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Abstract. If H(U) denotes the space of analytic functions in the unit disk U, for the
integral operator Ahα,β,γ,δ : K → H(U), with K ⊂ H(U), defined by

Ahα,β,γ,δ[f ](z) =

[
β + γ

zγ

∫ z

0

fα(t)h(t)tδ−1 d t

]1/β
,
(
α, β, γ, δ ∈ C and h ∈ H(U)

)
,

we will determine sufficient conditions on g1, g2, α, β and γ such that

zh(z)

[
g1(z)

z

]α
≺ zh(z)

[
f(z)

z

]α
≺ zh(z)

[
g2(z)

z

]α
implies

z

[
Ahα,β,γ,δ[g1](z)

z

]β
≺ z

[
Ahα,β,γ,δ[f ](z)

z

]β
≺ z

[
Ahα,β,γ,δ[g2](z)

z

]β
.

In addition, both of the subordinations are sharp, since the left-hand side will be the
largest function, and the right-hand side will be the smallest function so that the above
implication has been held for all f functions satisfying the double differential subordination
of the assumption.
The results generalize those of the last author from [3], obtained for the special case α = β
and h ≡ 1.
AMS subject classifications: 30C80, 30C45

Key words: analytic function, starlike and convex function, differential operator, differ-
ential subordination

1. Introduction

Let H(U) be the space of all analytical functions in the unit disk U = {z ∈ C :
|z| < 1}. If f, F ∈ H(U) and F is univalent in U, we say that the function f is
subordinate to F , or F is superordinate to f , written f(z) ≺ F (z), if f(0) = F (0)
and f(U) ⊆ F (U).
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http://www.mathos.hr/mc c©2009 Department of Mathematics, University of Osijek

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14416002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


380 S, Siregar, M, Darus and T. Bulboacă

For a ∈ C and n ∈ N∗, where N∗ is the set of all positive integers, we denote

H[a, n] = {f ∈ H(U) : f(z) = a+ anz
n + · · · }.

Letting ϕ : C3 × U → C, h ∈ H(U) and q ∈ H[a, n], in [10] Miller and Mocanu
determined conditions on ϕ such that

h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z) implies q(z) ≺ p(z),

for all p functions that satisfy the above superordination. Moreover, they found
sufficient conditions so that the q function is the largest function with this property
called the best subordinant of this superordination.

For the integral operator Aβ,γ : Kβ,γ → H(U), Kβ,γ ⊂ H(U), defined by

Aβ,γ [f ](z) =
[
β + γ

zγ

∫ z

0

fβ(t)tγ−1 d t
]1/β

, β, γ ∈ C, (1)

the third author determined in [3], in conjunction with [1] and [2], conditions on g1,
g2, β and γ so that

z

[
g1(z)
z

]β
≺ z

[
f(z)
z

]β
≺ z

[
g2(z)
z

]β
implies

z

[
Aβ,γ [g1](z)

z

]β
≺ z

[
Aβ,γ [f ](z)

z

]β
≺ z

[
Aβ,γ [g2](z)

z

]β
,

and that all the results are sharp.
In this paper we will consider the integral operator Ahα,β,γ,δ : K → H(U) with

K ⊂ H(U) defined by

Ahα,β,γ,δ[f ](z) =
[
β + γ

zγ

∫ z

0

fα(t)h(t)tδ−1 d t
]1/β

, (2)

where α, β, γ, δ ∈ C and h ∈ H(U) (all powers are principal ones).
We will generalize all these previous results in order to give sufficient conditions

on the g1 and g2 functions and on the α, β, γ and δ parameters, such that the next
sandwich-type result holds:

zh(z)
[
g1(z)
z

]α
≺ zh(z)

[
f(z)
z

]α
≺ zh(z)

[
g2(z)
z

]α
implies

z

[
Ahα,β,γ,δ[g1](z)

z

]β
≺ z

[
Ahα,β,γ,δ[f ](z)

z

]β
≺ z

[
Ahα,β,γ,δ[g2](z)

z

]β
.

Moreover, the functions from the left-hand side and the right-hand side are the best
subordinant and the best dominant, respectively.
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2. Preliminaries

Let c ∈ C with Re c > 0, let n ∈ N∗ and let

Cn = Cn(c) =
n

Re c

[
|c|
√

1 + 2 Re
( c
n

)
+ Im c

]
.

If R is the univalent function R(z) =
2Cnz
1− z2

, then the open door function Rc,n is

defined by

Rc,n(z) = R

(
z + b

1 + bz

)
, z ∈ U,

where b = R−1(c).
Remark that Rc,n is univalent in U, Rc,n(0) = c and Rc,n(U) = R(U) is the

complex plane slit along the half-lines |Imw| ≥ Cn and Rew = 0.
Moreover, if c > 0, then Cn+1 > Cn and lim

n→∞
Cn =∞, hence Rc,n ≺ Rc,n+1 and

lim
n→∞

Rc,n(U) = C. We will use the notation Rc ≡ Rc,1.
Let denote the class of functions

An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + · · · },

and let A ≡ A1.

Lemma 1 (Integral Existence Theorem, see [7, 8]). Let φ,Φ ∈ H[1, n] with φ(z) 6= 0,
Φ(z) 6= 0 for z ∈ U. Let α, β, γ, δ ∈ C with β 6= 0, α+ δ = β+ γ and Re(α+ δ) > 0.
If the function f(z) = z + an+1z

n+1 + · · · ∈ An and if it satisfies

α
zf ′(z)
f(z)

+
zφ′(z)
φ(z)

+ δ ≺ Rα+δ,n(z)

then

F (z) =
[
β + γ

zγΦ(z)

∫ z

0

fα(t)φ(t)tγ−1 d t
]1/β

= z + bn+1z
n+1 + · · · ∈ An,

F (z)
z
6= 0, z ∈ U,

and

Re
[
β
zF ′(z)
F (z)

+
zΦ′(z)
Φ(z)

+ γ

]
> 0, z ∈ U.

(All powers are principal ones).

A function L(z; t) : U × [0,+∞) → C is called a subordination (or a Loewner)
chain if L(·; t) is analytic and univalent in U for all t ≥ 0, L(z; ·) is continuously
differentiable on [0,+∞) for all z ∈ U and L(z; s) ≺ L(z; t) when 0 ≤ s ≤ t.
Lemma 2 (see [12], p. 159). The function L(z; t) = a1(t)z + a2(t)z2 + . . . , with
a1(t) 6= 0 for all t ≥ 0 and lim

t→+∞
|a1(t)| = +∞, is a subordination chain if and only

if

Re
[
z
∂L/∂z

∂L/∂t

]
> 0, z ∈ U, t ≥ 0.
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The well-known class of convex functions of order α in U, α < 1 will be denoted
by K(α), and K ≡ K(0) is the class of convex (and univalent) functions in U. Also,
the class of starlike functions of order α in U, α < 1, will be denoted by S∗(α), and
S∗ ≡ S∗(0) is the class of starlike (and univalent) functions in U.

If β > 0 and β+γ > 0, for a given α ∈
[
−γ
β
, 1
)

we define the order of starlikeness

of the class Aβ,γ by the largest number δ = δ(α;β, γ) such that Aβ,γ(S∗(α)) ⊂ S∗(δ),
where Aβ,γ is given by (1).

Lemma 3 (see [11]). Let β > 0, β + γ > 0. If α ∈ [α0, 1), where

α0 = max
{
β − γ − 1

2β
;−γ

β

}
,

then the order of starlikeness of the class Ahα,β,γ,δ(S
∗(α)) is given by

δ(α;β, γ) =
1
β

[
β + γ

2F1(1, 2β(1− α), β + γ + 1; 1/2)
− γ
]
,

where 2F1 represents the (Gaussian) hypergeometric function.

Lemma 4 (see [6], Theorem 1). Let β, γ ∈ C with β 6= 0 and let h ∈ H(U), with
h(0) = c. If Re[βh(z) + γ] > 0, z ∈ U, then the solution of the differential equation

q(z) +
zq′(z)

βq(z) + γ
= h(z), (3)

with q(0) = c, is analytic in U and satisfies Re[βq(z) + γ] > 0, z ∈ U.

Let Q be the set of functions f that are analytic and injective on U\E(f), where

E(f) =
{
ζ ∈ ∂U : lim

z→ζ
f(z) =∞

}
,

and such that f ′(ζ) 6= 0 for ζ ∈ ∂U \ E(f) (see [10]).

Lemma 5 (see [10], Theorem 7). Let q ∈ H[a, 1], let χ : C2 → C and set χ(q(z),
zq′(z)) ≡ h(z). If L(z, t) = χ(q(z), tzq′(z)) is a subordination chain and p ∈ H[a, 1]∩
Q, then

h(z) ≺ χ(p(z), zp′(z)) implies q(z) ≺ p(z).

Furthermore, if χ(q(z), zq′(z)) = h(z) has a univalent solution q ∈ Q, then q is the
best subordinant.

Like in [5] and [9], let Ω ⊂ C, q ∈ Q and n be a positive integer. The class of
admissible functions Ψn[Ω, q] is the class of those functions ψ : C3 × U → C that
satisfy the admissibility condition

ψ(r, s, t; z) /∈ Ω,
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whenever r = q(ζ), s = mζq′(ζ), Re
t

s
+1 ≥ mRe

[
ζq′′(ζ)
q′(ζ)

+ 1
]
, z ∈ U, ζ ∈ ∂U\E(q)

and m ≥ n. This class will be denoted by Ψn[Ω, q].
We write Ψ[Ω, q] ≡ Ψ1[Ω, q]. For the special case when Ω 6= C is a simply

connected domain and h is a conformal mapping of U onto Ω, we use the notation
Ψn[h, q] ≡ Ψn[Ω, q].

Remark 1. If ψ : C2 × U → C, then the above defined admissibility condition
reduces to

ψ(q(ζ),mζq′(ζ); z) /∈ Ω,

when z ∈ U, ζ ∈ ∂U \ E(q) and m ≥ n.

Lemma 6 (see [5, 9]). Let h be univalent in U and ψ : C3 × U→ C. Suppose that
the differential equation

ψ(q(z), zq′(z), z2q′′(z); z) = h(z)

has a solution q, with q(0) = a, and one of the following conditions is satisfied:

(i) q ∈ Q and ψ ∈ Ψ[h, q],
(ii) q is univalent in U and ψ ∈ Ψ[h, qρ], for some ρ ∈ (0, 1), where

qρ(z) = q(ρz), or
(iii) q is univalent in U and there exists ρ0 ∈ (0, 1) such that ψ ∈ Ψ[hρ, qρ]

for all ρ ∈ (ρ0, 1), where hρ(z) = h(ρz) and qρ(z) = q(ρz).

If p(z) = a+ a1z + . . . ∈ H(U) and ψ(p(z), zp′(z), z2p′′(z); z) ∈ H(U), then

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z) implies p(z) ≺ q(z)

and q is the best dominant.

3. Main results

First we need to determine the subset K ⊂ H(U) such that the integral operator
Ahα,β,γ,δ given by (2) in Section 1 will be well-defined. If we choose in Lemma 1 the
correspondent functions Φ ≡ 1 and φ ≡ h ∈ H[1, 1], with h(z) 6= 0 for all z ∈ U,
then we obtain the next Lemma:

Lemma 7. Let α, β, γ, δ ∈ C with β 6= 0, α+ δ = β+ γ and Re(β+ γ) > 0. For the
function h ∈ H[1, 1], with h(z) 6= 0 for all z ∈ U, we define the set K ⊂ H(U) by

K = Khα,δ =
{
f ∈ A : α

zf ′(z)
f(z)

+
zh′(z)
h(z)

+ δ ≺ Rα+δ(z)
}
.

Then f ∈ Khα,δ implies F ∈ A,
F (z)
z
6= 0, z ∈ U and Re

[
β
zF ′(z)
F (z)

+ γ

]
> 0, z ∈ U,

where F (z) = Ahα,β,γ,δ[f ](z).
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Theorem 1. Let α, β, γ, δ ∈ C with β 6= 0, 1 < β + γ ≤ 2, α + δ = β + γ. Let
g ∈ Khα,δ, and for α 6= 1 suppose in addition that g(z)/z 6= 0 for z ∈ U. Suppose that

Re
[
1 +

zϕ′′(z)
ϕ′(z)

]
>

1− (β + γ)
2

, z ∈ U, (4)

where ϕ(z) = zh(z)
[
g(z)
z

]α
.

Let f ∈ Khα,δ such that zh(z)
[
f(z)
z

]α
is univalent in U and z

[
Ahα,β,γ,δ[f ](z)

z

]β
∈ Q.

Then

zh(z)
[
g(z)
z

]α
≺ zh(z)

[
f(z)
z

]α
implies z

[
Ahα,β,γ,δ[g](z)

z

]β
≺ z

[
Ahα,β,γ,δ[f ](z)

z

]β
,

and the function z

[
Ahα,β,γ,δ[g](z)

z

]β
is the best subordinant.

Proof. Denoting G = Ahα,β,γ,δ[g], F = Ahα,β,γ,δ[f ], ϕ(z) = zh(z)[g(z)/z]α, ψ(z)
= zh(z)[f(z)/z]α, Φ(z) = z[G(z)/z]β and Ψ(z) = z[F (z)/z]β , we need to prove that
ϕ(z) ≺ ψ(z) implies Φ(z) ≺ Ψ(z).

Because g, f ∈ Khα,δ, then ψ,ϕ ∈ A and by Lemma 1 we have G(z)/z 6= 0 and
F (z)/z 6= 0, z ∈ U, hence Φ,Ψ ∈ H(U) and moreover Φ,Ψ ∈ A.

If we differentiate the relations G(z) = Ahα,β,γ,δ[g](z) and Φ(z) = z

[
G(z)
z

]β
we

have respectively

zγ
[
G(z)
z

]β [
β
zG′(z)
G(z)

+ γ

]
= (β + γ)gα(z)h(z)zδ−β , (5)

β
zG′(z)
G(z)

= β − 1 +
zΦ′(z)
Φ(z)

, (6)

and replacing (6) in (5), together with the fact that α+ δ = β + γ, we get

ϕ(z) =
(

1− 1
β + γ

)
Φ(z) +

1
β + γ

zΦ′(z) = χ(Φ(z), zΦ′(z)). (7)

Letting

L(z; t) =
(

1− 1
β + γ

)
Φ(z) +

t

β + γ
zΦ′(z), (8)

then L(z; 1) = ϕ(z). If we denote L(z; t) = a1(t)z + . . . , then

a1(t) =
∂L(0; t)
∂z

=
(

1 +
t− 1
β + γ

)
Φ′(0) = 1 +

t− 1
β + γ

,

hence lim
t→+∞

|a1(t)| = +∞, and from β + γ > 1 we obtain a1(t) 6= 0, ∀t ≥ 0.
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From definition (8), a simple computation shows the equality

Re
[
z
∂L/∂z

∂L/∂t

]
= β + γ − 1 + tRe

[
1 +

zΦ′′(z)
Φ′(z)

]
.

Using the above relation together with the assumption β + γ − 1 > 0, and
according to Lemma 2, in order to prove that L(z; t) is a subordination chain we
need to prove that the next inequality holds:

Re
[
1 +

zΦ′′(z)
Φ′(z)

]
> 0, z ∈ U. (9)

If we let q(z) = 1 +
zΦ′′(z)
Φ′(z)

, by differentiating (7) we have

ϕ′(z) =
(

1− 1
β + γ

)
Φ′(z) +

1
β + γ

[Φ′(z) + zΦ′′(z)] ,

and by computing the logarithmical derivative of the above equality we deduce that

q(z) +
zq′(z)

q(z) + β + γ − 1
= 1 +

zϕ′′(z)
ϕ′(z)

≡ H(z). (10)

From (4) we have

Re [H(z) + β + γ − 1] >
β + γ − 1

2
> 0, z ∈ U,

and by using Lemma 4 we conclude that differential equation (10) has a solution
q ∈ H(U), with q(0) = H(0) = 1.

Next, using Lemma 3 we will prove that under our assumption inequality (9)
holds. If in Lemma 3 we replace the parameters β and γ by β̃ = 1 and γ̃ = β+γ−1
respectively, then the conditions β̃ = 1 > 0 and β̃ + γ̃ = β + γ > 0 are satisfied.

The assumption β + γ > 1 implies α0 = max

{
β̃ − γ̃ − 1

2β̃
;− γ̃

β̃

}
=

1− (β + γ)
2

.

Using Lemma 3 for the case α = α0 =
1− (β + γ)

2
, we obtain that the solution q of

differential equation (10) satisfies

Re q(z) >
β + γ

2F2(1, β + γ + 1, β + γ + 1; 1/2)
+ 1− (β + γ) =

=
β + γ

2
+ 1− (β + γ) = 1− β + γ

2
≥ 0, z ∈ U,

whenever β + γ ≤ 2. It follows that inequality (9) is satisfied, and according to
Lemma 2 the function L(z; t) is a subordination chain.

Using (9) and the fact that Φ ∈ A, we have that Φ is convex (univalent) in U,
i.e. the differential equation χ(Φ(z), zΦ′(z)) = ϕ(z) has the univalent solution Φ.

From Lemma 5, we conclude that ϕ(z) ≺ ψ(z) implies Φ(z) ≺ Ψ(z), and fur-
thermore, since Φ is a univalent solution of the differential equation χ(Φ(z), zΦ′(z))
= ϕ(z), hence it is the best subordinant of the given differential superordination.
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Theorem 2. Let α, β, γ, δ ∈ C with β 6= 0, 0 < β + γ ≤ 2, α + δ = β + γ. Let
f, g ∈ Khα,δ, and for α 6= 1 suppose in addition that f(z)/z 6= 0, g(z)/z 6= 0 for
z ∈ U. If

Re
[
1 +

zϕ′′(z)
ϕ′(z)

]
> α0 = max

{
1− (β + γ)

2
; 1− (β + γ)

}
, z ∈ U, (11)

where ϕ(z) = zh(z)
[
g(z)
z

]α
, then zh(z)

[
f(z)
z

]α
≺ zh(z)

[
g(z)
z

]α
implies

z

[
Ahα,β,γ,δ[f ](z)

z

]β
≺ z

[
Ahα,β,γ,δ[g](z)

z

]β
,

and the function z

[
Ahα,β,γ,δ[g](z)

z

]β
is the best dominant of the given subordination.

Proof. Like in the proof of Theorem 1, if we denote F = Ahα,β,γ,δ[f ], G = Ahα,β,γ,δ[g],
ψ(z) = zh(z)[f(z)/z]α, ϕ(z) = zh(z)[g(z)/z]α, Ψ(z) = z[F (z)/z]β and Φ(z)
= z[G(z)/z]β , then we need to prove that ψ(z) ≺ ϕ(z) implies Ψ(z) ≺ Φ(z).

Since f, g ∈ Khα,δ, it follows that ψ,ϕ ∈ A and by Lemma 1 we have F (z)/z 6= 0
and G(z)/z 6= 0, z ∈ U, hence Ψ,Φ ∈ H(U) and moreover Ψ,Φ ∈ A.

Differentiating the relations G(z) = Ahα,β,γ,δ[g](z) and Φ(z) = z

[
G(z)
z

]β
, we

obtain respectively

zγ
[
G(z)
z

]β [
β
zG′(z)
G(z)

+ γ

]
= (β + γ)gα(z)h(z)zδ−β , (12)

β
zG′(z)
G(z)

+ γ = β + γ − 1 +
zΦ′(z)
Φ(z)

, (13)

and replacing in (13) in (12), together with the assumption α+δ = β+γ, we deduce
that

ϕ(z) =
(

1− 1
β + γ

)
Φ(z) +

1
β + γ

zΦ′(z). (14)

If we let

L(z; t) =
(

1− 1
β + γ

)
Φ(z) +

1 + t

β + γ
zΦ′(z), (15)

then L(z; 0) = ϕ(z). Denoting L(z; t) = a1(t)z + . . . , then

a1(t) =
∂L(0; t)
∂z

=
(

1 +
t

β + γ

)
Φ′(0) = 1 +

t

β + γ
,

hence lim
t→+∞

|a1(t)| = +∞, and because β + γ > 0 we obtain a1(t) 6= 0, ∀t ≥ 0.

From (15) we may easily deduce the equality

Re
[
z
∂L/∂z

∂L/∂t

]
= Re

[
β + γ +

zΦ′′(z)
Φ′(z)

]
+ tRe

[
1 +

zΦ′′(z)
Φ′(z)

]
.
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Using the above relation and according to Lemma 2, in order to prove that L(z; t)
is a subordination chain we need to show that the next two inequalities hold:

Re
[
1 +

zΦ′′(z)
Φ′(z)

]
> 0, z ∈ U (16)

and

Re
[
β + γ +

zΦ′′(z)
Φ′(z)

]
> 0, z ∈ U. (17)

If we let q(z) = 1 +
zΦ′′(z)
Φ′(z)

, by differentiating (14) we have

ϕ′(z) =
(

1− 1
β + γ

)
Φ′(z) +

1
β + γ

[Φ′(z) + zΦ′′(z)] ,

and from the logarithmical derivative of the above equality we deduce

q(z) +
zq′(z)

q(z) + β + γ − 1
= 1 +

zϕ′′(z)
ϕ′(z)

≡ H(z). (18)

From (11) we have

Re[H(z) + β + γ − 1] > α0 + β + γ − 1 ≥ 0, z ∈ U

and by using Lemma 4 we conclude that differential equation (18) has a solution
q ∈ H(U), with q(0) = H(0) = 1.

Now we will use Lemma 3 to prove that under our assumption the inequalities
(16) and (17) hold. If we replace parameters β by β̃ = 1 and γ by γ̃ = β + γ − 1 in
Lemma 3, the conditions β̃ = 1 > 0 and β̃ + γ̃ = β + γ > 0 are satisfied.

Because

α0 = max
{

1− (β + γ)
2

; 1− (β + γ)
}

=


1− (β + γ), if β + γ ≤ 1,

1− (β + γ)
2

, if β + γ ≥ 1,

we need to discuss the following two cases.
In the first case, if β + γ ≤ 1, by using Lemma 3 for α = α0 = 1 − (β + γ) we

obtain that the solution q of differential equation (18) satisfies

Re q(z) >
β + γ

2F1(1, 2(β + γ), β + γ + 1; 1/2)
+ 1− (β + γ)

=
1√
π

Γ (β + γ + 1/2)
Γ(β + γ)

+ 1− (β + γ) > 0, z ∈ U,

hence (16) holds. From this inequality we also deduce that

Re
[
β + γ +

zΦ′′(z)
Φ′(z)

]
= Re q(z) + β + γ − 1 >

1√
π

Γ (β + γ + 1/2)
Γ(β + γ)

> 0, z ∈ U,
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hence (17) holds.

In the second case, if β+ γ ≥ 1, by using Lemma 3 for α = α0 =
1− (β + γ)

2
we

obtain that the solution q of differential equation (18) satisfies

Re q(z) >
β + γ

2F2(1, β + γ + 1, β + γ + 1; 1/2)
+ 1− (β + γ)

=
β + γ

2
+ 1− (β + γ) = 1− β + γ

2
≥ 0, z ∈ U,

if β + γ ≤ 2, hence (16) holds. From this inequality we also deduce that

Re
[
β + γ +

zΦ′′(z)
Φ′(z)

]
= Re q(z) + β + γ − 1 >

β + γ

2
≥ 1

2
> 0, z ∈ U,

hence (17) holds.
Hence we conclude that, if 0 < β+γ ≤ 2, inequalities (16) and (17) are satisfied,

then according to Lemma 2 the function L(z; t) is a subordination chain. Moreover,
inequality (16) and the fact that Φ ∈ A show that Φ is convex (univalent) in U.

Next we will show that Ψ(z) ≺ Φ(z). Without loss of generality, we can assume
that ϕ and Φ are analytic and univalent in U and Φ′(ζ) 6= 0 for |ζ| = 1. If not, then
we could replace ϕ with ϕρ(z) = ϕ(ρz) and Φ with Φρ(z) = Φ(ρz), where ρ ∈ (0, 1).
These new functions will have the desired properties and we would prove our result
using part (iii) of Lemma 6.

With our assumption, we will use part (i) of Lemma 6. If we denote by χ(Φ(z),
zΦ′(z)) = ϕ(z), we need to show that χ ∈ Ψ[ϕ,Φ], i.e. χ is an admissible function.
Because

χ(Φ(ζ),mζΦ′(ζ)) =
(

1− 1
β + γ

)
Φ(ζ) +

1 + t

β + γ
ζΦ′(ζ) = L(ζ; t),

where m = 1 + t, t ≥ 0, since L(z; t) is a subordination chain and ϕ(z) = L(z; 0), it
follows that

χ(Φ(ζ),mζΦ′(ζ)) /∈ ϕ(U).

Then, according to Remark 1, we have χ ∈ Ψ[ϕ,Φ], and using Lemma 6 we obtain
that Ψ(z) ≺ Φ(z) and, moreover, Φ is the best dominant.

If we combine this result together with Theorem 1, then we obtain the following
differential sandwich-type theorem.

Theorem 3. Let α, β, γ, δ ∈ C with β 6= 0, 1 < β + γ ≤ 2, α + δ = β + γ. Let
g1, g2 ∈ Khα,δ, and for α 6= 1 suppose in addition that gk(z)/z 6= 0 for z ∈ U and
k = 1, 2. Suppose that the next two conditions are satisfied

Re
[
1 +

zϕ′′k(z)
ϕ′k(z)

]
>

1− (β + γ)
2

, z ∈ U, for k = 1, 2, (19)

where ϕk(z) = zh(z)
[
gk(z)
z

]α
and k = 1, 2.
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Let f ∈ Khα,δ such that zh(z)
[
f(z)
z

]α
is univalent in U and z

[
Ahα,β,γ,δ[f ](z)

z

]β
∈Q.

Then

zh(z)
[
g1(z)
z

]α
≺ zh(z)

[
f(z)
z

]α
≺ zh(z)

[
g2(z)
z

]α
implies

z

[
Ahα,β,γ,δ[g1](z)

z

]β
≺ z

[
Ahα,β,γ,δ[f ](z)

z

]β
≺ z

[
Ahα,β,γ,δ[g2](z)

z

]β
.

Moreover, the functions z

[
Ahα,β,γ,δ[g1](z)

z

]β
and z

[
Ahα,β,γ,δ[g2](z)

z

]β
are the best

subordinant and the best dominant, respectively.

Remark 2. Note that this theorem generalizes the previous one [3, Theorem 3.2],
that may be obtained for the case α = β and h ≡ 1.

For the case α = β = 1 and h ≡ 1, the result was obtained in [10, Corollary 6.1],
where the authors assumed that Re γ ≥ 0 and g1, g2 are convex functions.

Since the conditions that the functions zh(z)
[
f(z)
z

]α
and z

[
Ahα,β,γ,δ[f ](z)

z

]β
need to be univalent in U are difficult to be checked, we will replace these assumptions
by other simple sufficient conditions on f , g1 and g2 which implies the univalence of
the above functions.

Corollary 1. Let α, β, γ, δ ∈ C with β 6= 0, 1 < β + γ ≤ 2, α + δ = β + γ. Let
f, g1, g2 ∈ Khα,δ, and for α 6= 1 suppose in addition that f(z)/z 6= 0, gk(z)/z 6= 0 for
z ∈ U and k = 1, 2. Suppose that the next three conditions are satisfied

Re
[
1 +

zϕ′′k(z)
ϕ′k(z)

]
>

1− (β + γ)
2

, z ∈ U, for k = 1, 2, 3, (20)

where ϕk(z) = zh(z)
[
gk(z)
z

]α
, k = 1, 2 and ϕ3(z) = zh(z)

[
f(z)
z

]α
.

Then

zh(z)
[
g1(z)
z

]α
≺ zh(z)

[
f(z)
z

]α
≺ zh(z)

[
g2(z)
z

]α
implies

z

[
Ahα,β,γ,δ[g1](z)

z

]β
≺ z

[
Ahα,β,γ,δ[f ](z)

z

]β
≺ z

[
Ahα,β,γ,δ[g2](z)

z

]β
.

Moreover, the functions z

[
Ahα,β,γ,δ[g1](z)

z

]β
and z

[
Ahα,β,γ,δ[g2](z)

z

]β
are the best

subordinant and the best dominant, respectively.
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Proof. In order to use straight Theorem 3, we need to show that inequality (20)
for k = 3 implies the univalence of the functions

ϕ3(z) = zh(z)
[
f(z)
z

]α
and Φ(z) = z

[
Aφ,ϕα,β,γ,δ[f ](z)

z

]β
.

The condition (20) for k = 3 means that

ϕ3 ∈ K
(

1− (β + γ)
2

)
⊆ K

(
−1

2

)
and from [4] it follows that ϕ3 is a close-to-convex function, hence it is univalent. If
we denote by F = Ahα,β,γ,δ[f ] and ψ(z) = zh(z)[f(z)/z]α, then Ψ(z) = z[F (z)/z]β ,
and using a proof similar to that of Theorem 1 and Theorem 2 we conclude that Ψ
is a convex function, hence it is univalent in U.
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