
Journal of Computing and Information Technology - CIT 15, 2007, 2, 151–160
doi:10.2498/cit.1000794

151

Empirical Validation of the RCDC and
RCDE Semantic Complexity Metrics for
Object-oriented Software

Glenn W. Cox1, Sampson E. Gholston2, Dawn R. Utley2, Letha H. Etzkorn1,
Cara Stein Gall3, Phillip A. Farrington2 and Julie L. Fortune2

1Department of Computer Science, University of Alabama in Huntsville, USA
2Industrial and Systems Engineering Management Department, University of Alabama in Huntsville, USA
3Department of Computer Science, Edinboro University of Pennsylvania, USA

The Relative Class Domain Complexity (RCDC) and
Relative Class Definition Entropy (RCDE) semantic
metrics have been proposed for use as complexity met-
rics for object-oriented software. These semantic metrics
are calculated on a knowledge-based representation of
software, following a knowledge-based program under-
standing examination of the software. The metrics have
great potential because they can be applied during the
software design phase whereas most complexity metrics
cannot be applied until after development is complete. In
this paper, we present the results of a study to empirically
validate the RCDC and RCDE metrics. We show that the
metrics compare favorably with the findings of human
experts and also that they correlate well with the results
of conventional complexity metrics.

Keywords: object-oriented, metrics, semantic metrics,
complexity, entropy

1. Introduction

Object-oriented software developerswidely con-
sider the complexity of code to be one of the
top factors determining software cost, reliabil-
ity, and main-tainability. Because of this, code
complexity is probably themost commonly esti-
mated software quality, and complexity metrics
are included in nearly every metrics suite used
for object-oriented design (OOD).
The majority of the complexity metrics used in
OOD are based on the concept that the “com-
plexity of an object can be defined to be the
cardinality of its set of properties” [1]. Despite
this common foundation, because different met-
rics designers have focused on different types of
properties, there is a wide variety of complexity

metrics. For example, one complexity metric –
the WeightedMethods per Class (WMC) metric
[1] – simply assigns a number to represent the
complexity of each method in a class, then sums
the numbers. Another metric, McCabe’s Cy-
clomatic Complexity (CC) metric [2] actually
attempts to count the number of independent
paths through a segment of code.

Most complexity metrics measure characteris-
tics of the code’s syntax. These syntactically-
based metrics have certain problems that limit
their usefulness. First, they can be biased by in-
significant differences in coding style. For ex-
ample, it has been shown [3] that small coding
choices, such as placing multiple functions in
a single line of code rather than multiple lines,
can yield different syntactical metrics results,
although there is no difference in the complex-
ity of the function performed.

A second problem with syntactic metrics is that
nearly all of them are calculated from the char-
acteristics of implemented code, meaning that
they cannot be applied until fairly late in the
development process. A subclass of syntactic
metrics, called Design Metrics, is an attempt
to address this shortcoming. Design metrics,
as implied by the name, measure characteris-
tics derived from a program’s design allowing
them to be applied before the start of coding.
Design metrics are valuable compared to code
metrics because the earlier in the development
cycle problems can be found, the less costly
these problems are to fix [4].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14416589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

152 Empirical Validation of the RCDC and RCDE Semantic Complexity Metrics for Object-oriented Software

Common design metrics measure characteris-
tics of the class-level structure of the program.
Metrics of this type include the number of
classes in the system, the number of functions
in the system, etc. Obviously, these metrics
are limited in the amount of information they
can give about the complexities of individual
classes.

A more detailed design metric is Depth of Inher-
itance Tree (DIT), which examines the inheri-
tance relationship between classes in a system.
Although this metric does examine the impact
of inheritance on a particular class’s complexity,
it is perhaps more useful in providing a system-
wide view of class relationships than it is in
giving an examination of per class complexity.
Another well-known design metric (a variant of
the WMC metric) counts the member functions
of a class.

While these and other syntactically-based de-
sign metrics are capable complexity metrics,
they suffer from some of the problems com-
mon to most syntactic metrics. For example,
they are sensitive to stylistic design differences
that human evaluators would consider to be in-
significant. Also, most of the conventional de-
sign metrics are intended for use at a structural
level and give little specific information about
particular portions of the system that might have
poor designs.

Etzkorn and others addressed these problems by
developing the field of Semantic metrics. In-
stead of measuring the syntactic characteristics
of a module, semantic metrics use knowledge-
based program understanding and natural lan-
guage processing techniques to analyze the func-
tions performed by a program, independent of
the way the functions are coded. This earlier
work included development of two suites of se-
mantic complexity metrics for OO designs. The
first was called Relative Class Domain Com-
plexity (RCDC)metrics [5] and the second, Rel-
ative Class Definition Entropy (RCDE) metrics
[3].

This paper presents the results of an effort to
validate the RCDC and RCDE metrics. The
validation was performed by comparing the re-
sults of the semantic metrics with: (1) com-
plexity estimates produced by software devel-
opment experts and (2) and results from two
conventional syntactic metrics, WMC and the
Sum of the Static Complexities of Local Meth-
ods (SSCLM). (SSCLM is sometimes referred

to as “WMC-McCabe”. In this paper, we use the
name “Sum of the Static Complexities of Local
Method” to better clarify the basis on which the
metric is calculated.)

The software on which the comparison was
based consisted of 40 classes extracted from two
widely-used object-oriented Graphical User In-
terface (GUI) packages, GINA [6] and wxWin-
dows [7] and a widely used matrix math li-
brary, Newmat [8]. The semantic metrics were
automatically generated by the SemMet met-
rics package, a Semantic Metrics generation
tool developed by the University of Alabama
in Huntsville for the National Aeronautics and
Space Administration (NASA). The three sets
of results were then correlated to provide a sta-
tistical comparison of the different complexity
estimation approaches.

The following sections present descriptions of
the metrics analyzed in this study, the analyti-
cal results, and conclusions and future research
directions.

2. Background

This section overviews the program understand-
ing approach and tools used in the study, and
defines the metrics that were validated

2.1. Program Understanding Tool

Calculation of semantic metrics requires some
degree of program understanding in order to de-
termine the semantics underlying the specifics
of the program. The SemMet tool is based
on an automatic program understanding tool
called the PATRicia system [9,10]. The PA-
TRicia system understands the functionality of
a program in order to analyze components in
Object-Oriented software. It uses a heuristic ap-
proach, deriving information from the linguistic
aspects of comments and identifiers, and from
other non-linguistic aspects of object-oriented
software, such as a class hierarchy. A complete
description of the operation of the PATRicia sys-
tem is available in [11].

The program understanding and information ex-
tractionmodule of the PATRicia system is called
CHRiS (Conceptual Hierarchy for Reuse in-
cluding Semantics). A data flow diagram il-
lustrating the operation of CHRiS is shown in

Empirical Validation of the RCDC and RCDE Semantic Complexity Metrics for Object-oriented Software 153

Figure 1 [11]. Among other functions, CHRiS
is the module that understands program com-
ments. When analyzing comments, CHRiS
parses a sentence using a simple natural lan-
guage parser, then uses an inference engine for
semantic processing. For identifiers, CHRiS
uses empirical information on common formats
for variable and function identifiers to syntacti-
cally tag subkeywords.

Figure 1. Operation of the CHRiS module of the
PATRicia system [11].

CHRiS uses a weighted, hierarchical semantic
network (a structure that represents knowledge
as a pattern of interconnected nodes and arcs)
in which higher-level concepts are inferred from
lower level concepts. Inference occurs through
a form of spreading activation, where active
nodes spread to, or infer, surrounding nodes.
Natural language tokens from comments and
identifiers are applied to an interface layer of
the semantic net, which consists of syntactically
tagged keywords, and from this layer inference
proceeds to the rest of the semantic net.

The semantic network is object-oriented. It is
implemented as objects and messages in the
expert system shell of CLIPS version 6.0. In
CHRiS, a concept is implemented as one or

more CLIPS objects. When a concept is as-
serted, weighted messages are sent from that
concept to surrounding concepts, and a com-
parison of the weights provides an inference
mechanism. The CHRiS module of the PATRi-
cia system has been satisfactorily validated [9].

CHRiS produces a report that identifies con-
cepts and keywords that have been found in each
examined class. The report shows the number
of times each identified keyword was found. It
also shows the number of times each concept
(from interior conceptual graphs) was inferred
from the inference engine of the semantic net-
work.

2.2. Representing Semantic Information

In SemMet, semantic information is represented
using Conceptual Graphs, a widely-used know-
ledge representation technique [12]. A concep-
tual graph is a finite, connected, bipartite graph
that contains two different types of nodes, con-
cepts and conceptual relations. A concept is an
internal representation of an entity. Conceptual
relations specify the role that a concept plays
with respect to another concept. Arcs in a con-
ceptual graph form links between concepts and
conceptual relations.

Figure 2. Conceptual graph example [12].

A frequently used example of a conceptual
graph is shown in Figure 2. This conceptual
graph states that a Cat is Sitting on a Mat.
Specifically, the conceptual graph states that the
concept“cat” has the state “sit” at the location
“mat”.

Detailed information about semantic graphs can
be found in reference [12].

2.3. Mathematical Definition of the
RCDC Metrics

The RCDC and RCDE metrics suites were orig-
inally defined by Etzkorn et. al. in refer-
ences [3] and [5]. Stein [13] developed a for-
mal mathematical definition of the suites. For

154 Empirical Validation of the RCDC and RCDE Semantic Complexity Metrics for Object-oriented Software

the reader’s convenience, the mathematical def-
inition is summarized in this and the following
section. A more complete definition can be
found in references [13] and [14].

The following mathematical notation is used to
define theRCDCmetrics. Let {C1, C2, . . . , Cm}
denote the set of m classes in a system. For each
class Ca, Oa denotes the set of concepts in the
knowledge base associated with Ca and Ka is
the set of keywords in the knowledge base asso-
ciated with Ca. Let O be the set of all concepts
in the knowledge base. Let Ia = Ka ∪ Oa; this
is called the set of ideas associated with class
Ca.

Let→ be a relation between concepts p and q in
set O such that p → q if and only if there exists
a conceptual relation from p to q.

The RCDC metrics are based on the Class Do-
main Complexity (CDC) semantic metric de-
fined by Etzkorn and Delugach [5].

The CDC metrics make use of semantic rela-
tionships between the concepts to estimate the
tightness of the internal coupling within a class.
Specifically, CDC is based on the count of the
number of conceptual relations that link each
concept with other concepts in the class. It is
defined by:

CDC counts the concepts and their associated
conceptual relations, and multiplies the counts
by a weighting factor for each concept. The
suggested scale for concept weighting factors
ranges from 1.0 for complex concepts to 0.25
for simple concepts [5].

Three versions of the CDC metric have been de-
veloped, each of which uses a slightly different
method to calculate the metric. The versions
are:
• CDC0 =

∑
i∈Oa

(1 ∗ wi),

where wi is the weighting factor for concept i.
Thismetric simply sums the complexityweight-
ings for the concepts in the class [13]
• CDC1=

∑
i∈Oa

((1+ |{x|i → x ∧ x ∈ Oa}|) ∗ wi)

This metric determines, for each concept in
the class, the number of other concepts that
have a conceptual relation with it, and takes
the weighted sum across all of the concepts in
the class [5, 13].
• CDC2=

∑
i∈Ia

((1+ |{x|i → x ∧ x ∈ Ia}|) ∗ wi),

This metric extends the CDC1 definition to in-
clude keywords identified from the class [14].

The CDC metrics can be viewed as giving an
absolute estimate of complexity. In some cases,
there is value in considering the complexity of
a class with respect to the complexity of the
other classes in the same system. This is the
goal of the Relative Class Domain Complexity
(RCDC) metrics suite [5].

There areRCDCmetrics that correspond to each
of the CDC metrics. In general, the RCDC met-
rics are generated by calculating the CDC met-
ric, then normalizing by the maximum CDC for
all of the classes in the system. That is:

RCDCx for class i=CDCx for class i / maximum
CDCx for any class in the system

where x is 0, 1, or 2. If all CDCx’s in the system
are 0, RCDCx is defined to be 0.

It should be noted that the RCDC definition is
specific for a knowledge base with a conceptual
graph structure.

2.4. RCDE Metrics

The RCDE metrics are based on the Semantic
Class Definition Entropy (SCDE) metric de-
fined by Etzkorn, Gholston, and Hughes [3].
SCDE is a complexity metric that uses informa-
tion theoretic and program understanding ap-
proaches to assess the domain information con-
tent of a class. It reflects the complexity of
the task that the class performs in the domain
(that is, the complexity of the task, if it was
performed by a human).

SCDE is defined by:

SCDE = −
n∑

i=1

[(f i/N) log2 (f i/N)]

where n is the number of unique domain-related
concepts or keywords, N is the total number of
(non-unique) domain related concepts or key-
words, and f i, 1 ≤ i ≤ n is the frequency of
occurrence of the ith domain-related concept or
keyword.

Two other versions of the SCDE metric, SCDEa
and SCDEb, are calculated identically to SCDE
except that SCDEa considers only keywords in
the calculation and SCDEb considers only con-
cepts.

Empirical Validation of the RCDC and RCDE Semantic Complexity Metrics for Object-oriented Software 155

The Relative Class Definition Entropy (RCDE)
metric expresses the SCDE of a class relative to
the other classes in the same system. RCDE is
defined by:

RCDE for class i = SCDE of class i / maximum
SCDE for any class in the system

RCDEa and RCDEb are calculated in the same
way from SCDEa and SCDEb:

RCDEa = SCDEa of the class / max SCDEa for
any class in the system

RCDEb = SCDEb of the class / max SCDEb for
any class in the system

2.5. Summary of Previous Theoretical
Analyses of RCDC and CDC

A theoretical analysis for CDC was presented
in reference [5]. Other theoretical analyses for
CDC0 and CDC2, as well as for RCDC, were
documented in reference [14]. These works
showed that all versions of CDC meet the cri-
teria for valid metrics defined by Kitchenham
et al. [15] as well as the following properties
of Briand et al. [16]: Non-negativity, symme-
try, and monotonicity (All versions of CDC fail
the null value property since they have a non-
zero value for any class associated with even a
single idea in the domain, even if there are no
relationships within the class.) Although the
RCDC metrics are measures of relative com-
plexity, and not of complexity, they fulfill the
properties of non-negativity and null value.

Stein [13] performed a theoretical analysis of
RCDE and SCDE. She showed that all three
versions of SCDE meet the criteria of non-
negativity, null value, and symmetry but do not
meet either the disjoint module additivity nor
monotonicity criteria. The RCDE metrics meet
the same criteria as RCDC.

3. Validation Procedure and Results

The metrics were validated by comparing their
results for a representative set of classes with
independently generated complexity ratings de-
veloped by human experts. Forty (40) classes
were chosen fromwidely used open-source pack-
ages to form a representative mix of scientific
processing types. Twenty three (23) of the

classeswere drawn from theNewmatC++ soft-
ware package, which is an open-source mathe-
matical application for matrix manipulation [8].
The selected Newmat classes include code for
both matrix and scalar processing. The other 17
classes were drawn from two Graphical User
Interface (GUI) packages, GINA and wxWin-
dows. These classes include a wide range
of processes for GUI processing techniques,
graphical user input, and display management
routines.

The validation project was structured as three
independent experiments. For each experi-
ment, the SemMet tool was used to generate the
RCDC and RCDE metrics for a selected subset
of the 40 classes. The same classes were pro-
vided to a team of software developers for inde-
pendent rating of the class’s complexity. Each
team member rated the complexity of each class
using a numeric scale and the results were av-
eraged for each class and for each team. The
RCDC and RCDE results were then correlated
with the team’s ratings.

Experiment 1 focused on the 17 classes from
the two GUI packages. The human team (re-
ferred to as Evaluation Team 1) was made up
of seven software engineering experts. Each of
the members of the team has a B.S. in computer
science or electrical engineering and all but one
also have an M.S. degree. Each has from 5-15
years of experience in software design and de-
velopment and at least 3 years experience with
C++ and GUI development. None of the team
members were initially familiar with the sys-
tems examined.

Experiment 2 concentrated on the 13 wxWin-
dows classes. The human team, Evaluation
Team 2, was composed of 15 graduate stu-
dents drawn from a graduate-level software en-
gineering class. Each of the members of the
team had prior experience in object-oriented
software, particularly C++, and most had sev-
eral years of experience in software design and
development. By covering many of the same
classes as Experiment 1, Experiment 2 helped
verify Experiment 1 results as well as adding in-
formation about the performance of the metrics
for the wxWindows classes.

Experiment 3 focused on the 23Newmat classes.
The human raters, Evaluation Team 3, had the
same characteristics as EvaluationTeam2. There
was not any overlap in membership between the
teams.

156 Empirical Validation of the RCDC and RCDE Semantic Complexity Metrics for Object-oriented Software

In each experiment, team members rated the
complexity of each class on a scale from 0 to
1, where “not complex” = 1.00, “fairly com-
plex” = 0.50, and “very complex” = 0.00. The
numeric ratings were combined to compute an
average expert rating for each class. Group
inter-rater reliability for Evaluation Team 1 was
0.9038, for Evaluation Team 2 was 0.4160, and
for Evaluation Team 3 was 0.5208.

In addition to correlating RCDC and RCDE
with the human experts, the two semantic met-
rics were also correlated with SSCLM. SSCLM
is a traditional (syntactic) development-phase
complexity metric [10] that is an advanced ver-
sion of Chidamber and Kemerer’s WMC metric
[1]. SSCLM is calculated by

SSCLM =
n∑

i=1

ci

where n is the number of methods in the class
and ci is the McCabe’s Cyclomatic Complexity
[2] of the ith method. In a previous study [10],
Etzkorn has shown that SSCLM provides a good
measure of the complexity of an object-oriented
class and is superior, in fact, to the widely-used
WMC metric.

A statistical analysis was performed to corre-
late the metrics with each other and to gain in-
sight into the relevance of common factors con-
sidered by the metrics. Comparing metrics to
other metrics using a correlation is a common
research method. For example, Kabaili et al.
[18] correlated cohesion metrics with coupling
metrics to validate cohesion metrics as change-
ability indicators. Mitchell and Power [18] cor-
related run time coupling metrics with a static
couplingmetric to examine the usefulness of the
run time coupling metrics. Li and Henry [19]
examined correlations between various metrics
in order to determine their usefulness within a
multi-variate regression model.

3.1. Complexity Metrics Compared
to Evaluation Team Ratings

The analysis was based on the hypotheses:
H0 : p = 0 (Null hypothesis) – There is no
significant correlation between the specified
complexity metric and the average rating
produced by the specified Evaluation Team.
H1 : p �= 0 (Alternative hypothesis) – There
is significant correlation between the speci-

fied complexity metric and the average rat-
ing produced by the specified Evaluation
Team.

Correlation was measured using the standard
Pearson’s correlation coefficient, which mea-
sures the strength of the linear relationship be-
tween the two variables. The coefficient ranges
between -1 and 1, where 1 corresponds to per-
fect correlation between the two variables, -1
corresponds to perfect negative correlation, and
0 indicates there is no linear relationship. The
strength of the correlation is determined by the
magnitude of the coefficient. Adjective ratings
of correlation strength follow the definitions de-
veloped by Hopkins [20] and Cohen [22]:
• < 0.1 “Trivial”
• 0.1 to 0.3 “Minor”
• 0.3 to 0.5 “Moderate”
• 0.5 to 0.7 “Large”
• 0.7 to 0.9 “Very large”
• 0.9 to 1 “Almost perfect”

The quality of the correlation results was as-
sessed by calculating the p-value for each cal-
culation (the p-value corresponds to the proba-
bility that the measured correlation could be due
to purely random effects). Correlation results
with p-values greater than 0.10 were rejected.

Table 1 shows the results of correlating the met-
rics results with the human-generated complex-
ity ratings. The results for Experiment 1 show
that RCDC0 and RCDC1 have moderate corre-
lation with the expert ratings. RCDEa has large
correlation in both Experiments 1 and 2, and
moderate correlation in Experiment 3.

The results indicate that the RCDEa metric is a
statistically valid measure of complexity for the
entire test suite.

Experiment
1

Experiment
2

Experiment
3

Corr.
vs.

Team
1

p-
value

Corr.
vs.

Team
2

p-
value

Corr.
vs.

Team
3

p-
value

RCDC0 −0.43 0.09 −0.40 0.17 −0.09 0.65
RCDC1 −0.43 0.08 −0.42 0.15 −0.11 0.63
RCDC2 −0.40 0.11 −0.44 0.13 −0.19 0.40
RCDE −0.38 0.13 −0.36 0.23 −0.18 0.40
RCDEa −0.51 0.04 −0.58 0.04 −0.39 0.07
RCDEb −0.22 0.40 −0.15 0.61 0.00 0.98

Table 1. Correlation of Complexity metrics with Expert
ratings.

Empirical Validation of the RCDC and RCDE Semantic Complexity Metrics for Object-oriented Software 157

It may be noted that there is good consistency
between the ratings generated by the two teams
with overlapping focus (EvaluationTeams 1 and
2); a correlation of the teams’ results gives a
correlation coefficient of 0.83 (very large). To
simplify the presentation, in the following parts
of this paper , the results from these two teams
are combined.

3.2. RCDC and RCDE vs. SSCLM

Following the validation effort, the performance
of the RCDC and RCDE semantic metrics was
compared with that of the SSCLM syntactic
metric. The results are shown in Tables 2a and
2b.

For both the GUI and math packages, the re-
sults show a “large”-to-“very large” correla-
tion between the RCDEa and SSLCM metric
and “moderate”-to-“large” correlation between
SSLCM and both RCDC2 and RCDE. This is
a key result, since the RCDC and RCDE met-
rics can be applied in the design phase while
SSCLM is a development-phase metric.

Experiment 1 &
2 Experiment 3

Corr. vs.
SSCLM

p-
value

Corr. vs.
SSCLM

p-
value

RCDC0 0.60 0.01 0.30 0.17
RCDC1 0.57 0.02 0.28 0.20
RCDC2 0.58 0.01 0.45 0.03
RCDE 0.54 0.03 0.48 0.02
RCDEa 0.64 0.01 0.72 0.00
RCDEb 0.46 0.07 −0.12 0.61

Table 2. Correlation of Complexity metrics with
SSLCM.

RCDEa – and to a lesser extent, RCDC2 and
RCDE – can consequently be understood as
early predictors of the complexity of a class.
They provide a way to manage class complexity
as a part of the design effort, when cost-effective
changes can be implemented.

3.3. Complexity Metrics Compared
to Each Other

In a third analysis, the results of each metric
were correlated with the results of every other
metric. The objective of this analysis was to

identify possible commonalities in the perfor-
mance of the various metrics.

The results of the study are shown in Tables 3a
and 3b. The results show almost perfect correla-
tion between the three RCDC metrics (RCDC0,
RCDC1, RCDC2). This is a surprising result
since it indicates that the simple metric RCDC0
– a metric that merely sums complexity weight-
ing factors – provides results that are consistent
with the complex RCDC1 and RCDC2 metrics,
which count concept and/or keyword linkages.
If this is found to be borne out by large-scale
studies focused on this specific issue, it may be
possible to apply quite simple calculation tech-
niques to the sophisticated semantic complexity
metrics.

RCDC0 RCDC1 RCDC2 RCDE RCDEa

RCDC1 0.995

RCDC2 0.98 0.98

RCDE 0.80 0.79 0.81

RCDEa 0.83 0.82 0.85 0.85

RCDEb 0.40 0.41 0.42 0.63 0.31

Table 3a. Correlation of Complexity metrics with each
other (Experiment 1 and 2).

RCDC0 RCDC1 RCDC2 RCDE RCDEa

RCDC1 0.995

RCDC2 0.97 0.97

RCDE 0.96 0.96 0.99

RCDEa 0.42 0.43 0.62 0.61

RCDEb 0.79 0.77 0.65 0.64 −0.10

Table 3b. Correlation of Complexity metrics with each
other (Experiment 3).

3.4. Principal Component Analysis

A Principal Component Analysis (PCA) was
performed in order to determine Principal Com-
ponents that characterize the variance in the em-
pirical data. When metrics are strongly corre-

158 Empirical Validation of the RCDC and RCDE Semantic Complexity Metrics for Object-oriented Software

lated, it is likely that they measure the same
class properties. PCA is a standard technique
that has the objective of grouping the data set
into a smaller set of orthogonal groups. The
groups are formed so that the members of a
group have similar variance characteristics and,
presumably, similar underlying measurement
characteristics [21,22]. When using PCA, the
larger the sample size the better. It has been rec-
ommended that an acceptable sample size has
ten times the number of observations as there
are variables being analyzed [17]. The data set
utilized in this research exceeded the suggested
ten times number and therefore the results of
the principle component analysis are regarded
as valid.

Table 4a shows the PCA results for Experi-
ments 1 and 2. Principal Component 1 (PC1),
the members of which are indicated by bold
numbers in the PC1 column, includes all of the
RCDC and RCDE metrics. This is consistent
with the results of the Experiment 3 PCA (Table
4b), for which those metrics, with the exception
of RCDEa, were also grouped.

PCA is a tool that suggests similar underlying
measurement characteristics, but does not by
itself yield conclusive results. For definitive re-
sults, further statistical analysis to validate the
groupings is required. However the results of
Principal Components analysis do provide use-
ful indicators of commonalities betweenmetrics
and help define further analysis.

PC1 PC2

Eigenvalue 7.974 2.010

Percent 66.45% 16.75%

Cumulative Percent 66.45% 83.19%

RCDC0 0.96 −0.12

RCDC1 0.96 −0.12

RCDC2 0.97 −0.11

RCDE 0.97 −0.14

RCDEa 0.85 −0.41

RCDEb 0.88 0.06

SSCLM 0.73 −0.03

Complexity (Team 1) −0.21 0.91

Complexity (Team 2) −0.29 0.91

WMC 0.95 −0.04

Table 4a. Results of Principal Component Analysis
(Experiments 1 & 2).

PC1 PC2

Eigenvalue 5.3167 2.2788

Percent 53.17% 22.79%

Cumulative Percent 53.17% 75.96%

RCDC0 0.99 −0.13

RCDC1 0.99 −0.13

RCDC2 0.93 −0.36

RCDE 0.92 −0.38

RCDEa 0.30 −0.41

RCDEb 0.86 0.35

Complexity (Team 3) 0.02 0.53

WMC 0.15 −0.04

SSCLM 0.18 −0.81

Table 4b. Results of Principal Component Analysis
(Experiment 3).

In this study, the Principal Components Anal-
ysis results lend support to the view that the
RCDC and RCDE metrics have commonalities
in their underlying measurement characteris-
tics. This result, if borne out in detailed stud-
ies, would be significant because of the large
variance in the complexity of the various met-
rics; finding that the simpler metrics measure
the same or similar features as the more com-
plex ones could greatly simplify the complexity
estimation process.

4. Conclusions and Further Work

The validation results show that three of the
metrics produce statistically valid complexity
ratings, correlating with expert ratings at the
“large” and “moderate” levels. The remaining
metrics correlate to a lesser degree, but none
were found to correlate poorly. Data are not
sufficient to determine with certainty that all of
the metrics would correlate well with the expert
data. However, since there is a very high degree
of correlation among the entire set of metrics, it
is to be expected that all of the metrics correlate
well. In future work, the authors will expand
the number of classes for which human ratings
are available, allowing a more comprehensive
validation.

Each of the metrics were found to correlate well
with the traditional SSCLM metric. This is an

Empirical Validation of the RCDC and RCDE Semantic Complexity Metrics for Object-oriented Software 159

important result, since the RCDC and RCDE
metrics can be applied earlier in the software
development process than SSCLM. The results
indicate that the semantic metrics can be used
as predictors of class complexity from design
information alone, facilitating early correction
of poor class design practices.

Another important finding is that the three
RCDC-based metrics (RCDC0, RCDC1, and
RCDC2) are almost perfectly correlated, de-
spite considerable conceptual differences in the
way they are calculated. In future work, the
authors will conduct detailed investigations of
this apparent similarity between the three met-
rics. If consistent results are found, it may be
practical to compact the set of RCDC metrics.

Unlike the RCDC metrics, it was found that
the entropy-based RCDE metrics yield consid-
erably different results among themselves. The
indication is that concepts may be slightly un-
derweighted in RCDE relative to keywords and
that gaining a comprehensive understanding of
the characteristics requires generating RCDEb
in addition to one of the other RCDE metrics.

5. Acknowledgement

The research in this paper was partially sup-
ported by NASA grants NAG5-12725 and
NCC8-200.

References

[1] S. CHIDAMBER, C. KEMERER, Towards a metrics
suite for object-oriented design.Proceedings of
the Conference on Object-Oriented Programming:
Systems, Languages and Applications, (1991),
pp. 197–211.

[2] T. MCCABE, C. BUTLER, Design complexity mea-
surement and testing. Communications of the As-
sociation for Computing Machinery (ACM), 32
(1989), 12, pp. 1415–1425.

[3] L. H. ETZKORN, S. GHOLSTON, W. HUGHES, A se-
mantic entropy metric. Journal of Software Main-
tenance and Evolution: Research and Practice, 14
(2002), pp. 1–18.

[4] R. PRESSMAN, Software engineering: a prac-
titioner’s approach (6th ed), McGraw-Hill (2005),
New York.

[5] L. H. ETZKORN, H. DELUGACH, Towards a semantic
metrics suite for object-oriented design. Proceed-
ings of the 34th International Conference on Tech-
nology of Object-Oriented Languages and Systems
(TOOLS USA 34), Institute of Electrical and Elec-
tronics Engineers (IEEE) Computer Society Press,
(2000), pp. 71–80.

[6] M. SPENKE, C. BEILKIN, An overviewof GINA à the
generic interactive application. Proceedings of the
Workshop on User Interface Management Systems
and Environments on User Interface Management
and Design, (1993), pp. 273–293.

[7] J. SMART, wxWindows, Retrieved 2005 from
http://www.wxwindows.org/.

[8] R. DAVIES, Newmat C++ Matrix Library, (2006),
(pp. 17), Wellington, New Zealand,
http://www.robertnz.net/ol doc.htm/,
[retrieved 23 April 2006].

[9] L. H. ETZKORN, C. DAVIS, Automatically identify-
ing reusable components in object-oriented legacy
code. Institute of Electrical and Electronics Engi-
neers (IEEE) Computer, 30 (1997), 10, pp. 66–71.

[10] L. H. ETZKORN, J. BANSIYA, C. DAVIS, Design and
complexity metrics for OO classes. Journal of
Object-Oriented Programming, 12 (1999), 1,
pp. 35–40.

[11] L. H. ETZKORN, A Metrics-Based Approach to
the Automated Identification of Object-Oriented
Reusable Software Components. Doctoral Disser-
tation, The University of Alabama in Huntsville,
(1997).

[12] J. SOWA, Conceptual Structures: Information Pro-
cessing in Mind and Machine. Addison-Wesley,
Reading, Massachusetts, (1984).

[13] C. STEIN, Semantic Metrics for Source Code and
Design. Doctoral Dissertation, The University of
Alabama in Huntsville, (2004).

[14] C. STEIN, L. H. ETZKORN, G. W. COX, P. FARRING-
TON, S. GHOLSTON, D. UTLEY, J. FORTUNE, Pro-
ceedings of the 1st International Workshop on Soft-
ware Audit and Metrics, Porto, Portugal, (2004),
pp. 49–58.

[15] B. KITCHENHAM, S. PLEEGER, N. FENTON, Towards
a Framework for Software Measurement Valida-
tion. IEEE Transactions on Software Engineering,
21 (1995), 12, pp. 929–944.

[16] L. BRIAND, S. MORASCA, V. BASILI, Property-based
software engineering measurement. IEEE Transac-
tions on Software Engineering, 22 (1996), 1,
pp. 68–86.

[17] KABAILI, R. KELLER, F. LUSTMAN, G. SAINT-DENIS,
Class cohesion revisited: an empirical study on in-
dustrial systems. Fifth European Conference on
Software Maintenance and Reengineering, (2001),
pp. 39–47.

[18] A. MITCHELL, J. POWER, An empirical investiga-
tion into the dimensions of run time coupling in
Java programs. Proceedings of the 3rd International
Conference on Principles and Programming in Java
(PPPJ’04), Las Vegas, Nevada, (2004), pp. 9–14.

160 Empirical Validation of the RCDC and RCDE Semantic Complexity Metrics for Object-oriented Software

[19] W. LI, S. HENRY, Object-oriented metrics that pre-
dict maintainability. Journal of Systems and Soft-
ware, 23 (1993), 2, pp. 111–122.

[20] W. HOPKINS, A new view of statistics. SportScience:
Dunedin, New Zealand. Retrieved 2005 from
www.sportsci.org/resource/stats//.

[21] J. COHEN, Statistical power analysis for the behav-
ioral sciences (2nd ed). Lawrence Erlbaum Publish-
ing, Mahwah, New Jersey, (1988).

[22] W. DILLON, M. GOLDSTEIN, Multivariate analysis:
methods and applications. John Wiley and Sons,
New York, (1984).

Received: January, 2006
Revised: November, 2006

Accepted: December, 2006

Contact addresses:

Glenn Cox
Department of Computer Science

University of Alabama in Huntsville
Huntsville, Alabama, USA

e-mail: gcox@cs.uah.edu

Sampson Gholston
Industrial and Systems Engineering

Management Department
University of Alabama in Huntsville

Huntsville, Alabama, USA

Dawn R. Utley
Industrial and Systems Engineering

Management Department
University of Alabama in Huntsville

Huntsville, Alabama, USA

Letha H. Etzkorn
Department of Computer Science

University of Alabama in Huntsville
Huntsville, Alabama, USA

Cara Stein Gall
Department of Computer Science

Edinboro University of Pennsylvania
Edinboro, Pennsylvania, USA

Phillip A. Farrington
Industrial and Systems Engineering

Management Department
University of Alabama in Huntsville

Huntsville, Alabama, USA

Julie Fortune
Industrial and Systems Engineering

Management Department
University of Alabama in Huntsville

Huntsville, Alabama, USA

DR. GLENN COX is an Associate Professor in the Computer Science De-
partment of the University of Alabama in Huntsville. He holds Ph.D.,
Masters, and Bachelors degrees in Electrical Engineering from Auburn
University. He has published more than 40 conference and journal pa-
pers in the areas of software metrics, computer networking, modeling
and simulation, and integrated circuit design. He worked for 22 years
in industry prior to his academic career.

DR. SAMPSON GHOLSTON is an Associate Professor at the University
of Alabama in Huntsville. He has a Ph.D. degree from the University
of Alabama in Huntsville in Industrial and Systems Engineering and
a Masters degree from the University of Alabama in Industrial Engi-
neering. He has also worked for the Saturn Corporation as a Supplier
Quality Engineer. His research interests include quality engineering,
quality management, and applied statistics.

DR. DAWN R. UTLEY, PH.D., P.E. is an Associate Professor at the Uni-
versity of Alabama in Huntsville, teaches and conducts research in the
area of engineering management. Dr. Utley has worked in the specific
area of quality measures for 15 years. She has a Ph.D. in Industrial and
Systems Engineering (Engineering Management) from UAH, an M.S.
degree in Industrial Engineering (Engineering Management) from the
University of Tennessee, and a B.S. in Civil Engineering from Ten-
nessee Technological University. She worked for six years for TVA as
a structural civil engineer prior to her academic career.

DR. LETHA H. ETZKORN is an Associate Professor in the Computer
Science department at the University of Alabama in Huntsville. She
has published more than 60 papers in refereed journals and confer-
ences. She teaches in several areas, including software engineering,
client/server systems, and networking. Her primary research interests
are in software engineering (primarily software metrics and program
comprehension), and mobile and intelligent agents.

DR. CARA STEIN GALL is an Assistant Professor in the Math and Com-
puter Science Department at Edinboro University of Pennsylvania. She
received her Ph.D. in Computer Science from the University of Alabama
in Huntsville. She teaches Programming, Computer Architecture, and
Computer Literacy. Her research interests are in software metrics.

DR. PHILLIP A. FARRINGTON is an Associate Professor in the Depart-
ment of Industrial and Systems Engineering and Engineering Manage-
ment at the University of Alabama in Huntsville. He holds B.S. and
M.S. degrees in Industrial Engineering from the University of Missouri-
Columbia and a Ph.D. in Industrial Engineering and Management from
Oklahoma State University. His research interests include collaborative
systems engineering, integrated product development, quality engineer-
ing, and rapid simulation model development.

DR. JULIE FORTUNE holds Ph.D., M.S.E, and B.S.E. degrees in In-
dustrial and Systems Engineering from the University of Alabama in
Huntsville (UAH) and a B.S. in Biochemistry from the University of
Missouri-Columbia. Dr. Fortune is a research engineer at UAH?s
Center for Modeling, Simulation and Analysis (CMSA) and is also an
adjunct assistant professor in the UAH Industrial and Systems Engineer-
ing and Engineering Management department. Her research expertise
includes system engineering, quality engineering, software metrics, and
statistical analysis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

