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Abstract—With the advent of high-throughput next-generation
sequencing (NGS) techniques, the amount of data being generated
represents challenges including storage, analysis and transport
of huge datasets. One solution to storage and transmission of
data is compression using specialized compression algorithms.
However, these specialized algorithms suffer from poor scalability
with increasing size of the datasets and best available solutions
can take hours to compress Gigabytes of data. In this paper we
introduce paraDSRC, a parallel implementation of DSRC using a
message passing model that presents reduction of the compression
time complexity by a factor of O( 1

p
). Our experimental results

show that paraDSRC achieves compression times that are 43%
to 99% faster than DSRC and compression throughputs of up to
8.4GB/s on a moderate size cluster. For many of the datasets used
in our experiments super-linear speedups have been registered,
making the implementation strongly scalable. We also show that
paraDSRC is more than 25.6x faster than comparable parallel
compression algorithms. The code will be available in author’s
website if paper is accepted.

I. INTRODUCTION

Next-generation sequencing (NGS) technologies can gen-
erate enormous amount of data, delivering outputs of up to
1 terabase1 of genetic sequence data in a single run [1].
These large datasets require significant time to be processed
and transformed into relevant information [2]. Keeping these
NGS datasets intact before the processing stage is important
due to the preservation of key elements that may become
meaningful in future analyses. Storing and transferring these
massive amounts of data (generated very fast and cheaply)
represents a challenge that has led to creation of highly
specialized compression techniques such as Quip [3], G-SQZ
[4], DSRC [5], KungFQ [6], SeqDB [7], SOLiDzipper [8].
These algorithms take into account the characteristics of the
FASTQ format [9] in which the DNA sequence read and its
corresponding per base quality score are structured and stored.

Any compression algorithm loses its usefulness if it takes
more time to compress the data than it would take a scien-
tist to analyze it. In order to speedup the process, general
purpose compression algorithms have been parallelized using
shared memory models such as pigz2 (pronounced ”pig-zee”, a
parallelization of gzip) which exploits multicore technologies

1Equivalent to 1012 base pairs
2http://zlib.net/pigz/

and uses the pthread library and PBZIP23 a parallel version
of bzip2 that also uses pthreads. A message passing version
of bzip2 named MPIBZIP24 is also available. Parallel com-
pression algorithms specialized in NGS datasets are scarce.
The authors are only aware of one parallel algorithm specific
to NGS data, named DSRC 2 [10]. DSRC 2 is an industry
oriented, multi-threaded parallel version of DSRC with faster
compression times, variable throughput and comparable com-
pression ratios to existing solutions.

In this paper, we present the first algorithm that uses a
distributed memory-architecture to parallelize the compression
process specific to NGS data. As a proof-of-concept we use
DSRC as the algorithm underlying our parallelization strategy
because it has the best overall performance in terms of speed
and compression ratio [11]. Our experiments show that by
using a message passing model on a distributed memory-
architecture and load balancing the reading/writing phases
among the working processes, faster compression times and
higher throughput can be achieved, making the algorithm scal-
able with increasing number of processing units and datasets.

In the following sections we analyze the design of
paraDSRC and evaluate the performance obtained by running
the algorithm with small to considerably big (∼10MB to
∼1TB) FASTQ input files.

II. BACKGROUND INFORMATION

FASTQ is the most commonly used NGS dataset format [9].
As shown in Fig. 1 it contains many records, each of which
is composed by four lines: (i) a title and optional description
line, (ii) DNA sequence read line, (iii) a plus ‘+’ sign followed
by optional repetition of the title line and (iv) the quality score
line . DSRC processes the FASTQ file by dividing it into three
streams of data:

1) Title information: reads, analyzes and compresses the title
stream using different techniques such as compact encod-
ing, delta or differential encoding for numeric portions of
the title, entropy coding and Huffman encoding.

2) DNA sequence: this stream is compressed using LZ77-
style encoding. The plus sign (on the 3rd line of a record)
is only use as an “end of DNA sequence” marker.

3http://compression.ca/pbzip2/
4http://compression.ca/mpibzip2/



3) Quality score: this stream is encoded depending on its
characteristics; if the quality score is quasi random it
uses order-0 Huffman coding, otherwise, for repetitive
sequences it uses Run-Length encoding (RLE).

@ERR005195.1 BGI-FC30BFTAAXX_5_1_000:1689/2
CTCCCATATCCTTAGAGAAAATCCCCAATGCCTAGT
+
IIIIIIIIIIIIIIIIIIIIIIIIIII’8=;I?DG8
@ERR005195.2 BGI-FC30BFTAAXX_5_1_000:125/2
TGTTTGGCAAGGTCCTACAAAAGTTGCAACTCTCAC
+
IIIIIIIIIIIIIIIIIIII2?9IIII*7)IIII’-

Fig. 1. FASTQ file containing 2 records. Each record’s title starts with the
ASCII character ‘@’ followed by a description. The second line contains the
DNA sequence read. The ASCII character ‘+’ is used in the third line to notify
the end of the DNA sequence (an optional repetition of the title is sometimes
included in this line). The fourth line of the record is the quality score and
it’s always the same length of the second line.

According to [11] a big portion (43.80%) of the total
compression time of DSRC is spent in analyzing the title
portion of a FASTQ record, but further profiling made us
conclude that this algorithm tends to be I/O bounded as the
dataset size increases. Therefore, the design of our parallel
strategy takes this into account along with other factors for
scalability.

III. PROPOSED PARALLEL STRATEGY

For our parallel implementation, a FASTQ file of size N
is partitioned equally among p processes. This division will
create a working region of size N

p for each pi, ∀i ∈ N : i
from 0 to p − 1, as shown in Fig. 2. Due to the nature of
the FASTQ file and the imposed arbitrary division, pi cannot
know if a complete record (containing the 4 lines explained
in the previous section) is present at the start and/or at the
end of its working region. For this reason we use a small
overlap between them to guarantee that each pi’s working
region contains complete records.

p0’s working region

p1’s working region

p2’s working region

p3’s working region

Fig. 2. FASTQ file partition between 4 processes into working regions of size
N
p

each. The thick red lines represent an overlap between processes’ working
regions.

After working regions are assigned, each process identifies
the start of the first complete record at the beginning of its

Start
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Algorithm’s settings,
calculations for file

partitioning among processes

p0 reads from its
working region

pi reads from its
working region

p(p−1) reads from
its working region

p0 processes superblock’s
data: blocks, records
(title, DNA sequence

and quality score)

pi processes superblock’s
data: blocks, records
(title, DNA sequence

and quality score)
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(title, DNA sequence

and quality score)

p0 writes compressed
superblock into output file (in

its corresponding position)

pi writes compressed
superblock into output file (in

its corresponding position)
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superblock into output file (in

its corresponding position)
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working
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Is pi
done with
working
region?

Is p(p−1)

done with
working
region?

Post-Processing:
Algorithm’s results and

printing information

End

yes yes

no no no

Fig. 3. Flowchart of the design for p processes

region. pi will continue fetching records until it reaches the
end of its allocated region. If it doesn’t have a complete record
after reading the last byte, it will continue through the small
overlap portion o and stop when the first full record is stored.
This will ensure that pi will finish reading its last record at
byte b since p(i+1) started reading its first record at byte b+1.

Each process will then analyse and compress the title, DNA
and quality score portion of the stored record. After enough
records are processed each pi will write chunks of k bytes
of compressed data in a non-blocking, non-collective fashion
using a shared file pointer to the output file. Fig. 3 shows the
flowchart for paraDSRC using MPI.

The algorithm will terminate when every pi has processed
the last full record of their working regions and any remaining
data is compressed and written. The steps taken to compress a
FASTQ file with paraDSRC are illustrated using pseudo-code
in Fig. 4.

A. Analysis of Computation and Communication Costs of the
Proposed Parallel Strategy

Overall, DSRC has a linear asymptotic growth of O(N),
dictated mostly by the processing of the title information and
the reading (and preparation) of the records to be compressed.
We refer to N as the size of the problem given in number of
records. In our parallel solution, each processor pi will get an
approximately equal amount of records w = N

p .
Every parallel implementation incurs in some amount of

communication overhead and ours is no exception [12]. In
order to make the overhead costs To smaller, we reduce the
communication rounds to only 2 phases; reading the input
FASTQ file and writing the compressed data to the output.

For the reading phase, let us assume l is the size (given as
number of records) of a chunk of data that a processor pi will



Require: pi processing units (∀i ≥ 2) and FASTQ file input.fastq
Ensure: output.dsrc file size 0 < M < N and all p exit correctly

1: procedure PARADSRC(p, input.fastq)
2: l← 4 megabytes // bytes to be read from pWorkingRegion
3: o← 500 bytes // overlap
4: k ← 8 megabytes // bytes of compressed data to be written
5: N , M // N is the size of input, M size of output file
6: pWorkingRegion← N/p
7: regionStart, regionEnd
8: output.dsrc
9: call of mpi init() // initiate MPI environment

10: pi finds byte b where the first complete record in its
pWorkingRegion starts.

11: regionStart← b
12: while regionEnd is not reached do
13: pi reads l + o bytes from pWorkingRegion at regionStart
14: repeat
15: pi inserts title into Rec
16: pi inserts DNA into Rec
17: pi inserts QualityScore into Rec
18: bytesProcessed← total size of data inserted
19: CompressData← compress(Rec)
20: if size of CompressData ≥ k then
21: pi writes k bytes of CompressData to output.dsrc
22: end if
23: until complete Rec is processed and bytesProcessed ≥ l
24: regionStart← regionStart+ bytesProcessed
25: end while
26: if size(CompressData) > 0 then
27: pi writes remaining bytes of CompressData to output.dsrc
28: end if
29: pi calls mpi finalize()
30: end procedure

Fig. 4. Pseudo-code for paraDSRC using p processes and FASTQ file
input.fastq

read out of N . There will be N
l chunks to be read in total.

Since the reading occurs simultaneously, the communication
overhead will have a complexity of O(N

lp ).
To analyze the communication overhead incurred in the

writing phase, we define r as the compression ratio of the
algorithm given by r = N

M , where M is the size of the
resulting compressed data (DSRC file). Let’s call k the size of
compressed data chunk that every processor will write as they
become available. Approximately M

k chunks will be written
by p processors, hence the complexity for the second phase
will be represented by O( N

rkp ). The total time complexity of
the parallel execution given by TP = Tc + To, will be:

Computation cost, Tc = O

(
N

p

)
(1)

Communication cost, To = O

(
N

lp

)
+ O

(
N

rkp

)
(2)

TP ≈ O

(
N

p

)
+ O

(
N

lp

)
+ O

(
N

rkp

)
(3)

B. Scalability of the Proposed Parallel Strategy

Calculating the speedup S with increasing number of pro-
cesses and data size will tell us if our strategy has good
scalability, i.e., the processing speed will double by doubling

the number of processors. We will obtain this ideal ratio or
linear Speedup if S = p. We will use the definitions and
assumptions of [13]: S = TS

TP
, where TS is the sequential

execution time. Substituting TP with (3) we will have:

S =
N

N
p + N

lp + N
rkp

=
N

N
p (1 + 1

l + 1
rk )

(4)

Assuming that C = (1 + 1
l + 1

rk ) is a constant that
depends on the implementation parameters, then we can reduce
equation (4) to:

S =
N
NC
p

=
p

C
(5)

We know that C will have a value of 1 ≥ C ≤ 1.2, so we
can re-write equation (4) to have:

S ≈ p

The approximation above indicates that theoretically our
parallel implementation should exhibit linear speedup. Con-
tinuing with [10] the efficiency E = S

p will be approximately
Θ(1).

IV. RESULTS

To test our implementation we used the Thor compute
cluster5, a high performance parallel computing cluster at
Western Michigan University. Thor has 22 compute nodes
equipped for different parallel models including 16 nodes for
MPI parallel programming. These nodes have a dual Sandy-
Bridge Intel Xeon E5-2670 2.6GHz processors (16 cores each)
with 128GB of RAM and a 1TB hard drive for temporary
work. The cluster uses an ethernet management and a low-
latency Infiniband communication network. All nodes have
access to network mounted directories on a high performance,
high redundancy RAID file server. The cluster implements
TORQUE resource manager [14] which is used to specify
the resource requirements for the algorithm. OpenMPI version
1.7.3 and GCC version 4.7.3 were used for compilation and
execution.

The NGS datasets for the experiment were obtained from
the 1000 Genomes Project6 and are shown in Table I. The
column “Renamed” is used to identify the datasets with
relation to their sizes (rounded to the closest power of 10),
e.g., dataset with ID ERR009075 and size of 1,015 megabytes
is renamed “1GB”. This identification will be used throughout
the section instead of the datasets’ IDs.

A. Performance Evaluation

We executed paraDSRC using 2, 4, 8, 16, 32, 64 and 128
processing units with increasing size of the datasets. As can
be seen in Fig. 5 the compression time decreases sharply as
more processing units are added with an increasing input size.

5https://www.cs.wmich.edu/ hpcs
6http://www.1000genomes.org
7This dataset was constructed by appending ERR022729 multiple times

and changing the ID in the title portion of every record.



TABLE I
DATASETS USED FOR THE TEST

IDs Organism Platform Read count Size(MB) Renamed

ERR005195 Homo sapiens ILLUMINA 76,167 9.3 10MB
ERR229788 Homo sapiens ILLUMINA 372,983 97 100MB
ERR009075 Homo sapiens ILLUMINA 8,261,260 1,015 1GB
ERR260401 Homo sapiens ILLUMINA 43,598,329 11,000 10GB
ERR022729 Homo sapiens ABI SOLID 468,457,226 104,000 100GB
1T-MIXED7 Homo sapiens ABI SOLID 1,566,932,640 1,100,000 1TB

TABLE II
PERCENTAGE DECREASE IN COMPRESSION TIME FOR paraDSRC

Datasets
Number of Processing Units

2 4 8 16 32 64 128

10M 34.06% 71.38% 84.42% 89.76% 92.67% 92.47% 95.26%
100M 56.35% 76.81% 88.23% 93.43% 96.60% 98.11% 98.88%

1G 46.02% 76.74% 88.17% 94.08% 97.05% 98.47% 99.21%
10G 45.42% 79.80% 89.60% 94.59% 97.37% 98.66% 99.32%
100G 43.57% 77.81% 87.88% 94.25% 97.06% 98.44% 99.24%

1T 46.75% 70.99% 78.63% 79.27% 84.51% 79.14% 84.29%

These results are in accordance with our theoretical analysis,
i.e., the asymptotic growth of the parallel compression time
remained close to that represented by TP in equation (3).

Furthermore, Table II shows the percentage decrease in
compression time obtained by our solution. It can be seen
that almost a 100% decrease in compression time was obtained
by using 128 processes to compress 1GB, 10GB and 100GB
datasets. Also the compression time was reduced close to
50% when we used 2 processes to compress datasets 100MB
to 1TB. Based on this table, we generalize that every time
we doubled the amount of processing units the compression
time changed by a decreasing percentage of approximately 1

p ,
validating the theoretical analysis of the computation cost Tc.
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Fig. 5. Compression time (s) vs. number of processing units for paraDSRC.
The Y axis is log10 scaled to allow large values to be displayed without
distorting the visualization of the results.

Fig. 6 shows paraDSRC speedup ratio. It shows that super-
linear speedups were obtained when compressing dataset
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Fig. 6. Speedup ratio S for paraDSRC with increasing number of processes
and different dataset sizes.
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Fig. 7. Parallel efficiency E for paraDSRC with increasing number of
precesses and different dataset sizes.

10GB (using 64 and 128 processes) and dataset 100GB (using
128 processes). This behavior may be due to the fact that
by adding more processing units their individual cache will
accumulate as well and the total cache size will increase,
allowing all the amount of data being processed at a given
time to fit into the new cache size, reducing the latencies
incurred in memory access. This cache effect is studied in
[15]. An ideal linear speedup was maintained for dataset 1GB
while increasing the number of processing units. The same
was the case for 100GB, remaining ideally linear by using
up to 64 processes. Dataset 100MB kept a linear speedup
when compressed using up to 16 processes, after the addition
of more processing units the parallel time TP increases,
diminishing the speedup (which is still linear). The 10MB
and 1TB datasets presented a very similar behavior, and are
discussed below.
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The parallel efficiency of the algorithm was also tested
and is shown in Fig. 7. Datasets 1GB, 10GB and 100GB
maintained approximately a fixed efficiency while increasing
the number of processing units, making the algorithm strongly
scalable for these datasets [16]. Although maintaining its effi-
ciency, dataset 100MB started to decline as more processing
units were added.

Fig. 7 also shows that paraDSRC was not very efficient
in computing the smallest (10MB) and the biggest (1TB)
datasets of our experiments. For the 10MB dataset, as the
number of processing units increased, the speedup stayed
almost constant and the efficiency went down due to the
fact that the communication cost To became much larger as
compared to the computation time Tc. This behavior is typical
for parallel algorithms computing very small datasets [17]. In
the case of the 1TB dataset, we conclude that our moder-
ate size cluster, although equipped with a high performance
parallel file system, is not able to keep a linear speedup and
hence a desired efficiency when 8 or more processing units
are concurrently accessing non-contiguous regions of a big
dataset8.

We also evaluated the compression throughput of paraDSRC
to have a measure of the overall performance. Within the
context of this paper, compression throughput is defined as
the amount of data being processed per second, expressed as
megabytes per second (MB/s), that is:

CompressionThroughput =
DatasetSize

CompressionT ime

Fig. 8 shows the compression throughput results. Overall,
paraDSRC presented a better compression throughput when
compared to that of DSRC. Among all the datasets 10GB has
the maximum throughput of 8,441MB/s (8.4GB/s) when com-
pressed with 128 processes, which correlates with its super-
linear speedup. 128 processing units were used to achieve the

8This conclusion is based on results obtained comparing the reading times
with those of reading contiguous regions of the 1TB datset
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Fig. 9. Comparison between of DSRC 2 (using 32 threads) and paraDSRC
(using 32 and 128 processing units), for different dataset sizes.

best compression throughput for datasets 1GB and 100GB of
5,288MB/s (5.2GB/s) and 6,128MB/s (6.1GB/s) respectively.

B. Comparison With Existing Parallel Compression Algo-
rithms

We mentioned in the Introduction section the existence of
several parallel compression algorithms such as pigz, PBZIP2,
MPIBZIP2 and DSRC 2. We selected DSRC 2 for a more fair
comparison against our implementation, since both algorithms
are modifications of DSRC. Fig. 9 shows the compression time
for DSRC 2 using 32 threads and paraDSRC using 32 and
128 processing units. We can see how paraDSRC outperforms
DSRC 2 (even when 32 processes are being used) for datasets
10MB to 100GB, reaching compression times of 39.6x for
some datasets using 128 processes. Table III presents the
accelerations achieved by this experiment.



TABLE III
ACCELERATION OBTAINED BY paraDSRC FOR 32 AND 128 PROCESSES

AGAINST DSRC 2.

Datasets paraDSRC[32] paraDSRC[128]

10MB 25.6x 39.6x
100MB 6.7x 20.3x

1GB 4.4x 16.4x
10GB 8.1x 31.6x
100GB 5.7x 22.3x

1TB 1.1x 1.1x

V. CONCLUSION AND DISCUSSION

In this paper we presented a parallelization strategy us-
ing distributed-memory architecture for compression of big
NGS datasets. Our implementation used DSRC algorithm
as the underlying compression method and Message Passing
Interface (MPI) in order to accelerate the compression time.
To our knowledge, this is the first attempt to investigate
domain decomposition strategy implemented on a memory-
distributed architecture for compression of big Next Genera-
tion Sequencing datasets. The proposed strategy allowed us to
devise a highly scalable parallel algorithm, which exhibited
linear-speedups for most datasets and gave a minimalistic
communication footprint.

A detailed description of our design was given in the paper
that included the theoretical analysis of the algorithm in terms
of asymptotic growth. The results obtained by our solution
indicate that a decreasing percentage change of approximately
O( 1

p ) in the compression time was possible. Furthermore,
we achieve super-linear speedups for several dataset sizes
while adding processing units and accelerations of up to
39x when compared with DSRC 2 (DSRC multi-threaded
parallel version). Efficiency analysis indicated that paraDSRC
is strongly scalable, with efficiencies being maintained in the
range of Θ(1).

The experiments presented in this paper were executed on
a moderate size cluster which limits our ability to process
very large datasets (of the order of terabytes). As our future
direction for this work we are interested in running our im-
plementation on large clusters with parallel file systems such
as XFS, PVFS or Lustre [18]–[20]. This will allow us to take
advantage of the MPI-IO ROMIO9 implementation which uses
hints based on the characteristics of these parallel file systems
to perform more efficient I/O requests. We hypothesize that by
applying these improvements to the algorithm we will be able
to obtain better compression times, speedups and efficiency
for datasets greater than 1TB.

Additionally our implementation can be combined with
threads in a MPI+Thread hybrid model to achieve an even
faster acceleration by giving the task of analyzing and com-
pressing the record’s title, DNA sequence and quality score to
several threads while the main process works in reading the
input file and writing the compressed results.

9http://press3.mcs.anl.gov/romio
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