379

brought to you by I CORE

A class of superordination-preserving convex integral operator

SAIBAH SIREGAR¹, MASLINA DARUS¹ AND TEODOR BULBOACĂ^{3,*}

 ¹ School of Mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43 600 Bangi, Selangor, Malaysia
 ³ Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400 084 Cluj-Napoca, Romania

Received April 6, 2009; accepted October 5, 2009

Abstract. If H(U) denotes the space of analytic functions in the unit disk U, for the integral operator $A^h_{\alpha,\beta,\gamma,\delta} : \mathcal{K} \to H(U)$, with $\mathcal{K} \subset H(U)$, defined by

$$A^{h}_{\alpha,\beta,\gamma,\delta}[f](z) = \left[\frac{\beta+\gamma}{z^{\gamma}}\int_{0}^{z}f^{\alpha}(t)h(t)t^{\delta-1}\,\mathrm{d}\,t\right]^{1/\beta}, \ \Big(\alpha,\beta,\gamma,\delta\in\mathbb{C} \ \mathrm{and} \ h\in H(\mathrm{U})\Big),$$

we will determine sufficient conditions on g_1, g_2, α, β and γ such that

$$zh(z)\left[\frac{g_1(z)}{z}\right]^{\alpha} \prec zh(z)\left[\frac{f(z)}{z}\right]^{\alpha} \prec zh(z)\left[\frac{g_2(z)}{z}\right]^{\alpha}$$

implies

$$z\left[\frac{A^h_{\alpha,\beta,\gamma,\delta}[g_1](z)}{z}\right]^{\beta} \prec z\left[\frac{A^h_{\alpha,\beta,\gamma,\delta}[f](z)}{z}\right]^{\beta} \prec z\left[\frac{A^h_{\alpha,\beta,\gamma,\delta}[g_2](z)}{z}\right]^{\beta}.$$

In addition, both of the subordinations are sharp, since the left-hand side will be the largest function, and the right-hand side will be the smallest function so that the above implication has been held for all f functions satisfying the double differential subordination of the assumption.

The results generalize those of the last author from [3], obtained for the special case $\alpha = \beta$ and $h \equiv 1$.

AMS subject classifications: 30C80, 30C45

Key words: analytic function, starlike and convex function, differential operator, differential subordination

1. Introduction

Let H(U) be the space of all analytical functions in the unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. If $f, F \in H(U)$ and F is univalent in U, we say that the function f is subordinate to F, or F is superordinate to f, written $f(z) \prec F(z)$, if f(0) = F(0) and $f(U) \subseteq F(U)$.

http://www.mathos.hr/mc

©2009 Department of Mathematics, University of Osijek

^{*}Corresponding author. *Email addresses:* saibahmath@yahoo.com (S. Siregar), maslina@pkrisc.cc.ukm.my (M. Darus), bulboaca@math.ubbcluj.ro (T. Bulboacă)

For $a \in \mathbb{C}$ and $n \in \mathbb{N}^*$, where \mathbb{N}^* is the set of all positive integers, we denote

$$H[a, n] = \{ f \in H(\mathbf{U}) : f(z) = a + a_n z^n + \dots \}.$$

Letting $\varphi : \mathbb{C}^3 \times \overline{\mathbb{U}} \to \mathbb{C}$, $h \in H(\mathbb{U})$ and $q \in H[a, n]$, in [10] Miller and Mocanu determined conditions on φ such that

$$h(z) \prec \varphi(p(z), zp'(z), z^2 p''(z); z)$$
 implies $q(z) \prec p(z)$,

for all p functions that satisfy the above superordination. Moreover, they found sufficient conditions so that the q function is the largest function with this property called the best subordinant of this superordination.

For the integral operator $A_{\beta,\gamma} : \mathcal{K}_{\beta,\gamma} \to H(U), \, \mathcal{K}_{\beta,\gamma} \subset H(U)$, defined by

$$A_{\beta,\gamma}[f](z) = \left[\frac{\beta + \gamma}{z^{\gamma}} \int_0^z f^{\beta}(t) t^{\gamma - 1} \,\mathrm{d}\, t\right]^{1/\beta}, \quad \beta, \gamma \in \mathbb{C},\tag{1}$$

the third author determined in [3], in conjunction with [1] and [2], conditions on g_1 , g_2 , β and γ so that

$$z\left[\frac{g_1(z)}{z}\right]^{\beta} \prec z\left[\frac{f(z)}{z}\right]^{\beta} \prec z\left[\frac{g_2(z)}{z}\right]^{\beta}$$

implies

$$z\left[\frac{A_{\beta,\gamma}[g_1](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\beta,\gamma}[f](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\beta,\gamma}[g_2](z)}{z}\right]^{\beta},$$

and that all the results are sharp.

In this paper we will consider the integral operator $A^h_{\alpha,\beta,\gamma,\delta}: \mathcal{K} \to H(\mathbf{U})$ with $\mathcal{K} \subset H(\mathbf{U})$ defined by

$$A^{h}_{\alpha,\beta,\gamma,\delta}[f](z) = \left[\frac{\beta+\gamma}{z^{\gamma}} \int_{0}^{z} f^{\alpha}(t)h(t)t^{\delta-1} \,\mathrm{d}\,t\right]^{1/\beta},\tag{2}$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ and $h \in H(U)$ (all powers are principal ones).

We will generalize all these previous results in order to give sufficient conditions on the g_1 and g_2 functions and on the α , β , γ and δ parameters, such that the next sandwich-type result holds:

$$zh(z)\left[\frac{g_1(z)}{z}\right]^{\alpha} \prec zh(z)\left[\frac{f(z)}{z}\right]^{\alpha} \prec zh(z)\left[\frac{g_2(z)}{z}\right]^{\alpha}$$

implies

$$z\left[\frac{A^{h}_{\alpha,\beta,\gamma,\delta}[g_{1}](z)}{z}\right]^{\beta} \prec z\left[\frac{A^{h}_{\alpha,\beta,\gamma,\delta}[f](z)}{z}\right]^{\beta} \prec z\left[\frac{A^{h}_{\alpha,\beta,\gamma,\delta}[g_{2}](z)}{z}\right]^{\beta}$$

Moreover, the functions from the left-hand side and the right-hand side are the best subordinant and the best dominant, respectively.

2. Preliminaries

Let $c \in \mathbb{C}$ with $\operatorname{Re} c > 0$, let $n \in \mathbb{N}^*$ and let

$$C_n = C_n(c) = \frac{n}{\operatorname{Re} c} \left[|c| \sqrt{1 + 2\operatorname{Re} \left(\frac{c}{n}\right)} + \operatorname{Im} c \right].$$

If R is the univalent function $R(z) = \frac{2C_n z}{1-z^2}$, then the open door function $R_{c,n}$ is defined by

$$R_{c,n}(z) = R\left(\frac{z+b}{1+\overline{b}z}\right), \ z \in \mathbf{U},$$

where $b = R^{-1}(c)$.

Remark that $R_{c,n}$ is univalent in U, $R_{c,n}(0) = c$ and $R_{c,n}(U) = R(U)$ is the complex plane slit along the half-lines $|\text{Im } w| \ge C_n$ and Re w = 0.

Moreover, if c > 0, then $C_{n+1} > C_n$ and $\lim_{n \to \infty} C_n = \infty$, hence $R_{c,n} \prec R_{c,n+1}$ and $\lim_{n \to \infty} R_{c,n}(\mathbf{U}) = \mathbb{C}$. We will use the notation $R_c \equiv R_{c,1}$.

Let denote the class of functions $\overset{\rightarrow \infty}{}$

$$A_n = \{ f \in H(\mathbf{U}) : f(z) = z + a_{n+1}z^{n+1} + \dots \}$$

and let $A \equiv A_1$.

Lemma 1 (Integral Existence Theorem, see [7, 8]). Let $\phi, \Phi \in H[1, n]$ with $\phi(z) \neq 0$, $\Phi(z) \neq 0$ for $z \in U$. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0$, $\alpha + \delta = \beta + \gamma$ and $\operatorname{Re}(\alpha + \delta) > 0$. If the function $f(z) = z + a_{n+1}z^{n+1} + \cdots \in A_n$ and if it satisfies

$$\alpha \frac{zf'(z)}{f(z)} + \frac{z\phi'(z)}{\phi(z)} + \delta \prec R_{\alpha+\delta,n}(z)$$

then

$$F(z) = \left[\frac{\beta + \gamma}{z^{\gamma} \Phi(z)} \int_{0}^{z} f^{\alpha}(t)\phi(t)t^{\gamma-1} dt\right]^{1/\beta} = z + b_{n+1}z^{n+1} + \dots \in A_{n},$$

$$\frac{F(z)}{z} \neq 0, \ z \in \mathcal{U},$$

and

$$\operatorname{Re}\left[\beta\frac{zF'(z)}{F(z)} + \frac{z\Phi'(z)}{\Phi(z)} + \gamma\right] > 0, \ z \in \mathrm{U}.$$

(All powers are principal ones).

A function $L(z;t) : U \times [0, +\infty) \to \mathbb{C}$ is called a subordination (or a Loewner) chain if $L(\cdot;t)$ is analytic and univalent in U for all $t \ge 0$, $L(z;\cdot)$ is continuously differentiable on $[0, +\infty)$ for all $z \in U$ and $L(z;s) \prec L(z;t)$ when $0 \le s \le t$.

Lemma 2 (see [12], p. 159). The function $L(z;t) = a_1(t)z + a_2(t)z^2 + \ldots$, with $a_1(t) \neq 0$ for all $t \geq 0$ and $\lim_{t \to +\infty} |a_1(t)| = +\infty$, is a subordination chain if and only if

$$\operatorname{Re}\left[z\frac{\partial L/\partial z}{\partial L/\partial t}\right] > 0, \ z \in \mathrm{U}, \ t \ge 0.$$

The well-known class of convex functions of order α in U, $\alpha < 1$ will be denoted by $K(\alpha)$, and $K \equiv K(0)$ is the class of convex (and univalent) functions in U. Also, the class of starlike functions of order α in U, $\alpha < 1$, will be denoted by $S^*(\alpha)$, and $S^* \equiv S^*(0)$ is the class of starlike (and univalent) functions in U.

If $\beta > 0$ and $\beta + \gamma > 0$, for a given $\alpha \in \left[-\frac{\gamma}{\beta}, 1\right)$ we define the order of starlikeness of the class $A_{\beta,\gamma}$ by the largest number $\delta = \delta(\alpha; \beta, \gamma)$ such that $A_{\beta,\gamma}(S^*(\alpha)) \subset S^*(\delta)$, where $A_{\beta,\gamma}$ is given by (1).

Lemma 3 (see [11]). Let $\beta > 0$, $\beta + \gamma > 0$. If $\alpha \in [\alpha_0, 1)$, where

$$\alpha_0 = \max\left\{\frac{\beta - \gamma - 1}{2\beta}; -\frac{\gamma}{\beta}\right\},\,$$

then the order of starlikeness of the class $A^h_{\alpha,\beta,\gamma,\delta}(S^*(\alpha))$ is given by

$$\delta(\alpha;\beta,\gamma) = \frac{1}{\beta} \left[\frac{\beta+\gamma}{{}_2F_1(1,2\beta(1-\alpha),\beta+\gamma+1;1/2)} - \gamma \right],$$

where $_2F_1$ represents the (Gaussian) hypergeometric function.

Lemma 4 (see [6], Theorem 1). Let $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and let $h \in H(U)$, with h(0) = c. If $\operatorname{Re}[\beta h(z) + \gamma] > 0$, $z \in U$, then the solution of the differential equation

$$q(z) + \frac{zq'(z)}{\beta q(z) + \gamma} = h(z), \tag{3}$$

with q(0) = c, is analytic in U and satisfies $\operatorname{Re}[\beta q(z) + \gamma] > 0, z \in U$.

Let Q be the set of functions f that are analytic and injective on $\overline{U} \setminus E(f)$, where

$$E(f) = \left\{ \zeta \in \partial \mathcal{U} : \lim_{z \to \zeta} f(z) = \infty \right\},$$

and such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$ (see [10]).

Lemma 5 (see [10], Theorem 7). Let $q \in H[a, 1]$, let $\chi : \mathbb{C}^2 \to \mathbb{C}$ and set $\chi(q(z), zq'(z)) \equiv h(z)$. If $L(z,t) = \chi(q(z), tzq'(z))$ is a subordination chain and $p \in H[a, 1] \cap Q$, then

$$h(z) \prec \chi(p(z), zp'(z))$$
 implies $q(z) \prec p(z)$.

Furthermore, if $\chi(q(z), zq'(z)) = h(z)$ has a univalent solution $q \in Q$, then q is the best subordinant.

Like in [5] and [9], let $\Omega \subset \mathbb{C}$, $q \in Q$ and n be a positive integer. The class of admissible functions $\Psi_n[\Omega, q]$ is the class of those functions $\psi : \mathbb{C}^3 \times \mathbb{U} \to \mathbb{C}$ that satisfy the admissibility condition

$$\psi(r,s,t;z)\notin\Omega,$$

whenever $r = q(\zeta)$, $s = m\zeta q'(\zeta)$, $\operatorname{Re} \frac{t}{s} + 1 \ge m \operatorname{Re} \left[\frac{\zeta q''(\zeta)}{q'(\zeta)} + 1 \right]$, $z \in U, \zeta \in \partial U \setminus E(q)$ and $m \ge n$. This class will be denoted by $\Psi_n[\Omega, q]$.

We write $\Psi[\Omega, q] \equiv \Psi_1[\Omega, q]$. For the special case when $\Omega \neq \mathbb{C}$ is a simply connected domain and h is a conformal mapping of U onto Ω , we use the notation $\Psi_n[h, q] \equiv \Psi_n[\Omega, q]$.

Remark 1. If $\psi : \mathbb{C}^2 \times U \to \mathbb{C}$, then the above defined admissibility condition reduces to

$$\psi(q(\zeta), m\zeta q'(\zeta); z) \notin \Omega,$$

when $z \in U$, $\zeta \in \partial U \setminus E(q)$ and $m \ge n$.

Lemma 6 (see [5, 9]). Let h be univalent in U and $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$. Suppose that the differential equation

$$\psi(q(z), zq'(z), z^2q''(z); z) = h(z)$$

has a solution q, with q(0) = a, and one of the following conditions is satisfied:

- (i) $q \in Q$ and $\psi \in \Psi[h, q]$,
- (ii) q is univalent in U and $\psi \in \Psi[h, q_{\rho}]$, for some $\rho \in (0, 1)$, where $q_{\rho}(z) = q(\rho z)$, or
- (iii) q is univalent in U and there exists $\rho_0 \in (0,1)$ such that $\psi \in \Psi[h_\rho, q_\rho]$ for all $\rho \in (\rho_0, 1)$, where $h_\rho(z) = h(\rho z)$ and $q_\rho(z) = q(\rho z)$.

If $p(z) = a + a_1 z + ... \in H(U)$ and $\psi(p(z), zp'(z), z^2 p''(z); z) \in H(U)$, then

$$\psi(p(z), zp'(z), z^2p''(z); z) \prec h(z) \quad implies \quad p(z) \prec q(z)$$

and q is the best dominant.

3. Main results

First we need to determine the subset $\mathcal{K} \subset H(\mathbf{U})$ such that the integral operator $A^h_{\alpha,\beta,\gamma,\delta}$ given by (2) in Section 1 will be well-defined. If we choose in Lemma 1 the correspondent functions $\Phi \equiv 1$ and $\phi \equiv h \in H[1,1]$, with $h(z) \neq 0$ for all $z \in \mathbf{U}$, then we obtain the next Lemma:

Lemma 7. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0$, $\alpha + \delta = \beta + \gamma$ and $\operatorname{Re}(\beta + \gamma) > 0$. For the function $h \in H[1, 1]$, with $h(z) \neq 0$ for all $z \in U$, we define the set $\mathcal{K} \subset H(U)$ by

$$\mathcal{K} = \mathcal{K}^h_{\alpha,\delta} = \left\{ f \in A : \alpha \frac{zf'(z)}{f(z)} + \frac{zh'(z)}{h(z)} + \delta \prec R_{\alpha+\delta}(z) \right\}.$$

 $\begin{array}{l} Then \ f \in \mathcal{K}^h_{\alpha,\delta} \ implies \ F \in A, \ \frac{F(z)}{z} \neq 0, \ z \in \mathbb{U} \ and \ \mathrm{Re} \left[\beta \frac{zF'(z)}{F(z)} + \gamma\right] > 0, \ z \in \mathbb{U}, \\ where \ F(z) = A^h_{\alpha,\beta,\gamma,\delta}[f](z). \end{array}$

Theorem 1. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0, 1 < \beta + \gamma \leq 2, \alpha + \delta = \beta + \gamma$. Let $g \in \mathcal{K}^h_{\alpha,\delta}$, and for $\alpha \neq 1$ suppose in addition that $g(z)/z \neq 0$ for $z \in U$. Suppose that

$$\operatorname{Re}\left[1 + \frac{z\varphi''(z)}{\varphi'(z)}\right] > \frac{1 - (\beta + \gamma)}{2}, \ z \in \operatorname{U},\tag{4}$$

where $\varphi(z) = zh(z) \left[\frac{g(z)}{z}\right]^{\alpha}$. Let $f \in \mathcal{K}^{h}_{\alpha,\delta}$ such that $zh(z) \left[\frac{f(z)}{z}\right]^{\alpha}$ is univalent in U and $z \left[\frac{A^{h}_{\alpha,\beta,\gamma,\delta}[f](z)}{z}\right]^{\beta} \in Q$. Then

$$zh(z)\left[\frac{g(z)}{z}\right]^{\alpha} \prec zh(z)\left[\frac{f(z)}{z}\right]^{\alpha} implies \ z\left[\frac{A^{h}_{\alpha,\beta,\gamma,\delta}[g](z)}{z}\right]^{\beta} \prec z\left[\frac{A^{h}_{\alpha,\beta,\gamma,\delta}[f](z)}{z}\right]^{\beta},$$

and the function $z \left[\frac{A^h_{\alpha,\beta,\gamma,\delta}[g](z)}{z} \right]^{\beta}$ is the best subordinant.

Proof. Denoting $G = A^h_{\alpha,\beta,\gamma,\delta}[g]$, $F = A^h_{\alpha,\beta,\gamma,\delta}[f]$, $\varphi(z) = zh(z)[g(z)/z]^{\alpha}$, $\psi(z) = zh(z)[f(z)/z]^{\alpha}$, $\Phi(z) = z[G(z)/z]^{\beta}$ and $\Psi(z) = z[F(z)/z]^{\beta}$, we need to prove that $\varphi(z) \prec \psi(z)$ implies $\Phi(z) \prec \Psi(z)$.

 $\varphi(z) \prec \psi(z) \text{ implies } \Phi(z) \prec \Psi(z).$ Because $g, f \in \mathcal{K}^h_{\alpha,\delta}$, then $\psi, \varphi \in A$ and by Lemma 1 we have $G(z)/z \neq 0$ and $F(z)/z \neq 0, z \in U$, hence $\Phi, \Psi \in H(U)$ and moreover $\Phi, \Psi \in A$.

If we differentiate the relations $G(z) = A^h_{\alpha,\beta,\gamma,\delta}[g](z)$ and $\Phi(z) = z \left[\frac{G(z)}{z}\right]^{\beta}$ we have respectively

$$z^{\gamma} \left[\frac{G(z)}{z} \right]^{\beta} \left[\beta \frac{zG'(z)}{G(z)} + \gamma \right] = (\beta + \gamma)g^{\alpha}(z)h(z)z^{\delta - \beta}, \tag{5}$$

$$\beta \frac{zG'(z)}{G(z)} = \beta - 1 + \frac{z\Phi'(z)}{\Phi(z)},$$
(6)

and replacing (6) in (5), together with the fact that $\alpha + \delta = \beta + \gamma$, we get

$$\varphi(z) = \left(1 - \frac{1}{\beta + \gamma}\right)\Phi(z) + \frac{1}{\beta + \gamma}z\Phi'(z) = \chi(\Phi(z), z\Phi'(z)).$$
(7)

Letting

$$L(z;t) = \left(1 - \frac{1}{\beta + \gamma}\right)\Phi(z) + \frac{t}{\beta + \gamma}z\Phi'(z),\tag{8}$$

then $L(z;1) = \varphi(z)$. If we denote $L(z;t) = a_1(t)z + \dots$, then

$$a_1(t) = \frac{\partial L(0;t)}{\partial z} = \left(1 + \frac{t-1}{\beta+\gamma}\right)\Phi'(0) = 1 + \frac{t-1}{\beta+\gamma}$$

hence $\lim_{t \to +\infty} |a_1(t)| = +\infty$, and from $\beta + \gamma > 1$ we obtain $a_1(t) \neq 0, \forall t \ge 0$.

From definition (8), a simple computation shows the equality

$$\operatorname{Re}\left[z\frac{\partial L/\partial z}{\partial L/\partial t}\right] = \beta + \gamma - 1 + t\operatorname{Re}\left[1 + \frac{z\Phi''(z)}{\Phi'(z)}\right].$$

Using the above relation together with the assumption $\beta + \gamma - 1 > 0$, and according to Lemma 2, in order to prove that L(z;t) is a subordination chain we need to prove that the next inequality holds:

$$\operatorname{Re}\left[1 + \frac{z\Phi''(z)}{\Phi'(z)}\right] > 0, \ z \in \operatorname{U}.$$
(9)

If we let $q(z) = 1 + \frac{z\Phi''(z)}{\Phi'(z)}$, by differentiating (7) we have

$$\varphi'(z) = \left(1 - \frac{1}{\beta + \gamma}\right) \Phi'(z) + \frac{1}{\beta + \gamma} \left[\Phi'(z) + z\Phi''(z)\right],$$

and by computing the logarithmical derivative of the above equality we deduce that

$$q(z) + \frac{zq'(z)}{q(z) + \beta + \gamma - 1} = 1 + \frac{z\varphi''(z)}{\varphi'(z)} \equiv H(z).$$
(10)

From (4) we have

$$\operatorname{Re}\left[H(z)+\beta+\gamma-1\right]>\frac{\beta+\gamma-1}{2}>0,\;z\in\mathcal{U},$$

and by using Lemma 4 we conclude that differential equation (10) has a solution $q \in H(U)$, with q(0) = H(0) = 1.

Next, using Lemma 3 we will prove that under our assumption inequality (9) holds. If in Lemma 3 we replace the parameters β and γ by $\tilde{\beta} = 1$ and $\tilde{\gamma} = \beta + \gamma - 1$ respectively, then the conditions $\tilde{\beta} = 1 > 0$ and $\tilde{\beta} + \tilde{\gamma} = \beta + \gamma > 0$ are satisfied.

The assumption
$$\beta + \gamma > 1$$
 implies $\alpha_0 = \max\left\{\frac{\tilde{\beta} - \tilde{\gamma} - 1}{2\tilde{\beta}}; -\frac{\tilde{\gamma}}{\tilde{\beta}}\right\} = \frac{1 - (\beta + \gamma)}{2}$

Using Lemma 3 for the case $\alpha = \alpha_0 = \frac{1 - (\beta + \gamma)}{2}$, we obtain that the solution q of differential equation (10) satisfies

$$\operatorname{Re} q(z) > \frac{\beta + \gamma}{{}_2F_2(1,\beta + \gamma + 1,\beta + \gamma + 1;1/2)} + 1 - (\beta + \gamma) =$$
$$= \frac{\beta + \gamma}{2} + 1 - (\beta + \gamma) = 1 - \frac{\beta + \gamma}{2} \ge 0, \ z \in \mathbf{U},$$

whenever $\beta + \gamma \leq 2$. It follows that inequality (9) is satisfied, and according to Lemma 2 the function L(z;t) is a subordination chain.

Using (9) and the fact that $\Phi \in A$, we have that Φ is convex (univalent) in U, i.e. the differential equation $\chi(\Phi(z), z\Phi'(z)) = \varphi(z)$ has the univalent solution Φ .

From Lemma 5, we conclude that $\varphi(z) \prec \psi(z)$ implies $\Phi(z) \prec \Psi(z)$, and furthermore, since Φ is a univalent solution of the differential equation $\chi(\Phi(z), z\Phi'(z)) = \varphi(z)$, hence it is the best subordinant of the given differential superordination. \Box

Theorem 2. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0, 0 < \beta + \gamma \leq 2, \alpha + \delta = \beta + \gamma$. Let $f, g \in \mathcal{K}^h_{\alpha,\delta}$, and for $\alpha \neq 1$ suppose in addition that $f(z)/z \neq 0, g(z)/z \neq 0$ for $z \in U$. If

$$\operatorname{Re}\left[1 + \frac{z\varphi''(z)}{\varphi'(z)}\right] > \alpha_0 = \max\left\{\frac{1 - (\beta + \gamma)}{2}; 1 - (\beta + \gamma)\right\}, \ z \in \mathcal{U},$$
(11)

where $\varphi(z) = zh(z) \left[\frac{g(z)}{z}\right]^{\alpha}$, then $zh(z) \left[\frac{f(z)}{z}\right]^{\alpha} \prec zh(z) \left[\frac{g(z)}{z}\right]^{\alpha}$ implies $z \left[\frac{A^{h}_{\alpha,\beta,\gamma,\delta}[f](z)}{z}\right]^{\beta} \prec z \left[\frac{A^{h}_{\alpha,\beta,\gamma,\delta}[g](z)}{z}\right]^{\beta},$

and the function $z \left[\frac{A_{\alpha,\beta,\gamma,\delta}^{h}[g](z)}{z} \right]^{\beta}$ is the best dominant of the given subordination.

Proof. Like in the proof of Theorem 1, if we denote $F = A^h_{\alpha,\beta,\gamma,\delta}[f], G = A^h_{\alpha,\beta,\gamma,\delta}[g],$ $\psi(z) = zh(z)[f(z)/z]^{\alpha}, \ \varphi(z) = zh(z)[g(z)/z]^{\alpha}, \ \Psi(z) = z[F(z)/z]^{\beta} \text{ and } \Phi(z) = z[G(z)/z]^{\beta}, \text{ then we need to prove that } \psi(z) \prec \varphi(z) \text{ implies } \Psi(z) \prec \Phi(z).$

Since $f, g \in \mathcal{K}^h_{\alpha,\delta}$, it follows that $\psi, \varphi \in A$ and by Lemma 1 we have $F(z)/z \neq 0$ and $G(z)/z \neq 0, z \in U$, hence $\Psi, \Phi \in H(U)$ and moreover $\Psi, \Phi \in A$.

Differentiating the relations $G(z) = A^h_{\alpha,\beta,\gamma,\delta}[g](z)$ and $\Phi(z) = z \left[\frac{G(z)}{z}\right]^{\beta}$, we obtain respectively

$$z^{\gamma} \left[\frac{G(z)}{z} \right]^{\beta} \left[\beta \frac{z G'(z)}{G(z)} + \gamma \right] = (\beta + \gamma) g^{\alpha}(z) h(z) z^{\delta - \beta}, \tag{12}$$

$$\beta \frac{zG'(z)}{G(z)} + \gamma = \beta + \gamma - 1 + \frac{z\Phi'(z)}{\Phi(z)},$$
(13)

and replacing in (13) in (12), together with the assumption $\alpha + \delta = \beta + \gamma$, we deduce that

$$\varphi(z) = \left(1 - \frac{1}{\beta + \gamma}\right)\Phi(z) + \frac{1}{\beta + \gamma}z\Phi'(z).$$
(14)

If we let

$$L(z;t) = \left(1 - \frac{1}{\beta + \gamma}\right)\Phi(z) + \frac{1+t}{\beta + \gamma}z\Phi'(z),$$
(15)

then $L(z; 0) = \varphi(z)$. Denoting $L(z; t) = a_1(t)z + \dots$, then

$$a_1(t) = \frac{\partial L(0;t)}{\partial z} = \left(1 + \frac{t}{\beta + \gamma}\right) \Phi'(0) = 1 + \frac{t}{\beta + \gamma}$$

hence $\lim_{t \to +\infty} |a_1(t)| = +\infty$, and because $\beta + \gamma > 0$ we obtain $a_1(t) \neq 0, \forall t \ge 0$.

From (15) we may easily deduce the equality

$$\operatorname{Re}\left[z\frac{\partial L/\partial z}{\partial L/\partial t}\right] = \operatorname{Re}\left[\beta + \gamma + \frac{z\Phi''(z)}{\Phi'(z)}\right] + t\operatorname{Re}\left[1 + \frac{z\Phi''(z)}{\Phi'(z)}\right].$$

Using the above relation and according to Lemma 2, in order to prove that L(z;t) is a subordination chain we need to show that the next two inequalities hold:

$$\operatorname{Re}\left[1 + \frac{z\Phi''(z)}{\Phi'(z)}\right] > 0, \ z \in \mathcal{U}$$
(16)

and

$$\operatorname{Re}\left[\beta + \gamma + \frac{z\Phi''(z)}{\Phi'(z)}\right] > 0, \ z \in \operatorname{U}.$$
(17)

If we let $q(z) = 1 + \frac{z \Phi''(z)}{\Phi'(z)}$, by differentiating (14) we have

$$\varphi'(z) = \left(1 - \frac{1}{\beta + \gamma}\right) \Phi'(z) + \frac{1}{\beta + \gamma} \left[\Phi'(z) + z\Phi''(z)\right],$$

and from the logarithmical derivative of the above equality we deduce

$$q(z) + \frac{zq'(z)}{q(z) + \beta + \gamma - 1} = 1 + \frac{z\varphi''(z)}{\varphi'(z)} \equiv H(z).$$
(18)

From (11) we have

$$\operatorname{Re}[H(z) + \beta + \gamma - 1] > \alpha_0 + \beta + \gamma - 1 \ge 0, \ z \in \mathbf{U}$$

and by using Lemma 4 we conclude that differential equation (18) has a solution $q \in H(U)$, with q(0) = H(0) = 1.

Now we will use Lemma 3 to prove that under our assumption the inequalities (16) and (17) hold. If we replace parameters β by $\tilde{\beta} = 1$ and γ by $\tilde{\gamma} = \beta + \gamma - 1$ in Lemma 3, the conditions $\tilde{\beta} = 1 > 0$ and $\tilde{\beta} + \tilde{\gamma} = \beta + \gamma > 0$ are satisfied.

Because

$$\alpha_0 = \max\left\{\frac{1-(\beta+\gamma)}{2}; 1-(\beta+\gamma)\right\} = \begin{cases} 1-(\beta+\gamma), & \text{if } \beta+\gamma \le 1, \\ \frac{1-(\beta+\gamma)}{2}, & \text{if } \beta+\gamma \ge 1, \end{cases}$$

we need to discuss the following two cases.

In the first case, if $\beta + \gamma \leq 1$, by using Lemma 3 for $\alpha = \alpha_0 = 1 - (\beta + \gamma)$ we obtain that the solution q of differential equation (18) satisfies

$$\begin{aligned} \operatorname{Re} q(z) &> \frac{\beta + \gamma}{{}_2F_1(1, 2(\beta + \gamma), \beta + \gamma + 1; 1/2)} + 1 - (\beta + \gamma) \\ &= \frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\beta + \gamma + 1/2\right)}{\Gamma(\beta + \gamma)} + 1 - (\beta + \gamma) > 0, \ z \in \operatorname{U}, \end{aligned}$$

hence (16) holds. From this inequality we also deduce that

$$\operatorname{Re}\left[\beta+\gamma+\frac{z\Phi''(z)}{\Phi'(z)}\right]=\operatorname{Re}q(z)+\beta+\gamma-1>\frac{1}{\sqrt{\pi}}\frac{\Gamma\left(\beta+\gamma+1/2\right)}{\Gamma(\beta+\gamma)}>0,\;z\in\operatorname{U},$$

hence (17) holds.

In the second case, if $\beta + \gamma \ge 1$, by using Lemma 3 for $\alpha = \alpha_0 = \frac{1 - (\beta + \gamma)}{2}$ we obtain that the solution q of differential equation (18) satisfies

$$\operatorname{Re} q(z) > \frac{\beta + \gamma}{{}_2F_2(1,\beta + \gamma + 1,\beta + \gamma + 1;1/2)} + 1 - (\beta + \gamma)$$
$$= \frac{\beta + \gamma}{2} + 1 - (\beta + \gamma) = 1 - \frac{\beta + \gamma}{2} \ge 0, \ z \in \mathbf{U},$$

if $\beta + \gamma \leq 2$, hence (16) holds. From this inequality we also deduce that

$$\operatorname{Re}\left[\beta + \gamma + \frac{z\Phi''(z)}{\Phi'(z)}\right] = \operatorname{Re}q(z) + \beta + \gamma - 1 > \frac{\beta + \gamma}{2} \ge \frac{1}{2} > 0, \ z \in \mathcal{U},$$

hence (17) holds.

Hence we conclude that, if $0 < \beta + \gamma \leq 2$, inequalities (16) and (17) are satisfied, then according to Lemma 2 the function L(z;t) is a subordination chain. Moreover, inequality (16) and the fact that $\Phi \in A$ show that Φ is convex (univalent) in U.

Next we will show that $\Psi(z) \prec \Phi(z)$. Without loss of generality, we can assume that φ and Φ are analytic and univalent in \overline{U} and $\Phi'(\zeta) \neq 0$ for $|\zeta| = 1$. If not, then we could replace φ with $\varphi_{\rho}(z) = \varphi(\rho z)$ and Φ with $\Phi_{\rho}(z) = \Phi(\rho z)$, where $\rho \in (0, 1)$. These new functions will have the desired properties and we would prove our result using part *(iii)* of Lemma 6.

With our assumption, we will use part (i) of Lemma 6. If we denote by $\chi(\Phi(z), z\Phi'(z)) = \varphi(z)$, we need to show that $\chi \in \Psi[\varphi, \Phi]$, i.e. χ is an admissible function. Because

$$\chi(\Phi(\zeta), m\zeta\Phi'(\zeta)) = \left(1 - \frac{1}{\beta + \gamma}\right)\Phi(\zeta) + \frac{1 + t}{\beta + \gamma}\zeta\Phi'(\zeta) = L(\zeta; t),$$

where m = 1 + t, $t \ge 0$, since L(z;t) is a subordination chain and $\varphi(z) = L(z;0)$, it follows that

$$\chi(\Phi(\zeta), m\zeta\Phi'(\zeta)) \notin \varphi(\mathbf{U}).$$

Then, according to Remark 1, we have $\chi \in \Psi[\varphi, \Phi]$, and using Lemma 6 we obtain that $\Psi(z) \prec \Phi(z)$ and, moreover, Φ is the best dominant.

If we combine this result together with Theorem 1, then we obtain the following differential sandwich-type theorem.

Theorem 3. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0, 1 < \beta + \gamma \leq 2, \alpha + \delta = \beta + \gamma$. Let $g_1, g_2 \in \mathcal{K}^h_{\alpha,\delta}$, and for $\alpha \neq 1$ suppose in addition that $g_k(z)/z \neq 0$ for $z \in U$ and k = 1, 2. Suppose that the next two conditions are satisfied

$$\operatorname{Re}\left[1 + \frac{z\varphi_k''(z)}{\varphi_k'(z)}\right] > \frac{1 - (\beta + \gamma)}{2}, \ z \in \mathcal{U}, \ \text{for } k = 1, 2,$$
(19)

where $\varphi_k(z) = zh(z) \left[\frac{g_k(z)}{z}\right]^{\alpha}$ and k = 1, 2.

Let
$$f \in \mathcal{K}^{h}_{\alpha,\delta}$$
 such that $zh(z) \left[\frac{f(z)}{z}\right]^{\alpha}$ is univalent in U and $z \left[\frac{A^{h}_{\alpha,\beta,\gamma,\delta}[f](z)}{z}\right]^{\beta} \in Q$.
Then
 $zh(z) \left[\frac{g_{1}(z)}{z}\right]^{\alpha} \prec zh(z) \left[\frac{f(z)}{z}\right]^{\alpha} \prec zh(z) \left[\frac{g_{2}(z)}{z}\right]^{\alpha}$

implies

$$z \left[\frac{A^h_{\alpha,\beta,\gamma,\delta}[g_1](z)}{z}\right]^{\beta} \prec z \left[\frac{A^h_{\alpha,\beta,\gamma,\delta}[f](z)}{z}\right]^{\beta} \prec z \left[\frac{A^h_{\alpha,\beta,\gamma,\delta}[g_2](z)}{z}\right]^{\beta}.$$

Moreover, the functions $z \left[\frac{A_{\alpha,\beta,\gamma,\delta}^{h}[g_{1}](z)}{z}\right]^{\beta}$ and $z \left[\frac{A_{\alpha,\beta,\gamma,\delta}^{h}[g_{2}](z)}{z}\right]^{\beta}$ are the best subordinant and the best dominant, respectively.

Remark 2. Note that this theorem generalizes the previous one [3, Theorem 3.2], that may be obtained for the case $\alpha = \beta$ and $h \equiv 1$.

For the case $\alpha = \beta = 1$ and $h \equiv 1$, the result was obtained in [10, Corollary 6.1], where the authors assumed that $\operatorname{Re} \gamma \geq 0$ and g_1, g_2 are convex functions.

Since the conditions that the functions $zh(z)\left[\frac{f(z)}{z}\right]^{\alpha}$ and $z\left[\frac{A^{h}_{\alpha,\beta,\gamma,\delta}[f](z)}{z}\right]^{\beta}$

need to be univalent in U are difficult to be checked, we will replace these assumptions by other simple sufficient conditions on f, g_1 and g_2 which implies the univalence of the above functions.

Corollary 1. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0, 1 < \beta + \gamma \leq 2, \alpha + \delta = \beta + \gamma$. Let $f, g_1, g_2 \in \mathcal{K}^h_{\alpha,\delta}$, and for $\alpha \neq 1$ suppose in addition that $f(z)/z \neq 0, g_k(z)/z \neq 0$ for $z \in U$ and k = 1, 2. Suppose that the next three conditions are satisfied

$$\operatorname{Re}\left[1 + \frac{z\varphi_k''(z)}{\varphi_k'(z)}\right] > \frac{1 - (\beta + \gamma)}{2}, \ z \in \mathcal{U}, \ \text{for } k = 1, 2, 3,$$
(20)

where $\varphi_k(z) = zh(z) \left[\frac{g_k(z)}{z}\right]^{\alpha}$, k = 1, 2 and $\varphi_3(z) = zh(z) \left[\frac{f(z)}{z}\right]^{\alpha}$. Then $zh(z) \left[\frac{g_1(z)}{z}\right]^{\alpha} \prec zh(z) \left[\frac{f(z)}{z}\right]^{\alpha} \prec zh(z) \left[\frac{g_2(z)}{z}\right]^{\alpha}$.

implies

$$z \left[\frac{A_{\alpha,\beta,\gamma,\delta}^{h}[g_{1}](z)}{z}\right]^{\beta} \prec z \left[\frac{A_{\alpha,\beta,\gamma,\delta}^{h}[f](z)}{z}\right]^{\beta} \prec z \left[\frac{A_{\alpha,\beta,\gamma,\delta}^{h}[g_{2}](z)}{z}\right]^{\beta}.$$
Moreover, the functions $z \left[\frac{A_{\alpha,\beta,\gamma,\delta}^{h}[g_{1}](z)}{z}\right]^{\beta}$ and $z \left[\frac{A_{\alpha,\beta,\gamma,\delta}^{h}[g_{2}](z)}{z}\right]^{\beta}$ are the best subordinant and the best dominant, respectively.

Proof. In order to use straight Theorem 3, we need to show that inequality (20) for k = 3 implies the univalence of the functions

$$\varphi_3(z) = zh(z) \left[\frac{f(z)}{z}\right]^{\alpha} \text{ and } \Phi(z) = z \left[\frac{A^{\phi,\varphi}_{\alpha,\beta,\gamma,\delta}[f](z)}{z}\right]^{\beta}.$$

The condition (20) for k = 3 means that

$$\varphi_3 \in K\left(\frac{1-(\beta+\gamma)}{2}\right) \subseteq K\left(-\frac{1}{2}\right)$$

and from [4] it follows that φ_3 is a close-to-convex function, hence it is univalent. If we denote by $F = A^h_{\alpha,\beta,\gamma,\delta}[f]$ and $\psi(z) = zh(z)[f(z)/z]^{\alpha}$, then $\Psi(z) = z[F(z)/z]^{\beta}$, and using a proof similar to that of Theorem 1 and Theorem 2 we conclude that Ψ is a convex function, hence it is univalent in U.

Acknowledgment

The first author is under postdoctoral programme at UKM and the second is fully supported by university research grant.

References

- T. BULBOACĂ, Integral operators that preserve the subordination, Bull. Korean Math. Soc. 34(1997), 627–636.
- [2] T. BULBOACĂ, On a class of integral operators that preserve the subordination, Pure Math. Appl. 13(2002), 87–96.
- [3] T. BULBOACĂ, A class of superordinations-preserving integral operators, Indag. Math. N. S. 13(2002), 301–311.
- [4] W. KAPLAN, Close to convex schlicht functions, Michig. Math. J. 1(1952), 169–185.
- S. S. MILLER, P. T. MOCANU, Differential subordinations and univalent functions, Michigan Math. J. 28(1981), 157–171.
- S. S. MILLER, P. T. MOCANU, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 56(1985), 297–309.
- [7] S. S. MILLER, P. T. MOCANU, Integral operators on certain classes of analytic functions, in: Univalent functions, fractional calculus and their applications, (H. M. Srivastava and S. Owa, Eds.), Halstead Press, 1989, 153–166.
- [8] S. S. MILLER, P. T. MOCANU, Classes of univalent integral operators, J. Math. Anal. Appl. 157(1991), 147–165.
- [9] S. S. MILLER, P. T. MOCANU, Differential Subordinations. Theory and Applications, Marcel Dekker, New York, 1999.
- [10] S. S. MILLER, P. T. MOCANU, Subordinants of differential superordinations, Complex Variables 48(2003), 815–826.
- [11] P. T. MOCANU, D. RIPEANU, I. ŞERB, The order of starlikeness of certain integral operators, Mathematica (Cluj) 23(1981), 225–230.
- [12] CH. POMMERENKE, Univalent Functions, Vanderhoeck and Ruprecht, Göttingen, 1975.