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Abstract

We present a novel image registration method based on B-spline free-form deformation that 

simultaneously optimizes particle correspondence and image similarity metrics. Different from 

previous B-spline based registration methods optimized w.r.t. the control points, the deformation 

in our method is estimated from a set of dense unstructured pair of points, which we refer as 

corresponding particles. As intensity values are matched on the corresponding location, the 

registration performance is iteratively improved. Moreover, the use of corresponding particles 

naturally extends our method to a group-wise registration by computing a mean of particles. 

Motivated by a surface-based group-wise particle correspondence method, we developed a novel 

system that takes such particles to the image domain, while keeping the spirit of the method 

similar. The core algorithm both minimizes an entropy based group-wise correspondence metric as 

well as maximizes the space sampling of the particles. We demonstrate the results of our method 

in an application of rodent brain structure segmentation and show that our method provides better 

accuracy in two structures compared to other registration methods.

1 Introduction

The study of brain changes in rodent models of neuropathology and drug exposure has been 

of increasing interest to the neuroscience community. In contrary to human studies, rodent 

models have several advantages, such as a well controlled environments and access to 

genetic modifications as well as shorter lifespan. Magnetic Resonance Imaging (MRI) has 

emerged as an important modality to study such rodent brain morphological changes. Non-

rigid registration is a crucial tool to process such MRIs providing structural segmentations 

and enabling the analysis of group differences.

Several methods have been proposed for the study of rodent brains. Among those atlas-

based registration methods are popularly used. However, a single atlas-based method has a 

disadvantage of the introduction of bias that might cause poor segmentation and dilute the 

difference between groups [6]. Group-wise registration method which deals with every 

subject together can be an alternative to reduce the effects of template selection [2]. Since a 

group-wise registration method does not require the choice of a template or reference, it is 

expected to produce consistent results which means a consistent comparison of groups.
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Motivated by a particle correspondence algorithm [3], a non-parametric and group-wise 

surface correspondence method, we propose a novel group-wise image registration method 

guided by particles. These particles are distributed inside a particular region and directly 

optimized so that each particle will be placed at corresponding positions across subjects 

minimizing a group-wise intensity metric. During this optimization, a B-spline free-form 

deformation is estimated for each subject to constitute a common reference frame. The 

contributions of the proposed method are following:

1. Unbiased Group-wise Registration with Implicit Mean: Instead of choosing a 

specific template, a common reference frame is estimated from dynamic particles 

distributed inside ROIs, i.e. a brain mask. Using the Euclidean mean of those 

particles, each subject is efficiently registered into a common space.

2. Computational Efficiency with Particles: Since the number of particles is fewer 

than the number of voxels, a common reference frame is more efficiently computed 

than other methods [2]. We compensate this sparsity by considering a local patch 

for each particle, which also provides robust performance than single voxel random 

sampling strategy.

3. Flexibility in Adaptive Processing: In contrary to a regular control point grid, 

particles are unstructured and independent each other so that it is easy to adopt 

adaptive strategy depending on local context. For example, particles can be easily 

placed more densely in salient ares, i.e. edges, by controlling a single parameter.

As our work is in an early stage, we demonstrate preliminary results of rodent brain 

structure segmentation with comparison to two different registration methods for humans: 

the spline-based FFD available in Slicer and to SyN available in ANTS. We show that our 

group-wise algorithm performs better in different sizes as well as produces statistically 

indifferent results with the comparing methods otherwise.

2 Methods

We propose a group-wise image registration method guided by dynamic particles. The 

structure of our method is similar to the surface-based particle correspondence algorithm [3] 

and can be thought as an extension of the algorithm. The application of particles in an image 

domain, however, has never been attempted. Our method is also uniquely different from the 

previous one in that we introduce B-spline free-form deformation to associate different 

subject spaces as well as deal with local patch information for robust performance.

2.1 Particle Correspondence with Local Similarity

The main goal of our method is to drive each particle toward a corresponding position that 

satisfies two conditions in the mean space: 1) overlapping of particles and 2) local intensity 

similarity. The particles are governed by two forces: a positional coherence force and a force 

from local intensity similarity.

To describe the motion of particles, we define the particle system P that comprises N 

number of subject volumes V = {V1, V2, …, VN}. For each subject j, we sample the same n 

Lee et al. Page 2

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number of particles  in which  is the 

corresponding particles from each subject. From these correspondences, an implicit mean 

space  is estimated from the mean of particles . Our group-wise registration 

process is formulated to find an optimal particle configuration  that minimizes a positional 

coherence metric HP (pi) and a local intensity similarity metric HI(pi). The final dense 

deformation field  that maps Vj to  is derived by taking Pj and  as a set of 

correspondences.

Correspondence Formulation—By the transform Tj, a particle  is mapped to . 

Ideally, it is assumed that . Therefore, each particle of pi should move to 

the direction where the variance of qi is minimized as depicted in Figure 1a. In the mean 

time, if there is local differences in intensity values, the particles are allowed to deviate from 

the overlapping position so that the local variance of intensity values are minimized such 

that  where . To compare similarity 

among a group, [3] and [2] approach in similar using entropy. The entropy of a random 

variable q with a given p.d.f f(q) is minimized when there is less information in q and 

formulated H(q) = − ∫ f(q) log(f(q))dq. Denoting the random variable as qi and 

respectively for  and , the goal is to find the optimal particle configuration  such 

that

(1)

Since the number of particles is much smaller than the number of voxels, we sample a local 

patch near by a particle  so that , where M is the number 

of neighborhoods of .

Correspondence Optimization—Given covariance matrices of Σ and Λ that follows N, 

we derive HP and HI analytically [7] so that

(2)

where r is the dimension of q and |Σ| and |Λ| are the determinants. The gradient of HP and HI 

in the space of V are given  and , 

respectively. where  and I′ are displacement from the mean and α, β is a relaxation factor 

to avoid degenerative cases.
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From the particle perspective, the negative gradient direction,  and  can be 

interpreted as two different forces: a positional coherence force and an intensity force as 

depicted in Fig. 1.

2.2 Particle Sampling in a Volume

Corresponding particles across subjects are attracted together to be overlapped at a locally 

similar position. Without an appropriate repulsion force, the particles would degenerate to a 

single point. Moreover, since we sample local intensity values nearby a particle, a repulsion 

force is required to uniformly sample a given image domain. In order for that, we extend the 

surface-based particle correspondence algorithm [3] to the image domain to uniformly 

sample a set of particles in a volume. In the algorithm, each particle position is rendered as a 

random variable with regard to a particular region and iteratively optimized to maximally 

contain the spatial information of the region.

Problem Definition—Given a bounded region of interest Ω in a volume V, we sample n 

number of points  where xi = (x, y, z). By letting  be a 

random variable of X, the goal is to find an instance  such that

(3)

where HS is the differential entropy

(4)

and p(X) is the p.d.f of X. Assuming xi is i.i.d,  can be decomposed into the sum of 

the spatial entropy HS(xi). From the definition,  contains maximal information of Ω.

Sampling Optimization—A key step to compute  is the density estimation of 

p(x). The density for a particle is estimated as 

using a nonparametric, Parzen windowing estimation[3] with the assumption of Gaussian. 

The negative gradient of  to maximize the cost function is

(5)

For the optimization, we employ a standard gradient descent optimization via Euler scheme, 

. The control of adaptivity is achieved by assigning different σj for each 

particle [5].
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2.3 B-Spline Deformation driven by Corresponding Particles

An improved FFD B-spline is proposed by [9]. In [9], the authors show that the 

straightforward optimization of B-spline control points is suboptimal and propose a fitting-

based strategy that directly manipulates free-form deformations. In the same regard, we 

estimate the deformation Tj directly from the set of corresponding particles interpolating B-

spline deformation in Least Squares sense. [8] gives a solution for the interpolation 

generalized to n-dimensional scattered data. The overall algorithm flow of our method is 

shown in Fig. 2.

2.4 Particle Initialization

Since the registration is performed by iterative particle optimization, the initial particle 

placement is important to achieve good registration results. Assuming that a basic 

preprocessing such as the rigid or affine registration is performed, we compute the initial 

particle placement as following:

1. Compute the intersection ΩM of a set of given ROIs Ω1, Ω2, …, ΩN

2. Choose random particle samples X, inside of the intersection ΩM

3. Uniformly distribute the sampled particles X inside ΩM

4. Transfer X into each subject i and distribute Xi inside Ωi

We rely on this heuristic to set up particles. By gradually distributing particles, the 

corresponding particles will be located at similar position inside each mask Ω. This strategy 

is specifically useful for rodent brain where the volume of each subcortical structure is 

proportional to whole brain.

3 Experimental Results

3.1 Data Set

The data set acquired post mortem, at 3 age groups across adolescence (postnatal days 28 

through 80). MR images of each animal using a Bruker BioSpec 9.4T horizontal bore MRI 

system (Bruker, Billerica, MA). Images were acquired using a 4-channel phase-array surface 

coil with the rat in supine position. 3D MDEFT sequence was used for T1-weighted image 

acquisition with the following parameters: TE=6.7 ms, TR=4000 ms, NEX=4; matrix size of 

320×210, and the voxel size of 0.1mm isotropic, and acquisition time was 6 hours. To 

improve signal-to-noise-ratio (SNR), two images were acquired immediately following each 

other for each animal, and these two were averaged together following rigid registration. 

Total imaging time was 12 hours.

3.2 Evaluation

For the preliminary results of our method, we compared the results of our method with two 

popularly used non-rigid registration methods using cross correlation as a similarity metric: 

the non-rigid FFD B-spline image registration method packaged in Slicer3, and the SyN 

image registration method implemented in ANTS [1]. To study the performance of our 

group-wise registration, we warped manual regions of interests of brain structures, Thalamus 
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and Cerebellum, of each subject to every other subject with each method. We included all 17 

subjects ranging from postnatal days 28 to postnatal days 72 and computed total 272 pairs. 

We then computed Dice overlap ratios (2|A⋂B|/(|A|+|B|)) between the manual and automatic 

structural segmentations. For the proposed method, we sampled 2048 particles from each 

volume and used 7 × 7 × 7 intensity regions per each particle. For B-spline displacement 

field interpolation, we used 8 × 8 × 8 control points grid with the order of 3 splines. Each 

compared method was applied with its default settings except the number of B-spline control 

points matched with ours. The average Dice ratios of two ROIs for post-mortem rat images 

for each method are shown in Table 1.

From the results, the proposed method showed higher Dice coefficients than other two 

methods. Our method showed better performance in Dice coefficients than the FFD B-spline 

implementation and ANTS tool in the manually segmented regions.

4 Conclusion

We proposed a novel image registration method that is guided by dynamic particles. Having 

correspondences each other, those particles are driven to locally similar positions in the 

mean space. By computing an implicit mean rather than an explicit image, our method was 

efficiently performed group-wise image registration in a linear time with respect to the 

number of subjects. Our method can be immediately applied to for example the multi-atlas 

joint registration/segmentation, the detection of outliers in a large data study, the inclusion 

of statistical shape information during registration, etc. Since the proposed method stays at a 

very early stage of research, future work will include thorough validation for its accuracy 

and robustness as well as comparison to other group-wise registration method [2, 4, 10].
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Fig. 1. 
Schematic diagram of (a) overlapping particles and local intensity similarity in 

correspondence across subjects. Colored in blue, green, and red, each particle has 

correspondence across subjects and attracts together minimizing HP . At the same time, the 

entropy of local intensities sampled in colored squares is also minimized so that the particles 

stay at a locally similar position. (b) a repulsion force uniformly distributes in-subject 

particles to fill a given region.
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Fig. 2. 
Overall algorithm flow. The registration process is finished when the system stabilizes, and 

images are registered with the estimated Tj.

Lee et al. Page 9

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Visual comparison of segmentation results. From left to right, the moving, fixed, result of 

proposed method, B-spline, and ANTS respectively in the first three rows. The bottom row 

shows sagittal slices of the fixed image, the result of the proposed image, and the moving 

image. The intensity scale was inverted during the acquisition but corrected in the 

experiments.
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Table 1

Overall Dice coefficients and its standard deviation of Thalamus and Cerebellum, by the proposed group-wise 

method, Symmetric Diffeomorphic Mapping in ANTS, and FFD B-spline registration.

Methods Thalamus Cerebellum

The proposed method 86% (±8%) 87.8% (±6%)

ANTS 81% (± 6%) 84% (± 14%)

B-spline 81% (± 6%) 79% (± 11%)
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