and

indicated that the best overall approach is the
attribute approach. However, another research
presented by �35� identified that the attribute
approach has a poorer performance than the
DTD approach. �18� use both DTD and XML
documents for mapping. They keep elements
and path of elements in one table and keep at-
tributes and path of attributes in another table.
The reference between elements is represented
by path-IDs kept in the tables. �39� presented
their system called X-Database system which
uses the XML-Schema file to generate a RDB
schema and then decomposes valid XML doc-
uments according to the Schema to store their
information in the database.

From the above researches, only �39� performed
mapping constraints to database. However,
mapping XML to RDB can produce many un-
necessary tables leading to unnecessary joins in
querying since usuallyXML documents contain
multi-value attributes while mapping these data
to RDB is performed by putting the data into
separate tables.

For OODB, �1� proposed an approach to map
semi-structured data �SGML� to an objectmodel.
In this approach, each SGML element definition
in DTD is interpreted as a class, choice con-
nector �j� is modeled by a union type, element
components marked by “�” or “*” occurrence
indicator are represented by lists, attributes are
represented by private property of the class.
Nonetheless, mapping semantics �constraints�
of semistructured documents is not proposed
because of the limited constraints of OODB.

In the case of ORDB, �32� proposed the method
that decomposesXMLdocuments into the nodes
and stores them in four tables: element, at-
tribute, text and path tables while �27� used
XML data type to store a fragment of an XML
document. However, these researchers did not
use any object-relational feature. �20� and �23�
exploited set�list and nested tables which are
features of ORDB, but no DBMS supports both
set�list and nested tables in one ORDB �In-
formix �17� supports list�set, Oracle �24� sup-
ports nested tables while PostgreSQL �25� sup-
ports array�. In addition, �23� defined foreign
keys in nested tables whereas �20� used sev-
eral constraints such as domain and default con-
straints in collection type and �26� defined pri-
mary keys in collection type. Defining the full

Storing Linked XML Documents in Object-Relational DBMS 227

range of constraints in nested tables or col-
lection type is restricted in available object-
relational DBMSs; thus none can be conducted.
�36� mapped XML to ORDB by using UniSQL,
but the researchers did not employ constraints
and UniSQL�X itself is based on OODB having
limited constraints �38�.

To summarize, none of the previous work map-
ping both structure and constraints of XML to
ORDB can be conducted in existing technolo-
gies; furthermore, none of the previous work
mapped several types of linked XML docu-
ments to traditional databases; thus all XML up-
date languages such as Extended XQL �42� and
XML update extension �33� including update
languages �43, 2, 29� for native XML database
were designed to update an XML document
without joins between documents.

3. A Mechanism for Linking XML
Documents

In the case of �O�RDB, foreign keys and refer-
ence type are employed to represent inter-table
references; thus to model linked XML docu-
ments, the mechanism for linking XML docu-
ments can be translated into foreign keys. For
XML documents, XLinks �XML Linking Lan-
guage� �41� and XInclude �40� are mechanisms
for linking the documents together. However,
XLink and XInclude are not designed from a
database viewpoint; thus they do not provide
enough information for linking XML docu-
ments from a database point of view. Moreover,

XInclude �15� does not allow circular reference
�recursion�. The major purpose of XLink is to
link XML documents in the Web while the main
purpose of XInclude is to build a large XML
document out of smaller XML documents. In
our research, we propose a mechanism called
rlink whose purpose is to associate the relation-
ships between elements from different XML
documents so that this provides more conve-
nience for updating data across XML docu-
ments. The rlink provides information to iden-
tify the document and�or element to which a
link is made. Although this may be extended to
XLink, the main purposes of XLink and rlink
are different from each other and currently only
Mozilla and its derivatives such as Netscape
support XLink, but the support is incomplete
�16�; moreover, no XML query language sup-
ports XLink so we do not wish to make any
extension to it.

To associate the relationships between elements
fromdifferent documents, we propose two addi-
tional attributes, rlink:relationship and rlink:href.
The rlink:relationship indicates which docu-
ment and�or which element are involved in the
rlink mechanism whereas the rlink:href links
to the document and the element specified by
rlink:relationship. The ‘rlink’ is used as a
namespace.

The rlink mechanism will only serve the func-
tion of linking XML documents; thus elements
containing rlink mechanism must be EMPTY
and have no other attributes except rlink:rela-
tionship and rlink:href. In DTDs, the format of

<!ELEMENT Publications(Publication*)> <!ELEMENT Authors(Author*)>
<!ELEMENT Publication(Title, Year, Author+)> <!ELEMENT Authors(Name, Email?)>
<!ATTLIST Publication PubID ID #REQUIRED > <!ATTLIST Author AuthorID ID>
<!ELEMENT Title(#PCDATA)> <!ELEMENT Name(FName, LName)>
<!ELEMENT Year(#PCDATA)> <!ELEMENT FName(#PCDATA)>
<!ELEMENT Author EMPTY> <!ELEMENT LName(#PCDATA)>
<!ATTLIST Author rlink:href CDATA #REQUIRED <!ELEMENT Email(#PCDATA)>

rlink:relationship #FIXED “Authors.xml::Author” >

<Publications xmlns:rlink = “http://www.unn.ac.uk/rlink”> <Authors>
<Publication PubID = “P111”> <Author AuthorID = “A222”>
<Author rlink:href = “//Author[@AuthorID=‘A222’]”> <Email>... </Email>
</Author> ...

... </Author>
</Publication> ...
... </Authors >

</Publications>

Fig. 1. Publications.xml and Authors.xml.

228 Storing Linked XML Documents in Object-Relational DBMS

value assigned to rlink:relationship is Linked-
Document::LinkedElement and its property is
FIXED while the value type of rlink:href is
CDATA. In XML documents, the format of the
value assigned to rlink:href is an XPath clause
linking to the document and the element speci-
fied by rlink:relationship in the DTD.

To illustrate this, we will give an example of
using rlink:relationship and rlink:href in DTDs
and XML documents as follows:

Example 1: Suppose that there are two XML
documents: Publications.xml and Authors.xml
linked together by rlink as shown in Figure 1.

From the XML documents in Figure 1, the Au-
thor element in Publications.xml uses rlink:href
as an attribute to link information of Author
having AuthorID � A222 from Authors.xml
whereas rlink:relationship in part of DTD is
used to indicate which document and which el-
ement rlink:href will link to.

The recommendation for separating XML doc-
uments is as follows. C1 and C2 are complex
elements �elements consisting of sub-elements
or attributes� and value�E� is the value of ele-
ment where E is an element. If several C1 can
refer to the same value C2, the C2 should be
separated into another document.

For example, Publication and Author are com-
plex elements where several publications can
have the same author. Therefore Author is sep-
arated into another document. Another exam-
ple is that Author and Address �of author� are
complex elements as each author has a different
address; but here there is no need to separate
Address into another document. This principle
is only a recommendation. Users may or may
not separate a XML document into several doc-
uments. However, our mapping-rules support
both forms of documents.

Note: The attribute rlink:relationship used in
the DTD is applied to IDREF�s� to indicate the
involved elements.

4. Mapping Linked XML Documents
to ORDB

In this section, firstly we discuss the type of
recursion that can occur in DTD, secondly we
propose rules for mapping an XML document

to ORDB and finally we present additional rules
for mapping the rlink mechanism to ORDB. A
diagram for mapping XML structure and rlink
to ORDB is shown in Figure 2.

4.1. Forms of Recursion in DTD

In our research, mapping XML documents to
ORDB is based on DTD since DTD is more
compact than XML Schema; nonetheless, map-
ping XML documents based on XML Schema
will be our future work. Normally, there are two
forms of recursion in DTD. The first form of re-
cursion comes from a recursive structure: an
element contains its ancestor elements as child
elements. The second form of recursion stems
from IDREF�s�. As we propose the rlink mech-
anism, the third form of recursion results in the
case that two elements in two XML documents
refer to each other.

4.2. Rules for Mapping Structure of an XML
Document to ORDB

In our mapping rules, three features of object-
relational technology: abstract data type, ob-
ject table and nested tables, will be used. In
the rules, elements having type #PCDATA and
without attributes are called simple elements
whereas elements consisting of child-elements
or attributes are called complex elements.
1. Complex elements which do not correspond

to the rules 2-5 are converted to object ta-
bles.

2. Complex elements having only one com-
plex child-element are converted to object
tables and their complex child-elements are
converted to abstract data type fields.

3. Complex elements which have occurrence ?
or 1 �although there is no single symbol for
occurrence meaning one, from now on we
will use the symbol ‘1’ as canonical short
label�, have sibling and all children as sim-
ple elements and are converted to abstract
data type fields.

4. Complex elements being the root element
and having only several complex child-ele-
ments with occurrence * or� are converted
to nothing inORDBand their child elements
are converted to object tables.

Storing Linked XML Documents in Object-Relational DBMS 229

correspond to the rules 2-5

11. Parent-child relationship and

Child-element

Element

Element

Child-element

copied to table of referencing element
PK of table of referenced element is

referenced element
to keep PKs of referencing element and
of parent-element and child-element or
A separate table is created to keep PKs

copied to table of child-element
PK of table od parent-element is

and value
where they are, name of elements
referencing fields which refer to
A table is created with three fields:

Field

Nested table

Nothing

Abstract data type

Object table

�
��

���

�
�

��

�
�
�
�
�
�
�
��

�
�

�
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�

�

			

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
��

12. Recursive structure with occurence + or *

2. Occurence of elements containing rlink is + or *

Rule of mapping XML structure

having sibling, all children are simple elements,

6. Multi-valued simple elements

10. Elements with type ANY

14. An element referenced by IDREFs

13. An element referenced by IDREF

Rule of mapping rlink

1. Occurence of elements containing rlink is 1 or ?

1. Complex elements which do not

2. Elements having only one
complex child-element

have sibling and
have all children as simple elements

3. Elements with occurence ? or 1,

4. Element being the root element
and having only several complex
child-elements with occurence * or +

5. Elements with occurence * or +

all attributes have no type IDREF(s)
no reference to other elements
no reference from other elements to them
and no recursive structure

7. Simple elements, simple attributes,
ID attribute, optional simple elements,
and choice of simple elements

recursive structure with occurence ? or 1

Fig. 2. Mapping XML structure and rlink to ORDB.

5. Complex elements having occurrence * or
�, having siblings and complying with the
following conditions are converted to nested
tables:
� All children are simple elements and all

attributes have no type IDREF�s�.
� There is reference to other elements and

no reference from other elements to them.
� There is recursive structure: they must not

refer back to their ancestors.
This rule is to make sure that nested tables

do not have any reference since the refer-
ential integrity constraint cannot be defined
in nested tables; nevertheless, other con-
straints such as domain constraint and de-
fault constraint can be defined in nested ta-
bles.

6. Multi-valued simple elements are converted
to nested tables having one field.

7. Simple elements, simple attributes, ID at-
tribute, optional simple elements and choice
of simple elements are converted to fields.

230 Storing Linked XML Documents in Object-Relational DBMS

8. Optional complex elements and choice of
complex elements are converted to tables or
fields according to the rules 1-5.

9. For the choice of groups of elements where
some of elements in each group are the
same, duplicate elements are eliminated and
then rules 1-7 are applied.

10. For elements with type ANY, a separate ta-
ble is created with three fields: referencing
fields which refer to their position, name of
elements and value.

11. For parent-child relationship and recursive
structure with occurrence ? or 1, the pri-
mary key of the table of parent-element is
copied to the table of the child-element.

12. For recursive structure with occurrence� or
*, a separate table will be created to hold the
relationship of recursive structure by stor-
ing the primary keys of tables of a parent-
element and a child-element.

13. For an element referenced by IDREF, the
primary key of the table of a referenced el-
ement is copied to the table of a referencing
element.

14. For an element referenced by IDREFs, a
separate table will be created to keep the
primary keys of tables of a referencing ele-
ment and a referenced element.

4.3. Additional Rules for Mapping the Rlink
Mechanism to ORDB

The relationship between XML documents is
similar to the relationship specified by IDREF�s�
in the same document; thus their mapping rules
are similar too.
1. If the occurrence of elements containing

rlink is 1 or ?, the primary key of the ta-
ble of a referenced-element is added to the
table of a referencing element.

2. If the occurrence of elements containing
rlink is� or *, a separate tablewill be created
to keep relationship between XML docu-
ments; thus the separate table consists of the
primary keys of the table of a referencing-
element and a referenced-element.

3. For recursive structure: rlink of elements in
a referenced document refers to elements in
a referencing document, it is considered in
the same way as rules 1–2.

5. Mapping XML Constraints to ORDB
Constraints

In this part, we firstly describe the types of
constraints in �O�RDB. Secondly, we present
the rules for mapping constraints in an XML
document to constraints in ORDB. Thirdly, we
propose supplementary rules for mapping con-
straints which stem from the rlink mechanism
to constraints in ORDB. Finally, we determine
how to preserve cardinality constraints when
update operations are performed. A diagram for
mapping XML constraints and rlink constraints
to ORDB constraints is shown in Figure 3.

5.1. Type of Constraints in (O)RDB

The constraints in �O�RDB from a data-oriented
viewpoint can be categorized into three types
�37� as follows:
1. Row constraints: these constraints are re-

lated to exactly one table and can be evalu-
ated independently for each row in that table.
Constraints in this type include check �null
value� constraint, domain constraint and de-
fault value constraint.

2. Table constraints: evaluating these constraints
is associated with at least two rows in the
same table. Examples of these constraints
include primary key constraint, unique con-
straint and cardinality constraint.

3. Inter-table constraints: these constraints in-
volve rows from at least two tables. An ex-
ample of this constraint type is foreign key
constraint �referential integrity constraint�
including cascade rules.

Note: We have not found that the cardinality
constraint is available in any �object-�relational
products.

5.2. Rules for Mapping Constraints of an
XML Document to ORDB

Since certain constraints in DTD are easily rec-
ognized, some of proposed rules are the same
as some of the rules proposed in other work
�22, 39, 21�. However, our work can extract
more constraints in DTD than in previous work
and some of our rules are different from the rules
proposed in the previous work; in particular, no

Storing Linked XML Documents in Object-Relational DBMS 231

is 1 or ?
2. Occurence of elements containing rlink

is + or *
1. Occurence of elements containing rlink

with occurence ? or *
2. #IMPLIED attributes and simple element

with occurence 1 or +
1. #REQUIRED attributes and simple element

element is converted to table
1. ID of an element in the case that the

element is not converted to table
2. ID of an element in the case that the

Table constraints

by recursive structure with occurence * or +
4. Referencing from descendants to ancestors

refer to each other by IDREFs
7. Elements (siblings or relatives)

to descendants by IDREFs
6. Referencing from ancestors

ancestors by IDREFs
5. Referencing from descendants to

is added to table of referencing element as FK
A referencing field (PK of referenced element)

defined with delete cascade
FK derived from referencing element is
element are set as combine key and FKs.
tables of referencing element and referenced
Fields of separate table derived from PKs of

delete cascade
element are set as PKs and FKs with
tables of referencing element and referenced
Fields of separate table derived from PKs of

with delete cascade
child-element table is set as FK
PK of parent-element table copied to

Unique constraint

PK constraint

Domain constraint

Default value constraint

Default null constraint

Not null

Constraints derived from rlink

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

Row constraints

3. Default value

4. Choice of attribute values

Inter table constraints

1-2. Parent-child relationship

by recursive structure with occurence ? or 1
3. Referencing from descendants to ancestors

5. Referencing from descendants to
ancestors by IDREF

6. Referencing from ancestors
to descendants by IDREF

7. Elements (siblings or relatives)
refer to each other by IDREF

Fig. 3. Mapping XML constraints and rlink constraints to ORDB constraints.

work has proposed preserving the cardinality
constraint when updates are performed. In this
section, we will organize constraints in DTD
according to constraint types found in �O�RDB
as follows.

Row constraints:
1. #REQUIRED attributes and simple element

with occurrence 1 or � are converted to the
not null constraint.

2. #IMPLIED attributes and simple element
with occurrence ? or * have default null
constraint

3. Default value is translated into default value
constraint.

4. Choice of attribute values is converted to do-
main constraints.

5. For a choice of elements such as <!ELE-
MENT e �s1 | s2�>, meaning can have either

232 Storing Linked XML Documents in Object-Relational DBMS

s1 or s2 but not both simultaneously, then the
constraint will be:

Check ��s1 is not null AND s2 is null� OR
�s1 is null AND s2 is not null��

In translating <!ELEMENT e �s1 |...| sn�>,
the constraint will become:

Check��s1 is not null AND s2 is null AND ...
AND sn is null� OR ... OR �s1 is null AND
s2 is null AND ... AND sn is not null��

6. For a choice of groups of elements, that some
of the elements in each group are the same
but their constraints may be different, are
converted with the following rules.
Firstly, every element� or element in each
group is converted to “AND element is not
null". Secondly, every element* or ele-
ment? in each group is converted to nothing.
Thirdly, the OR operation is performed on
every group. Finally, if there are some ele-
ments in one group which do not appear in
other groups, the “AND these elements are
null" is added to the groups for which these
elements do not appear. For example:

�name, telephone��|�name, telephone*,
email�
Constraints will be:

Check ��name is not null AND telephone is
not null AND email is null�OR �name is not
null AND email is not null��

Table constraints:
1. ID of an element is converted to primary

key constraint in the case that the element
is converted to an object table or a nested
table; otherwise ID is defined with unique
constraint.

2. Occurrence for complex elements converted
to tables should be converted to the cardinal-
ity constraint; however no �object-�relational
technology provides this constraint; hence
this constraint will be checked with rules for
preserving the cardinality constraint in Sec-
tion 5.4.

Inter-table constraints:
1. Parent-child relationship �1 to many rela-

tionship�
2. Parent-child relationship �1 to 1 relation-

ship�

3. Referencing from descendants to ancestors
by recursive structure with occurrence ? or
1

4. Referencing from descendants to ancestors
by recursive structure with occurrence * or
�

5. Referencing from descendants to ancestors
by IDREFs or IDREF �Recursive�

6. Referencing from ancestors to descendants
by IDREFs or IDREF

7. Elements �siblings or relatives� refer to each
other by IDREFs or IDREF

From parent-child relationship and recursive
structure with occurrence ? or 1 �1-3�, the pri-
mary key of parent-element table is copied to
the child-element table as a foreign key con-
straint and a delete cascade is defined on this
constraint.

From referencing by IDREFs and recursive struc-
ture with occurrence * or � �4-7�, a new sep-
arate table will be created to hold relationships
of references. This separate table consists of
fields derived from the primary keys of tables
of a referencing element and a referenced ele-
ment. These fields are set as a combined key
and foreign keys for this table. The foreign key
derived from a referencing element is defined
with the delete cascade. In the case of referenc-
ing by IDREFs �5-7�, the foreign key derived
from a referenced element is defined without
a delete cascade whereas in the case of recur-
sive structure �4�, the foreign key derived from
a referenced element is defined with a delete
cascade.

From referencing �5-7� by IDREF, a referenc-
ing field �same as primary key of the table of
referenced element� is added to the table of a
referencing element as a foreign key without a
delete cascade to point to the primary key of a
referenced element.

Not null is defined on a foreign key in the case
that occurrence is 1 or IDREF is declared with
#REQUIRED.

Note: For a table without a primary key, the
RowID automatically created in an object table
will be used as the primary key.

Storing Linked XML Documents in Object-Relational DBMS 233

5.3. Additional Rules for Mapping Constraints
Derived from Rlink Mechanism

The supplementary constraint rules for mapping
rlink mechanism are similar to the constraint
rules of IDREF�s�. The rules are as follows.
1. In the case that the occurrence of elements

containing rlink is 1 or ?, the primary key
of the table of a referenced element will be
held in the table of a referencing element as
a foreign key without a delete cascade.

2. In the case that the occurrence of elements
containing rlink is * or �, a separate table
is created consisting of two fields derived
from keys of tables of referencing element
and referenced elements. These two fields
are set as a combined key and foreign keys
but only the foreign key derived from the ta-
ble of a referencing element is defined with
a delete cascade whereas the foreign key de-
rived from the table of a referenced element
is defined without a delete cascade.

3. For a recursive structure, constraints are con-
sidered in the same way as rules 1, 2 and 4.

4. Not null is defined on a foreign key in the
case that the occurrence of elements contain-
ing rlink is 1.

5.4. Rules for Preserving Cardinality
Constraints when Updates are
Performed

In this section, we will describe how the car-
dinality constraint is preserved when updates
are performed since, nowadays, no �object-�re-
lational DBMS can handle the cardinality con-
straint; hence a particular method is needed to
manage it. Updating affects the relationship be-
tween elements; thuswe preserve this constraint
according to the type of relationship in the XML
documents as follows:
1. Parent-child relationship �1 tomany relation-

ship�
In the case that the child is a complex ele-
ment converted to a nested table or the child
is a complex element and has no sibling; then
the child is converted to an abstract data type
field and the parent element is converted to
an object table containing only one abstract
data type field.

Delete child elements converted to abstract
data type fields in case of occurrence +
Cardinality constraint will be checked as fol-
lows:
Select count �*� as count1
From parent-element table;
Select count �*� as count2
From parent-element table
Where delete-conditions;

If �count2� count1� >� 0 then
Do not allow deletion
End If

Delete child elements converted to a nested
tables in case of occurrence +
Cardinality constraint will be checked as
follows:
Select count �*� as count1
From child-element table
Where PK�of parent-element table� � $PK;

Select count �*� as count2
From child-element table
Where PK�of parent-element table� � $PK
And delete-conditions;

If �count2- count1� >� 0 then
Do not allow deletion
End If

Delete child elements in the case of occur-
rence *
No need to be checked.
Insert children in case of occurrence + or *
Cardinality constraint is not needed to be
checked since any number of children is al-
lowed when inserting

2. Parent-child relationship �1 to 1 relationship�
In the case that the child is a complex ele-
ment and has no sibling; then the child is
converted to an abstract data type field �and
the parent element is converted to an object
table containing only one abstract data type
field�.
Delete child elements in the case of occur-
rence 1
Do not allow deletion.
Delete child elements in the case of occur-
rence ?
Insert children in case of occurrence 1 or ?
Cardinality constraint is checked as follows:
Select count�*� as count1
From parent-element table;

IF count1 > 0 then
Do not allow insertion
End If

234 Storing Linked XML Documents in Object-Relational DBMS

3. Parent-child relationship �1 to many rela-
tionship� including recursive structure with
occurrence * or �
In the case that the parent and child are com-
plex elements, the child is converted to an
object table. In the case of recursive struc-
ture, a separate table is created to hold the re-
lationship between the referencing �parent-
element� and referenced elements �child-
element�.
Delete child elements in case of parent-child
relationship with occurrence +
Cardinality constraint will be checked as
follows:
Select count �*� as count1
From child-element table
Where FK �PK of parent-element table� � $FK;

Select count �*� as count2
From child-element table
Where FK � $FK
And delete-conditions;

If �count2- count1� >� 0 then
Do not allow deletion
End If

Delete child elements in case of recursive
structure with occurrence +
Cardinality constraint will be checked as
follows:
Select count �*� as count1
From separate table
Where PK1 �PK of parent-element table� � $PK;

Select count �*� as count2
From separate table S, child-element table C
Where S.PK1 � $PK And S.PK2 � C.PK
And delete-conditions;

If �count2- count1� >� 0 then
Do not allow deletion
End If

Delete child elements in case of occurrence *
No need to be checked.
Insert children in the case of occurrence +
or *
No need to be checked.

4. Parent-child relationship �1 to 1 relationship�
In the case that the parent and child are com-
plex elements, the child is converted to an
object table.
Delete child elements in case of occurrence 1
Do not allow deletion
Delete child elements in case of occurrence ?
No need to be checked.

Insert children in case of occurrence 1 or ?
Cardinality constraint is checked as follows:

Select count�*� as count1
From child-element table
Where FK �PK of parent-element table� � $FK;

IF count1 > 0 then
Do not allow insertion
End If

5. Referencing from descendants to ancestors
by IDREFs �Recursive�

6. Referencing from ancestors to descendants
by IDREFs

7. Elements �siblings or relatives� referring to
each other by IDREFs

8. Referencing between XML documents by
using rlink mechanismwhere the occurrence
of an element containing rlink is � or *
For cases 5-8 above, in the case of referenc-
ing by IDREFs or by the rlink mechanism
where the occurrence of an element contain-
ing rlink is � or *, a separate table is created
to hold the relationship between the refer-
encing and referenced elements.
Delete values in #REQUIRED IDREFs or
delete elements containing rlink where oc-
currence of the elements is +
Cardinality constraint will be checked as
follows:
Select count �*� as count1
From separate table
Where PK1 � $PK1;
Select count �*� as count2
From separate table
Where PK1 � $PK1
And PK2 � �$PK derived from delete-conditions�;

If �count2-count1� >� 0 then
Do not allow deletion
End If

Delete values in #IMPLIED IDREFs or delete
elements containing rlink where occurrence
of the elements is *
No need to be checked.
Insert values to IDREFs or insert rlink
No need to be checked.

6. Preserving Order of XML Elements

When ordered XML documents are shredded
into tables, ordering in tables has two dimen-

Storing Linked XML Documents in Object-Relational DBMS 235

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
��

�
��

�
�

�
�

�
��

�
��

�
�

�

�
�

�
��� 					�

1

21

1

1

1

1

1

1

1

1
2

2

2

2

2

3

New node
Node that requires

renumbering

Fig. 4. Local Order Method.

John
04 �

��
�

Joey
03

Ken
02

02
Peter
01

04
John

02
Peter
01

01
Peter

02
� � �

��
02
Ken

03
Joey

		
		

��

� � �
��

New row

02 03

03

03

02
Ken

03
Joey

RowID RowOrderAuthor

01

02

03

04

Peter

Ken

Joey

John

04

03

02

null

null

02

03

Joey

Ken

Peter

03

02

01

Author RowOrderRowID

Fig. 5. Linked List Order Method.

sions: column ordering and row ordering. For
columns, they are automatically ordered when
tables are created and this order will never be
changed. For row ordering, at the first time of
loading data into tables, data can be loaded in
sequence but when delete or insert operation is
performed, it is necessary to reorder the data.

There is a proposal �34� for reordering XML
data held in relational database. The researchers
of this proposal demonstrated that Local Order
method performs best on updates since only sib-
lings following the new node need to be renum-
bered as shown in Figure 4.

However, this method can yield low perfor-
mance if the new node has numerous siblings
as many siblings must be renumbered. For our
method, rows are considered as a linked list.
This means that each row will hold the RowID
�automatically generated� of the next row in
sequence; thus this method can guarantee that
when the insert or delete operation is performed,
no more than two rows are affected, as shown

in Figure 5. From the figure, when we insert a
new author ‘John’ after author ‘Peter’, this can
be performed by copying RowOrder of ‘Peter’
to RowOrder of ‘John’ and copying RowID of
‘John’ to RowOrder of ‘Peter’.

7. A Case Study for Mapping Linked XML
Documents

To elucidate, we will demonstrate how to map
linked XML documents to ORDB. We suppose
that three XML documents, Publications.xml,
Authors.xml and References.xml, are linked to-
gether by two attributes: rlink:relationship and
rlink:href, as shown in Figure 6. To gain more
understanding, Schema Graph of DTDs in Fig-
ure 7 and the result tables in Figure 8 should be
considered along with the description below.

Firstly, Publications has only one complex child
element: Publication; thus Publications is con-
verted to an object table and Publication is con-

236 Storing Linked XML Documents in Object-Relational DBMS

<!ELEMENT Publications(Publication*)> <!ELEMENT Authors(Author*)>
<!ELEMENT Publication(Title, Author+, Year, Reference?)> <!ELEMENT Author(Name, Email?,Telephone*)>
<!ATTLIST Publication PubID ID #REQUIRED > <!ATTLIST Author AuthorID ID #REQUIRED>
<!ATTLIST Publication PubType (book|article|journal) “book”> <!ELEMENT Name (FName, MName?, LName)>
<!ELEMENT Title (#PCDATA)> <!ELEMENT FName (#PCDATA)>
<!ELEMENT Author EMPTY> <!ELEMENT MName (#PCDATA)>
<!ATTLIST Author rlink:href CDATA #REQUIRED <!ELEMENT LName (#PCDATA)>

rlink:relationship CDATA #FIXED “Authors.xml::Author”> <!ELEMENT Email (#PCDATA)>
<!ELEMENT Year (#PCDATA)> <!ELEMENT Telephone (Location, TelNo)>
<!ELEMENT Reference EMPTY> <!ELEMENT Location (#PCDATA)>
<!ATTLIST Reference rlink:href CDATA #REQUIRED <!ELEMENT TelNo (#PCDATA)>

rlink:relationship CDATA #FIXED “References.xml::Reference”>

<Publications xmlns:rlink=“http://www.unn.ac.uk/rlink”> <Authors>
<Publication PubID = “P111”> <Author AuthorID = “A111”>

... <Name>
<Author rlink:href = “//Author[@AuthorID = ‘A111’]”> <FName>John</FNAme>
</Author> <LName>Smith</LName>
<Reference rlink:href = “//Reference[@RefID = ‘R111’]”> </Name>
</Reference> ...

</Publication> </Author>
... ...
</Publications> </Authors>

<!ELEMENT References (Reference*)>
<!ELEMENT Reference(Publication+)>
<!ATTLIST Reference RefID ID #REQUIRED>
<!ATTLIST Reference RefType (References |Bibliography |Miscelleneuos) “References”>
<!ELEMENT Publication EMPTY>
<!ATTLIST Publication rlink:href CDATA #REQUIRED

rlink:relationship CDATA #FIXED “Publicastions.xml::Publication”>

<References xmlns:rlink=“http://www.unn.ac.uk/rlink”>
<Reference RefID = “R111” RefType = “Miscelleneous”>
<Publication rlink:href = “//Publication[@PubID = ‘P222’]”></Publication>
<Publication rlink:href = “//Publication[@PubID = ‘P333’]”></Publication>
</Reference>
...
</References>

Fig. 6. Three linked XML documents.

�
��

..

�
�

�
�

�

�������

�

�����������������

�

�

������
�

��

...

�����

������
�

�
�

�
�

��

�
�

��

�
�

��

FName MName? Location TelNoLName

(References|Bibliography|Miscelleneous)

Publication+@RefID @RefType

“References”

Publications

Publication*

@PubID Title Year

@PubType Author+
(book|article|journal)

Authors

Author*

“book”

Reference?

Reference

Reference*

@AuthorID Name Email? Telephone*

Fig. 7. Schema Graph of DTDs.

Storing Linked XML Documents in Object-Relational DBMS 237

Author

AuthorID Name
FName MName LName

Email
Telephone

Location TelNo

Publications

Publication
PubTypePubID Title Year RefID

PubIDRefID

ReferencePublication

RefTypeRefID
Reference
References

AuthorIDPubID

PublicationAuthor

Authors

Fig. 8. Tables derived from mapping rules.

verted to an abstract data type field �Structure
mapping Rule 1�. Publication has attributes:
PubID, PubType and simple elements: Title,
Year; these four are converted to simple fileds
�StructuremappingRule 5�. For the constraints,
Title and Year have occurrence 1; thus not null
is applied �row constraint mapping rule 1� and
table constraint mapping rule 1 is applied to Pu-
bID as a primary key. PubType has a choice of
attribute values and a default value; so domain
and default value constraints are applied �row
constraint mapping rules 3–4�. For Publica-
tion*, rules for preserving cardinality constraint
are applied when updates are performed.

Secondly, the complex child elements of Publi-
cation: Author and Reference whose attributes
are rlink are handled as follow:
� Since the occurrence of Author is �, a sep-

arate table is created. This table consists of
the primary keys of Publication and Author
set as a combined key and foreign keys. Pu-
bID is defined with a delete cascade �struc-
ture mapping rule 2 and constraint mapping
rule 2 of rlink are applied�.

� Since the occurrence of Reference is ?, the
primary key of Reference is added to Publi-
cation and is set as a foreign key �structure

mapping rule 1 and constraint mapping rule
1 of rlink are applied�.

Thirdly, Authors has only one complex child
element: Author; thus Authors is converted to
an object table and Author is converted to an ab-
stract data type field �Structure mapping Rule
1�. Author consists of attribute: AuthorID and
simple element: Email; so these two are con-
verted to simple fields �Structure mapping Rule
5�. Name has a sibling, occurrence 1, and all
children are simple elements; thus Name is con-
verted to an abstract data type field �Structure
mapping Rule 3�. Telephone has a sibling, oc-
currence *, and all children are simple elements
and there is no reference; hence Telephone is
converted to a nested table �Structure mapping
Rule 2�.

For the constraints, AuthorID is set as a pri-
mary key �table constraint mapping rule 1�,
Name, FName, LName, Location and TelNo
have occurrence 1; thus not null is applied �row
constraint mapping rule 1�. For Author* and
Telephone*, rules for preserving the cardinality
constraints are applied.

Finally, References has only one complex child
element: Reference; so References is converted
to an object table and Reference is converted

238 Storing Linked XML Documents in Object-Relational DBMS

to an abstract data type field �Structure map-
ping Rule 1�. Reference has attributes: RefID,
RefType and an element: Publication with oc-
currence � whose attribute is rlink referencing
back to the Publication element in the document
which cites it; thus RefID and RefType are con-
verted to simple fields �Structure mapping Rule
5� and not null is applied �row constraint map-
ping rule 1�. RefType has a default value and a
choice of attribute values; so the row constraint
mapping rules 3-4 are applied and RefID is set
as a primary key �table constraint mapping rule
1�. Publication contains a recursive rlink; hence
a separate table is created and this separate table
consists of the primary keys of Reference and
Publication set as a combined key and foreign
keys. The foreign key derived from Reference
is defined with a delete cascade �structure map-

ping rule 3 and constraint mapping rule 3 of
rlink are applied�. For Reference*, rules for
preserving cardinality constraint are applied.

We create a schema derived from our rules in
Oracle9i �24� and assume that the length of fields
which are primary keys and foreign keys is 15
characters whereas the length of other fields is
30 characters. The schema generated in Ora-
cle9i by using our rules is shown in Figure 9.

Mapping linked XML documents makes it eas-
ier to perform joins between XML documents
and to update several linked XML documents in
an update command; for example, from Figure
6, ifwewant to update title and author’s email of
publication having PubID � ‘P111’ and author
having FName � ‘John’, an update command
may be

Create Type TPublication as object Create Table Authors of TAuthors(
(PubID varchar2(15), Primary key (Author.AuthorID),
PubType varchar2(30), Check (Author.Name is not null),
Title varchar2(30), Check (Author.Name.FName is not null
Year varchar2(30), and Author.Name.LName is not null)
RefID varchar2(15))
); nested table Author.Telephone STORE AS

Telephone TAB(
Create Type TPublications as object((CHECK (Location is not null),
Publication TPublication CHECK (TelNo is not null))
););

Create Table Publications of TPublications(Create Table PublicationAuthor(
Primary key (Publication.PubID), PubID varchar2(15) references
Publication DEFAULT Publications(Publication.PubID) on delete cascade,
TPublication(null, ‘book’, null, null, null), AuthorID varchar2(15) references
CHECK (Publication.PubType IN Authors(Author.AuthorID),
(‘book’, ‘article’, ‘journal’)), Primary key(PubID, AuthorID)
CHECK (Publication.Title is not null and);
Publication.Year is not null),
Foreign Key(Publication.RefID) references Create Type TReference as object(
References(Reference.RefID) RefID varchar2(15),
); RefType varchar2(30)

);
Create Type TName as object(
FName varchar2(30), Create Type TReferences as object(
MName varchar2(30), Reference TReference
LName varchar2(30));
);

Create Table References of TReferences (
Create Type TTelephone as object(Primary key(Reference.RefID),
Location varchar2(30), Check(Reference.RefType is not null),
TelNo varchar2 (30) Reference DEFAULT TReference
); (null, ‘References’),

CHECK(Reference.RefType IN
Create Type NTTelephone as table of TTelephone; (‘References’,‘Bibliography’,‘Miscelleneous’))

);
Create Type TAuthor as object(
AuthorID varchar2(15), /*To keep relationship of rlink recursion*/
Name TName, Create Table ReferencePublication (
Email varchar2(30), RefID varchar2(15) references References
Telephone NTTelephone (Reference.RefID) on delete cascade,
); PubID varchar2(15) references

Publications (Publication.PubID),
Create Type TAuthors as object (Primary key (RefID, PubID)
Author TAuthor);
);

Fig. 9. Schema generated in Oracle 9i.

Storing Linked XML Documents in Object-Relational DBMS 239

For $p in doc�“Publications.xml"���Publication,
$a in $p�Author� doc�“Authors.xml"���Author
Where $p@PubID � “P111"
Replace $p�Title with <Title>Java2<�Title>,
Replace $a�Email with <Email>au@Hill.com <�Email>
Where $a�Name�FName�“John"

The above update language can be translated
into SQL as follows:
Update Authors A
Set A.Author.Email � ‘au@Hill.com’
Where A.Author.AuthorID in
�Select A.Author.AuthorID
From Authors A, PublicationAuthor PA
Where PA.PubID � ‘P111’
And PA.AuthorID � A.Author.AuthorID
And A.Author.Name.FName � ‘John’�;

Update Publications P
Set P.Publication.Title � ‘Java2’
Where P.Publication.PubID � ‘P111’;

8. Conclusion and Further Work

For the time being, work converting both struc-
ture and constraints of XML to ORDB cannot
be conducted readily because of limited con-
straints in available object-relational DBMSs.
Oracle supports nested tables but the referential
integrity constraint cannot be defined on them.
Informix supports Set, List and Row types but
some constraints such as default constraint and
domain constraint cannot be defined on Set, List
and fields of Row type while PostgreSQL only
supports arrays and constraints cannot be de-
fined on individual elements of an array.

In our work, we map both structure and con-
straints of XML to ORDB with awareness of
practicability in available technologies. How-
everweuse nested tables instead of set�list since
most constraints can be defined on nested-tables
except the referential integrity constraint. Usu-
ally, data in XML documents are stored redun-
dantly. We therefore propose an alternative way
for keeping non-redundant data in several sep-
arate documents. This involves a mechanism
called ‘rlink’ to link data in the separate doc-
uments together and additional rules for map-
ping the ‘rlink’ mechanism to ORDB. Finally,
we create the object-relational schemawith con-
straints derived from our mapping rules in Or-
acle9i. Our contribution is that we find that
mapping linked XML documents makes it eas-
ier to perform joins between XML documents

and to update several linked XML documents in
one update command as discussed in Section 7.

In further work, we will make an extension to
XQuery for updating �linked� XML documents
and then we will translate it into SQL. The trans-
lation will include linear and non-linear recur-
sive update commands and a mechanism will be
proposed for propagating the change in ORDB
to the XML documents. We will also conduct
a performance comparison between updating
one XML document containing redundant data
and updating linked XML documents contain-
ing non-redundant data. This work is currently
under development.

References

�1� S. ABITEBOUL, Querying Semi-Structured Data.
The International Conference on Database Theory,
Delphi, Greece, �1997�, pp. 1–18.

�2� S. ABITEBOUL, D. QUASS, J. MCHUGE, J. WIDOM
AND J.L. WINER, The Lorel query language for
semistructured data. Proceedings of International
Journal on Digital Libraries, �1997�, pp. 68–88.

�3� M. Arenas and L. Libkin, A Normal Form for XML
Documents. Proceedings of the 21th Symposium on
Principles of Database Systems (PODS), �2002�,
pp. 85–96.

�4� M. CAREY, D. FLORESCU, Z. IVES, Y. LU, J. SHAN-
MUGASUNDARAM, E. SHEKITA AND S. SUBRAMA-
NIAN, XPERANTO: Publishing Object-relational
Data as XML. WebDB, Dallas, Texas, USA, �2000�,
pp. 105–110.

�5� R.G.G. CATTELL AND D.K. BARRY, The Object Data
Standard: ODMG 3.0. Morgan Kaufmann Publish-
ers, �2000�.

�6� S. CERI, S. COMAI, E. DAMIANI, P. FRATERNALI, S.
PARABOSCHI AND L. TANCA, XML-GL: a Graphical
Language for Querying and Restructuring WWW
Data. Computer Networks: The International Jour-
nal of Computer and Telecommunications Network-
ing, 31 �1999�, pp. 1171–1187.

�7� D. CHAMBERLIN, XQuery: An XML query lan-
guage. IBM SYSTEMS JOURNAL, 41 �2002�, pp.
597–615.

�8� D. CHAMBERLIN, J. ROBIE AND D. FLORESCU, Quilt:
An XML Query Language for Heterogeneous Data
Sources. Int’l Workshop on the Web and Databases
(WebDB), Dallas, TX, �2000�.

�9� Y. CHEN, S. DAVIDSON, C. HARA AND Y. ZHENG,
RRXS: Redundancy reducing XML storage in re-
lations. Proceedings of the 29th VLDB Conference,
Berlin, Germany, �2003�.

240 Storing Linked XML Documents in Object-Relational DBMS

�10� A. DEUTSCH, M. FERNANDEZ AND D. SUCIU, Stor-
ing Semistructured Data with STORED. SIGMOD
Conference, Pennsylvania, United States, �1999�,
pp. 431–442.

�11� M. FERNANDEZ, Y. KADIYSKA, D. SUCIU, A. MOR-
ISHIMA AND W. TAN, SilkRoute: A Framework for
Publishing Relational Data in XML. ACM Transac-
tions on Database Systems �2002�, pp. 1–55.

�12� D. FLORESCU AND D. KOSSMANN, �1999� A Perfor-
mance Evaluation of Alternative Mapping Schemes
for Storing XML Data in a Relational Database.
Rapport de Recherche No. 3684.

�13� D. FLORESCU AND D. KOSSMANN, Storing and
Querying XML Data using an RDBMS. IEEE Data
Engineering Bullentin, 22 �1999�, pp. 27–34.

�14� W. HAN, K. LEE AND B.S. LEE, An XML Stor-
age System for Object-Oriented�Object-Relational
DBMSs. Journal of Object Technology, 2 �2003�,
pp. 113–126.

�15� E.R. HAROLD, XInclude. XML 1.1 Bible. Wiley
Publishing, Inc., �2004�, pp. 657.

�16� E.R. HAROLD, XLinks. XML 1.1 Bible. Wiley Pub-
lishing, Inc., �2004�, pp. 580.

�17� IBM. and Informix.: http���www�����ibm�com�
software�data�informix�pubs� ��library�
datablade�dbdk�start�htm� 2004.

�18� L. KHAN, Q. CHEN AND Y. RAO, A Comparative
Study of Storing XML Data in Relational and
Object-Relational Database Management Systems.
Proc. of International Conference on Internet Com-
puting, Las Vegas, Nevada, �2002�, pp. 277–282.

�19� L. KHAN AND Y. RAO, A Performance Evaluation
of Storing XML Data in Relational Database Man-
agement Systems. ACM �2001�.

�20� M. KLETTKE AND H. MEYER, Managing XML Doc-
uments in object-relational databases. Computer
Science Department, University of Rostock, Ros-
tock, Germany, �1999�.

�21� D. LEE AND W.W. CHU, Constraints-Preserving
Transformation from XML Document Type Def-
inition to Relational Schema. 19th International
Conference on Conceptual Modeling, Salt Lake
City, Utah, USA., �2000�, pp. 323–338.

�22� D. LEE AND W.W. CHU,CPI: Constraints-Preserving
Inlining Algorithm for Mapping XML DTD to Re-
lational Schema. Data & Knowledge Engineering,
39 �2001�, pp. 3–25.

�23� Y. MO AND L.T. WANG, Storing and Maintain-
ing Semistructured Data Efficiently in an Object-
Relational Database. The Third International Con-
ference on Web Information Systems Engineering,
Singapore, �2002�, pp. 247–256.

�24� Oracle: http���otn�oracle�com�
documentation�index�html� 2004.

�25� PostgreSQL: http���www�postgresql�org�
2005.

�26� J.W. RAHAYU, E. PARDEDE AND D. TANIAR, On
Using Collection for Aggregation and Association
Relationships in XML Object-Relational Storage.
ACM Symposium on Applied Computing, Nicosia,
Cyprus, �2004�.

�27� K. RUNAPONGSA AND J.M. PATEL, Storing and
Querying XML Data in Object-Relational DBMSs.
EDBT Workshops. Publisher: Springer-Verlag Hei-
delberg, 2490 � 2002 �2002�, pp. 266–285.

�28� J. SENG, Y. LIN, J. WANG AND J. YU, An analytic
study of XML database techniques. Industrial Man-
agement & Data Systems, 103 �2003�, pp. 111–120.

�29� B. SHAMKANTE AND S. NAVATHE, A Proposal for an
XML Data Definition and Manipulation Language.
VLDB Conference, Hongkong, �2002�.

�30� J. SHANMUGASUNDARAM, E. SCHEKITA, R. BARR,
M. CAREY, B.G. LINDSAY, H. PIRAHESH AND B.
REINWALD, Efficiently publishing relational data as
XML documents. Proceedings of the Conference on
Very Large Data Bases, �2000�.

�31� J. SHANMUGASUNDARAM, K. TUFTE, G. HE, C.
ZHANG, D. DEWITT AND J. NAUGHTON, Relational
Databases for Querying XML Documents: Limi-
tations and Opportunities. Proceedings of the 25th
VLDB Conference, Edinburgh, Scotland, �1999�,
pp. 302–314.

�32� T. SHIMURA, M. YOSHIKAWA AND S. UEMURA, Stor-
age and Retrieval of XML Documents Using
Object-Relational Databases. IPSJ Transactions on
Databases Abstract, 40 �2001�.

�33� I. TATARINOV, Z. IVES, A.Y. HALEVY AND D.S.
WELD, Updating XML. Proceedings of 2001 SIG-
MOD Conference, Santa Barbara, CA, USA.,
�2001�, p. 413-424.

�34� I. TATARINOV, S.D. VIGLAS, K. BEYER, J. SHANMU-
GASUNDARAM, E. SHEKITA AND C. ZHANG, Storing
and Querying Ordered XML Using a Relational
Database System. Proceedings of the 2002 ACM
SIGMOD international conference on Management
of data, Madison, Wisconsin, �2002�, pp. 204–215.

�35� F. TIAN, D. DEWITT, J. CHEN AND C. ZHANG, The
Design and Performance Evaluation of Alterna-
tive XML Storage Strategies. SIGMOD Record, 31
�2002�.

�36� F.S.C. TSENG AND W. HWUNG, An automatic
load�extract scheme for XML documents through
object-relational ropositories. The Journal of Sys-
tems and Software, 64 �2002�, pp. 207–218.

�37� C. TURKER AND M. GERTZ, Semantic integrity sup-
port in SQL:1999 and commercial �object-�re-
lational management systems. The VLDB Journal,
10 �2001�, pp. 241–269.

�38� UniSQL�X: UniSQL�X User’s Manual Vol I.
2004: http���dev�unisql�com�dev�manuals�
manuals�htm�

Storing Linked XML Documents in Object-Relational DBMS 241

�39� I. VARLAMIS AND M. VAZIRGIANNIS, Bridging
XML-Schema and relational databases. A system
for generating andmanipulating relational databases
using valid documents. ACM Symposium on Docu-
ment Engineering �2001�, pp. 105–114.

�40� W3C: XML Inclusions �XInclude� Version 1.0.
Candidate Recommendation. 2004: http���www�
w��org�TR�	��
�CR�xinclude�	��
�
����

�41� W3C: XML Linking Language �XLink� Version
1.0. Recommendation. 2001: http���www�w��
org�TR�xlink�

�42� R.K. WONG, The Extended XQL for Querying and
Updating Large XML Databases. ACM Symposium
on Document Engineering, �2001�, pp. 95–104.

�43� XMLDB: XUpdate. 2002: http���www�xmldb�
org�xupdate�xupdate�wd�html�

Received: October, 2004
Revised: May, 2005

Accepted: September, 2005

Contact address:

Pensri Amornsinlaphachai
School of Computing, Engineering & Information Sciences

Northumbria University
Pandon Building �Room 113�, Camden Street,

Newcastle upon tyne, NE2 1XE, UK.
e-mail: pensri�amornsinlaphachai�unn�ac�uk

PENSRI AMORNSINLAPHACHAI is a Ph.D. student at School of Com-
puting, Engineering & Information Sciences, Northumbria University,
Newcastle, UK. She received her MSc. with Distinction in 2001 and the
reward Sun Certified Programmer For THE JAVA 2 in 2002.

DR. NICK ROSSITER is a reader at School of Computing, Engineering
and Information Sciences, Northumbria University, Newcastle, UK. He
is interested in interoperability of information systems.

DR. M. AKHTAR ALI is a senior lecturer at School of Computing, Engi-
neering and Information Sciences, Northumbria University, Newcastle,
UK. In 2003 he received his Ph.D. from Manchester University.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

