
Journal of Computing and Information Technology - CIT 15, 2007, 2, 95–110
doi:10.2498/cit.1000692

95

The Viewpoint Mechanism for
Object-oriented Databases Modelling,
Distribution and Evolution

Fouzia Benchikha and Mahmoud Boufaida
LIRE Laboratory, Department of Computer Science, Mentouri University of Constantine, Algeria

Over the past years, most of the research dealing with
the object multiple representation and evolution has
proposed to enrich the monolithic vision of the classical
object approach in which an object belongs to one
hierarchy class. In databases, much work has been
done towards extending models with advanced tools
such as view technology, schema evolution support,
multiple classification, role modelling and viewpoints.
In particular, the integration of the viewpoint mechanism
to the conventional object-oriented data model gives
it flexibility and allows one to improve the modelling
power of objects. The viewpoint paradigm refers to the
multiple description, the distribution, and the evolution
of object. Also, it can be an undeniable contribution
for a distributed design of complex databases. The
motivation of this paper is to define an object data
model integrating viewpoints in databases and to present
a federated database architecture integrating multiple
viewpoint sources following a local-as-extended-view
data integration approach.

Keywords: object-oriented data model, viewpoint ap-
proach, referential schema, viewpoint schema, LAEV
data integration approach, federated databases

1. Introduction

Object-oriented databases are becoming more
and more popular for applications to support
the complexity and the irregularity of the real-
world entities. Moreover, with the expansion of
the distributed technology and the Internet, new
needs related to data sharing and data exchange
appear. Thus, the development of advanced
database models is required. Object-oriented
technology seems to be the keystone of this
evolution. Hence, much work has been done re-
cently towards extending object-oriented data-
base models with advanced tools such as view

technology, schema evolution support, multi-
ple classification, role modelling and the view-
point paradigm. All these extensions require
more flexible and powerful constructs than are
currently supported by existing object-oriented
models.

In the conventional object-oriented database
model, the conceptual structure, that is a schema,
is embodied by a collection of abstract data
types called classes. The unique and perma-
nent bond between an object and its class for-
bids a dynamic evolution of its structure and be-
haviour, or the representation of several points
of view, independent or otherwise. However, in
the real world applications, it’s often useful to
cope with a multiple and evolving modelling of
objects. This perception mode of data is called
the viewpoint approach.

The viewpoint paradigm is an active subject of
research in many areas such as software en-
gineering [12], knowledge representation [15],
database systems [13, 24, 25, 26], web applica-
tions [16], etc.

In DataBases (DBs), we notice few works on
the integration of the viewpoint concept into the
data models. Most of these works consider the
view and the role mechanisms. Views [1, 7,
33] are external schemas that provide the user
with a part of the global schema, a kind of view-
point on the description of its entities. Roles [4,
13, 17, 37] deal with the multiple aspects that
an object acquires and loses during its life-time
within a unique representation. In the context of
our work, viewpoints offer several descriptions
to the same Universe of Discourse (UoD). Each

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14416584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


96 The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution

description is not a view, but a partial represen-
tation of data according to a given point of view.
The various partial descriptions are supported
by database schemas that together provide the
global schema of the same real world data. Ob-
jects can be described according to one or more
descriptions, as a kind of role within a multi-
ple data representation. Achieving such an ap-
proach requires a distributed environment and,
more precisely, a federated database system that
permits the integration and the collaboration of
a collection of databases.

In this paper, we report an ongoing research
we are engaged in [6]. Our work is aimed at
extending object-oriented database technology
to accommodate multiple and distributed mod-
elling of data. The paper is structured as fol-
lows. Section 2 provides an overview of the
viewpoint approach used in the several fields of
computer science. A comparison of the inte-
gration of the viewpoint paradigm in database
modelling is given in Section 3. In Section 4
and Section 5 we present the methodology and
formalization of the MVDB (Multi-Viewpoint
DataBase) model, respectively. The proposed
model is an extension of the conventional object
data model with the viewpoint mechanism. It
allows developing a schema as a multiple de-
scription of an UoD. This description consists
of translating several abstractions of this uni-
verse, using a basic formalism for the multiple
data descriptions. Section 6 presents the con-
sistency and objects evolution in the MVDB
model. In Section 7, we give the general archi-
tecture of a federated database system, called
MVDB system, that uses an adapted LAV ap-
proach to integrate viewpoint sources. Section
8 concludes our work.

2. The Viewpoint Approach

In computer science, most of data modelling
systems don’t deal with the variety of percep-
tions related to the same UoD and develop tools
to create a single model for a single vision of
the observed world. The viewpoint approach is
opposed to this monolithic approach and makes
it possible to model the same reality according
to different points of view.

Currently, much interest has been shown in
the viewpoint paradigm. This takes on var-
ious meanings according to how it’s studied

from the diverse standpoints of the different
fields of computer science, eg. software en-
gineering [12], knowledge representation [15,
31], database systems [14, 24], web applica-
tions [16], requirements engineering [23] and
complex systems modelling [11]. Several terms
have been assigned to this concept such as roles
[27], aspects [30], perspectives [34], dimensions
[16], and viewpoints [5, 12].

2.1. What’s the Viewpoint Mechanism?

The viewpoint approach is constructed on the
conjunction actor/information. Therefore, it is
necessary to include the actor in the action. We
thus define a viewpoint as “a conceptual man-
ner binding, on the one hand an actor who ob-
serves and, on the other hand, a phenomenon
(or a world) which is observed”. Many actors
can observe the same UoD and produce various
viewpoints on it. These last can be considered
in several manners illustrated in Figure 1.

Figure 1. The different manners to consider
viewpoints on an UoD.

1. Uniform viewpoints: in this case, all the ac-
tors have the same vision of the UoD and
produce equivalent representations. For ex-
ample, let us consider many research teams,
each one uses a different data model and
considers it as the best one to represent a
project.

2. Complementary viewpoints: in this case,
each actor sees a part of the UoD and pro-
vides a viewpoint on it. Each viewpoint is
a partial and coherent representation. The
various representations which rise from the
various actors are complementary and their
union is a complete and coherent represen-
tation of the UoD.



The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution 97

3. Comparable viewpoints: in this case, the ac-
tors produce comparable representations ac-
cording to the generalisation/specialization
meaning.

Within the framework of our study we are in-
terested in the second interpretation of the re-
lation "actor-world", which supposes that the
various viewpoints on the same UoD are partial
but complementary representations of it.

2.2. Why Using Viewpoints?

The viewpoint mecahnim has been integrated
into various contexts and used to solve different
problems. Most works in the literature deal-
ing with the viewpoint notion in object-oriented
and conceptual modelling are much more prag-
matic. In the following, we identify the main
objectives in integrating viewpoints into com-
puter systems. Note that there is no single use
of this concept that includes all of these objec-
tives.

• The viewpoint as a means of providing
multiple descriptions of an entity: the
viewpoint concept seems to naturally result
from the multiple views of objects of a spe-
cific study. As a matter of fact, a real world
entity can have many behavioral contexts
and many states from which the notion of
multiple descriptions has been derived. Re-
cently, the viewpoint paradigm has also been
applied toweb data in representing and view-
ing multidimensional information; that is in-
formation that may assume different facets
under different contexts [16].

• The viewpoint as an approach for the
modelling and distributed development
of systems: many authors state that the
modelling of complex systems as defined in
[21] cannot be handled with the same tech-
niques as used for simple systems. How-
ever, the modelling of a complex system
cannot be a centralized task based on a sin-
gle formalism. Different works suggest a
distributed development approach based on
viewpoints [14, 20]. Hence, every develop-
ment process can be represented by corre-
lated viewpoints. Solutions based on logi-
cal systems are generally used to permit this
correlation. VBOOM (View Based Object-
oriented Methodology) [20] is an example

of an analysis/design method that integrates
the viewpoint mechanism by defining the
visual model concept. The need to use
the viewpoint in modelling is also found in
methods such as SADT [32].

• The viewpoint as a mechanism for solving
problems: the viewpoint concept brought
satisfactory and simple solutions to difficult
problems found in different computer fields.
In knowledge representation, for example,
the viewpoint is introduced in the multiple
classification of objects [5, 15, 31], in inher-
ited value retrieval [28], in the modelling of
independent concepts and in dealingwith the
multiple inherited conflicts [15]. In system
modelling, explicitly considering the view-
points of different designers in the produc-
tion of a unique shared (single) model is an
efficient means of improving the coherence
of the modelling [11].

• The viewpoint as a means of mastering
system complexity: several research works
are based on the viewpoint concept with the
principal objective of explicitly taking into
account the complexity of the system. The
result of the study is then held by dividing
it into partial descriptions according to dif-
ferent and complementary aspects. Thus,
in the context of a development environ-
ment, Schilling and Sweeney [36] describe
multiple views as abstractions aimed at sim-
plifying the complex structure of a system.
Each view provides an interface adapted to
a particular user (and/or developer) of the
system. In addition, in the programming
field, we find the EXPLAINER system [29]
that describes programs according to differ-
ent aspects (source program, graphical rep-
resentation and so on).

• The viewpoint as an advanced mechanism
for object-oriented technology: the use of
object technology brought a real progress
in the modelling of complex system through
its powerful expression and its reutilisability.
However, new needs have appeared such as
considering the evolution of an object and
its multiple and dynamic (re)classification.
The strictness of the behavior and the state
of an object have been reconsidered via the
KRL perspectives [8], the CROME contexts
[14] and the TROPES viewpoints [22].



98 The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution

In the context of our work, the viewpoint para-
digm is used essentially as a means for object
multiple descriptions (see Section 5) and evo-
lution (see Subsection 6.2), as a mechanism
for dealing with integrity constraint problems
(see Subsection 6.1) and as an approach for the
distributed development of a database schema
(see Subsection 7.2). In the next section, we
present an overview of related works integrat-
ing the viewpoint mechanism in database area.

3. Related Works

In the field of databases, the concept of view-
points is mainly investigated within the con-
cept of views and roles in the object-oriented
database community. Most of the research
works propose enriching the monolithic vision
of the traditional object-oriented approach in
which an object belongs to one and only one
hierarchy class. They deal with the objects evo-
lution and with the existence of multiple views
of the same data. In this section, we briefly ex-
amine some proposals which present roles and
views, and then we present an overview of our
viewpoint approach.

3.1. Views

Various view models have been proposed such
as the multi-view model of [33] and the view
model of [1] and of [7]. In these works, views
are exploited to allow different applications to
see the same database according to different
viewpoints. The viewpoint concept here sup-
ports external schema, which is the third level of
the ANSI architecture standard upon which the
construction and the use of relational database
systems and the later object-oriented ones are
centred. Many problems arise, such as how a
view schema (view class) is inserted in a global
schema (class hierarchy) and whether an in-
stance of a view owns an identity. Abiteboul [1]
provides a general framework for view defini-
tion. A virtual class mechanism is used for in-
stantiating views in object-oriented databases.
Here, classes for views are explicitly defined
where the attributes of these classes are really
methods that retrieve information from where it
is actually stored. A view can be treated as a

database, but it does not preserve an object iden-
tity. Rundensteiner [33] and Bertino [7] intro-
duce the concepts of the multiview and schema
view, respectively. These provide the capac-
ity to restructure a database schema so that it
meets the need of specific applications. They
present support for view design by automating
some tasks of the view specification process and
by supporting automatic tools for enforcing the
consistency of a view schema. Indeed, different
views of the same object are allowed, depending
on the context in which the object is considered.
Here views preserve an object’s identity, but the
different instances of the same object are inde-
pendent.

All these models consider the viewpoint as a
view defined with the aim of adapting an exist-
ing structure to new needs.

3.2. Roles

Objects with roles have increasingly been stud-
ied by several authors [4, 13, 17, 37]. Roles
are useful for supporting objects with multiple
interfaces that can be dynamically extended to
model entities which change their behaviour,
and the class they belong to over time. This
task presentsmany problems such as uniqueness
of objects identifier, strong typing, persistence,
late binding, etc. in response to the role han-
dling problem, several approaches have been
introduced. In particular, the intersection-class-
based and the role-hierarchy-based approaches
are the most popular. The first approach sim-
ulates the objects multiple classification and
dynamic restructuring by creating an intersec-
tion class to reflect the structure of a multiply-
classified object. A separate class must thus
be defined for every combination of roles. This
simulation adheres to the constant that an object
belongs to exactly one class at a time. This can
present many problems: the class hierarchymay
grow exponentially and the dynamic object clas-
sification is a tedious task. The role hierarchy-
based approach, however, has been adopted in
many extended object-oriented database sys-
tems [17, 37]. A role hierarchy is a tree of
special types called role types. The root of this
tree defines the time-invariant properties of an
object. The other nodes represent types (roles)
that an object can acquire and lose during its
lifetime.



The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution 99

The notion of roles is thus essential to support
object extension, but is also useful to model sit-
uations where one real world entity may exhibit
different behaviour in different contexts with-
out changing its identity within a unique rep-
resentation. Objects can therefore have several
contexts, i.e. a kind of viewpoint that it acquires
and loses dynamically.

According to the above presentation of the two
concepts of views and roles, we notice that the
integration of the viewpoint concept in databases
takes into account the actor and his vision to the
system in a late stage. However, the viewpoint
mechanism appears at data exploitation in the
views case and represents the evolution of ob-
jects in the roles case. The aim of viewpoints
is to take into account the actors earlier, i.e. at
the data modelling and design step. The view-
point approach that we consider deals with both
the evolution and the multiple representation as-
pects within a unique paradigm. It also permits
the novel dimension of distributed data descrip-
tion. To the best of our knowledge, no cur-
rent object-oriented database system supports
this aspect. In the next section, we present the
methodology of our proposed MVDB model.

4. The Methodology of the MVDB Model

The MVDB is an object-oriented data model
with an extension by concepts and mechanisms
which allow the multiple, evolutionary and dis-
tributed representation of a database schema.
This representation confers to an UoD sev-
eral partial and complementary representations.
Each partial description is based on a first de-
scription of the entities and extends it accord-
ing to a given viewpoint. The multiple and
evolutionary representation overcomes the re-
striction of the single and fixed object instantia-
tion link. The distributed representation fulfills
the requirements of the current applications of
the distributed and decentralized development
of databases.

We adopted the object-oriented model as the
commonmodel for the various database schemas.
This choice is justified by three principal moti-
vations. First, the application of object-oriented
concepts in system architectures provides a nat-
ural model for autonomous and distributed sys-
tems. Second, the object technology has been

used in multidatabase systems to a finer level
of granularity. Third, the expression and struc-
turing power of the object-oriented approach
goes with the objects modelling features in the
MVDB model, such as the multi-instantiation
mechanism that permits an object to have more
than one instance.

The methodology of the MVDB model relies on
the following ideas:

• the viewpoint concept is considered as an in-
herent concept of the data model and not as
an augmented mechanism on it;

• a database schema is a multiple description
of the same UoD according to various view-
points. A viewpoint is an abstraction of a
certain perception (vision) of data. It does
not correspond to a class, but it is a hierar-
chy of classes called ViewPoint schema (VP
schema). A database schema is thus viewed
as a set of VP schemas, as shown in Figure
2. Each VP schema represents an aspect of
the data description and is held by an inde-
pendent database system;

• the VP schemas construction is based on a
basic one called the referential schema. This
last holds basic data on the real word entities
shared by all the VP schemas;

• an exchange of information is supported be-
tween the partial descriptions of the schema,
which are not isolated;

• objects in the referential base are global.
Global objects have a basic description in
the referential base and one or more descrip-
tions according to viewpoints;

• objects evolution is held by allowing entities
to acquire or lose partial descriptions in the
different viewpoint schemas while preserv-
ing their identities.

Figure 2. The viewpoint approach.



100 The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution

We point out that object identity is a central
notion in our approach. It is the same object
described in many ways according of its mem-
bership in the various VP schemas. However, in
order to ensure the components autonomy, local
objects can be created and managed locally by
VP databases. Local objects are objects with
a single description according to one viewpoint
and can’t be accessed at the global level.

VP databases are complementary and provide
a global distributed database called multi-view-
point database. A coherent exploitation of this
global database is then recommended.

Generally, these features are particularly needed
in large complex applications of the industrial
world. As a matter of fact, companies are
logically distributed into offices, departments,
working groups, etc. Consequently we can de-
duce that the data are also already distributed.
Each unit in the company must manage the rel-
evant data for its operation and should be able,
if necessary, to reach remote data that exist in
the other units. The data in the various units are
complementary and operated upon by collabo-
rating users.

We illustrate the viewpoint approach through a
simple modelling example. It concerns the rep-
resentation of a laboratory’s scientific staff (see
Figure 3). This is composed of a referential
schema and two viewpoint ones.

The referential schema consists of the common
information shared by all the viewpoints. We
are particularly interested in the teaching and
research activities of each member of the lab-
oratory. Let us consider the Research VP and

Figure 3. A multi-viewpoint modelling example.

the Teaching VP. Each viewpoint is an object-
oriented schema that contains only information
that is relevant to it. The Research VP, for ex-
ample, is a hierarchical description of the lab-
oratory’s members according to their research
activity.

Each member can have, simultaneously, a ba-
sic description at the referential level and one or
two viewpoint descriptions according to his/her
teaching and research activities. For example,
the member “Benali” presented with oid “E1”
in Figure 4, is a professor, permanent teacher
and responsibleof research topics. E11 and E12
are Benali’s identifiers at the VP schemas.

Figure 4. The multi-viewpoint object representation.

5. Formalization

The keystone of our modelling approach is the
integration of the viewpoint paradigm. Thus,
the conventionalmodelling concepts of an object-
oriented database: schema, base (instance of
schema) and objects are extended by the con-
cepts of multi-viewpoint schema, multi-view-
point base and multi-viewpoint objects, respec-
tively.

Each one of these concepts contains two types
of information:



The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution 101

1. Intrinsic information which represents basic
and common objects description, shared by
all the viewpoints.

2. Specific information which relates to objects
description according to the various view-
points.

With these concepts, are added those of view-
point schema, viewpoint base and viewpoint ob-
jects, which allow to model data at any view-
point level.

In this section, we develop the formal descrip-
tion of our data model. The presentation is
inspired by [2]. When applicable, each concept
of the MVDB model comes with a syntactic for-
mulation in a data definition language closely
related to the O2 one [3].

Let MVDB (Sr, VP, C, O), be the specification
of the data model signature, where:

• Sr is a referential schema name.

• VP is a set of viewpoint schema names,

• C is an infinite set of class names,

• O is an infinite set of object identifiers.

For any viewpoint, we specify:

• Svp is a viewpoint schema name, such that
Svp ∈ VP.

• Bvp is a viewpoint base name.

• Cvp is the set of classes in Svp, such that Cvp
⊂C.

• Ovp is the set of objects in a viewpoint base,
such that Ovp ⊂ O.

In the following, we first define formally some
basic concepts of the conventional object-oriented
database model: type, class hierarchy and sub-
typing. Our model supports three kinds of
types: atomic types, constructed types and user
types. Atomic types are: integer, string, bool
and real. Constructed types are obtained from
atomic types by recursive application of the fol-
lowing constructs: tuple, set and list. Given a
class name n, n is a user type.

Assume the following sets:

• Dom is a set of constants. Dom =Dom(integer)
∪ Dom(string) ∪ Dom(bool) ∪ Dom(real),
containing the domain of each atomic type,

• Att : an infinite set of attribute names,

Definition 1. Type.

Let C be a finite subset of C. The set of types
overC, denoted Types(C), is defined as follows:

(a) any ∈ Types(C).

(b)C ⊂ Types(C). Class names are types.

(c)Dom ⊂ Types(C).

(d) If τ ∈ Types(C), then {τ} ∈ Types(C). {τ}
is a set type.

(e) If τ ∈ Types(C), then [τ] ∈ Types(C). [τ] is
a list type.

(f) If τ1, . . . , τn ∈ Types(C) and a1, . . ., an ∈
Att, then <a1:τ1, . . ., an:τn>∈ Types(C).
<a1:τ1, . . ., an:τn> is a tuple type.

Definition 2. Class hierarchy.

A class hierarchy is a tuple (C, ∂, ≺) where:

(a) C is a subset of distinct classes of C.

(b)∂ is a function from C to Types(C) which
associates to each class ci of C a type.

(c)≺ is a partial order over C, corresponding to
the Is a sub-class link.

The sub-class relationships provide the condi-
tions on types to establish if two classes are
in a generalisation/specialization link. To for-
malize this concept, the subtyping relation is
defined.

Definition 3. Subtyping.

Let (C, ∂, ≺) be a class hierarchy. The sub-
typing relation is defined as the smallest partial
order ≤ over Types(C) such that:

(a) ∀τ ∈ Types(C), τ ≤ any. any is the top of
the hierarchy.

(b)∀ c, c’ ∈ C, if c ≺ c’ then c ≤ c’.

(c) ∀τ1, . . .,τm, τ ’1, . . .,τ’n ∈ Types(C) and
∀a1, . . ., an, . . . am ∈ Att, if n ≤ m and if
τi ≤ τ’i for each i ∈ [1,n] then <a1:τ1,. . .,
an:τn, . . . am:τm >≤<a1:τ’1,. . ., an:τ’n>.

(d)∀τ, τ’ ∈ Types(C), if τ ≤ τ’ then {τ} ≤
{τ’}.

(e) ∀τ, τ’ ∈ Types(C), if τ ≤ τ’ then [τ] ≤ [τ’].



102 The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution

Definition 4. Well-formed class hierarchy.

A class hierarchy (C, ∂, ≺) is well-formed if:

∀c, c’ ∈ C, if c≺ c’ ⇒ ∂(c) ≤ ∂(c’).

Relying on the previous definitions, we give
now the formal definition of the MVDB con-
cepts.

5.1. Schemas

In MVDB, a database schema is described by a
referential schema and several viewpoint sche-
mas.

5.1.1. Referential Schema

The referential schema is the basic schema that
describes all the entities independently of any
viewpoint.

Definition 5. Referential schema.

As any common object schema, the referential
schema is a well-formed class hierarchy (see
Definition 4)

Sr = (Cr , ∂r, ≺r ) where:

Cr is the finite set of class names in the schema
such that: Cr ⊂ C. We notice that we don’t deal
with methods here.

Example 1. The laboratory-schema is the ref-
erential schema that models information about
the laboratory’s scientific staff presented in Fig-
ure 3. Each member is an object stored in the
laboratory-base.

Referential schema Definition
Schema laboratory-schema;
Base laboratory-base
Class Member

Public type tuple (
family-name : string,
last-name : string,
age : integer )

End;
Class Profesor. . .
Class Assistent-profesor. . .
Class doctor. . .
End.
Name members = set (member);

Export-schema class Member;
Export-base name members;

5.1.2. Viewpoint Schema

A viewpoint schema is the customization of the
whole or a part of the referential schema. Its
definition is based on two operations: projec-
tion and extension, which are defined in the
following.

Definition 6. Projection.

Let S = (C, ∂, ≺) and S’ = (C’, ∂’, ≺’) be two
schemas. S’ is a projection of S, denoted S’ ∇
S, if the following conditions are verified:

(a) C’ ⊆ C.

(b)∂’|C = ∂(∂’|C is the restriction of ∂’ in S’
on C in S).

(c)≺ ’|C =≺ (≺ ’|C is the restriction of ≺’ in
S’ on C in S).

The projected schema S’ is composed of some
(or all) classes of S and preserves their type and
their specialisation/generalization link in S.

Definition 7. Extension.

Let S = (C, ∂,≺) and S’ = (C’, ∂’, ≺’) be
two schemas. S’ is an extension of S, denoted
S’ Δ S, if the following conditions are verified:

(a) C’ ⊆ C.

(b)∂’|C = ∂(∂’|C is the restriction of ∂’ in S’
on C in S).

(c)≺ ’|C =≺ (≺ ’|C is the restriction of ≺’ in
S’ on C in S).

(d)∀c1, c2 ∈C’, if c1≺’ c2⇒ (c1∈C ∧ c2∈C)
∨ (c1 ∈ (C’-C) ∧ c2 ∈ (C’-C)) ∧ (c1 ∈ C
∧ c2 ∈ (C’-C) ∧  ∃ c3 ∈ C/ c3 ≺ c1)).

The hierarchy S’ preserves the type and the sub-
class relationships of the classes of S (condi-
tions (b) and (c)) and extends S by the creation
of new classes as specialization of its classes
‘sheets’ (condition (d)). This constraint ensures
the compatibility between the two hierarchies S
and S’.

Definition 8. Viewpoint schema.

A viewpoint schema Svp = (Cvp, ∂vp, ≺vp) is
an extension of a projection on the referential



The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution 103

schema Sr = (Cr, ∂r, ≺r), i.e. Svp = Δ (∇ Sr))
(as depicted in Figure 5).

Figure 5. Viewpoint schema = Projection + Extension
of the referential schema.

A viewpoint schema is obtained from two steps:
first, a projection operation (∇) is carried out
on the referential schema to select the part (or
the whole) of it, which will be described ac-
cording to the considered viewpoint. Then, an
extension operation (Δ) of the resulting schema
customizes the entities description according to
the viewpoint. However, in order to support
independence between the various viewpoint
schemas, and to keep the specificity of each one,
we choose a decentralized description. For that,
we benefit from the “slicing technique” used in
certain approaches described in [7, 33]. This
technique consists of distributing the projected
referential schema in the viewpoint schema.

Example 2. The research-viewpoint schema re-
fines the members’ description by adding new
attributes. All the members are concerned with
this description here. The whole of the refer-
ential schema is thus imported. The schema
definition is:

Viewpoint schema Definition
Viewpoint Research-viewpoint from labo-
ratory;
Base researchers-base;
Import-schema laboratory-schema class
Member;
Import-schema laboratory-basenamemem-
bers;
Class Researcher from Member

Public type tuple (
research-time : integer,
research-Institution : string )

End;
Class Assistant . . .
Class Responsible . . .
End.

5.2. Objects

Thevarious schemas (referential and viewpoints)
hold all the persistent objects, instances of the
different schema classes. Before giving a for-
mal definition of them, we first present the ex-
tension to the object concept.

5.2.1. Objects Extension

In the original object model, an object corre-
sponds to a pair (o,v) where o is the Object
IDentifier (OID) and v its value. In this repre-
sentation, each object in the database is assumed
to have exactly a single class, that in which
it was created. Such an assumption imposes
some restrictions on the dynamic and multi-
representation modelling of real world objects.
These characteristics are crucial in advanced
object-oriented technology. Indeed, multiple
instantiation mechanism is proposed to over-
come this rigidity. The multiple instanciation
mechanism used up to now permits an object
to belong to more than one class of the same
database schema. In the context of our work,
we address the two following object properties.

Property 1: An object is an instance of the ref-
erential schema and an instance of one or several
viewpoint schemas.

Thus, an object has a basic description and may
be described according to different viewpoints
simultaneously. This is the most broadly ac-
cepted property of the viewpoint concept. Be-
cause an object in a viewpoint schema is seen as
an instance of a viewpoint schema, it amounts
to creating multiple descriptions of an object.

Property 2: The state of an object is viewpoint-
oriented.

This means that the state of an object may vary
depending on the viewpoint in which it is be-
ing described. This seems to suggest that each
description of an object according to a view-
point should be viewed as a separate instance of
it. This property that allows the object multiple
instantiations complements Property 1.

According to the afore mentioned properties,
we can integrate a new concept called the ob-
ject referent. We can distinguish a local object’s
referent from a global one.



104 The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution

Definition 9. Local object referent.

A local object referent, denoted by Rl, is the
identification of the object in a viewpoint (lo-
cal) database such that:

Rl = (vp, Ol) where:

— vp is the viewpoint schema name,

— O1 is the viewpoint identification (OID).

Local object referents allow objects to be lo-
cally managed at the viewpoint level. It means
that each VP database preserves its execution
autonomy. However, a metadatabase is associ-
ated with this later to ensure local and global
constraints handling when any update is done
on objects (see the general architecture of the
MVDB System in Figure 8).

Definition 10. Global object referent.

A global object referent, denoted by Rg, rep-
resents the identification of the object in the
multi-viewpoint database such that:

Rg = (Og,, L(Rl)) where:

— Og is the referential OID of the object,

— L is the list of its viewpoint identifications
that is: L (Rl) = ∪vp ∈ VP(R1).

The global referent is an important concept in
our model. It permits the retrieval of a local
referents list to access data of the same object
in the VP databases.

5.2.2. MVDB Objects

According to the property 1 on objects and their
extension with the referent concept presented
above, we give now the definition of an object
in a viewpoint database called viewpoint object
and in the referential one called multi-viewpoint
object.

Definition 11. Viewpoint object.

A viewpoint object is a pair (Rl, Vl) where:

— Rl is its local referent

— Vl is its local state value.

Definition 12. Multi-Viewpoint object.

In a MVDB schema, an object is defined as a
pair (Rg,Vg) where:

— Rg is its global referent

— Vg is its state value in the referential
schema.

5.3. Bases

The objects constitute the associated bases of
the referential and the viewpoint schemas that
are defined in the following.

5.3.1. Viewpoint Base

A viewpoint base contains viewpoint objects.

Definition 13. Viewpoint base.

A viewpoint base, denoted Bvp, is a schema
state specified commonly as a tuple (πvp, Ovp,√

vp) where:

— πvp: Cvp → Ovp is the function that
associates to each class c ∈ Cvp its object
identifiers,

— Ovp is the set of the objects in Bvp :
Ovp = ∪c∈Cvp{πvp(c)},
√

vp is the function that associates a value to
each object of Bvp, such that:
∀c∈Cvp, ∀o∈ πvp(c) ,

√
vp(o)∈Dom(σvp(c)).

5.3.2. Referential Base

The referential base contains objects which are
described at the global level.

Definition 14. Referential base.

Let Rr be the finite set of object referents of the
referential schema Sr.
A referential base, denoted Br, is a schema state
specified as a tuple (πr, Or,

√
r) where:

— πr : Cr → Rr is the function that asso-
ciates to each class c ∈ Cr the object refer-
ents. Cr is the set of classes in Sr.
Or is the set of the objects in Br : Or =
∪c∈Cr{(πr (c), ∪vp∈VP(Rl))},
—

√
r is the function that associates a global

value to each object of Br, such that:
∀c∈Cr, ∀o∈ πr(c),

√
r(o)∈ Dom(σr(c)).



The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution 105

The referential base and viewpoint bases con-
stitute the multi-viewpoint base (extent) of the
multi-viewpoint schema. They give the com-
plete description of objects according to mul-
tiple viewpoints. Let us illustrate this by the
following example.

Example 3. The associated bases of the refer-
ential and the viewpoint schemas presented in
the above example are populated with objects.
Each object has an instance in the ‘laboratory-
base’ (referential base) and can possibly be in-
stantiated in the ‘researchers-base’. Instances
are collected under the root of persistence of
each schema as presented in follows.

Bases
laboratory-base((E1,{Benali,Mohamed,40}),

(research-vp, E11))
(E2, {Bencharif, Ali, 55}, nil))

researchers-base(E11,{Benali,Mohamed,40,
12,’Constantine-University’})

Once we have formally introduced the basic
concepts of the MVDB model, we can finally
define a database as an object-federated one
composed of a referential part Sr, which is the
core of the database augmented by a finite set
of VP databases. A viewpoint component is de-
fined to be a loosely coupled and locally man-
aged object database.

6. The MVDB Consistency and
Objects Evolution

In this section we focus a bit more on some
aspects of the MVDB model such as: the con-
sistency and objects evolution.

6.1. MVDB Consistency

The coherence is an essential and complemen-
tary functionality to every data model. How-
ever, unlike the traditional approach (monoview-
point) where the integrity constraints are de-
fined on the global schema, we distinguish in
the viewpoint approach two types of constraints:
local constraints which ensure the coherence at
any viewpoint database and global constraints
which ensure the global description coherence
of the entities according to several viewpoints.

If the local constraints are well apprehended, it
is difficult to take into account the global con-
straints. Within the framework of the MVDB
model, the classical conflicts usually met in fed-
erated databases are solved by the viewpoint
paradigm [6] such as names, semantic and struc-
tural conflicts. However, other types of con-
flicts are distinguished. These ones guarantee
the compatibility of and the coordination be-
tween the different object descriptions in the
system. Let us consider the following cases.

1. Mutual exclusion between viewpoint DBs:
when the description of the entities by a
viewpoint schema compromises their de-
scription by another viewpoint schema.

Example 4. Any temporary teacher does not
have the right to acquire a research activity at
the laboratory, and can’t have a description ac-
cording to this viewpoint.

2. Interdependency between viewpoint DBs:
when the viewpoint schemas contain linked
properties.

Example 5. Any permanent teacher whose re-
search time exceeds twenty hours a week must
reduce his official teaching time by 40 percent.

3. Referential integrity between viewpointDBs:
when the creation (or possibly the deletion)
of a database entity requires a preliminary
creation (or possibly the deletion) of one (or
many) entity(ies) of another database.

Example 6. Any permanent teacher must be a
member of a research group. This implies that
the creation of any object instance according to
the teaching viewpoint must generate the cre-
ation of the same object instance in the research
viewpoint.

A multi-viewpoint base is coherent (here we
are speaking about coherence with respect to
the semantics of the applications and not about
the implicit coherence induced by the model)
if the referential base and each viewpoint base
are coherent with respect to their schema, i.e.
all the local constraints are checked, and if the
gathering of the various bases is coherent, i.e.
all the global constraints are satisfied.



106 The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution

6.2. Objects Evolution

In the MVDB model the multiple description
of the objects is directly related to their evolu-
tion. While respecting the principle of the basic
representation and the integrity constraints be-
tween the different viewpoints descriptions, an
object can acquire new representations accord-
ing to various viewpoints as it can lose others
of them. This evolution, which is similar to the
roles mechanism, consists of an addition or a
deletion of an instantiation link between an ob-
ject and the classes in the viewpoint schemas.

7. The MVDB Architecture

We have noticed above that the viewpoint ap-
proach to databases requires a distributed en-
vironment. Distributed systems [9, 10, 19, 35]
have become increasingly important because of
requests for organization and the growth of ad-
vanced techniques in the network management.
These systems are characterized by three or-
thogonal dimensions: distribution, heterogene-
ity and autonomy. In this paper, we do not deal
with the heterogeneity dimension.

According to the autonomy dimension, [35]
propose a classification most commonly ap-
plied to the distributed systems. These are
divided into two families: non federated or
tightly-coupled database systems and federated
or loosely-coupled database systems.

In tightly-coupled database systems all the var-
ious database schemas are integrated in only
one global schema. The integration of the com-
ponents makes these latter lose all their auton-
omy. Indeed, there is only one management
level where all the operations are carried out in
a uniform way. Then no distinction is made
between the local and the global use of data.
Thus, this approach does not meet the view-
points structuring needs.

As a matter of fact, a federated system con-
sists of the integration of many autonomous
and interdependent database systems. Thus, in
contrast to the previous approach, a federated
database does not support a global schema. Its
main objective is to ensure the autonomy of the
component databases and to privilege theirman-
agement and their independent handling. The

federation is an appropriate architecture to sup-
port the viewpoint approach. However, what
about the data integration strategy that will be
used?

7.1. Data Integration

In a federated system two strategies are used to
integrate independent databases in a unified log-
ical global schema: the Global-As-View (GAV)
strategy that defines the global schema as a view
over the local schemas and the Local-As-View
(LAV) strategy that defines the local schemas
as views over the global schema [18]. We are
particularly interested in the LAV architecture
that will be adapted to our architecture.

Figure 6. The LAV data integration approach.

The Local-As-View (LAV) strategy, presented
in Figure 6, consists of defining the local sources
as views over the global schema. This presents
two principle advantages: a local change to
a data source is easily handled and the het-
erogeneity of the different components is sup-
ported. The LAV process is more adaptable to
the data model we have defined above. How-
ever, in our case, local schema called viewpoint
schema is an extended view over the global
schema called the referential schema. We recall
that a viewpoint schema is a partial description
of data according to a viewpoint. A Local-As-
Extended-View (LAEV) process is then used in
our system (see Figure 7).

The next paragraph describes the basic architec-
ture of the MVDB system which is a collection
of local partial databases that cooperate in a fed-
erated environment.



The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution 107

Figure 7. The LAEV data integration approach.

7.2. The Basic Architecture

According to the viewpoint approach, presented
in Section 4, the global schema is designed
in a decentralized way according to several
viewpoints. Each viewpoint is held by an au-
tonomous database. This autonomy promotes
the independence of the component databases.
It permits each one to keep a complete descrip-
tion of the entities according to a given view-
point. Thus, the entities are described in amulti-
ple but complementary way by several schemas.
These latter share a basic description known as

the referential.

The proposed architecture for the MVDB sys-
tem is based on the federation following the
LAEVprocess to integratemultiple autonomous
viewpoint databases that show multiple descrip-
tions of the same UoD. All the present schemas
in this architecture, i.e. the local schemas, the
referential schema and the external schemas are
based on a unified common object model. The
heterogeneity problem is therefore not dealt
with here. The uniformity of the data model
used is particularly important for managing of
both the persistence and the identity of the ob-
jects in the federated base. The MVDB archi-
tecture is made up of three levels: the local
level, the federated level and the external level
(see Figure 8).

• The local level carries the partial indepen-
dent object DBs called viewpoint database
systems. Each system, which holds a par-
ticular entity description of the UoD, is au-
tonomous. However, its local schema pre-
sents a complete data description according
to a viewpoint. Moreover, a metadatabase,
which stores visibility rules, is associated
with each database in order to ensure auton-
omy of communication with the other bases.

• The federated level is the kernel of our feder-
ated database system. It is essentially made

Figure 8. Global architecture of the MVDB system.



108 The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution

up of a user interface, a mediator and a fed-
eration dictionary. The user interface per-
mits communication with the external level.
The federation dictionary contains the ref-
erential schema and a metadatabase. Any
database taking part in the federation im-
ports a schema derived from the referential
one and extends it with a particular descrip-
tion according to a given viewpoint. The
derived schema can concern the entire basic
schema if the partial description is related to
all the entities of the UoD. The metadatabase
is a component that has an important role in
distributed data management. It stores two
kinds of information: information relating
to the types of data supported by the differ-
ent viewpoint databases and information on
the global constraints for solving integration
conflicts during the exploitation. The meta-
database is used by the mediator in dealing
with the users requests. The mediator is a
processor that supports various functional-
ities: query propagation, query interpreta-
tion, result propagation, result interpretation
and integrity checking. However, a con-
straint manager is integrated into the me-
diator and has the following roles:

1. It receives a notification message about an
update that could possibly violate the ob-
ject’s integrity in a viewpoint database,

2. It constructs an execution plan of requests
induced after integrity constraint checking.
This plan will be executed within the trans-
action at the federated level, according to a
two- phase- commit protocol,

3. The result of the constraint checking is then
sent by the mediator to the appropriate data-
base.

• The external level permits the exploitation
of the federated system services. External
schemas can maintain all the specificities of
the multiple descriptions of data. The user
can express his requests in terms of view-
points on data.

8. Conclusion

In this paper, we have proposed a structural ob-
ject database model that integrates the view-
point paradigm. This approach refers to the
evolution, multiple description and distribution

of objects. Also, it can make an undeniable
contribution for the distributed design of com-
plex databases. However, the same UoD can be
described in a distributed fashion by different
database schemas. Each one of these presents
the entities according to a single viewpoint. A
federated environment instead of a centralized
one has been chosen to achieve our approach.

Future work would concern the development
of a data definition and manipulation language
for the MVDB model, which is an extension
of the OQL language. In addition, it would be
interesting to develop an expression language
to specify integrity constraints at the federation
level.

References

[1] S. ABITEBOUL, A. BONNER, Objects and views, Pro-
ceedings of the Int’l Conference on Management
of Data, ACM SIGMOD, (1991), pp. 238–247.
Denver, Colorado.

[2] S. ABITEBOUL, R. HULL, V. VIANU, Foundations
of Databases, Addison-Wesley, Reading, Mass.
(1995).

[3] F. BANCILHON, C. DELOBEL, P. KANELLAKIS, Build-
ing an Object-Oriented Database System. The story
of O2, Morgan Kaufman, (1992), San Mateo, Cali-
fornia.

[4] A. ALBANO, R. BERGAMINI, R. GHELLI, R. ORSINI,
An Object Data Model with Roles. Proceedings
of the Int’l Conference on Very Large Database,
(1993), pp. 39–51. Dublin, Ireland.

[5] F. BENCHIKHA, M. BOUFAIDA, Un modèle con-
ceptuel pour une représentation multiple et évo-
lutive des connaissances. Proceedings of the 4th
African Conference on Research in Computer Sci-
ence, (1998), pp. 793–804. Dakkar, Sénégal.

[6] F. BENCHIKHA, M. BOUFAIDA, L. SEINTURIER, The
integration of the Viewpoint Mechanism in Fed-
erated Databases. Proceedings of SAC’01, ACM,
(2001), pp. 280–284. Las Vegas. Nevada, United
States.

[7] E. BERTINO, A View Mechanism for Object-
Oriented Databases. Proceedings of the 3rd Int’l
Conference on EDTB’92, (1992), pp. 136–151.
Vienna, Australia.

[8] D. G. BOBROW, T. WINOGRAD, An Overview of
KRL, a Knowledge Representation Language. Cog-
nitive Science, Vol. 1, (1977).

[9] Y. BREITBART, A. SILBERSCHATZ, Multidatabase up-
date issues. Proceedings of SIGMOD Int’l Confer-
ence on Management of Data, (1988), pp. 135–142.
Chicago, Illinois, United States.



The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution 109

[10] O. A. BUKHRES, A. K. ELMAGARMID, Object-
Oriented Multidatabase Systems. Prentice-Hall,
(1996), Englewood Cliffs, NJ.

[11] N. CARN, ReprésentationOrientée Objet de Système
Opérationnel avec application au domaine spacial.
INP thesis, (1992), Toulouse, France.

[12] P. J. CHARREL, D. GALARETTA, C. HANACHI, B.
ROTHENBURGER, Multiple Viewpoints for the De-
velopment of Complex Software. Proceedings of
the IEEE Int’l Conference on Systems, Man and
Cybernetics, (1993), pp. 556–561. Le Touquet,
France.

[13] S. COULONDRE, T. LIBOUREL, An IntegratedObject-
Role Oriented Database Model. Data & Knowledge
Engineering 42(1), (2002), pp. 113–141.

[14] L. DEBRAUWER, Des vues aux contextes pour la
structuration fonctionnelle de bases de données
à objets en CROME. Doctorat thesis, University of
sciences and technologies, Lile, France, (1998).

[15] L. DEKKER, FROME: Représentation Multiple et
Classification d’Objets avec Points de Vues. Doc-
toral thesis, University of sciences and technologies,
Lile, France, (1994).

[16] M. GERGATSOULIS, Y. STAVRAKAS, D. KARTERIS,
A. MOUZAKI, D. STERPIS, A Web-Based System
for Handling Multidimentional Information through
MXML. Lecture Notes In Computer Science (LNCS
2151), (2001), pp. 352–365, Springer-Verlag.

[17] G. GOTTLOB, M. SCHREFL, B. ROCK, Extending
Object-Oriented Systems with Roles. ACM Trans-
actions on Information Systems 14(3), (1996), pp.
268–296.

[18] A. HALEVY, Logic-based techniques in data inte-
gration. Proceedings of the Logic Based Artificial
Intelligence, (2000).

[19] D. HEIMBIGNER, D. MCLEOD, A Federated Archi-
tecture for Information Systems. ACM Transactions
on Office Information Systems 3(3), (1985), pp.
253–278.

[20] A. KRIOUILE, VBOOM, une méthode orientée ob-
jet d’analyse et de conception par points de vue.
Doctoral thesis, University of Mohamed V, Rabat,
Maroc, (1995).

[21] J. L. LEMOIGNE, La modélisation des systèmes com-
plexes. Dunod Edition, (1990).

[22] O. MARINO, Raisonnement classificatoire dans une
représentation à objets multi-points de vue. Doc-
toral thesis, University of Joseph-Fourier, Grenoble,
France, (1993).

[23] T. MENZIES, S. EASTERBROOK, B. NUSEIBEH, S.
WAUGH, An Empirical investigation of multiple
viewpoint reasoning in requirements engineering.
Proceedings of the 4th Int’l Symposium on Require-
ments Engineering (RE’99), (1999), Limerick, Ire-
land.

[24] H. NAJA, CEDRE: un modèle pour une représenta-
tion multi-points de vue dans les bases d’objets.
Doctoral thesis, University of Henri Poincaré,
Nancy 1, (1997).

[25] G. T. NGUYEN, D. RIEU, Database Issues in Object-
Oriented Design. Proceedings of the 4th Interna-
tional Conference TOOLS, (1991), pp. 73–86, Paris,
France.

[26] M. PAPAZOGLOU, B. KRAMER, A Database Model
for Object Dynamics. The VLDB Journal 6, (1997),
pp. 73–96.

[27] B. PERNICI, Objects with roles. Proceedings of
Office Information Systems, (1990), pp. 205–215,
Cambridge, Massachussets.

[28] A. PONS, Formalisation logique d’un mécanisme
d’héritage crédule avec points de vue. Proceedings
of Actes des Journées RPO, Edition EC2, (1992),
pp. 73–85, La Grande Motte.

[29] C. RATHKE, D. F. REDMILES, Multiple Represen-
tation Perspectives for Supporting Explanation in
Context. Technical Report CU-CS-645-93, Univer-
sity of Colorado, Department of Computer Science,
Boulder, Colorado. (1993)

[30] J. RICHARDSON, P. SCHWARTZ, Aspects: Extending
Objects to support Multiple, Independent Roles.
Proceedings of the ACM SIGMOD Int’l Conference
on Management of Data, (1991), pp. 298–307.
Denver, Colorado.

[31] D. RIEU, G. T. NGUYEN, A. CULET, J. ESCAMILLA,
C. DJERABA, Instanciation Multiple et Classifica-
tion d’Objets. VIIèmes Journées Bases de Données
Avancées, Lyon, (1991).

[32] D. ROSS, K. E. SCHAMAN, Structured Analysis for
Requirements Definition. IEEE Transactions 3(1),
(1977), pp. 6–15.

[33] E. RUNDENSTEINER, Multiview: a Methodology
for Supporting Multiple Views in Object-oriented
Databases. Proceedings of the 18th VLDB Con-
ference, (1992), pp. 187–198, Vancouver, British
Columbia, Canada.

[34] E. SCIORE, Object Specialisation. ACM Trans. In-
formation Systems 7(2), 1989, pp. 103–122.

[35] A. SHETH, J. LARSON, Federated Database Sys-
tems for Managing Distributed, Heterogeneous and
Autonomous Databases. ACM Computing Surveys
22(3), 1990, pp. 183–236.

[36] J. J. SHILLING, P. F. SWEENEY, Three Steps to Views:
Extending the Object-Oriented Paradigm. Proceed-
ings of OOPSLA’89, 1989, pp. 353–361. New
Orleans, Louisiana, United States.

[37] L. WANG, M. ROANTREE, Designing Roles For
Object-Relational Databases. Proceedings of the 5th
International Workshop on Engineering Federated
Systems (EFIS’2003), (2003). Coventry, UK.



110 The Viewpoint Mechanism for Object-oriented Databases Modelling, Distribution and Evolution

Received: April, 2005
Accepted: November, 2005

Contact addresses:

Fouzia Benchikha
LIRE Laboratory

Department of Computer Science
Mentouri University of Constantine

25000 Constantine, Algeria
e-mail: f benchikha@yahoo.fr

Mahmoud Boufaida
LIRE Laboratory

Department of Computer Science
Mentouri University of Constantine

25000 Constantine, Algeria
e-mail: boufaida mahmoud@yahoo.fr

FOUZIA BENCHIKHA is an Assistant Professor in the Computer Science
Department of the University of Skikda in Algeria. Her current re-
search activities are conducted at the LIRE Laboratory at the University
of Constantine. Her research interests include advanced information
systems, distributed databases and software engineering.

MAHMOUD BOUFAIDA is a Professor at the Department of Computer
Science of the Mentouri University of Constantine in Algeria. He cur-
rently heads the research group “Information Systems and DataBases”
of the LIRE Laboratory at the University of Constantine. His current
research interests include cooperative information systems, databases,
multi-agent systems and software engineering.




