
Occupational exposure to crystalline silica is
associated with the development of pul-
monary silicosis (Hnizdo and Vallyathan
2003; Reiser and Last 1979) and an increased
risk for lung cancer (McDonald 1996). Silica
can cause direct DNA damage and mam-
malian cell transformation (Daniel et al. 1995;
Shi et al. 1994). The initial event, however, is
an inflammatory response, including oxidant
production and recruitment of inflammatory
cells into the lung.

Numerous inflammatory mediators have
been implicated in silica-induced pathology.
Among them are cytokines, such as interleukin-
(IL) 1β (Goodman et al. 1982), IL-6 (Gosset
et al. 1991), IL-10 (Huaux et al. 1998), tumor
necrosis factor-α (TNF-α) (Dubois et al.
1989), and transforming growth factor (TGF)
(Williams et al. 1993; Williams and Saffiotti
1995); chemokines, such as monocyte chemo-
attractant protein-1 (MCP-1) (Barett et al.
1999) and macrophage inflammatory protein-2
(MIP-2) (Driscoll et al. 1993); the nonprotein
inflammatory mediator nitric oxide, generated
mainly through inducible nitric oxide synthase
(iNOS) (Castranova et al. 1998); and adhesion
molecules, such as intercellular adhesion mole-
cule-1 (ICAM-1) (Hubbard and Giardina
2000; Nario and Hubbard 1996). However,
the changes in the inflammatory mediators
have been studied in different contexts. Some
were studied in vitro, some in vivo, some in cell
lines, and some in primary cells, making it diffi-
cult to conclude which of these mediators are
involved in the initial phase of the lung inflam-
matory response and which become important
in later stages of the response. A second aspect
that has not received much attention is the

source of these inflammatory mediators and the
importance of cell–cell interactions in the pro-
duction of these mediators.

In our studies of silica-induced produc-
tion of inflammatory mediators in alveolar
macrophages (AMs), we found the responses
of AMs after in vitro stimulation were quite
different compared with AMs isolated after
in vivo exposure to silica. This suggests that
cell–cell interactions may a play an important
role in silica-induced production of inflam-
matory mediators in the lung. Previous stud-
ies have indicated a role for interaction
between alveolar epithelial type II cells and
AMs in the production of iNOS (Pechkovsky
et al. 2002) and a role for interaction between
fibroblasts and AMs in the production of
granulocyte/macrophage-colony stimulating
factor (GM-CSF) (Fitzgerald et al. 2003).

The recent technical advances in poly-
merase chain reaction (PCR) methodology
make it possible to study the expression of sev-
eral genes simultaneously even with small
amounts of RNA. Therefore, to understand the
role of inflammatory mediators in silica-
induced pathology, we studied the expression
of several inflammatory mediators in AMs after
in vitro exposure to silica or after in vivo expo-
sure by intratracheal instillation. The expression
was studied at the message level by real-time
reverse transcription (RT) PCR and, where
appropriate, at the protein level by enzyme-
linked immunosorbent assays (ELISAs). In
addition, we studied the interactions between
AMs and type II cells or fibroblasts in in vitro
culture systems. Our studies indicate that the
lung fibroblasts are an important source of
inflammatory mediators after silica exposure.

Materials and Methods

Animals. The animals used in these experiments
were specific pathogen-free Sprague-Dawley
rats [HLA:(SD)CVF; Hilltop Laboratories,
Scottdale, PA] weighing 250–300 g (~ 8 weeks
old at arrival). The animals were housed in an
environmentally controlled facility that was
accredited by the Association for Assessment
and Accreditation of Laborary Animal Care.
The rats were monitored to be free of endoge-
nous viral pathogens, parasites, mycoplasmas,
Helicobacter, and cilia-associated respiratory
bacillus. Rats were acclimated for at least
5 days before use and were housed in venti-
lated cages, which were provided with HEPA-
filtered air and used Alpha-Dri virgin cellulose
chips (Shepherd Specialty Papers, Watertown,
TN) and hardwood Beta chips (NEPCO,
Warrensburg, NY) as bedding. The rats were
maintained on 2018S Teklad Global 18%
rodent diet (Harlan Teklad, Madison, WI)
and tap water, both of which were provided
ad libitum.

Reagents. Rat cytokine kits for IL-6,
MCP-1, MIP-2, and TNF-α were obtained
from Biosource (Camarillo, CA). Lactate
dehydrogenase (LDH) was measured within
24 hr on refrigerated samples with a COBAS
MIRA Plus analyzer (Roche Diagnostics,
Indianapolis, IN) using kits from Roche.
Lipopolysaccharide B (LPS; from E. coli
026:B6) was obtained from Difco Laboratories
(Detroit, MI). The culture medium consisted
of Dulbecco’s modified Eagle medium
(BioWhittaker, Walkersville, MD), 1 mM
glutamine (Sigma, St. Louis, MO), 10 mM
N-[2-hydroxyethyl]piperazine-N´-[2-ethane-
sulfonic acid] (HEPES; Sigma), 100 U/mL
penicillin–streptomycin (GIBCO Life Tech-
nologies, Grand Island, NY), 100 µg/mL
kanamycin (GIBCO), and 10% (vol/vol) heat-
inactivated fetal bovine serum (GIBCO).

Source of silica. We obtained MIN-U-
SIL 5 from U.S. Silica (Berkeley Springs,
WV). It was examined by proton-induced
X-ray emission spectrometry for inorganic
contaminants and for desorbable organic
compounds by gas chromatography mass
spectroscopy. The results of these analyses
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have been reported elsewhere (Porter et al.
2001). Silica samples were found to be > 99%
pure quartz. Mean particle count diameter,
determined by scanning electron microscopy,
was 2.14 µm, with 99% of the particles < 5 µm.
Silica was weighed and dry heated at 170°C for
24 hr to sterilize. Sterile medium was then
added to the silica, which was vortexed into sus-
pension before being added to the cell culture.

Isolation of AMs. The animals were anes-
thetized with pentobarbital sodium (150 mg/kg
body weight) and exsanguinated by cutting
the abdominal aorta. AMs were obtained by
bronchoalveolar lavage (BAL) according to the
method of Myrvik et al. (1961). The lungs
from each animal were lavaged eight times with
5 mL phosphate-buffered medium (145 mM
NaCl, 5 mM KCl, 9.4 mM Na2HPO4, and
1.9 mM NaH2PO4, pH 7.4) per gram lung
weight. The cells were separated from the
lavage fluid by centrifugation at 300 × g for
5 min and then washed three times by alternate
centrifugation and resuspension in phosphate-
buffered medium. The cells were then resus-
pended in the culture medium for use in all
experiments. Cell number was determined by
an electronic cell counter (model ZB; Coulter
Electronics, Hialeah, FL).

Isolation of type II cells. We isolated type
II cells as described previously (Miles et al.
1997). Briefly, the procedure involves perfus-
ing the lung to remove blood, removing free
AMs by BAL, digestion of lung tissue with
elastase, and purification of type II cells by
centrifugal elutriation. Cells isolated and puri-
fied by this method were > 85% pure type II
cells as determined microscopically after stain-
ing with phosphine 3R (Jones et al. 1982).

The cells were cultured on collagen gels
similar to those described by Lee et al. (1984)

for growing hamster tracheal epithelial cells.
Collagen gels were prepared from stock solu-
tion of collagen type I from rat tail (Sigma-
Aldrich, St. Louis, MO) dissolved in 1:1,000
dilution of acetic acid in sterile distilled water
overnight at 4°C. A six-well plate was layered
with 0.775 mL (each well) of ice-cold collagen
gel mixture consisting of 0.5 mL collagen
stock, 0.15 mL 10× modified Eagle medium,
and 0.125 mL 0.5 N NaOH. The mixture was
allowed to polymerize for 4 hr at a humidified
atmosphere of 5% CO2 at 37°C. The poly-
merized collagen gels were washed with 1 mL
epithelial cell growth medium before cells were
plated and grown overnight.

Isolation of lung fibroblasts. We isolated
lung fibroblasts as described by Reist et al.
(Reist et al. 1991). Briefly, the lungs were per-
fused with normal saline, lavaged with phos-
phate-buffered saline (PBS) containing 0.1%
glucose, and sectioned four times at 0.5-mm
intervals with a McIlwain tissue chopper. The
chopped lung tissue from a single rat was
digested in 20 mL of HEPES-buffered solution
(145 mM NaCl, 5 mM KCl, 1 mM CaCl2,
505 mM glucose, and 10 mM HEPES, pH
7.4), containing collagenase (0.1%), elastase
(40 U/mL), bovine serum albumin (0.5%),
and DNAse (0.018%) in a shaker water bath
for 30 min at 37°C. The digested mixture was
filtered through two layers of sterile gauze that
had been washed with culture medium. The
cells were sedimented by centrifugation and
plated in six-well culture plates. The medium
was changed 24 hr later, and the cells were
allowed to grow to confluence.

Coculture of type II cells and AMs. Type II
cells cultured overnight on collagen gels in six-
well plates (catalog no. 353046; tissue culture
treated by vacuum gas plasma, polystyrene,

nonpyrogenic; Becton Dickinson, Franklin
Lakes, NJ), as described above, were incubated
for an additional 4 hr at 37°C in a CO2 incu-
bator with freshly isolated AMs (1 million
cells) with or without silica. Controls were
type II cells alone with or without silica. The
collagen gels were dissolved in a solution
containing 1 mg of Sigma blend collagenase
type F made up in 1 mL of type II cell growth
medium for each well to be dissolved. The
cells were then spun down and used for isola-
tion of total RNA.

Coculture of lung fibroblasts and AMs.
Lung fibroblasts were cultured until they
became confluent. The cells were trypsinized
and 2 × 106 cells were plated in six-well
plates. After overnight culture, freshly isolated
AMs (2 × 106 cells) were added to the wells
and cultured for an additional 4 hr with or
without silica. Controls were fibroblasts alone
with or without silica. The culture medium
was aspirated and spun down, and the super-
natant was stored at –80°C. The cells were
scraped and combined with the cell pellet
from the above step and used for isolation of
total RNA.

Transwell experiments with fibroblasts and
AMs. To measure messenger RNA (mRNA)
expression in separated cell populations and to
study the interaction of soluble mediators
released by cell populations on each other, we
conducted experiments in Transwell chambers
(CoStar, Corning, NY). For these experiments,
cultured lung fibroblasts were trypsinized, and
1 million cells were plated in the outer well of a
Transwell plate and cultured for an additional
24 hr. At the end of the 24-hr period, freshly
isolated AMs (1 million cells) were placed
in the inserts. Silica was added either to the
macrophages in the inner wells or to the fibro-
blasts in the outer well and incubated for 4 hr.
Total RNA was isolated from each population
separately.

Preparation of AM- and polymorpho-
nuclear neutrophil–enriched fractions. We
obtained AM- and polymorphonuclear neu-
trophil (PMN)–enriched fractions from BAL
fluid obtained from rats treated with silica
in vivo, as described by Huffman et al. (2003).
Briefly, the method consisted of layering BAL
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Table 1. Primer sets used.

Gene Primers Product (bp)

GM-CSF Sense: GAC ATG CGT GCT CTG GAG AAC G 144
Antisense: GCC ATT GAG TTT GGT GAG GTT GC

ICAM-1 Sense: AAT CTG ACC TGC AGC CGG AAA G 108
Antisense: GGA GCT AAA GGC ACG GCA CTT G

IL-1β Sense: AGC TCC ACG GGC AAG ACA TAG G 155
Antisense: GGA TGG CTT CCA AGC CCT TGA C

IL-6 Sense: CCC AAC TTC CAA TGC TCT CCT AAT G 141
Antisense: GCA CAC TAG GTT TGC CGA GTA GAC C

IL-10 Sense: GGC TCA GCA CTG CTA TGT TGC C 116
Antisense: AGC ATG TGG GTC TGG CTG ACT G

iNOS Sense: GTC ACC TAT CGC ACC CGA GAT G 117
Antisense: GCC ACT GAC ACT CCG CAC AAA G

MCP-1 Sense: TCA CGC TTC TGG GCC TGT TG 131
Antisense: CAG CCG ACT CAT TGG GAT CAT C

MIP-2 Sense: GGC AAG GCT AAC TGA CCT GGA AAG 113
Antisense: CAC ATC AGG TAC GAT CCA GGC TTC

TGF-β1 Sense: GCT AAT GGT GGA CCG CAA CAA C 103
Antisense: TGG CAC TGC TTC CCG AAT GTC

TNF-α Sense: CGT CAG CCG ATT TGC CAT TTC 116
Antisense: TGG GCT CAT ACC AGG GCT TGA G

18S rRNA Sense: GGA CCA GAG CGA AAG CAT TTG C 115
Antisense: CGC CAG TCG GCA TCG TTT ATG

bp, base pairs.

Figure 1. mRNA expression in AMs stimulated
in vitro with silica (200 µg/mL) at 4 hr postexposure.
Error bars represent fold increase above control
(mean ± SE of at least four experiments for each
cytokine).
*Significantly greater than control, p < 0.05.
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cell populations obtained by lavage onto a
Histopaque double-density gradient composed
of equal amounts of Histopaque 1083 and
Histopaque 1119 (Sigma). The gradients were
then centrifuged (400 × g, 30 min, room tem-
perature). The AM-enriched fraction localized
at the interface between PBS diluent and
Histopaque 1083, and the PMN-enriched
fraction was located at the bottom as a pellet.
This method yields about 60% AMs in the
AM-enriched fraction and 90% PMN in the
PMN-enriched fraction (Huffman et al. 2003).

Measurement of cytokines. We measured the
cytokines in culture supernatants after a 24-hr
incubation with either 200 µg/mL silica or 1
µg/mL LPS. IL-6, MCP-1, MIP-2, and TNF-α
were measured by ELISA kits according to man-
ufacturer instructions (Biosource International,
Camarillo, CA). The values were expressed as
nanograms or picograms per million cells. For
measurement of cytokines in the BAL fluid,
lavage fluid from the first wash was collected
and spun down to sediment the cellular ele-
ments. The supernatant was stored at –80°C for
later measurement of cytokine levels by ELISA.

Quantitation of mRNAs by RT-PCR. We
measured cytokine mRNA levels using a
SYBR Green PCR kit with the ABI 5700
Sequence Detector (PE Applied Biosystems,
Foster City, CA). Total RNA was isolated
using RNAqueous 4PCR kits (Ambion, Austin,
TX) from AMs (≈ 2 million cells) or lung tissue
after alveolar lavage (≈ 50 mg wet tissue). One
to two micrograms of the DNAse I–treated
RNA was reverse transcribed, using Superscript
II (Life Technologies, Gaithersburg, MD). The
complementary DNA generated was diluted
1:100, and 15 µL was used to conduct the
PCR reaction according to the SYBR Green
PCR kit instructions. The comparative CT
(threshold cycle) method was used to calcu-
late the relative concentrations (User Bulletin
no. 2; ABI PRISM 7700 Sequence Detector,
PE Applied Biosystems). Briefly, the method
involves obtaining the CT values for the
cytokine of interest, normalizing to a house-
keeping gene (18S in the present case), and
deriving the fold increase compared with the
control, unstimulated cells. Table 1 lists the

primer sets used for these experiments. In pre-
liminary experiments, the products were ana-
lyzed by gel electrophoresis, and a single product
was obtained with each primer set. In addition,
dissociation curves yielded single peaks.

In vitro experiments. All experiments
were performed on pooled AMs from several
animals. AMs were placed in six-well plates,
incubated for 2 hr at 37°C, and washed to
remove nonadherent cells. Then the cells were
incubated with silica (200 µg/mL) or LPS
(1 µg/mL) for 4 hr for mRNA measurements,
or 24 hr for the measurement of inflamma-
tory cytokines.

In vivo experiments. Rats were anes-
thetized with an intraperitoneal injection of
30–40 mg/kg body weight sodium metho-
hexital (Brevital; Eli Lilly and Company,
Indianapolis, IN) and were intratracheally
instilled using a 20-gauge 4-inch ball-tipped
animal feeding needle. Silica (MIN-U-SIL 5)
was suspended in endotoxin-free, Ca2+/Mg2+-
free PBS (BioWhittaker, Walkersville, MD),
and rats received either 2 mg silica/100 g body
weight or an equivalent volume of PBS. The
animals were sacrificed 4 hr postexposure, and
AMs were isolated as described above. The
lavaged lung tissue was used for isolation of
total RNA.

Statistical methods. A paired t-test was
used for in vitro experiments. A t-test assuming
unequal variance or a Z-test for means was
used to evaluate the in vivo data. The signifi-
cance was set at < 0.05.

Results

Effects of silica treatment on cell viability. In
initial experiments, the effect of silica treatment
(200 µg/mL) on cell viability was assessed by
measuring the release of LDH into the medium
at the end of the 4-hr incubation time. The
means ± SEs (U/L) for control versus silica-
treated cells (n = 3) were, for fibroblasts, 49 ±
14 versus 49 ± 15; for type II cells, 87 ± 9 ver-
sus 91 ± 7; and for macrophages, 101 ± 13 ver-
sus 100 ± 7.

Effects of silica or LPS on mRNA expres-
sion in AMs in vitro. AMs were stimulated
with either 200 µg/mL silica or 1 µg/mL LPS

for 4 hr. The expression of 10 genes, impli-
cated in the induction of an inflammatory
response, was measured by real-time RT-PCR.
The message levels of only three cytokines
(MCP-1, MIP-2, and IL-6) showed a signifi-
cant increase at 4 hr after in vitro exposure to
silica (Figure 1). In contrast, mRNA levels for
GM-CSF, ICAM-1, IL-1β, IL-10, iNOS,
TGF-β1, and TNF-α were not significantly
elevated after this treatment.

To compare the effect of silica with that of
bacterial endotoxin, LPS, we also measured
mRNA levels of these inflammatory mediators
in AMs stimulated with LPS for 4 hr in vitro
(Figure 2). LPS stimulation increased message
levels of IL-1β, IL-6, GM-CSF, iNOS, MCP-1,
MIP-2, and TNF-α but not those of ICAM-1,
IL-10, and TGF-β1.

Effects of in vivo silica treatment on mRNA
expression in cells obtained by BAL. Figure 3
shows the mRNA expression in cells isolated
from rats 4 hr after intratracheal instillation of
silica (2 mg/100 g body weight). The three
cytokines that showed an increase at 4 hr
in vitro (IL-6, MCP-1, and MIP-2) also
showed an increase in vivo. In addition, the
expression of four other genes (GM-CSF,
IL-1β, IL-10, and iNOS) was increased. Three
genes (TGF-β1, TNF-α, and ICAM-1) showed
no change either in vitro or in vivo.

Effects of silica on mRNA expression in
the lung tissue after intratracheal instillation.
We also measured cytokine expression in the
lavaged lung tissue 4 hr after the intratracheal
instillation of silica (Figure 4). The results were
mostly similar to those seen in AMs (Figure 3).
There was a significant increase in the message
levels of GM-CSF, IL-1β, IL-6, iNOS, MCP-1,
MIP-2, and TNF-α. No increase was seen for
ICAM-1, IL-10, and TGF-β1.

mRNA expression of cytokines in AM-
enriched and PMN-enriched fractions. One
major difference between cells obtained by
BAL from control rats versus silica-treated rats
is the presence of a large number of PMNs in
the silica-treated animals. One explanation for
the differences seen in gene expression after
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Figure 2. mRNA expression in AMs stimulated
in vitro with LPS (1 µg/mL) at 4 hr postexposure.
Error bars represent fold increase above control
(mean ± SE) in the message levels from a minimum
of four different experiments with LPS.
*Significantly different from control except ICAM-1, IL-10,
and TGF-β1 (TGF).
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Figure 4. mRNA expression in the lavaged lung tis-
sue isolated from animals at 4 hr after intratracheal
instillation of silica (2 mg/100 g body weight). Error
bars represent fold increase above control (mean ±
SE) in the message levels from a minimum of five dif-
ferent animals (in the control and treated groups).
*Significantly greater than control, p < 0.05.
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Figure 3. mRNA expression in cells obtained by
BAL from animals at 4 hr after intratracheal instilla-
tion of silica (2 mg/100 g body weight). Error bars
represent fold increase above control (mean ± SE)
in the message levels from a minimum of five dif-
ferent animals (in the control and treated groups).
*Significantly greater than control, p < 0.05.
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in vitro and in vivo exposure may be that the
neutrophils produce additional cytokines not
seen with AMs alone. To determine the role of
PMN in mRNA expression after silica treat-
ment, we obtained AM-enriched and PMN-
enriched fractions from BAL fluid of animals
treated with silica in vivo. The mRNA levels
were expressed in relation to the expression lev-
els in relation to AMs. These AMs have been
exposed to silica in vivo and express high levels
of mRNA, as shown in Figure 3. The mRNA
expression in AMs was assigned an arbitrary
value of 1 for Figure 5. Figure 5 shows that
mRNA expression of the seven cytokines stud-
ied was essentially the same in the two frac-
tions, indicating that PMN enrichment is not
the cause for differences between in vitro and
in vivo treatments.

Cytokine/chemokine expression at the pro-
tein level. We measured the levels of four
cytokines/chemokines (IL-6, MCP-1, MIP-2,
and TNF-α) in the supernatants of AM cul-
tures after 4 hr incubation with either silica
or LPS. There was no increase in the protein
levels of these mediators with silica, but LPS
produced very high levels of these cytokines/
chemokines (Figure 6A–D). There was no
increase in these mediators even after 24 hr
incubation with silica. In contrast, the cytokine
levels of IL-6, MCP-1, and MIP-2 were
increased in the alveolar lavage fluid when the
animals were exposed to silica for 4 hr in vivo
(Figure 7). There was no increase in TNF-α
levels 4 hr after exposure to silica either in vitro
or in vivo (data not shown).

Coculture of type II cells and AMs on gene
expression. To determine whether the differ-
ences seen in mRNA expression in AMs
exposed to silica in vitro and in vivo may be
related interaction between AMs and type II
cells, we performed coculture experiments. We
focused on four genes that were up-regulated
only after in vivo exposure. Table 2 shows the
expression of these four genes in cocultures of

AMs and type II cells. Essentially, there was no
difference in the expression of these genes when
the cells were cocultured with or without silica.
These results indicate that the expression of
these inflammatory mediators is not mediated
by interaction between AMs and type II cells.

Gene expression in lung fibroblasts.
Figure 8 shows the expression of five genes in
fibroblasts cultured alone or in the presence of
silica. We included IL-6 because lung tissue
showed very high levels of IL-6 mRNA levels
(Figure 4). The mRNA levels were expressed

relative to mRNA levels of AMs alone. It is
clear that the mRNA levels for IL-6 and
GM-CSF are very high in resting lung fibro-
blasts. IL-6 protein levels, as determined by
ELISA, were 100-fold higher in culture super-
natants of lung fibroblasts compared with cul-
ture supernatants of AMs (210 ± 75 vs. 2.4 ±
1.1, n = 7), indicating that the message is
being translated into protein. In addition,
in vitro exposure to silica caused a significant
increase in mRNA levels, but this increase in
mRNA levels was not reflected in an increase
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Figure 5. mRNA expression in separated AMs and
PMNs isolated from animals at 4 hr after intratra-
cheal instillation of silica (2 mg/100 g body weight).
Error bars represent fold increase above control
(mean ± SE) in the message levels from three dif-
ferent animals.
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Figure 6. Cytokine/chemokine protein levels as determined by ELISA in culture supernatants of AMs
treated in vitro with silica (200 µg/mL) or LPS (1 µg/mL) for 4 hr, or silica for 24 hr. There were no differ-
ences in (A) IL-6, (B) MCP-1, (C) MIP-2, or (D) TNF-α levels between control and silica-treated cells at
either exposure time. In contrast, LPS produced a large increase in all four cytokine/chemokines as early
as 4 hr. Error bars represent mean ± SE from four separate experiments.
*Significantly greater than control, p < 0.05.

IL
-6

 (p
g/

m
ill

io
n 

ce
lls

)

1,200

1,000

800

600

400

200

0
4 hr 24 hr 4 hr 24 hr

4 hr 24 hr4 hr 24 hr

400

350

300

250

200

150

100

50

0

1,000

500

50

0

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0

M
IP

-2
 (n

g/
m

ill
io

n 
ce

lls
)

*

**

* BA

DC

Control
Silica
LPS

M
CP

-I
 (p

g/
m

ill
io

n 
ce

lls
)

TN
F-

α 
(n

g/
m

ill
io

n 
ce

lls
)

Figure 7. Cytokine/chemokine protein levels as determined by ELISA in alveolar lavage fluid from animals
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Table 2. Relative mRNA expression in AMs and type II alveolar epithelial cell cocultures stimulated with
silica (Si; 200 µg/mL) for 4 hr.

mRNA AM AM + Si Type II Type II + Si AM + type II AM + type II + Si

IL-1β 1.47 ± 0.53 0.87 ± 0.34 0.61 ± 0.41 0.41 ± 0.27 1.10 ± 0.60 1.03 ± 0.49
IL-10 1.04 ± 0.13 0.30 ± 0.11 2.58 ± 1.01 5.74 ± 2.62 1.41 ± 1.46 2.21 ± 2.32
iNOS 1.04 ± 0.12 0.67 ± 0.24 0.49 ± 0.23 0.44 ± 0.16 1.75 ± 1.63 1.93 ± 1.47
GM-CSF 1.13 ± 0.27 1.00 ± 0.34 2.02 ± 1.19 3.88 ± 2.38 3.49 ± 0.71 5.01 ± 3.20

Values are mean ± SE from at least three different experiments relative to mRNA levels in AMs.



in protein synthesis (210 ± 75 vs. 231 ± 62,
control vs. silica, n = 7). This is similar to that
seen in AMs. We did not measure the
GM-CSF protein levels.

Gene expression in AMs and fibroblast
cocultures. Table 3 shows the relative expres-
sion of the five genes in coculture experi-
ments. Although coculture of AMs and lung
fibroblasts seems to enhance iNOS and IL-10
mRNA levels seen over and above that seen
with each cell type alone, the results were too
variable to draw a definitive conclusion con-
cerning a synergistic effect. With regard to
IL-6 and GM-CSF, the main source seems to
be fibroblasts, but results were too variable to
conclude whether cocultures with or without
silica enhance the mRNA levels.

mRNA expression in AMs and lung fibro-
blasts in Transwell experiments. The coculture
experiments do not allow determination of
mRNA expression in individual cell types.
Therefore, we conducted Transwell experi-
ments to isolate RNA from each cell type and
to study the roles of cell–cell contact versus sol-
uble mediators in these interactions (Table 4).
Two conclusions can be drawn from these
experiments: First, there is no difference in the
mRNA levels of IL-1, IL-10, and iNOS under
the different conditions tested; and second, the
main sources of IL-6 and GM-CSF are lung
fibroblasts. Although AMs seem to enhance
IL-6 and GM-CSF mRNA levels in fibroblasts,
the extreme variation in the results does not
permit a definitive conclusion.

Combining the observations from coculture
experiments and Transwell experiments, it
appears that factors in addition to cell–cell con-
tact and soluble mediators secreted by these two
cell types are involved in regulating the inflam-
matory mediators in in vivo situations.

Discussion

Exposure to silica causes inflammatory and
fibrotic lung disease (Hnizdo and Vallyathan

2003). Silica-induced inflammatory response
has been implicated in the pathogenesis of
fibrosis. In this study, we measured expression
of 10 genes that are involved in regulating the
inflammatory processes in the lung, at the mes-
sage level. The studies were conducted in BAL
cells and lung tissue after in vivo exposure, and
in AMs, type II cells, and lung fibroblasts after
in vitro exposure.

Exposure of AMs to silica in vitro increased
message levels of only three genes: IL-6,
MCP-1, and MIP-2. MCP-1 plays an impor-
tant role in accumulation of monocytes
(Leonard and Yoshimura 1990). MIP-2 is a
potent chemotactic factor for neutrophils
(Driscoll 1994). Up-regulation of these two
genes very early, after silica exposure, may
account for the rapid accumulation of these
cells in the lung. IL-6 is a pleiotropic cytokine
with multiple biologic activities (Van Snick
1990) that has been shown to be up-regulated
after silica (Hetland et al. 2001) and asbestos
(Simeonova et al. 1997) exposure of human
lung epithelial cells. Here, we show that it is
one of the early genes expressed in AMs after
silica exposure. Up-regulation of these genes
requires only the interaction between the silica
particles and the macrophages.

When mRNA levels were measured in
BAL cells harvested from rats instilled with
silica, the mRNA levels of four other genes
(GM-CSF, IL-1, IL-10, and iNOS) went up in
addition to the three genes mentioned above.

The production of NO in isolated AMs
from in vivo silica-treated animals and lack of
NO production after in vitro treatment has
been reported previously (Huffman et al.
1998). We confirm that observation. To deter-
mine whether cell–cell interactions may be
involved in the production of NO and the
expression of three other genes belonging to
this group, AMs were cocultured with either
type II cells or lung fibroblasts. The data

(Table 2) clearly indicate that coculture with
type II cells does not up-regulate these genes
under any of the conditions studied.

Coculture of AMs with fibroblasts showed
that iNOS and IL-10 mRNA levels may go
up, but the response was extremely variable,
and no definitive conclusions could be drawn.
In addition, the Transwell experiments show
that the coculture of AMs and fibroblasts does
not significantly increase the message levels of
GM-CSF, IL-1, IL-10, and iNOS levels in
AMs. Therefore, the factors responsible for
up-regulation of these genes after intratracheal
instillation of silica remains elusive.

Three other genes (ICAM-1, TGF-1β, and
TNF-α) did not show any change in BAL cells
and lung tissue after in vivo treatment or in
AMs after in vitro treatment. The observation
that the release of TNF-α is increased in the
blood monocytes of miners with coal workers’
pneumoconiosis (Borm et al. 1988) has led to
several studies showing an increase in TNF-α
levels from AMs stimulated with silica (Baer
et al. 1998; Dubois et al. 1989; Gossart et al.
1996). However, others have shown that
in vitro treatment with silica does not induce
TNF-α levels in human AMs (Gosset et al.
1991). In some cases, where an increase in
TNF-α production was shown, the levels were
minimally increased and the levels were at least
a couple of orders of magnitude less than what
is seen with LPS stimulation (Kanj et al. 2002;
Rojanasakul et al. 1999; Shi et al. 1999), raising
the question of their biologic relevance. In one
in vivo study in rats with silica, an increase in
mRNA levels of TNF-α in AMs was not seen
until 3 days after intratracheal instillation
(Snadrin et al. 1996), and even later in a silica
inhalation study (Porter et al. 2002). These
data make the role of TNF-α in the initial
stages of silica-induced inflammation ques-
tionable, even though TNF-α has been
reported to be a key mediator in the eventual
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Table 3. Relative mRNA expression in AMs and lung fibroblast (fibro) cocultures stimulated with silica (Si;
200 µg/mL) for 4 hr.

mRNA AM AM + Si Fibro Fibro + Si AM + Fibro AM + Fibro + Si

IL-1β 1.03 ± 0.08 0.71 ± 0.12 0.08 ± 0.07 0.31 ± 0.29 1.49 ± 0.46 2.41 ± 0.91
IL-10 1.16 ± 0.11 1.04 ± 0.16 0.33 ± 0.17 0.78 ± 0.40 25.9 ± 15.8 26.8 ± 13.4
iNOS 1.14 ± 0.11 0.83 ± 0.19 0.58 ± 0.33 1.54 ± 0.93 8.22 ± 3.54 16.2 ± 9.95
GM-CSF 1.23 ± 0.21 1.06 ± 0.17 18.4 ± 7.0 58.9 ± 22.4 6.44 ± 2.4 58.0 ± 43.7

Values are mean ± SE from at least three different experiments relative to mRNA levels in AMs.

Table 4. Relative mRNA expression in AMs and lung fibroblasts (fibro) stimulated with silica (Si; 200 µg/mL)
for 4 hr in Transwell experiments.

Insert/well
AMa/ None/ AMa/ AM/ AMa + Si/ AM + Si/ AMa/ AM/

mRNA none fibroa fibro fibroa fibro fibroa fibro + Si fibroa + Si

IL-1β 1.0 ± 0.1 0.3 ± 0.2 4.7 ± 2.5 3.1 ± 2.5 1.1 ± 0.5 0.6 ± 0.2 2.8 ± 2.1 1.0 ± 0.5
IL-6 0.7 ± 0.1 912 ± 565 1.1 ± 0.8 14,487 ± 11,702 16 ± 9.6 3,009 ± 1,344 4.8 ± 4.3 14,573 ± 16,524
IL-10 1.4 ± 0.4 1.6 ± 0.6 1.2 ± 0.6 3.5 ± 2.0 0.8 ± 0.5 1.3 ± 1.1 0.1 ± 0.1 0.7 ± 0.4
iNOS 0.8 ± 0.1 1.0 ± 0.1 2.6 ± 1.4 3.4 ± 1.6 3.9 ± 2.8 1.9 ± 1.5 1.5 ± 1.1 1.0 ± 0.4
GM-CSF 1.0 ± 0.3 4.2 ± 1.9 2.1 ± 0.7 41.6 ± 24 1.6 ± 0.9 42 ± 39 0.9 ± 1.0 19.3 ± 7.2

Values are mean ± SE from three different experiments relative to mRNA levels in AMs.
aSource of the cells in which the mRNA levels were measured.

Figure 8. mRNA expression in lung fibroblasts (Fibro)
stimulated in vitro with silica (Si; 200 µg/mL) at 4 hr
postexposure. The mRNA values were measured
relative to that found in freshly isolated AMs incu-
bated for 4 hr. Error bars represent fold increase
above control (mean ± SE of at least four experi-
ments for each inflammatory mediator).
*Significantly greater than control, p < 0.05.
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development of fibrosis (Piguet et al. 1990).
In our studies, we did not observe any
increase in mRNA in AMs for TNF-α at 4 hr
in vitro or at 4 hr in vivo. However, there was
an increase in the mRNA expression in TNF-
α in the lung tissue 4 hr after intratracheal
instillation of silica.

The cytokine TGF-β1 and the adhesion
molecule ICAM-1 have also been implicated
in the pathogenesis associated with silica
exposure (Matrat et al. 1998; Nario and
Hubbard 1996). We have not detected any
increase in the message levels of these two
genes after either in vitro or in vivo silica
exposure. TGF-β1 is shown to be critical in
acute lung injury (Pittet et al. 2001) but may
not play a role in particle-induced lung dis-
ease, at least in the initial stages. ICAM-1 has
been shown to be up-regulated in LPS-
induced lung inflammation (Madjdpour et al.
2000; Nathms et al. 1998). LPS stimulation
in vivo has been shown to increase ICAM-1
expression both in AMs (Grigg et al. 1994)
and in the lung tissue (Nathms et al. 1998).
There was no increase in ICAM-1 message in
AMs after in vitro exposure to silica or LPS in
the present study. A third gene that did not
show any change with LPS was IL-10. Our
findings are consistent with previous findings
that there is no up-regulation of TGF-β1 in
AMs (Xing et al. 1994) or IL-10 in lung tis-
sue (Johnston et al. 1998) after LPS stimula-
tion. With regard to ICAM-1, an increase was
demonstrated in AMs after in vivo exposure
to LPS (Grigg et al. 1994). We evaluated
ICAM-1 in AMs after only in vitro exposure.

We observed significant increases in the
mRNA levels of IL-6 and genes for two
chemokines (MCP-1 and MIP-2) at 4 hr after
in vitro treatment with silica. Although the
message levels showed an increase, there was
no increase in the protein levels measured
in the supernatants of the cultures at 4 hr.
However, when silica was administered intra-
tracheally, there was considerable increase in
both message levels and protein levels at 4 hr.
Our findings with regard to the production of
MCP-1 and MIP-2 are consistent with previ-
ous observations demonstrating an increase in
these two chemokines after silica exposure
(Driscoll 2000; Driscoll et al. 1998; Hubbard
et al. 2002). The observation that the in vitro
treatment up-regulates the message levels
without increasing the protein levels, but
in vivo both message levels and protein levels
go up, indicates that cell–cell interactions
and/or other influences might play an impor-
tant role in the expression of these cytokines
at the protein level.

The Transwell experiments revealed that
a major source of IL-6 and GM-CSF in the
lung could be lung fibroblasts. When mRNA
levels were expressed relative to AMs (Table
4), the IL-6 levels in lung fibroblasts were

several hundred-fold higher than those in
AMs. Similarly, mRNA levels of GM-CSF
were much higher in fibroblasts compared with
AMs. Further, the number of fibroblasts (inter-
stitial cells) is 10-fold higher than AMs in the
lung tissue (Stone et al. 1992). These observa-
tions indicate that the fibroblasts are a major of
source of these inflammatory mediators in the
lung.

MCP-1 has significant involvement in the
inflammatory disorders of the lung (Rose et al.
2003). It has been shown to regulate alveolar
epithelial cell inhibition of fibroblast prolifera-
tion (Moore et al. 2002). In addition to mono-
cytes, fibroblasts are an important source of
MCP-1 (Galindo et al. 2001; Hao et al. 2003).
We found MCP-1 mRNA levels were several-
fold higher in lung fibroblasts compared with
AMs (data not shown). Therefore, the main
source of both IL-6 and MCP-1 in the BAL
fluid after silica exposure could be lung fibro-
blasts. This is consistent with the observation
that silica can directly stimulate lung fibroblasts
(Arcangeli et al. 2001; Baroni et al. 2001). We
have not evaluated the sources of MIP-2 in
this study.

GM-CSF is purported to play an important
role in numerous respiratory illnesses, includ-
ing asthma (Xing et al. 1996). It is generated
by a variety of lung cell types (Bergman et al.
2000; Blau et al. 1994; Christensen et al.
2001; Churchill et al. 1992; Fitzgerald et al.
2003; O’Brien et al. 1998; Smith et al. 1990;
Soloperto et al. 1991; Trapnell and Whitsett
2002). GM-CSF was not produced by AMs
when stimulated with silica in vitro, but an
increase in message levels were seen in both
BAL cells and lung tissue after intratracheal
instillation. This confirms the reported need
for cell–cell interactions in the up-regulation
of GM-CSF (Fitzgerald et al. 2003).

The importance of cell–cell interactions in
the production of inflammatory mediators
has been emphasized in several studies. Direct
contact between human peripheral blood
mononuclear cells and renal fibroblasts facili-
tates the expression of MCP-1 (Hao et al.
2003). Similarly, macrophage/fibroblast inter-
actions are important for the production of
GM-CSF (Fitzgerald et al. 2003). Both soluble
mediators and adhesion molecules have been
implicated in these interactions (Hao et al.
2003; Zickus et al. 2004). The lack of effect on
the expression of several genes in coculture
experiments with contact or without contact
(Transwell experiments) indicates that some
additional factors may be involved in the regu-
lation of cytokine production in the lung after
silica exposure. During inflammation a variety
of cells are recruited into the lung and a num-
ber products are generated. Any one of these
factors may influence the expression of inflam-
matory mediators. In this regard, it is important
to keep in mind the role of lung surfactant.

Lung surfactant is known to modulate immune
functions in the lung (Wright 1997); we men-
tion its role in particular because we have some
preliminary data to suggest that lung surfactant
may enhance cytokine production in the lung
fibroblasts.

In summary, we found that exposure of
AMs to silica in vitro up-regulates only three
genes (IL-6, MCP-1, and MIP-2). However, in
BAL cells harvested after intratracheal instilla-
tion of silica, four additional genes (IL-1, IL-10,
iNOS, and GM-CSF) were up-regulated.
Cocultures of AMs with alveolar epithelial type
II cells or lung fibroblasts did not enhance
mRNA level of the four additional genes that
were expressed after in vivo exposure. There is
need to evaluate the role of other mediators in
regulating the production of inflammatory
mediators in the lung, perhaps the role of lung
surfactant. Most of the studies concerning sil-
ica-induced inflammatory processes in the lung
have been focused on the role of AMs; our
Transwell studies show that lung fibroblasts are
an important source of IL-6 and GM-CSF.
These observations indicate that the fibroblast-
derived inflammatory mediators may also play
an important role after silica exposure.
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