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A critical aspect of teacher education is gaining pedagogical content knowledge of how to teach

science for conceptual understanding. Given the time limitations of college methods courses, it is

difficult to touch on more than a fraction of the science topics potentially taught across grades

K-8, particularly in the context of relevant pedagogies. This research and development work

centers on constructing a formative assessment resource to help expose pre-service teachers to a

greater number of science topics within teaching episodes using various modes of instruction. To

this end, 100 problem-based, science pedagogy assessment items were developed via expert

group discussions and pilot testing. Each item contains a classroom vignette followed by response

choices carefully crafted to include four basic pedagogies (didactic direct, active direct, guided

inquiry, and open inquiry). The brief but numerous items allow a substantial increase in the

number of science topics that pre-service students may consider. The intention is that students

and teachers will be able to share and discuss particular responses to individual items, or else

record their responses to collections of items and thereby create a snapshot profile of their

teaching orientations. Subsets of items were piloted with students in pre-service science methods

courses, and the quantitative results of student responses were spread sufficiently to suggest that

the items can be effective for their intended purpose.
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Introduction

One of the most important goals for science teacher education is that prospective tea-

chers acquire knowledge of science teaching pedagogy, and toward this end, teacher

education programs include a science teaching methods course. Such courses

commonly include readings, observations of science teachers (live or by film),

micro-teaching, and the practice writing of science lesson plans. In the course, the

assessment of pre-service teachers’ acquisition of pedagogical knowledge of science

teaching is commonly done by evaluating the science lessons they have created as

well as their micro-teaching.

The range of science topics typically found in K-8 curricula (see, for example, the

National science education standards (National Research Council, 1996) and A framework

for K-12 science education) is very broad. Given the time and scope limitations of a

college course in science teaching methods, observing practicing teachers or con-

structing lesson plans can only touch on a fraction of the topics taught and the possible

pedagogical strategies used across the K-8 grades. Consider the pedagogical example

of teaching science by inquiry. Abd-El-Khalick et al. (2004) acknowledge that

‘research has consistently indicated that what is enacted in classrooms is mostly

incommensurate with visions of inquiry put forth in reform documents, past . . . and

present’ (p. 398). Despite this, in any science methods course, at best students will

see inquiry instruction applied to a few science topics, and apply it themselves to

even fewer. Based on such limited exposure, feedback, and experience, one has to

wonder how far these teachers will be able to operationalize and extend their

general knowledge of inquiry instruction to multiple specific topics. We know from

cognitive studies that the transfer of knowledge best occurs when the learner sees

the knowledge applied in various situations (Donovan & Bransford, 2005). Would

this not apply as well to the acquisition of science teaching pedagogy? Thus, one

would expect the development of knowledge about inquiry instruction and the

ability to implement it to be related to the number of different teaching situations

in which inquiry has been encountered. Obviously quantity of exposure has to be

balanced by the quality and appropriateness of the teaching situations that the

student sees. Multiple exposures to poor teaching are not helpful. Moreover, exposure

to even several good teaching situations does not reduce the essential need for appli-

cation and practice; combining quality and quantity is optimal.

Our research and development work began with the recognition that time con-

straints within a typical methods course or professional development program severely

limit exposure to contextualized science teaching pedagogies. Only a few films of tea-

chers’ actual practice can be viewed. Only a few lessons can be constructed or enacted

by the student. We therefore sought a supplemental strategy for the teaching and

learning of science pedagogy that would cover a much broader range of implemen-

tation. An efficient and effective method for doing this could have significant instruc-

tional impact as well as research utility. A new kind of assessment for use in a methods

course, comprising a broad range of realistic, problem-based items of suitable nature,

has the potential to achieve these goals.

2 W.W. Cobern et al.
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The Nature of the Assessment

The assessment draws on ideas from worked examples in the physical sciences and

mathematics (Heller & Heller, 2010; Johnson, 2001), from Assessment for Learning

(Black & Wiliam, 2006), and from problem-based learning (PBL) (Capon & Kuhn,

2004). There is a long history of assigning problems and questions to students in

the physical sciences and mathematics. The idea is that to gain expertise, one

must practice during learning by applying one’s knowledge to a diverse range of

examples. As noted by Capon and Kuhn (2004, p. 61), the ‘integration of new

information with existing knowledge structures can be activated’ by experience

with multiple examples. Recent work on the efficacy of retrieval tasks for enhancing

learning suggests why such practice is effective (Karpicke & Blunt, 2011). Of par-

ticular interest to us is the formative use of worked examples as Assessment for

Learning (Black, Harrison, Lee, Marshall, & Wiliam, 2003). We suggest that the

preparation of science teachers can be substantially enhanced by giving students

the experience of working through science pedagogy problems, that is, by presenting

students with classroom situations where they have either to make an instructional

decision or evaluate a particular instructional approach adopted by a teacher.

Assessment items for this purpose are essentially problems or questions involving

alternative pedagogical approaches to a given teaching situation. Working through

such items with students operates as a scaffold for novices’ current lack of

schemas and promotes effective instruction based on active engagement with

sample cases. Certain studies suggest that students learn effectively from suitable

worked teaching examples, rather than just attempting many problems on their

own (Cooper & Sweller, 1987; Maloney, 1994; Sweller & Cooper, 1985; Trafton &

Reiser, 1993; Ward & Sweller, 1990).

We thus undertook the creation of problem sets for use in methods courses by

drawing upon ideas from PBL, among others. PBL is an approach widely used in

medical education (Albanese & Mitchell, 1993; Peterson, 1997) and more recently

adopted in science teacher education (Dean, 1999; Ngeow & Kong, 2001; Wang,

Thompson, Shuler, & Harvey, 1999). In our model, PBL presents pre- and in-

service teachers with a practical teaching problem in the form of a realistic scenario,

vignette, or case. Our model uses realistic K-8 science teaching situations where each

item/problem begins with a brief classroom vignette followed by a question and set of

response choices representing alternative pedagogies.

Basing a pedagogy-of-science assessment on PBL has advantages. First, given that

item vignettes depict actual classroom teaching situations, the assessment is situated

and more authentic. Our vignettes are like mini-cases. Regarding case methods,

Bencze, Hewitt, and Pendretti (2001, p. 196) note that

formal teacher education cannot prepare student teachers for all possible teaching and

learning situations. Case methods offer an excellent opportunity along these lines [of

becoming a reflective practitioner] because of their potential for challenging student tea-

chers to analyse authentic instructional scenarios.

Pedagogy of Science Teaching Tests 3
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Shulman (1992) further makes the case that ‘cases may reduce the problems of trans-

fer because they simulate the way in which the most effective forms of learning are

situated in specific contexts and circumstances’ (p. 24). A second advantage of

problem-based assessments is that they do not lapse into measurement of rote

memory or generalities about pedagogy. Each item specifically requires either appli-

cation or evaluation, in terms of Bloom’s taxonomy (Anderson & Krathwohl, 2001)

involving particular instructional situations. Successful application and evaluation

require that one understands science pedagogy and its use in particular science

content areas at the appropriate grades.

Once a set of problem-based items on science pedagogy for specific teaching

examples is available, the items can be used to help students develop and reinforce

a usable understanding of the general principles they are learning. This article

reports on the design, development, and testing of a large collection of selected-

response items involving alternative pedagogies that provide a practical means for

the presentation of multiple science teaching events. They are freely available in

various formats at: http://www.wmich.edu/science/inquiry-items/index.html. The

items can be used for supplemental, instructional, formative, and research purposes.

Science Teaching Approaches

As noted by the A framework for K-12 science education (National Research Council

[NRC], 2011) and Ready, set, science! (Michaels, Shouse, & Schweingruber, 2007),

there is more than one type of learning objective in science education to be addressed

by suitable science pedagogies. Ready, set, science! suggests four major interconnected

objectives: understanding scientific explanations, generating scientific evidence,

reflecting on scientific knowledge, and participating productively in science. Our

focus is mainly (though not entirely) directed toward the objective of ‘understanding

scientific explanations’. This emphasis is based on the perspective that understanding

scientific concepts and explanations is fundamental and is needed to achieve the other

objectives. Furthermore, it has been our experience that both pre- and in-service tea-

chers are more inclined toward non-inquiry instruction for the teaching of basic scien-

tific concepts than, for example, for teaching to the objective of ‘generating scientific

evidence’. Data reported by Banilower and Smith (2013) show the persistent use of

non-inquiry forms of instruction in the USA. Interestingly, news reports in the

USA on the Next Generation Science Standards (NGSS, 2013) often cite NGSS as

a response to science teaching for passive learning (Leone-Cross, 2013; Mervis,

2013). Hence, we see a substantial need for an effective formative assessment strategy

with respect to teaching and learning important science content. Nevertheless, within

this primary focus, it will be seen that our assessments bring in aspects of the other

objectives in a natural way as appropriate.

Even within a focus on conceptual understanding of science content, one finds in

practice a great variety of science teaching strategies. Nevertheless, at a basic level,

most of these strategies are variants of two fundamental epistemic modes of instruc-

tion: either some form of inquiry instruction or some form of direct instruction.

4 W.W. Cobern et al.
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Students either develop science content knowledge in an inquiry-based fashion, via

suitable guided explorations of phenomena, or the science content is presented and

explained directly to them, commonly followed by practical confirmation. In the

National science education standards for an increasing number of countries and in

the science education literature, it is inquiry that is typically advocated (Cavanagh,

2005; European Commission, 2011). In the USA, the 2011 National Research

Council document, A framework for K-12 science education: Practices, crosscutting con-

cepts, and core ideas, adopts the terminology of scientific practices, but retains a

primary focus on inquiry instruction. Note also that inquiry instruction for the under-

standing of scientific content is not of a single form. According to the National

Research Council (2000b), there are various degrees of inquiry instruction, which

can vary from instruction strongly guided by the teacher to a very student-centered

open inquiry.

The historic counterpoint to inquiry-based instruction is direct instruction in its

various forms. Direct instruction tends to be typically but misleadingly portrayed as

teaching-by-telling with passive reception (Cavanagh, 2004; Schroeder, Scott,

Tolson, Huang, & Lee, 2007; Thomson & Gregory, 2013; Wise, 1996). However,

we have eschewed any simplistic or absolutist contrasts between direct and inquiry

instruction in favor of the more flexible concept of teaching orientations. In the

science education literature, teaching orientation can refer to a number of different

ideas. The orientation dimension we focus upon in our work is somewhat less

complex than the full ‘sets of beliefs that teachers hold’ (Friedrichsen, Van Driel, &

Abell, 2011, p. 372), and at the same time reflects aspects of both the National

Research Council descriptions and the dimensions of influential teacher conceptions

that Lotter, Harwood, and Bonner (2007) describe. It provides a spectrum of

common orientations along a direct–inquiry continuum, described in greater detail

in the next section. Within this set of orientations one usually finds that a more

direct orientation is more teacher-directed, while an inquiry orientation is a more

learner-directed approach (NRC, 2000b, p. 29). A more direct orientation aligns

more with information transmission than independent thinking (Lotter et al.,

2007). Our orientation spectrum also encompasses many of the orientation types pro-

posed by Magnusson, Krajcik, and Borko (1999), including process, didactic,

activity-driven, discovery, inquiry, and guided inquiry, in a form aligned closely

with our project goals.

Science Teaching Orientation Spectrum

For our purposes, science teaching expertise translates to knowledge of content, prac-

tices, scientific inquiry, science pedagogy, and inquiry pedagogy. On a practical level,

teaching expertise includes being able to recognize, create, and follow teaching plans

that are in accord with best practices in science education. This demanding combi-

nation constitutes pedagogical content knowledge for science teaching. One of the

first choices that a teacher will make, either implicitly or explicitly, is whether to

present and explain scientific concepts and principles directly to the students, or

Pedagogy of Science Teaching Tests 5
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have the students play some role in exploring and finding out the scientific expla-

nations themselves. This most basic distinction (between what are commonly

classed as direct and inquiry modes of instruction) is represented in the left column

of the table in Figure 1. The middle column breaks this dimension down further

into two variations on each fundamental mode, thus providing four common teaching

orientations. These are briefly described in the right column. These instructional

mode options represent the epistemic decisions a teacher will need to make (con-

sciously or subconsciously) in designing and implementing science instruction to

teach scientific content for any given topic (the concepts, principles, relationships,

and explanations).

This spectrum of epistemic approaches is extremely valuable for constructing

assessment items based on a consistent set of instructional approaches. The four cat-

egories along the instructional spectrum are labeled as didactic direct, active direct,

guided inquiry, and open inquiry. These are not to be seen as rigid compartments,

but as a useful way of broadly characterizing instructional approaches found in prac-

tice. It is likely that a variation exists in exactly how people feel each instructional type

should be defined, but the brief descriptions give the basic nature of each and make

the distinctions between them clear. Beyond this, instructional method details will

depend on the particular aspect of instruction involved in each case, and hence on

the item at hand. Using items based on this set of basic approaches, science teaching

orientations could be identified, responses could potentially be quantified, and teach-

ing orientation profiles obtained.

Figure 1. The pedagogical foci for item responses and Ausubel’s axes

6 W.W. Cobern et al.
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Theoretical Framework: Types of instruction and types of learning

Our approach to instructional strategies is framed by David Ausubel’s theory of learn-

ing and instruction (Ausubel, Novak, & Hanesian, 1986). His ideas form a theoretical/

conceptual framework for our work because they elegantly integrate foundational

educational issues while focusing upon arguably the most important desired

outcome, meaningful learning. This remains especially cogent today amid ongoing

debates about science instructional approaches. Ausubel’s two-dimensional diagram

is depicted on the right in Figure 1, representing the nature of learning along the hori-

zontal axis and the type of instruction along the orthogonal vertical axis. Type of

instruction aligns with the spectrum of basic science teaching approaches described

above. Note that Ausubel’s original terms reception and discovery are best reflected

today by direct and inquiry instruction. Meaningful learning is defined as the result

of a learner’s cognitive engagement such that new knowledge becomes integrated

within the learner’s conceptual schemata. Ausubel made the point that learning can

actually range from rote to meaningful independently from instructional type,

which may range from reception to discovery, hence the orthogonal axes. Ausubel

(1961, 1963), Ausubel et al. (1986) and Novak (1976, 1979) clarified that the impor-

tant learning goal was meaningful learning as opposed to rote learning, whatever the type

of instruction. They believed that reception learning could be meaningful with appro-

priate instructional design; Novak (1976) referred to this as direct facilitation of

concept learning, and various tools such as advance organizers and concept

mapping for fostering meaningful reception learning have been developed (Mayer,

1979; Stone, 1983; Trowbridge & Wandersee, 2005). Research on conceptual

change (Duit & Treagust, 2003; Posner, Strike, Hewson, & Gertzog, 1982; Thorley

& Stofflett, 1996), the use of explanatory analogies (Dagher, 1995, 2005) and brid-

ging analogies (Clement, 1982, 1998; Clement, Brown, & Zietsman, 1989), research

on combining verbal learning with visual learning (Clark & Paivio, 1991; Culatta,

2012), etc. all involve forms of instruction that try to directly facilitate meaningful

conceptual learning. Strategies from this research have shown instructional success

at shifting learning from rote/fragmented to meaningful. Clearly one aims at meaning-

ful learning whether by direct or inquiry routes, implying a need to focus on the two

right-hand quadrants of Ausubel’s diagram for both instruction and research.

Ausubel and Novak recognized the value of hands-on activities for learning science

and viewed this partly as a method for promoting cognitive activity (i.e. minds-on).

The idea of active learning is quite Ausubelian; teaching for active learning means

using instructional techniques that encourage cognitive engagement with the

subject matter rather than passive listening. Ausubel further cautions that hands-on

activity without cognitive engagement would not lead to meaningful learning. What

he called discovery learning, as advocated by Bruner (1961, 1971) and others

(Guthrie, 1967), subsequently developed into today’s commonly known inquiry

instruction (National Research Council, 2000b). This approach advocates that lear-

ners engage with the practices of science during concept learning, that is, in activities

that reflect the investigative nature of science (Guthrie, 1967). Unfortunately,

Pedagogy of Science Teaching Tests 7
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Ausubel’s two-dimensional framework of orthogonal constructs often tended to be

collapsed to one dimension, with direct instruction implicitly equated with rote learn-

ing, and inquiry instruction with meaningful learning. Although reception learning

research in various forms continues today (Clark, Eyler, Rivas, & Wagner, 2011;

Cobern et al., 2010; Klahr, 2002; Sweller, 2009), by the late 1980s the rote/meaning-

ful learning dimension tended to be forgotten as the inquiry/direct instructional

dichotomy became the focus. In 2000, the widely referenced book How people learn

(National Research Council, 2000a) specifically advocates active learning and

inquiry instruction without mention of Ausubel, Novak, reception learning, or even

meaningful learning. The idea of meaningful learning does appear in A framework

for K-12 science education (2011), and a nod is given toward the possible use of

direct instruction (‘instruction may include teacher talk’, pp. 10–19), but beyond

that the text is oriented only toward inquiry instruction. The Framework document

(NRC, 2011) notes that ‘Current research in K-12 science classrooms reveals that

earlier debates about such dichotomies as “direct instruction” and “inquiry” are sim-

plistic, even mistaken, as a characterization of science pedagogy’. As a characteriz-

ation of all science pedagogy, we would agree. However, as argued earlier in this

paper, the distinction between inquiry and direct instruction as fundamental episte-

mic approaches definitely has application to instructional design decisions for the

teaching of science concepts (Cobern et al., 2010).

As we developed items for assessing science pedagogy orientations, we were

mindful to distinguish instructional mode from type of learning. For this reason,

the construction of items was guided by Ausubel’s idea that instruction for meaningful

learning can potentially range from reception to discovery modes and that we should

reflect this in the item options.

Structure of Assessment Items

All items were cast in a standard multiple-choice question (MCQ) format as shown in

Figure 2. Each item begins with a short, titled vignette representing a real instruc-

tional situation for a particular topic. The vignettes also specify instructional aim

and approximate grade level. Although topics are not tightly tied to grade level,

stating a level within a grade band appropriate to the topic adds a sense of realism,

as does giving a name to the teacher in the vignette. Providing a small picture/icon

adds some context and interest. The scenarios are kept fairly brief in order to

narrow the focus to a particular aspect of pedagogy, and this also helps avoid many

of the possible disadvantages of case methods (Shulman, 1992, p. 26), particularly

in terms of time and distracting complexity. Reasonably concise items also maximize

the number and variety of examples students can encounter. After the vignette comes

a lead-in sentence to the four responses, posed in terms of an instructional method

choice for the reader. Lead-in sentences begin with, ‘Thinking about how you

would teach this lesson, of the following . . . ’ The purpose is to encourage the respon-

der to envision himself or herself in the particular teaching situation, play the role of

decision-maker, and respond accordingly. The phrase ‘of the following’ is intended to

8 W.W. Cobern et al.
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keep attention on the four responses. The lead-in sentence concludes with a question

such as ‘which one is most similar to what you would do?’ or ‘how would you evaluate

Mr. Goodchild’s lesson?’ or ‘how would you advise Ms. Katinka to structure her

lesson?’ The question is then followed by four response options representing didactic

direct, active direct, guided inquiry, and open inquiry instructional approaches. This

overall item format is consistent across items, although the order of the response

options varies from item to item. By constructing items using a fixed set of instruc-

tional types, it becomes possible to compare responses over a series of items and

thus build up teaching orientation profiles for individuals or groups. Nevertheless,

our intent is not to be ‘labeling or pigeonholing teachers, using a predetermined list

of [orientation] categories’ (Friedrichsen et al., 2011, p. 372). Rather we seek to

elicit and examine tendencies along this central epistemic dimension in teaching

approach.

The nature and structure of such an assessment item is best appreciated via an

example. The example in Figure 3 involves alternative pedagogy options for overall

lesson design for the topic of force and motion. The four possible responses are ran-

domly ordered.

Item Creation and Refinement

A team of four science education faculty, two doctoral research associates with school

teaching experience, and five experienced K-8 teachers initially worked together to

collect a large number of ideas for vignettes and alternative responses. It was impor-

tant to have teachers and teacher educators involved in item creation because they

have direct knowledge of situations that teachers encounter and how they are dealt

with. The team created a wide range of draft items, working both individually and

Figure 2. Standard MCQ format of assessment items

Pedagogy of Science Teaching Tests 9
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together, and then refined them in light of extensive discussion. Ideas for the vignettes

came from the teaching experiences of those on the item writing team or were created

with the instrument in mind for topics they were familiar with teaching. Others arose

from thoughts and insights about various pedagogies in context, as well as from the

literature (Tippins, Koballa, & Payne, 2002), local and state science objectives, The

National Standards on Science Education, the Harvard-Smithsonian Case Studies in

Science Education (Annenberg Foundation, 2013), and the National Research

Council (2011). Ideas for vignettes were then drafted into our item format, i.e. vign-

ette/question/options. Due to limitations on teachers’ time, from this point on the

revising–testing–revising of items was done by the science education faculty and

two doctoral research associates, hereafter referred to as the developers.

The final revision work was to align items with the basic orientations in Figure 1,

revising options until there was a consensus within the developers that each option

reflected the intended pedagogical approach. Samples of items were subsequently

dissected and discussed in detail by focus groups composed of from 3 to 15 pre- or

in-service teachers meeting with a project investigator. The pre-service teachers

were volunteers from a science methods course (none of whom knew any of the

project investigators). The teachers were volunteers from area schools. Each focus

group was asked to respond to a small set of draft items and then to discuss their

thoughts on the items. We were particularly interested in whether the focus groups

found the item vignettes and response options realistic, and whether the items

made sense to them. We also asked several science education professors at other

universities to comment on a sample of items. Both groups found the items

Figure 3. Example of a pedagogy assessment item

10 W.W. Cobern et al.
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understandable and appropriate, and the vignettes and responses consistent with their

experiences or expectations with respect to the breadth of instructional practice.

As a result of our item development work, we have 100 selected-response items dis-

tributed over three science areas (Earth Science, Life Science, and Physical Science)

and three grade band groupings (K-2, 3–5, 6–8). Table 1 shows the current item dis-

tribution. One of our goals was to have a reasonable spread across science areas and

grade bands to represent the broad range of instructional situations that teachers

might encounter. The cells in Table 1 are all reasonably populated, with some imbal-

ance due to the nature of topics at various grade levels. A few items represent generic

rather than topic-specific aspects of science and of science instruction, and are cate-

gorized as ‘general’.

Piloting of Selected Items

The items were constructed to avoid response options that would have little appeal to

pre-service or in-service teachers (what might be called straw man responses), or that

represented poor teaching generally. We wanted choices that would be seen as reason-

able and reflective of common practices, thus engendering reflection and discussion.

We did not want choices that would be avoided by all but the rarest person. Focus

group findings on individual items were encouraging, but until a larger number of

the items were piloted, we could not know if most persons reading an item would

focus mainly on a single response or if we would observe wide ranges of responses.

Ultimately, the effectiveness of items for formative purposes can only be assessed by

classroom discussions of individual items and responses. However, a quicker assess-

ment of potential item effectiveness can be achieved by a quantitative approach,

looking at distribution profiles obtained along the pedagogical spectrum we have out-

lined. Items that produce little response variation are less likely to illuminate the

potential range of teacher thinking about pedagogy, and less likely to promote ener-

getic classroom discussion of teaching approaches.

For this type of quantitative evaluation of items, two forms or instruments of 16

items each were compiled. Such compiled sets are called Pedagogy of Science Teach-

ing Tests (POSTT), and the two forms are called POSTT-1 and POSTT-2. Copies of

these first test instruments may be downloaded from http://www.wmich.edu/science/

Table 1. Distribution of items

Sciences

Grades Earth Life Physical General All

K-2 5 8 14 2 29

3–5 8 7 14 1 30

6–8 14 10 15 2 41

All 27 25 43 5 100

Pedagogy of Science Teaching Tests 11
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inquiry-items/index.html. The choice of 16 items per instrument was based on an

estimate of three minutes for the minimum time it would take a person to respond

thoughtfully to each item; thus, 16 items in a POSTT form should take less than

60 minutes (trials typically took 30–40 minutes). A 16-item instrument achieves

this and can still contain a range of three science subjects and three grade bands.

We began with two instrument versions to increase the number of items piloted,

with four items common to both versions to serve as an item reliability check

(response patterns to the four common items did not vary statistically between

POSTT-1 and POSTT-2). Hence, both tests together utilize 28 unique items out of

the bank of 100 items. Both versions were administered mid-semester in three sec-

tions of an upper level, pre-service elementary science methods course at a Midwes-

tern university. By the time of taking the POSTT, all of the students had been

introduced to science teaching strategies including inquiry and had taken at least

three science content courses taught using a predominantly inquiry format.

Twenty-eight subjects took POSTT-1 and 32 took POSTT-2.

Findings

Overall Results

Because our primary aim in developing items was for formative assessment pur-

poses during teacher preparation or workshops, we are especially interested in

the response spread in the pilot data. As noted above, we wanted to know

whether or not items would precipitate a breadth of response choices across the

spectrum of four teaching options. Table 2 shows the distributions obtained

across students and across item responses, for the item sets administered. No stu-

dents chose the same instructional type across all items; all students always chose at

least two different types among the four response categories. Similarly, every item

precipitated a range of responses; no item precipitated only a single response type.

Almost all students (except four) selected three or more possible strategies at least

once (32 of 60 students used all four responses at least once). Likewise, 24 items

out of the 28 total across POSTT-1 and POSTT-2 had all four responses selected

at least once.

Table 2. Student and item response variation

Student response variation Item response variation

No. of different

choices (1–4) No. of students (%)

No. of different

choices (1–4) No. of items (%)

1 0 (0.0%) 1 0 (0.0%)

2 4/60 (6.7%) 2 2/32 (6.3%)

3 24/60 (40.0%) 3 6/32 (18.7%)

4 32/60 (53.3%) 4 24/32 (75.0%)

12 W.W. Cobern et al.
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Detailed Results for Four Items

We present four POSTTassessment items as examples, giving the complete item with

vignette, question and response options, along with the corresponding histogram of

cumulative student responses per item (as opposed to individuals’ orientation pro-

files), and a histogram showing how the item developers responded to the item.

Including the developers’ data is for qualitative comparative purposes. The compari-

son suggests how the views of science teacher educators and pre-service teachers can

vary, which in turn strengthens the validity of the items for formative assessment pur-

poses. Note that while the bar charts below show profiles per item across subjects,

results can also be analyzed and profiles depicted per subject (or per group) over all

the items. Some of the project activity to date (especially international) has focused

on these kinds of analyses.

When administered to participants, item responses were in random order and

labeled A, B, C, and D (as in Figure 3). For purposes of illustration and discussion

in this paper, the responses below are placed in order of instructional mode and

labeled DD, AD, GI, and OI (Didactic Direct, Active Direct, Guided Inquiry, and

Open Inquiry). Item response options are specifically designed so that an increase

along the POSTT scale (ordered from 1 to 4, i.e., DD to OI) reflects increased

degree of inquiry teaching mode coincident with decreased degree of direct teaching

mode. We recognize that this modal dimension is neither precisely quantifiable, nor

precisely divisible into four equal intervals. Moreover, different contexts between

items are an essential aspect of the primarily qualitative use of these items and instru-

ments. However, for quantitative analyses, reporting the median (a single integer on

this scale) would not adequately convey the variance in results across pedagogical

choices. Therefore, the POSTT scale can be construed as an ‘ordinally interval

hybrid scale’ (Hair, Bush, & Ortinau, 2003, p. 390), in which resulting means and

standard deviations can be considered meaningful as simple descriptions of central

tendency and dispersion within items, instruments, individuals, or groups.

The four items offered below are those that produced the strongest inquiry orien-

tation overall, the narrowest response distribution, the most even response distri-

bution, and the strongest direct instruction orientation overall, respectively. The

item shown in Figure 4 clearly drew a strong open inquiry response from students

with only 3 students of 28 opting for either form of direct instruction. What is arrest-

ing about this item is that the developers were visibly less inquiry-oriented than the

pre-service teachers. For formative use, an item like this affords an opportunity to

probe and discuss differing views among instructors as well as between instructors

and students. The visible difference between students’ and developers’ response pro-

files is also reflected in the basic statistical results. Again, descriptive comparisons can

be made by taking the numerical scale along the X-axis to represent the spectrum of

pedagogies (assigning DD ¼ 1, AD ¼ 2, GI ¼ 3, and OI ¼ 4). The mean of the stu-

dents’ responses is at 3.50 (between Guided Inquiry and Open Inquiry), while the

mean of the developers’ responses is at 2.83 (slightly more direct than the Guided

Inquiry category). Standard deviations (representing diversities of opinion) for both

Pedagogy of Science Teaching Tests 13
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students and developers are comparable, only slightly higher for the students than the

developers.

The ‘Earth materials’ item (Figure 5) was 1 of only 2 items (out of 28) that elicited

only 2 kinds of responses from 29 participating students. Students preferred guided

inquiry with only a few opting for active direct. The developers also chose guided

inquiry, with one opting for open inquiry. A quick comparison of means confirms

that developers leaned farther toward the inquiry side of the spectrum from Guided

Inquiry (3.17), and students leaned just slightly more direct than Guided Inquiry

(2.83). One would want to know the reasons given by both groups for their

choices. Especially for formative use, a course instructor would want to know what

reasons the students had for their choices.

Twenty-nine students responded to the ‘Sink or float’ item (Figure 6). The results

and comparisons are very interesting. All six developers took the guided inquiry

Figure 4. Strongest inquiry instruction response orientation overall—magnetic attraction
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position. While the mode of the distribution for the students was also guided inquiry,

different students, in marked contrast to the developers, were attracted by all the

options including Didactic Direct. Moreover, the students taking the POSTT were

upper-division teacher education students who had already taken several inquiry-

oriented science content courses and were more than halfway through their science

methods course, making this an unexpected response distribution (compared to the

unanimity of the developers’ responses). We suggest, therefore, that the value of

the POSTT as an instructive, formative assessment tool is particularly evident in

the responses to this item.

The ‘Frog dissection’ item (Figure 7) was one of the four items that appeared in

both POSTT-1 and POSTT-2, hence the participant number of 60. The student

responses on items ranged from didactic direct to open inquiry, with the mode

of the distribution clearly at active direct. The mode for the six developers was

also active direct, but none of the developers opted for open inquiry. Given the

response spread among both subjects and developers, this item can be expected

Figure 5. Narrowest response distribution—earth materials
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to prompt lively and diverse discussion of alternative teaching approaches for par-

ticular topics.

The frog dissection item also illustrates the ongoing process of discussing and refin-

ing items for both formative and summative use. For example, this science topic can

serve the goal of helping middle school students understand the body as ‘a system of

multiple interacting subsystems’ and know that ‘special structures are responsible for

particular functions in organisms’ (NGSS, MS-LS1-3). It is a likely activity, but it is

perhaps more suitable for eighth grade than for sixth, and it probably needs to make

clear that in all four modes the actual dissection activity is outlined for students in

advance of giving them dissection tools. The essential difference is in whether they

are first given direct instructions on what to look for and why, or are directed to

Figure 6. Most even response distribution—sink or float
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first observe and carefully consider possibilities themselves. The process of trying to

create perfect items is incremental at best, and as the usage of these POSTT items

and instruments moves ahead, we look forward to making additional refinements in

light of constructive comments. Another interesting feature of this item is that,

while dissections are common events in biology labs, the usual unqualified rec-

ommendation for teaching science by inquiry may result in instruction being too

undirected, in particular cases, for particular purposes, for some students, and by

some teachers. This all makes for good discussion between methods teachers and

their students who will be teachers. As a strategy of formative assessment, the discus-

sion affords the instructor the opportunity to assess employment of pedagogical

content knowledge.

Discussion

The responses to the 4 items described above are typical with respect to the balance of

the 28 items used for POSTT-1 and POSTT-2, and to the entire item bank. All piloted

items precipitated a range of responses from students, and each student chose some

range of response types for different items, suggesting that classroom discussions

based on these items could usefully indicate how the students understand and value

different approaches to science pedagogies, and under what circumstances they

Figure 7. Strongest direct instruction response orientation overall—frog dissection
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believe they would employ them. Such discussions, coupled with the ability to analyze

quantitative class results, should help science methods educators gauge progress

toward course goals on understanding science pedagogies. The response spread for

the various items raises other interesting questions. Does the area of science or par-

ticular topic make a difference in responses to an item? Does the function or location

of a particular pedagogy within the vignette’s lesson make a difference? Does grade

level/band make a difference? These questions are relevant to instruction and to

research. Of great interest are the reasons students give for their choices. A potential

use for a POSTT instrument might be to look for shifts in means between pre- and

post-tests, with pedagogical methods instruction occurring in between, while

another would be to look for differences between the means from different groups

of teachers in different circumstances.

Another pertinent question is whether degree of science content knowledge affects

ability to choose a preferred pedagogy from the four options. Feedback from both

respondents and developers indicates it is not an issue for choosing or evaluating

pedagogy, as long as vignette situations are couched in descriptive rather than tech-

nical terms. None of the respondent groups raised it as problematic during discus-

sions, and developers whose expertise was in one subject felt comfortable

evaluating a pedagogy item whose context was another; in fact this was sometimes

seen as an advantageous clarity check. However, it remains an avenue for further

research. The POSTT items can be expected to have applications in teacher edu-

cation programs and research in many countries. One of our members has made

cultural adaptations to POSTT-1 for use at an English language Turkish university

and has begun to collect data. Many of the response patterns are similar to ours,

but there are also intriguing differences to be studied. Recently in South Africa an

earlier set of POSTT items, specifically for physical science, were used to assess

and compare the pedagogical orientations of in-service physical science teachers

practicing in township (disadvantaged) schools and suburban (advantaged)

schools, and results so far indicate marked differences between the preferred

teaching practices of the two groups of teachers in their particular circumstances

(Ramnarain & Schuster, 2014). For information regarding the Turkish language

POSTT and the Turkish English language POSTT, contact Ebru Muğaloğlu

(akturkeb@boun.edu.tr), and for a Korean language POSTT, contact Young-Shin

Park (parkyoungshin1968@gmail.com). For use in South African, contact Umesh

Ramnarain (uramnarain@uj.ac.za).

Potential for summative assessment use: There is likely to be interest in using POSTT

items in an instrument format for summative assessment purposes. Here we point out

that the assessment identifies science teaching orientations and produces orientation

profiles. Items reflect a consistent spectrum of possible instructional approaches and

are not assumed to have one correct instructional option with the others being wrong

distracters as with conventional content MCQs. This, along with the (desirable)

response spread shown in our pilot study, suggests caution in summative implemen-

tation, interpretation, or instrument testing. Nevertheless, cognizant of this, we con-

ducted preliminary studies of the test characteristics of the items. We deliberately

18 W.W. Cobern et al.
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placed four common items in POSTT-1 and POSTT-2 so we could estimate

reliability. Sixty students responded to these four items across three sections of a

science methods course. There were no significant differences for any of the four

items between groups (at the 5% level). The rest of the items were taken by 28 or

29 students; and, of those 24 items, 21 items showed no significant differences

between sections responding to the POSTT items (at the 5% level). The participant

sizes are not large, but the findings nonetheless suggest that 25 items perform

rather reliably (the correlation matrix is available at http://www.wmich.edu/science/

inquiry-items/index.html), and eventually we will have data on all 100 items. At

that point, the POSTT website will have all the items along with the response histo-

grams. (As noted, all 100 items are available at the http://www.wmich.edu/science/

inquiry-items/index.html website. As we gather data on each item, we are posting

the student response histogram and the developers’ histogram with each item.)

One might ask whether or not the items represent some single construct, as one

might ordinarily expect of summative assessment. However, one must bear in mind

that the aim here is to obtain science teaching orientation profiles, and that differ-

ent teaching situations may evoke different pedagogical preferences. Thus, the very

characteristic that makes the items useful for formative assessment, response

spread, is problematic for conventional summative assessment. The response vari-

ation shows itself in the weak inter-item correlations that we calculated. An explora-

tory factor analysis showed small clusters of items loading on separate factors.

While it is possible that subsets of highly correlated items may be located among

the 100-item inventory which could then be used for summative assessment, we

suggest two alternative approaches. We are posting the developers’ histogram for

each item. Anyone who teaches K-8 science methods or works in science teacher

development will have their own perspective on how the various item responses cor-

respond with their instructional goals for pre- and in-service teachers. Hence, one

approach to a summative assessment is for items to be selected and scored in a way

which is consistent with particular instructional goals, making it a criterion-

referenced assessment. For example, if one were teaching guided inquiry, then

one could select a set of topics and items that best fit that model, and likewise

for the other modes.

Note that the two POSTT forms compiled so far are general instruments in that

they include items from all three subject areas and three grade bands. Additional

POSTT versions can be compiled by selecting items with particular science

content, classroom grade level, or aspect of instruction. An instrument could easily

be used both qualitatively and quantitatively. Formative assessment discussions or

even an added comment section below each item could readily serve to draw out

other critical ideas or issues not present in the response options themselves. Partici-

pants can be asked to state or write their reasons for their instructional choices and

say why they did not choose the other options. In this case, the assessment would

be both about teaching orientations and the merits of rationales given for specific

decisions.
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Conclusion

As noted, our work is motivated by a concern that pre-service K-8 teachers typically

are not able to see or engage with very many examples of science teaching pedagogies

for science content learning across various topics. Moreover, with the amount of time

given to science instruction falling at the elementary level (Petrinjak, 2011), the pro-

spects are not good that student teachers will be exposed to a wide variety of science

instruction examples. Yet cognitive science findings and studies of the use of worked

examples both suggest that people need multiple exposures to instances of concepts

and practices over a wide range of situations in order to develop competence and

adaptable expertise (Donovan & Bransford, 2005; Heller & Heller, 2010; Johnson,

2001).

Our project contributes a new type of pedagogical assessment which can be used

for formative, summative, and research purposes. Rather than being cast in terms

of declarative generalizations about teaching, items are problem based in nature,

each situated in a realistic classroom situation for teaching a specific science

topic, to best assess whether students are able to apply and integrate their knowl-

edge and understanding of science pedagogies. Individual items are available from a

bank of 100 items, cross-referenced according to topic, grade band, and instruc-

tional aspect categories. Several compiled POSTT instruments are currently avail-

able and further instruments can be purpose built with specific focuses. Such items

and instruments can be used to provide novice science teachers with multiple

exposures to science teaching pedagogies for a variety of topics and teaching situ-

ations in relatively short time frames. The response spread obtained in our pilot

studies is a promising outcome, indicating that the items are likely to prompt

lively discussion during teacher preparation, or professional development situations

about ways to teach science and deal with common learning and teaching scen-

arios. Instructors who have already administered a POSTT have commented that

they are very interested in using items formatively to spark targeted classroom dis-

cussions, including consideration of the possible relevance of the science topic and

grade level to pedagogical choices. Having such discussions encourages teachers to

think through instructional options and the reasons for making one choice over

another, in various cases, and the contextual factors and constraints that might

come into play. POSTT instruments provide teacher educators and professional

development leaders with an assessment of student/teacher understanding of

science pedagogical decision-making, thus providing formative feedback to them

about how to shape their own teacher education courses and programs. POSTT

items are particularly well suited for use with clicker technology for in-class forma-

tive assessment with immediate feedback and discussion. Judiciously selected indi-

vidual items can be displayed for students to view and consider at various stages

during a methods lesson or in professional development settings. Item discussion

leads to further learning as students reflect on their ideas; while the instructor is

able to use the assessment responses to adjust a current lesson on the spot as

well as to shape future lessons.
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The bank of 100 items publically available, along with several POSTT instruments,

constitutes a valuable resource for the improvement of science teacher education. We

hope to be able to invite constructive comments and continue the item creation and

refinement processes. We would also like to create an open data bank for volunteered

items offered in the same vein and format. We would process and refine the most

promising items and add them to the formal collection of accessible, searchable,

and downloadable items, as well as including them in further POSTT instruments.
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