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Abstract

Truncation is a known feature of bone marrow transplant (BMT) registry data, for which the 

survival time of a leukemia patient is left truncated by the waiting time to transplant. It was 

recently noted that a longer waiting time was linked to poorer survival. A straightforward solution 

is a Cox model on the survival time with the waiting time as both truncation variable and 

covariate. The Cox model should also include other recognized risk factors as covariates. In this 

paper we focus on estimating the distribution function of waiting time and the probability of 

selection under the aforementioned Cox model.
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1 Introduction

The Center for International Blood and Marrow Transplant Research (CIBMTR) is a 

network of clinicians and basic science researchers who confidentially share data on blood 

and bone marrow transplant (BMT) patients. The CIBMTR Data Collection Center, located 

at the Medical College of Wisconsin, is a registry of patient data contributed from more than 

450 transplant centers worldwide. The registry does not collect data of patients who died 

waiting for matched donors. Therefore, a patient cohort from the registry is a truncated 

sample in which the time-to-failure is left truncated by the waiting time to transplant.

It is of great importance to assess the effects of prognostic factors on survival or leukemia-

free survival. With the registry data, it is necessary to deal with the truncation issue because 

diagnosis of leukemia has to be the time original for survival so that effec-tiveness of 
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transplantation can be compared to that of an alternative treatment such as chemotherapy. 

Therefore, the left-truncated version of the Cox model is used to associate the covariates to 

the survival outcome. In studies using the registry data, researchers assumed that the survival 

time and waiting time to transplant were independent (Barrett et al., 1994). In recent years, 

there was clinical evidence that a longer waiting time for transplant was a poor prognosis. 

Balduzzi group was among the first to study the effect of waiting time to transplant on 

survival. They brought up the point that a higher level of toxicity from chemotherapy could 

be cumulated during an extended waiting period, and the patient could be subsequently 

associated with a poor prognosis. In addition, the effect of waiting time causes the problem 

of dependent truncation in analysis of the registry data. To solve the problem, the registry 

data should be analyzed by a left-truncated version of the Cox model with the waiting time 

as a covariate.

The BMT registry data can be explored for disparity studies. Two disparity-related questions 

can be investigated. The first question relates to the probability of being in the truncated 

sample. We may estimate this probability in racial or social-economic subgroups and 

examine if any characteristic is associated with obviously lower chance of receiving 

transplants. Second, we may estimate the distribution function of waiting time to transplant 

in racial or social-economic subgroups, so that we can learn if patients in any subgroup have 

to wait substantially longer time to receive transplants. As an illustrative example we 

consider a CIBMTR cohort consisting of 376 children receiving transplants in their second 

complete remission in 1990–1999 (Barrett et al., 1994). We use the Cox model with waiting 

time to transplant as both truncation variable and covariate to deal with the dependence 

between survival time and waiting time to transplant. Based on this model, we estimate the 

probability of selection and the distribution function of waiting time to transplant in some 

subsets. We wish to investigate whether the waiting time to transplant varies between the 

subsets.

The general concept of truncation in statistical sampling means unobservability of a 

continuous variable when the value is above or below certain threshold. In the field of 

lifetime data analysis, truncation refers to the scenario that a pair of continuous variables T 
and L are only observable if L < T. For the CIBMTR registry data, T is the survival time 

from diagnosis for a patient reported to the registry, and L is patient’s waiting time to 

transplant. Two types of truncation coexist in that T is left truncated by L and L is right 

truncated by T. The majority of statistical inferences for truncated data were developed 

assuming independence between L and T in the observable quadrant L < T, which is denoted 

as quasi-independence (Tsai, 1990). The survival function of T can be estimated by the left-

truncated version of the Kaplan-Meier estimator (1958), though truncation issue was 

discussed as late entrance in their paper. The asymptotic properties of this estimator was 

studied by Woodroofe (1985), Wang, Jewell and Tsai (1986), Keiding and Gill (1990) 

among others. Right truncation has routinely been dealt with by transforming L to τ − L 
where τ is a very large constant. The transformed variable τ − L is left truncated by τ − T, 

and then the methodologies developed for left truncation would become applicable. 

According to this principle, the distribution function of L is estimated by the right-truncated 

version of the Kaplan-Meier estimator (Keiding and Gill, 1990). Inverse probability 

weighting was found out to be an alternative solution to truncation. The nonparametric 
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inverse-probability-weighted (IPW) estimators were shown to be identical to the truncated-

version Kaplan-Meier estimators (Shen, 2003). The semi-parametric IPW estimator was 

proposed by Wang (1989) when the distribution of the truncation variable can be 

parametrisized. Such an estimator is more efficient than its nonparametric counterpart. Some 

statisticians noted the usefulness of one truncation parameter, the probability of selection 

P(L < T). The inferences about this parameter under random truncation have been studied by 

Woodroofe (1985) and Keiding and Gill (1990).

When the truncated data contain covariates associated with T, the left-truncated version of 

the Cox model is the commonly used analytical method. One important application of this 

model is to analyze BMT registry data, to evaluate prognostic factors and compare transplant 

versus other treatment option (Klein and Zhang, 1996). When the association between 

covariates and L is of study interest, the standard analytical methods include the right-

truncated version of the Cox model targeting on the retro-hazard function (Kalbfleisch and 

Lawless, 1991; Gross and Huber-Carol, 1992) and the full-likelihood-based Cox model on 

the hazard function (Finkelstein et al., 1993).

Several tests have been proposed to test the quasi-independence with truncated data, 

including the Kendall’s tau and the weighted rank statistics by Tsai (1990) and Efron and 

Petrosian (1992), respectively. Another test was suggested by Jones and Crowley (1992) by 

taking L as a covariate of T in the left-truncated version of the Cox model. Let λT (t; z), 

λ0(t) and α be respectively the conditional hazard function of T, the unspecified nonnegative 

function and the regression coefficient. Jones and Crowley proposed to use the score test 

based on the model, λT (t; L) = λ0(t)eαL, to test the quasi-independence.

The Cox model with L as both truncation variable and covariate was later found out to be a 

convenient method to address the dependence in truncated data. Mackenzie (2012) used the 

Cox model with age as both truncation variable and covariate to analyze the survival data of 

users of VA health system. In that paper, age was the only covariate so the assumed model 

was exactly λT (t; L) = λ0(t)eαL. Mackenzie proposed the estimators for the distribution 

functions of truncation and lifetime variables using the inverse-probability-weighting 

technique. Zhang et al. (2015) illustrated an application of this model in analyzing BMT 

registry data. The waiting time to transplant is the truncation variable and also associated 

with the survival. Under the Cox model that the waiting time to transplant is the only 

covariate, Zhang et al. studied the inference for the probability of selection. It is natural to 

believe that for leukemia patients receiving bone marrow transplants the demographic 

factors such as age, race and clinical factors such as T-cell phenotype are associated with the 

survival. In this study we analyze the BMT registry data using a left-truncated version Cox 

model with covariate L and other prognostic factors. The methodological development 

targets at estimating the probability of selection and the distribution function of truncation 

variable under such a Cox model.

The remainder of this paper is organized as follows. Section 2 presents the point and 

variance estimators for the probability of selection and the distribution function of truncation 

variable with truncated data. The results of a simulation study are provided in Section 3. In 

Section 4, the BMT registry data set of 376 children is analyzed to illustrate the proposed 
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methods. The final discussion is given in Section 5. The appendix of this paper sketches the 

derivation of the asymptotic distribution of the proposed estimator.

2 The methods

2.1 To estimate the probability of selection

The sample is summarized as { Li
∗, T i

∗, Zi}, i = 1, ···, n, Li
∗ < T i

∗. Distributions of L* and T* 

are the conditional distributions of L and T given L < T. Zi is the vector of p covariates. Let 

(aK, bK) is the interior of the support of a distribution function K, aK = inf{x: K(x) > 0} and 

bK = sup{x: K(x) < 1}. Let G be the distribution function of L and Fz be the conditional 

distribution of T given z. Similar to the conditions used in the nonparametric setting 

(Woodroofe, 1985), we assume that aG < aFz and bG < bFz. In addition, only conditional 

distributions of Fz and G given respectively T|z ≥ aG and L ≤ bFz are estimable.

The distribution function of T is determined through the underlying model λT (t; L, z) = 

λ0(t) exp{g(α, L) + γT z} for t ≥ L. In the regressor, g is a known function, γ is the vector of 

p regression coefficients, and α is the vector of regression coefficients associated with 

polynomial or other terms of L. For example, if g() is a linear combination of {L, L2, ···, Lk}, 

the dimension of α is k. In order to have simple presentation, we let g(α, L) = αL, which 

pertains to a constant hazard ratio between any two levels in L. This simplification does not 

reduce the generality of the method. The complete specification of the working model is 

given by

λT(t; L, z) =
λ0(t) exp {γTz} t < L

λ0(t) exp {αL + γTz} t ≥ L
. (1)

It is known that in the setting without covariates independence of L and T cannot be tested in 

the region T < L (Tsai, 1990). In this region, because no data are observed, the relation of L 
and T cannot be recognized. In the above model, the specification for t < L is untestable 

because data are not observed in this region. If effect of a covariate is believed to change 

over time, the model and methods discussed in the paper are not applicable to handle such a 

covariate.

We define the notations Z∼i
T = {Li

∗ Zi
T}, βT = {α γT}, as well as the counting processes, 

NT , i(x) = I(T i
∗ ≤ x) and Y i(x) = I(Li

∗ ≤ x ≤ T i
∗). Define

S(p)(β, t) = ∑
i = 1

n
Yi(t)Z

∼
i
⊗ p exp (βTZ∼i), p = 0, 1, 2,

where a⊗2 = aaT. The partial likelihoods (Cox, 1972; Andersen et al., 1993) can be 

constructed for Model (1), yielding the following score estimation equation,
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𝓤(β) = ∑
i = 1

n ∫0
∞

Z∼i −
∑ j = 1

n Y j(t)Z
∼

j exp (βTZ∼ j)

∑ j = 1
n Y j(t) exp (βTZ∼ j)

dNT , i(t) .

Let βT̂ = {α̂ γ̂T} be the maximum partial likelihood estimate (MLE). It is the solution to 

𝓤(β) = 0. The variance-covariance matrix of β̂ can be estimated by the inverse of

𝓘(β) = ∑
i = 1

n ∫0
∞ S(2)(β, t)

S(0)(β, t)
− S(1)(β, t)

S(0)(β, t)

⊗ 2
dNT , i(t) .

The Breslow estimator of Λ0(x) = ∫ 0
xλ0(u)du is given by

Λ0(t) = ∑
i = 1

n ∫
0

t dNT , i(u)

∑ j = 1
n Y j(u) exp (βTZ∼ j)

. (2)

Similar to Zhang et al. (2015), we introduce a latent variable T0
z which is the failure time 

variable given z and is associated with the hazard function λ0(t)eγ
Tz. We assume that the 

truncation variable L is independent of T0
z. Being selected in the sample will alter the hazard 

function of T0
z by Model (1). Based on this model, given L = 0, the covariate-specific 

survival probability at t is denoted by S0(t; z), where S0(t; z) = P (T > t|L = 0, z) = 

exp{−Λ0(t)eγ
Tz}. We also let Zt to be the covariate vector in the sample associated with an 

observed truncation time t. Please note that Zt is not time dependent and we consider fixed 

covariates Z only in this study. In addition, we assume that there are no ties among the times. 

The estimators provided in this paper can be easily extended to the data with ties.

Let G*(t) be the distribution of L given that L is truncated, G∗(t) = ∫ P(L ≤ t ∣ L ≤ T z
0)dV(z), 

where V (z) is the distribution of z in the truncated sample. Let P(β) be the probability that 

the truncated sample is selected from the underlying population,

P(β) = ∫0
∞ 1

S0(t; Zt)
dG∗(t)

−1
.

G(t) has the expression

G(t) = P(β)∫0
t 1
S0(u; Zt)

dG∗(u) .
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Note that both P(β) and G(t) are expressed in the inverse-probability-weighting form. 

Inverse probability weighting is a commonly used technique in analysis of truncated 

samples.

S0(t; z) can by estimated by Ŝ0(t; z) = exp{−Λ̂0(t)eγ̂
Tz}. G* can be naturally estimated by the 

empirical estimator of the truncated sample, G∗(t) = n−1∑i = 1
n I(Li

∗ ≤ t). In the following 

context Zt = ZiI(Li
∗ = t; i = 1, ⋯, n). We can estimate P (β) by

P(β) = ∫0
∞ 1

S0(t; Zt)
dG∗(t)

−1
= n−1 ∑

i = 1

n 1
S0(Li

∗; Zi)

−1
.

To estimate the distribution function of truncation variable L, the IPW estimator can be 

employed.

G(t) = P(β)∫0
t 1
S0(u; Zt)

dG∗(u) = n−1 ∑
i = 1

n 1
S0(Li

∗; Zi)

−1
× n−1 ∑

i = 1

n I(Li
∗ ≤ t)

S0(Li
∗; Zi)

.

We assume the standard regularity conditions for Cox model and selection bias model 

(Andersen and Gill, 1982; Vardi, 1985):

1. There exists s(0), s(1), s(2) such that

sup
β, t ∈ ∣ 0, ∞ )

‖S(p)(β, t) − s(p)(β, t)‖ 𝒫 0.

s(0)(β, t) is bounded away from zero and

s(1)(β, t) = ∂
∂ β s(0)(β, t), s(2)(β, t) = ∂2

∂ β2 s(0)(β, t) .

Define e = s(1)=s(0), v = s(2)=s(0) − e2. The matrix

∑ = ∫0
∞

v(β, t)s(0)(β, t)λ0(t)dt

is positive definite.

2. Suppose that S0(t; Zt) and G(t) are the continuous functions defined on [0, ∞). 

The following condition is satisfied,

∫0
∞

[S0(t; Zt)]−1
dG(t) < ∞ .
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Vardi (1985, §8) and Keiding and Gill (1990, §6) required the similar condition 

for selection bias model and random truncation model, respectively. The above 

condition is the counterpart for the context with covariates.

We first study the asymptotic distribution of n P(β)−1 − P(β)−1 . In the following context ≈ 

denotes asymptotic equivalence.

n P(β)−1 − P(β)−1 ≈ n∫0
∞

[S0(t; Zt)]−1
d[G∗(t) − G∗(t)] + n∫0

∞ 1
S0(t; Zt)

− 1
S0(t; Zt)

dG∗(t) .

Let W1 = n∫ 0
∞[S0(t; Zt]−1

d[G∗(t) − G∗(t)] and W2 = n∫ 0
∞ S0(t; Zt)−1 − S0(t; Zt)−1

dG∗(t). By 

central limit theorem, given t, when n → ∞, n P(β)−1 − P(β)−1  converges in distribution 

to a mean-zero normal random variable. Since W1 and W2 are asymptotically independent 

(Keiding and Gill, 1990), the variance of the limiting distribution is the sum of the 

asymptotic variances of W1 and W2. Let σP, 1
2  and σP, 2

2  be the asymptotic variance of W1 and 

W2, respectively. Since Ĝ* is an empirical estimator of the truncated sample, it is 

straightforward to obtain

σP, 1
2 ≈ ∫0

∞
[S0(t, Zt)]−2

dG∗(t) − ∫0
∞

[S0(t; Zt)]−1
dG∗(t)

2

= P(β)−1∫0
∞

[S0(t; Zt)]−1
dG(t) − P(β)−2 .

Following the standard result of Cox model, we obtain the explicit expression of σP, 2
2  but 

show the derivation in the appendix,

σP, 2
2 = ∫0

∞
ϕ(u)2

λ0(u)du

s(0)(β, u)
+ κT∑−1κ,

where

ϕ(u) = lim
n ∞ n−1 ∑

i = 1

n
S0(Li

∗; Zi)
−1

I(u ≤ Li
∗)e

γTZi

and
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κ = lim
n ∞ n−1 ∑

i = 1

n
S0(Li

∗; Zi)
−1

h(Li
∗; Zi) .

Using the generalized delta method, given t, the limiting distribution of n P(β) − P(β)  is 

normal with mean zero and the asymptotic variance P(β)4(σP, 1
2 + σP, 2

2 ) with the explicit 

expression

P(β)3∫0
∞

[S0(t; Zt)]−1
dG(t) − P(β)2 + P(β)4 ∫0

∞
ϕ(u)2

λ0(u)du

s(0)(β, u)
+ κT∑−1κ .

Based on this asymptotic result, we estimate the variance of P̂(β̂) by

σP
2 = n−1P(β)3∫0

∞
[S0(t; Zt)]−1

dG(t) − n−1P(β)2 + P(β, 𝒵)4 ∫0
∞

ϕ(u)2
dΛ0(u)

nS(0)(β, u)
+ n−1κT∑−1κ ,

where

ϕ(u) = n−1 ∑
i = 1

n
S0(Li

∗, Zi)
−1

I(u ≤ Li
∗)e

γTZi,

κ = n−1 ∑
i = 1

n
S0(Li

∗; Zi)
−1

h(Li
∗; Zi),

h(t; z) = ∫0
t
eγTz 0

z
− S(1)(β, u)

S(0)(β, u)
dΛ0(u)

and Σ = n−1𝓘(β).

The (1 − q)100% linear confidence interval is given by

P(β) ± z1 − q/2σP,

where zq is the (100q)th percentile of the standard normal distribution. It is known that a 

linear confidence interval for a probability may not be constraint in the interval [0, 1]. A few 

transformed confidence intervals were demonstrated to have better performance. A 

commonly used one is the log-log transformed confidence interval (Borgan and Liestøl, 

1990) with the formula
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exp
±z1 − q/2σP

P(β) log P(β)
.

In the remaining part of Section 2 we present a few probability estimators under different 

contexts. The linear and log-log transformed confidence intervals have similar forms as the 

above two equations. For simplicity the formulas of other confidence intervals are omitted.

2.2 To estimate distribution function of truncation variable

The estimator of L, Ĝ(t), is an IPW estimator. This type of estimator is widely used in 

various contexts. It is known that in survey statistics a selected observation should be 

inversely weighted by its probability of selection. The estimator was also studied by Vardi 

(1985) in the context that observations in a sample are subject to various known sampling 

probabilities. In the truncated sample the ith observation is selected to the sample by the 

probability S0(Li
∗; Zi). Therefore, the ith observation is inversely weighted by the estimated 

probability, S0(Li
∗; Zi). The first term of the estimator is the normalizing term to produce 

proper probability estimate. In survey statistics and in the context studied by Vardi, the 

probability of selection is known. The above estimator differs from the traditional IPW 

estimator in that the probability of selection needs to be estimated.

Here we provide a brief derivation of the asymptotic distribution of Ĝ(t). The variation of 

our IPW estimator can be explained by two sources, the variation of an IPW estimator using 

known weight, and the variation due to weight estimation. We define an interim term

G(t; β) = P(β)n−1 ∑
i = 1

n I(Li
∗ ≤ t)

S0(Li
∗; Zi)

,

P(β) = n−1 ∑
i = 1

n 1
S0(Li

∗; Zi)

−1
.

Essentially, Ĝ(t; β) is an IPW estimator using known weights. Then,

n G(t) − G(t) = n G(t; β) − G(t) + n G(t) − G(t; β) .

Let K1(t) = n G(t; β) − G(t)  and K2(t) = n G(t) − G(t; β) . First, we consider weak 

convergence of K1(t). Vardi (1985) studied the problem of estimating a distribution function 

when sampling weights are known. The proposed weighted estimator was proved to be 

maximum likelihood estimate, and the weak convergence result was sketched in the paper. 

Wang (1989) studied the semiparametric IPW estimator with an independently truncated 

sample, when the parametric distribution of the truncation variable is known. She explicitly 

decomposed the variation of the IPW estimator into two sources, the variation of the 
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estimator using known weights, which agrees with Vardi’s result, and the variation due to 

weight estimation. There is a high level of similarity between our IPW estimator and Wang’s 

IPW estimator. According to Vardi (1985, Section 8), Wang (1989, Lemma 3.3) as well as 

derivation provided in Zhang (2012), we have the following convergence result. 

n G(t; β) − G(t)  converges in distribution to a normal variate with mean zero and variance

σG, 1
2 (t) = P(β)∫0

t
[S0(u; Zu)]−1

dG(u) + P(β)G(t)2∫0
∞

[S0(u; Zu)]−1
dG(u) − 2P(β)G(t

)∫0
t
[S0(u; Zu)]−1

dG(u)

Here we sketch the derivation of weak convergence of K2(t) = n G(t) − G(t; β) .

n G(t) − G(t; β)

= n−1/2P(β) ∑
i = 1

n I(Li
∗ ≤ t)

S0(Li
∗, Zi)

− ∑
i = 1

n I(Li
∗ ≤ t)

S0(Li
∗; Zi)

+ n−1/2 P(β) − P(β) ∑
i = 1

n I(Li
∗ ≤ t)

S0(Li
∗; Zi)

≈ n−1P(β) ∑
i = 1

n
S0(Li

∗; Zi)
−1

I(Li
∗ ≤ t) n Λ0(Li

∗; Zi) − Λ0(Li
∗; Zi)

−n−1P(β)G(t) ∑
i = 1

n
S0(Li

∗; Zi)
−1

n Λ0(Li
∗; Zi) − Λ0(Li

∗; Zi)

It can be further expressed as

n G(t) − G(t; β) ≈ n−1/2P(β) ∑
j = 1

n ∫0
∞

{η(u, t) − G(t)ϕ(u)}
dM j(u)

s(0)(β, u)

+n−1/2P(β) ρ(t) − G(t) × κ T∑−1 ∑
j = 1

n ∫0
∞

Z∼ j − s(1)(β, u)
s(0)(β, u)

dM j(u) .

where

η(u, t) = lim
n ∞ n−1 ∑

i = 1

n
S0(Li

∗; Zi)
−1

I(u ≤ Li
∗ ≤ t)e

γTZi,

ρ(t) = lim
n ∞ n−1 ∑

i = 1

n
S0(Li

∗; Zi)
−1

I(Li
∗ ≤ t)h(Li

∗; Zi) .

Using the martingale central limit theorem, n G(t) − G(t; β)  converges in distribution to a 

zero-mean normal variate with variance
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σG, 2
2 (t) = P(β)2∫0

∞
{η(u, t) − G(t)ϕ(u)}2 λ0(u)du

s(0)(β, u)
+ P(β)2{ρ(t) − G(t) × κ}T∑−1{ρ(t) − G(t) × κ} .

Based on the arguments used in Wang’s derivation, we have the independence between 

n G(t) − G(t; β)  and n G(t; β) − G(t) . Therefore, given t, n G(t) − G(t)  converges in 

distribution to a zero-mean normal random variable, with the variance σG, 1
2 (t) + σG, 2

2 (t). 

Based on this asymptotic result, we propose the following variance estimator for Ĝ(t),

σG(t) = n−1P(β)∫0
t
S0(u; Zu)−1

dG(u) + n−1P(β)G(t)2∫0
∞

S0(u; Zu)−1
dG(u)

−2n−1P(β)G(t)∫0
t
S0(u; Zu)−1

dG(u)

+P(β)2∫0
∞

η(u, t) − G(t)ϕ(u) 2 dΛ0(u)

nS(0)(β, u)

+n−1P(β)2 ρ(t) − G(t) × κ T∑−1 ρ(t) − G(t) × κ ,

where

η(u, t) = n−1 ∑
i = 1

n
S0(Li

∗; Zi)
−1

I(u ≤ Li
∗ ≤ t)e

γTZi,

ρ(t) = n−1 ∑
i = 1

n
S0(Li

∗; Zi)
−1

I(Li
∗ ≤ t)h(Li

∗; Zi) .

2.3 The estimators for right censored and left truncated sample

Here we focus on the scenario that T is also subject to right censoring. Only trivial extension 

should be made to the methods introduced in Section 2.2. Therefore, we directly provide 

relevant estimators. Let C be the censoring time variable. The truncated and censored sample 

is described as { Li
∗, Xi

∗, Δi, Zi}, i = 1, ···, n, where Li
∗ < Xi

∗, Xi
∗ = min (T i

∗, Ci
∗), Δi = I(T i

∗ ≤ Ci
∗)

and it remains the same Z∼i
T = {Li

∗ Zi
T}. Following the routine requirements for the context of 

left truncation and right censoring, we assume that Ci
∗ is independent of T i

∗ given Li
∗ and 

P(Li
∗ < Ci

∗) = 1. Ci
∗ and Li

∗ do not necessarily need to be independent. The counting process 

notations should be revised, NT , i
C (x) = ΔiI(Xi

∗ ≤ x), Y i
C(x) = I(Li

∗ ≤ x ≤ Xi
∗),

SC
(p)(β, t) = n−1 ∑

i = 1

n
Yi

C(t)Z∼i
⊗ p exp (βTZ∼i), p = 0, 1, 2.

The estimating equation becomes
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𝓤C(β) = ∑
i = 1

n ∫0
∞

Z∼i −
∑ j = 1

n Y j
C(t)Z∼ j

∗ exp (βTZ∼ j)

∑ j = 1
n Y j

C(t) exp (βTZ∼ j)
dNT , i

C (t) .

Let βC
T = {αC γC

T } be the MLE that solves 𝓤C(β) = 0. The estimated information matrix is 

expressed as

𝓘C(βC) = ∑
i = 1

n ∫0
∞ SC

(2)(βC, t)

SC
(0)(βC, t)

−
SC

(1)(βC, t)

SC
(0)(βC, t)

2
dNT , i

C (t) .

The Breslow estimator for the cumulative baseline hazard function, Λ0(t), is given by

Λ0
C(t) = ∑

i = 1

n ∫0
t dNT , i

C (u)

∑ j = 1
n Y j

C(u) exp (βC
T Z∼ j)

.

Let S0
C(Li

∗; Zi) = exp −Λ0
C(Li

∗)e
γC

T Zi . The probability of selection and the distribution 

function of L can be respectively estimated by

PC(βC) = n−1 ∑
i = 1

n 1
S0

C(Li
∗; Zi)

−1

and

GC(x) = n−1 ∑
i = 1

n 1
S0

C(Li
∗; Zi)

−1
× n−1 ∑

i = 1

n I(Li
∗ ≤ x)

S0
C(Li

∗; Zi)
.

The variance of estimated probability of selection can be estimated by

σP, C
2 = n−1PC(βC)3∫0

∞
[S0(t; Zt)]−1

dGC(t) − n−1PC(βC)2 + PC(βC)4

∫0
∞

ϕC(u)2
dΛ0

C(u)

nSC
(0)(βC, u)

+ n−1κC
T ∑C

−1κC ,

where
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ϕC(u) = n−1 ∑
i = 1

n
S0

C(Li
∗; Zi)

−1
I(u ≤ Li

∗)e
γC

T Zi,

κC = n−1 ∑
i = 1

n
S0

C(Li
∗; Zi)

−1
hC(Li

∗; Zi),

hC(t; z) = ∫0
t
e
γC

T z 0
z

−
SC

(1)(βC, u)

SC
(0)(βC, u)

dΛ0
C(u)

and ΣC = n−1𝓘C(βC).

The variance estimator for ĜC(t) has the explicit express as follows,

σG, C
2 (t) = n−1PC(βC)∫0

t
S0

C(u; Zu) −1
dGC(u)

+n−1PC(βC)GC(t)2∫0
∞

S0
C(u; Zu) −1

dGC(u)

−2n−1PC(βC)GC(t)∫0
t

S0
C(u; Zu) −1

dGC(u)

+PC(βC)2∫0
∞

ηC(u, t) − GC(t)ϕC(u) 2 dΛ0
C(u)

nSC
(0)(βC, u)

+n−1PC(βC)2 ρC(t) − GC(t) × κC
T∑C

−1 ρC(t) − GC(t) × κC ,

where

ηC(u, t) = n−1 ∑
i = 1

n
S0

C(Li
∗; Zi)

−1
I(u ≤ Li

∗ ≤ t)e
γC

T Zi,

ρC(t) = n−1 ∑
i = 1

n
S0

C(Li
∗; Zi)

−1
I(Li

∗ ≤ t)hC(Li
∗; Zi) .

2.4 The estimators with stratified censored and truncated sample

Here we provide the estimation methods with a stratified sample for which the distribution 

function of the truncation variable varies between the strata. The stratified censored and 

truncated sample is summarized as { Lki
∗ , Xki

∗ , Δki, Zki}, k = 1, ···, K; i = 1, ···, n, Lki
∗ < Xki

∗ . We 

assume the same relationship between L and T as specified in Model (1). The Cox model 

related estimators remain the same as if no strata appear in the sample. We still use the 

notations β̂C, Λ0
C, ℐ̂

C(β̂C), Σ̂C, S0
C and ĥC for the stratified sample.
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Let Gk be the distribution function of the truncation variable in the kth stratum. The 

probability of selection may vary by stratum. The probability of selection of the kth stratum 

is denoted as Pk(β).

The estimators for Pk(β) and Gk with the stratified sample are given by

PC
k (βC) = nk

−1 ∑
i = 1

nk 1
S0

C(Lki
∗ ; Zki)

−1

, (3)

and

GC, k(t) = nk
−1 ∑

i = 1

nk 1
S0

C(Lki
∗ ; Zki)

−1

× nk
−1 ∑

i = 1

nk I(Lki
∗ ≤ t)

S0
C(Lki

∗ ; Zki)
. (4)

The variance of estimated probability of selection is estimated by

σP, C, k
2 = nk

−1PC
k (βC)3∫0

∞
[S0(t; Zt)]−1

dGC, k(t) − nk
−1PC

k (βC)2

+n−1PC
k (βC)4 ∫0

∞
ϕC, k(u)2

dΛ0
C(u)

SC
(0)(βC, u)

+ κC, k
T ∑C

−1κC, k ,

where

ϕC, k(u) = nk
−1 ∑

i = 1

nk
S0

C(Lki
∗ ; Zki)

−1
I(u ≤ Lki

∗ )e
γC

T Zki,

κC, k = nk
−1 ∑

i = 1

nk
S0

C(Lki
∗ ; Zki)

−1
hC(Lki

∗ ; Zki),

The variance estimator for ĜC(t) is given by
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σG, C, k
2 (t) = nk

−1PC
k (βC)∫0

t
S0

C(u; Zu)−1
dGC, k(u)

+nk
−1PC

k (βC)GC, k(t)2∫0
∞

S0
C(u; Zu)−1

dGC, k(u)

−2nk
−1PC

k (βC)GC, k(t)∫0
t
S0

C(u; Zu)−1
dGC, k(u)

+n−1PC
k (βC)2∫0

∞
ηC, k(u, t) − GC, k(t)ϕC, k(u) 2 dΛ0

C(u)

SC
(0)(βC, u)

+n−1PC
k (βC)2 ρC, k(t) − GC, k(t) × κC, k

T∑C
−1 ρC, k(t) − GC, k(t) × κC, k ,

where

ηC, k(u, t) = nk
−1PC

k (βC) ∑
i = 1

nk
S0

C(Lki
∗ ; Zki)

−1
I(u ≤ Lki

∗ ≤ t)e
γC

T Zki,

ρC, k(t) = nk
−1PC

k (βC) ∑
i = 1

nk
S0

C(Lki
∗ ; Zki)

−1
I(Lki

∗ ≤ t)hC(Lki
∗ ; Zki) .

3 The simulation study

We wished to evaluate the practical performance of the proposed IPW estimator of G(t) and 

the variance estimator. We considered the scenario that L is a predictor of T and a fixed 

covariate z is also associated with T. The following model was assumed

λT(t; L, z) =
λ0(t) exp (γz) if t < L

λ0(t) exp (αL + γz) if t ≥ L
. (5)

The truncation variable L was generated from a uniform distribution in the interval [0,1]. 

The baseline hazard function in the above model was set to a constant and we searched 

different values to control the censoring and truncation rates. We considered both positive 

and negative regression coefficients (α = 0.02 and −0.05) for L. When α is positive, 

increment in L escalates the risk of failure. When α is negative, increment in L prevents 

occurrence of failure. Settings with continuous covariate or discrete covariate were both 

generated. The continuous covariate was generated from a truncated standard normal 

distribution, restraining in the interval [−3, 3]. Discrete covariate was generated from a 

Bernoulli distribution with parameter value 0.5. The regression coefficient associated with 

the covariate was set to 0.5. We also considered setting of two fixed covariates with the 

underlying model
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λT(t; L, z) =
λ0(t) exp (γ1z1 + γ2z2) if t < L

λ0(t) exp (αL + γ1z1 + γ2z2) if t ≥ L
. (6)

The first covariate was generated from a standard normal distribution truncated in the 

interval [−3, 3]. The second covariate is binary with probability 0.5 for taking value 1. We 

set (γ1, γ2) = (0.5, −0.3).

We considered two levels for the truncation rate (25%, 50%) and the censoring rate (25%, 

50%). The censoring time was generated from the uniform distribution in the interval [0, a] 

and we only kept the value if it was greater than the value of the truncation variable. We 

adjusted the values of a to control the censoring rate. In simulated settings value of a varied 

from 1.45 to 8.6 to generate censoring rates (25%, 50%). In each setting, there were 1000 

replicates with fixed sample size 200. In this simulation study, α̂, β̂ and Λ0
C were evaluated 

and were shown to have satisfactory performance. Since they are the standard estimators for 

a truncated version of the Cox model, we decided not to show the simulation results for 

these estimators. We focused on the estimators ĜC, σG, C
2  and report the simulation results at 

three time points 0.25, 0.5 and 0.75, leading to 0.25, 0.5 and 0.75 in G(t). We calculated ĜC, 

σ̂G,C, as well as 95% linear and log-log transformed confidence intervals for each replicate, 

and then evaluated the following terms,

GC(t) = 1
1000 ∑

i = 1

1000
GC

(i)(t),

Bias = GC(t) − G(t),

var [GC(t)] = 1
1000 − 1 ∑

i = 1

n
GC

(i)(t) − GC(t) 2,

var [GC(t)] = 1
1000 ∑

i = 1

1000
σG, C

(i) (t) 2,

where GC
(i) and σG, C

(i)  are the point and precision estimates for the ith replicate using the 

estimators given in Section 2.3. We also calculated the actual proportion of replicates that 

each type of confidence interval covered G(t).

The simulation results for the setting with continuous covariate and discrete covariate are 

given in Tables 1–2 and Tables 3–4, respectively. Tables 5 and 6 depict the simulation results 

for the settings with both continuous and discrete covariates. From the tables, we can see 

that the bias is very small. The estimated variances are close to the sample variances. The 

sample variance increases when the truncation rate or censoring rate becomes higher. 

Compared to the linear confidence interval, the log-log transformed confidence interval has 

clearly better performance and its coverage is close to the confi-dence level. However, 

undercoverage is observed when both the censoring and truncation rates are high. When 
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analyzing a read data set, one can estimate the truncation rate 1 − P̂
C(βĈ). If heavy censoring 

and truncation is present, one may consider to use a bootstrap confidence interval.

4 The Bone Marrow Transplant Example

4.1 Data Description

In this section we analyze the transplant outcome data set from The Center for International 

Blood and Marrow Transplant Research (CIBMTR). The CIBMTR is comprised of clinical 

and basic scientists who confidentially share data on their blood and bone marrow transplant 

patients with CIBMTR Data Collection Center located at the Medical College of Wisconsin. 

The CIBMTR is a repository of information about results of transplants at more than 450 

transplant centers worldwide. In this example 376 children receiving transplantation in 

second complete remission are selected. Since only the patients who received transplants are 

included in the registry but not patients who died while waiting for transplantation, the BMT 

sample is a truncated sample. Among 376 children 159 were alive in remission at the cutoff 

date of study, leading to a censoring rate of 42%. For a disease-free survivor the follow-up 

time till study cutoff date was the censoring time.

The BMT sample, jointly with a sample of 529 children receiving chemotherapy, was 

analyzed by Barrett et al. (1994) to evaluate the treatment efficacy on the leukemia-free 

survival. Cox analysis was performed on each sample to identify the significant risk factors 

at 0.10 levels. The following factors were identified to be associated with leukemia-free 

survival using the BMT sample: age (> 10 yr, ≤ 10 yr), the T-cell phenotype (no, yes), 

duration of the first remission (≤ 18 months; > 18 months). We present Barrett’s Cox 

analysis result in Table 5, which will be later compared to the result of our new Cox model 

including the waiting time to transplant as covariate.

4.2 Effects of waiting time to transplant and other covariates

We added αg(L) into the regressor of Cox model, where L is the waiting time to transplant p 
and g(L) is a function. We considered the following functional forms, L, L2, eL and L. It 

turned out the quadratic form L2 yielded the highest level of significance. Therefore, we 

chose to include the quadratic waiting time in the regressor. A model-building procedure 

was performed to search for other significant risk factors with p-value 0.05 as the threshold, 

and age, duration of first remission, T-cell phenotype were selected. The estimated 

regression coefficients are shown in Table 5, together with those in Barrett’s study. Time-

dependent variable was created for each covariate and temporarily included in the Cox 

model to test the proportional hazards assumption. Proportionality approximately held for 

the variables included in the final Cox model. Age greater than 10 years, T-cell phenotype, 

and duration of the first remission ≤ 18 months are associated with higher risks of disease 

relapse or death. Regarding the waiting time, the regression coefficient associated with L2 is 

0.0021 (RR=1.002, P=0.030), indicating that a patient with a longer waiting time for 

transplantation is more likely to experience relapse or death. The finding that a longer 

waiting time is a poor prognosis of leukemia-free survival agrees well with the recent 

clinical observation (Balduzzi, 2008).
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4.3 The distribution function of waiting time to transplant

There have been a lot of articles discussing disparities in organ and bone marrow 

transplantations. Public health researchers are interested in discovering racial, geographic 

and social economic disparities in receiving transplant and waiting time for transplant. In 

this example we examined all the covariates and found out that the distribution of the 

waiting time may differ by the duration of the first remission. The cohort consisted of 124 

children staying in the first remission 18 months or less and 252 children with longer than 18 

months in the first remission. We estimated the distribution function of the waiting time in 

these two subgroups using the estimator ĜC,k (Eq (4)) for the stratified sample (Section 2.4). 

The estimated curves are depicted in Figure 1 showing that patients with shorter duration of 

first remission waited less for their transplants. The median waiting time for these two 

subgroups were 2.1 and 3.2 months, respectively. By 6 months in the second remission, 88% 

of children no more than 18 months in first remission underwent transplants (95% log-log CI 

78%–94%) while the proportion was reduced to 77% for children in the other subgroup 

(95% log-log CI 70%–83%).

We also wished to discover whether the proportion of getting transplant differed by duration 

of the first remission. We estimated the probability of selection in each subgroup using the 

estimators PC
k (βC)(Eq (3)) for the stratified sample (Section 2.4). It turned out that the 

estimated probabilities yielded from these two subgroups were very close. 83% of children 

with no more than 18 months in first remission had transplants (95% log-log CI 73%–90%). 

In children with relatively long remission time, 82% had transplants (95% log-log CI 77%–

87%).

We used this example to illustrate the inferences for the stratified sample. It would be 

interesting to explore the reason how duration of the first remission influenced the waiting 

time to transplant. Because there are only limited number of covariates, we could barely find 

meaningful explanations for this study. The proposed methods can be applied in other 

transplant registry data. The methods are useful in evaluating the waiting time in racial, 

geographic and social economic subgroups.

5 Final discussion

It is challenging to deal with dependently truncated sample because the dependence pattern 

is versatile. It is a simple and clever solution to model dependence that the truncation 

variable is used as a covariate in a Cox model. This idea was suggested a long time ago by 

Jones and Crowley (1992) and Shen (2003). It was only recently that the applications in 

registry data were formally discussed and inferences were developed (MacKenzie, 2012; 

Zhang et al., 2015). MacKenzie and Zhang et al. studied the inferences for a Cox model with 

the truncation variable as the only covariate. Inclusion of other covariates in the Cox model 

is practically more meaningful and this motivated us to study the estimation methods under 

such a Cox model.

A series of estimators have been introduced in this paper. We first presented the estimators 

for the left truncated only context, and then extended the estimation methods to the right 
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censored and left truncated context, which is more commonly seen in survival data. We also 

provided the estimators with the stratified data, when the distribution of the truncation 

variable varies between the strata. The methods can be used to evaluate whether the chance 

of entrance and the time of entry are homogeneous across the strata, which is a usual topic in 

health disparities research. In this paper application of the proposed methods has been 

illustrated by the BMT registry data. There are other real-life applications of the developed 

inferences. It is known that, when subjects enter a study at random age, age-specific 

mortality is left truncated by age at entry (Klein and Moeschberger, 2003). In addition, age 

has important influence on survival. In this sense, the Cox model with age as both truncation 

variable and covariate has been well accepted by researchers. The methods developed in this 

paper are useful for the studies in which survival outcomes are present and cohorts consist of 

subjects entering at random age.
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Appendix

This appendix presents the derivation of the asymptotic distribution of W2 (Section 2.1). 

Under the Cox model λT (t; L, z) = λ0(t)eαL+γTz,

Mi(t) = NT , i(t) − ∫0
t
Yi(s)e

αLi
∗ + γTZiλ0(s)ds

is a martingale. Let Λ0(t; z) = Λ(t; L = 0, z) = ∫ 0
t λT(u; L = 0, z)du. W2 can be expressed as

n−1/2 ∑
i = 1

n 1
S0(Li

∗; Zi)
− 1

S0(Li
∗; Zi)

.

Applying the generalized delta method, we have

W2 ≈ n−1 ∑
i = 1

n
S0(Li

∗; Zi)
−1

n Λ0(Li
∗; Zi) − Λ0(Li

∗; Zi) .

Using the standard result of a Cox model (Andersen and Gill, 1982),
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n Λ0(Li
∗; Zi) − Λ0(Li

∗; Zi) = n Λ(Li
∗; Li

∗ = 0, Zi) − Λ0(Li
∗; Li

∗ = 0, Zi)

≈ n−1/2 ∑
j = 1

n ∫0

Li
∗

e
γTZi dM j(u)

S(0)(β, u)
+ h(Li

∗; Zi)∑
−1 ∑

j = 1

n ∫0
∞

Z∼ j − S(1)(β, u)
S(0)(β, u)

dM j(u) ,

where

h(t; z) = ∫0
t
eγT z 0

z
− S(1)(β, u)

S(0)(β, u)
dΛ0(u) .

Based on the result for n Λ0(Li
∗; Zi) − Λ0(Li

∗; Zi) , W2 can be further expressed as

W2 ≈ n−1/2 ∑
j = 1

n ∫0
∞

ϕ(u)
dM j(u)

S(0)(β, u)
+ n−1/2κT∑−1 ∑

j = 1

n ∫0
∞

Z∼ j − S(1)(β, u)
S(0)(β, u)

dM j(u) .

Using martingale central limit theorem, the limiting distribution of W2 is normal with 

variance

σP, 2
2 = ∫0

∞
ϕ(u)2

λ0(u)du

s(0)(β, u)
+ κT∑−1κ .
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Figure 1. 
Estimated distribution functions of transplant waiting time for duration of first remission <= 

18 months and > 18 months, respectively
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Table 7

Estimated hazard ratios for the Cox models based on the BMT sample.

Parameter Barrett’s Study New analysis

Relative risk P-value Relative risk P-value

Transplant time (L2) - - 1.002 0.030

Age >10 1.51 0.003 1.374 0.021

T-cell phenotype 2.16 < 0.001 2.025 < 0.001

Duration of 1st remission ≤ 18 months 2.02 < 0.001 1.504 0.004
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