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Abstract

In this study, we allow using alternative transportation modes and different types of

vehicles in the hub networks to be designed. The aim of the problem is to determine the

locations and capacities of hubs, which transportation modes to serve at hubs, allocation

of non-hub nodes to hubs, and the number of vehicles of each type to operate on the hub

network to route the demand between origin-destination pairs with minimum total cost.

Total cost includes fixed costs of establishing hubs with different capacities, purchasing and

operational costs of vehicles, transportation costs, and material handling costs. A mixed-

integer programming model is developed and a variable neighborhood search algorithm is

proposed for the solution of this problem. The heuristic algorithm is tested on instances from

the Turkish network and CAB data set. Extensive computational analyses are conducted in

order to observe the effects of changes in various problem parameters on the resulting hub

networks.

Keywords: Hub location, hub network design, intermodal transportation networks.

1 Introduction

In today’s competitive environment, most firms use alternative transportation modes and dif-

ferent types of vehicles within their hub networks. The main reason for using different vehicle

types in hub networks is to achieve economies of scale and decrease unit transportation costs

by employing vehicles with larger capacities. In this study, we focus on minimizing total cost to

efficiently locate hub facilities and design intermodal hub networks.

The motivation of this study arises from the operational characteristics of small parcel deliv-

ery networks. Such networks operate on a hub-and-spoke network structure. Hubs are crossdock
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terminals consolidating flow in which the main operations are unloading, sorting, and loading.

Spokes or demand nodes, on the other hand, are typically branch offices. In real-life parcel de-

livery networks, each branch office is customarily allocated to a single hub mainly due to ease of

management. Allocation connections carry low volume traffic and distances are relatively short;

therefore, only ground transportation is employed on these connections. Moreover, usually a

single vehicle type is used to transfer the flow between branch offices and hubs. Customarily, the

flow is collected from hubs in the mornings and delivered to hubs at the end of a day. During

the day, the vehicles on these allocation connections are used to deliver and pick-up parcels

from customers. Alternative modes of transportation and different types of vehicles with larger

capacities are used, on the other hand, while transporting flow between hub facilities. Each firm

operates with its own fleet. Additional vehicles can be rented especially to address peak demand

periods.

Operations in small parcel delivery are planned daily and the amount of flow to be trans-

ported refers to daily demand. The capacities of hubs in parcel delivery networks are usually

expressed in terms of the total number of vehicles of each type that can be handled within a day.

For example, the number of docks limits the number of trucks that can be loaded and unloaded

at a hub during a day. Similarly, the number of airplanes that can be handled within a day is

limited.

Various costs are involved in building and operating this hub network including the costs of

establishing hubs with different capacities, purchasing, operational and transportation costs of

vehicles. In addition, there is material handling costs associated with unloading, sorting, and

loading operations at hubs. Material handling cost is dependent on the mode of transportation.

For example, the cost of loading and unloading an airplane is different than the cost of loading

and unloading a truck. In addition, material handling cost may also depend on the location of

a hub as some components of cost, such as minimum wage and electricity rates, can vary from

location to location.

In this paper, we model and solve the intermodal hub network design problem with the

specifications described above. We develop a mixed-integer programming formulation and a

variable neighborhood search heuristic. We solve the model and test the algorithm on instances

from the Turkish network and CAB data set (Beasley [6]).

Hub location problems deal with choosing the sites of hub facilities and allocating demand

nodes to hubs so as to effectively route the traffic between origin-destination pairs. The reader

may refer to Alumur and Kara [1], Campbell and O’Kelly [11], Farahani et al. [15], and Contreras

[12] for an overview of hub location studies in the literature.
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In this study, in addition to the hub location and allocation decisions, we also consider

decisions regarding the design of the inter-hub network; that is, we do not assume a fully

interconnected hub network. Examples of hub location studies which incorporate decisions on

inter-hub network design include Nickel et al. [24], Campbell et al. [10], Yoon and Current [33],

Alumur et al. [2], Contreras et al. [13], Martins de Sa et al. [22], and Alumur et al. [4]. In all of

these studies, only one transportation mode is allowed within the hub network to be designed.

The choice for mode of transportation within a hub network is initially discussed by O’Kelly

and Lao [28]. Different hub location models are used in the literature to determine locations of

hubs in intermodal transportation networks. Examples of such studies are Racunica and Wynter

[30] using an uncapacitated multiple allocation hub location model, Limbourg and Jourquin [20]

and Ishfaq and Sox [18] both using a p-hub median model. In these studies, inter-hub network

is assumed to be complete with a direct link between every hub pair.

The most relevant studies to our problem are the ones jointly considering the location of

hubs and the design of intermodal hub networks. Meng and Wang [23] proposed a hybrid

genetic algorithm to solve the intermodal hub network design problem for multi-type container

transportation with multiple stakeholders including the network planner, carriers, hub operators,

and intermodal operators. In our problem, we have a single stakeholder and we solve a single

company’s hub network design problem.

Alumur et al. [3] developed a mixed-integer programing formulation for multimodal hub

location and hub network design problem with different service options. In this study, only

one type of service and one transportation mode is allowed between each pair of hubs. In a

subsequent study, Alumur et al. [5] modeled and solved a hub location problem designing a

hierarchical intermodal network while ensuring time-definite deliveries. In the current study, we

do not impose any specific hub network structure or delivery time restrictions.

Most studies on hub location allow using a single transportation mode and a single vehicle

type on the hub network to be designed. The studies considering the design of intermodal hub

networks, on the other hand, do not model the possibility of employing different types of vehicles

with different capacities. To the best of the authors’ knowledge, there are not any hub location

studies in the literature determining the optimal number of different types of vehicles to operate

on an intermodal hub network. Choice for mode of transportation and number of vehicles to be

handled at hubs affects both hub location and capacity decisions. Hence, such decisions should

be considered simultaneously in designing hub networks.

A related field to our study is service network design. Service network design is concerned

with tactical operations and decisions like selection and scheduling of services, specification of
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terminal operations, and routing of freight using already existing hub facilities. Interested reader

may refer to Crainic [14] and Wieberneit [31] for reviews in this area. In this study, we focus

on the strategic decisions and do not address any tactical decisions such as the frequency or

scheduling of the vehicles.

In most hub location studies, economies of scale is modeled by using a constant discount

factor (usually referred as α) to reflect the discounted cost of flow between hubs. However,

as pointed out by many studies in the literature (e.g., O’Kelly and Bryan [26], Kimms [19],

and Campbell [9]) using flow-independent discounts between hubs results in a misapplication of

economies of scale. O’Kelly and Bryan [26] and Bryan [7] suggested using a nonlinear concave

cost function to correctly model economies of scale. Camargo et al. [8] proposed a stronger

formulation and a Benders decomposition algorithm for the function introduced in O’Kelly and

Bryan [26]. Podnar et al. [29] used a threshold-based discounting on links. Campbell et al. [10]

introduced hub arc location models where the models locate hub arcs with reduced unit flow

costs rather than locating hub facilities. O’Kelly et al. [27] added fixed costs for arcs to better

model transportation operations. By the use of fixed costs, the unit cost per flow on an arc

decreases as more flow is routed on that arc.

Kimms [19] suggested alternative formulations to model flow-dependent economies of scale

in hub networks. Alternatives were introduced using the classical single allocation hub location

problem with fixed costs and the effects were illustrated on a seven node numerical example.

One approach introduced in Kimms [19] is to determine the optimal number of different types of

vehicles to employ and consider transportation cost per vehicle rather than a fixed transportation

cost per flow. In this study, we adopt a similar flow-dependent method to correctly model

economies of scale. Unlike Kimms [19], we consider hubs with different transportation modes

and capacities, and we do not assume a fully interconnected hub network.

The objective function of our model includes purchasing, operational, and transportation

costs of different types of vehicles. Purchasing cost is the cost of acquiring a vehicle. Operational

cost is incurred for each trip and vehicle, and involves crew cost, maintenance cost, service fee,

etc. Purchasing and operational costs constitute a fixed cost in the objective function for each

vehicle to be used on the hub network. This is very similar to the idea of using fixed costs

for arcs employed, for example, in Alumur et al. [2] and O’Kelly et al. [27]. We additionally

consider different vehicle types and transportation modes in our problem. Each vehicle type

has a different fuel consumption rate and, hence, a different transportation cost per distance

traveled. In order to determine the optimal number of vehicles to employ on the hub network,

our model readily considers the trade-off between vehicle costs and capacities; that is, using few
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large-capacity vehicles versus many small-capacity vehicles.

Determining optimal number of different vehicles to employ is analogous to determining

optimal number of different link types to install in network design. Such problems are referred

as network loading problems in the literature (Magnanti et al. [21]). The major difference of

our problem from network loading problems, apart from hub location and capacity decisions,

is that there are no transportation (routing) costs in network loading, there is only fixed costs

of installing different links. In our problem, even though flows on the links of the network are

known, the vehicle allocation subproblem is not straight forward; it is another combinatorial

optimization problem. Whereas in network loading, once the flows on the network are fixed,

the decision on the type and number of links to be installed on each connection is trivial. Our

problem is more difficult in the sense that there is an additional dimension of transportation

costs that needs to be considered for each vehicle on each connection as well as the capacities

of hubs.

The outline of this paper is as follows. In the next section, a mathematical formulation for

the capacitated intermodal hub network design problem is introduced. In the third section, we

present a heuristic algorithm developed for the solution of this problem. The fourth section

presents results from the application of the heuristic on the Turkish network and CAB data set.

This section also includes a statistical analysis and a method for determining a lower bound.

The fifth section contains sensitivity analyses using instances from the Turkish network. The

paper ends with some concluding remarks presented in the last section.

2 Mathematical Formulation

In this section, we present a mathematical formulation for the single allocation capacitated

intermodal hub network design problem. The aim of the problem is to decide on the locations

and capacities of hubs, which transportation modes to serve at these hubs, the allocation of non-

hub nodes to hubs, and the number of vehicles of each type to purchase and operate between each

pair of hubs. The objective is to minimize total cost which includes the purchasing, operational,

and transportation costs of vehicles, fixed costs of establishing hubs with different capacities,

and material handling costs.

For the mathematical model, we are given a node set N consisting of n demand nodes and

a potential hub set H such that H ⊆ N with h nodes. Hubs may serve different transportation

modes from the set M and for each transportation mode they can be established with different

capacities from the set Q. Different hub capacities may refer for example to the number of docks

to be established for each transportation mode.
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There are different types of vehicles that can be purchased to serve on the hub network. Vm

represents the set of available vehicle types that use transportation mode m ∈ M . The set of

all vehicles that can be used is denoted by V such that V =
⋃

m∈M Vm. It is assumed that each

vehicle operates on a single connection.

Unit transportation costs are dependent on the vehicle type. Different transportation modes

are allowed to be used only within the hub network; that is, only for traveling between hubs.

For the allocation connections, only one type of vehicle is employed. The rest of the parameters

required for the mathematical model are listed below.

wij Amount of flow originated at node i ∈ N destined to node j ∈ N .

cij Unit cost of transportation from node i ∈ N to hub j ∈ H on

allocation connections.

cvij Unit cost of transportation from hub i ∈ H to hub j ∈ H using

vehicle of type v ∈ V .

fcj Fixed cost of establishing a hub at node j ∈ H.

kcmjq Cost of installing capacity q ∈ Q for transportation mode m ∈M

at a hub established at node j ∈ H.

kvq Maximum number of vehicles of type v ∈ V that a hub with

capacity q ∈ Q can handle.

pcv Purchasing cost of a vehicle of type v ∈ V .

ocv Operational cost of a vehicle of type v ∈ V .

uv Capacity of a vehicle of type v ∈ V .

mhcj Material handling cost of one unit of flow arriving from a demand

node to hub j ∈ H.

mhcmj Material handling cost of one unit of flow arriving with transporta-

tion mode m ∈M to hub j ∈ H from another hub.

ai Number of vehicles required to transport the flow originated at

node i ∈ N .

bi Number of vehicles required to transport the flow destined to node

i ∈ N .

Since each node is allocated to a single hub and only one type of vehicle operates on the

allocation connections, ai and bi can be calculated as follows.

ai =

⌈
Oi

u

⌉
, bi =

⌈
Di

u

⌉
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where Oi =
∑

j∈N wij , Di =
∑

j∈N wji, and u represents the capacity of the vehicle that

serves on the allocation links.

It is assumed that all cost values are scaled considering the planning horizon. For example,

if the flows reflect the daily amounts, then all the cost values should correspond to daily values.

The decision variables of the mathematical model are

xij =

 1, if node i ∈ N is allocated to a hub at node j ∈ H,

0, otherwise.

(xjj = 1 indicates that a hub is established at node j ∈ H.)

ymjq =

 1, if capacity level q ∈ Q is installed at hub j ∈ H for transportation mode m ∈M ,

0, otherwise.

fvijk = Amount of flow originated at node k ∈ N and transported from hub i ∈ H to

hub j ∈ H using vehicle of type v ∈ V .

zvij = Number of vehicles of type v ∈ V used to travel from hub i ∈ H to hub j ∈ H.

The capacitated intermodal hub network design problem is modeled as

Min
∑
i∈N

∑
j∈H

cijaixij +
∑
i∈N

∑
j∈H

cjibixij +
∑
i∈H

∑
j∈H

∑
v∈V

(pcv + ocv + cvij)z
v
ij+∑

j∈H
fcjxjj +

∑
j∈H

∑
q∈Q

∑
m∈M

kcmjqy
m
jq +

∑
i∈N

∑
j∈H

mhcjOixij+

∑
i∈N

∑
j∈H

∑
k∈N

∑
m∈M

∑
v∈Vm

mhcmj f
v
ijk (1)

s. t.
∑
j∈H

xij = 1 ∀ i ∈ N (2)

xij ≤ xjj ∀ i ∈ N, j ∈ H (3)∑
q∈Q

ymjq ≤ xjj ∀ j ∈ H, m ∈M (4)

∑
j∈H, j 6=i

zvij ≤
∑
q∈Q

kvqy
m
iq ∀ i ∈ H, m ∈M, v ∈ Vm (5)

∑
i∈H, i6=j

zvij ≤
∑
q∈Q

kvqy
m
jq ∀ j ∈ H, m ∈M, v ∈ Vm (6)

∑
j∈H, j 6=i

∑
v∈V

fvijk −
∑

j∈H, j 6=i

∑
v∈V

fvjik = Okxki −
∑
l∈N

wklxli ∀ i ∈ H, k ∈ N (7)

∑
k∈N

fvijk ≤ uvzvij ∀ i, j ∈ H, i 6= j, v ∈ V (8)
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fvijk ≥ 0 ∀ i, j ∈ H, i 6= j, k ∈ N, v ∈ V (9)

zvij ≥ 0 and integer ∀ i, j ∈ H, i 6= j, v ∈ V (10)

xij ∈ {0, 1} ∀ i ∈ N, j ∈ H (11)

ymjq ∈ {0, 1} ∀ i ∈ H, q ∈ Q, m ∈M (12)

In the objective function (1), the first term calculates the transportation cost from demand

nodes to hubs and the second term calculates the transportation cost from hubs to demand

nodes. The third term accounts for the purchasing, operational, and transportation costs of

different types of vehicles that operate between hubs. The fourth term calculates the fixed cost

of establishing hubs, the fifth term, on the other hand, sums the cost of establishing different

capacity levels at hubs. The last two terms calculate the material handling costs at hubs: firstly

for the flow arriving from demand nodes to hubs, secondly for the flow arriving at hubs from

other hubs using different transportation modes.

By constraints (2) and (3) every demand node is allocated to a single hub. These are the

classical single allocation constraints.

It is possible for a hub to serve different modes of transportation. Constraint (4) ensures

that a single capacity level is selected and installed for each mode of transportation to be served

at a hub.

Constraints (5) and (6) are the capacity constraints on the number of vehicles. By these

constraints, the total number of vehicles that can either arrive at or depart from a hub cannot be

greater than the maximum number of vehicles that can be handled at that hub. This constraint

can be interpreted as an upper bound on the number of vehicles that can be served due to a

limit on the number of available docks at a hub.

Constraint (7) is the flow balance constraint. The amount of flow to be routed on the hub

network is determined via this constraint. Constraint (8) calculates the number of vehicles of

each type to serve on the hub network from one hub to another.

The rest of the constraints of the model (9)–(12) are the non-negativity constraints and the

constraints defining the integer and binary variables.

3 A Variable Neighborhood Search Algorithm

Preliminary analysis with our mathematical formulation showed that it is not possible to solve

the model optimally in reasonable times for realistically sized instances using standard com-

mercial solvers. Thus, we developed a heuristic algorithm for our problem. In this section, we

present the heuristic algorithm that we developed.

8



For the heuristic, we decompose the problem into two subproblems: i) hub network design,

and ii) vehicle assignment. The first subproblem is comprised of determining the locations of

hubs, allocation of non-hub nodes to hubs, and the design of the inter-hub network. The second

subproblem, on the other hand, determines the types and number of vehicles to purchase and

operate on the hub network, as well as the capacities of the hubs to be established. Both parts

of the heuristic consists of a construction and an improvement phase.

The hub network design part of the heuristic is a variable neighborhood search (VNS) algo-

rithm. Interested reader may refer to Hansen et al. [17] for an excellent review on the methods

and applications of VNS. According to the classification presented in Hansen et al. [17], the first

part of our heuristic falls under the category Reduced VNS with some variations. We provide

more details of the algorithm in the sequel.

The algorithm starts with a greedy construction phase to generate an initial solution. Then,

different neighborhood structures are applied to this initial solution. Six neighborhood structures

are considered for the hub network design part of the algorithm. Let Ni, (i = 1, ..., 6) denote

the neighborhood structures, and Ni(n) denote the set of solutions in the ith neighborhood of

n. For each neighborhood, we generate a point, say ni, at random (using the uniform random

distribution) from the ith neighborhood of n; i.e., ni ∈ Ni(n). Vehicle assignment phase of

the algorithm is then applied one-by-one to all six neighbors of n: n1, ..., n6, and the objective

function value of each neighbor, f(ni), is evaluated. A move is made to the best neighbor

among the six, even though it does not improve the current objective function value. This

avoids getting trapped in a local optima. The algorithm runs until a prescribed number of

solutions are generated. The flow chart of the main algorithm (Figure 1) and its pseudocode

(Algorithm 1) are presented below. The details of each step of the algorithm is provided in the

following sub-sections.

3.1 Initial Solution

The heuristic starts with a greedy construction algorithm to generate an initial solution. There

is an additional parameter, p, required for this phase of the algorithm which determines the

number of hubs to be established in the initial solution. The number of hubs in the solutions

are then changed through the application of different neighborhood structures.

In generating the initial solution, first,
fcj

Oj+Dj
value is calculated for each potential hub

location; i.e., for all j ∈ H. These values are then sorted in ascending order. The first p

locations on this ascending list are selected as hubs.

Every demand node is allocated to its nearest hub and the hub network is assumed to be
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Figure 1: Flow chart of the algorithm.
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Algorithm 1 Main Algorithm

Input: All parameters required for the model, p, max number of solutions

Output: Hub locations and capacities (ymq
j ), allocation of non-hub nodes to hubs (xij), flows

on each vehicle type on the hub network (fvijk), number of vehicles operating on the hub network

(zvij)

1: Solution← ∅

2: n← Initial Solution

3: repeat

4: Solution← Solution ∪ {n}

5: for i = 1 to 6 do

6: Generate a point ni ∈ Ni(n) at random

7: Apply Vehicle Assignment to ni and calculate total cost, f(ni)

8: end for

9: i∗ ← arg mini=1,...,6 f(ni)

10: n← ni∗

11: until |Solution| ≥ max number of solutions

12: Report the solution that has the minimum total cost in Solution

complete in the initial solution. Flow between hubs are calculated on this complete hub network

structure where each flow originated at a hub is sent on the direct link to the destination hub.

Incomplete hub networks are allowed in the succeeding steps of the algorithm. Algorithm 2

provides the pseudocode of the initial solution generation algorithm.

Algorithm 2 Initial Solution

Input: N,H, p, fcj , Oj , Dj

Output: Hub locations (xjj), allocation of non-hub nodes to hubs (xij), flows on the hub

network (fijk)

1: Calculate
fcj

Oj+Dj
for all j ∈ H

2: Sort in ascending order, pick the first p as hubs

3: Assign each non-hub node to its nearest hub

4: Calculate flow from each hub to all other hubs using a complete hub network structure

3.2 Neighborhood Generation

We use the mutation operators used in the genetic algorithm proposed by Gomes et al. [16]

for generating neighbors. We included an additional procedure for allowing incomplete hub
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networks in the solutions. In total, we use six different neighborhood structures. The six different

neighborhood structures that are adopted by the algorithm are demonstrated in Figure 2 on an

eight-node example.

(a) Initial solution

(b) Allocate a non-hub to a

different hub

(c) Exchange a hub with a

non-hub

(d) Exchange allocations of

two non-hubs

(e) Increase number of hubs by

one

(f) Decrease number of hubs

by one

(g) Delete a hub arc

Figure 2: Neighborhood structures.

Figure 2(a) represents the initial solution to which different neighborhood structures are

applied. In Figure 2(b), non-hub node 4 is allocated to a different hub. In Figure 2(c), hub

node 1 and non-hub node 5 are interchanged; i.e., hub node 1 becomes a non-hub and non-hub

node 5 becomes a hub. In Figure 2(d), non-hub nodes 5 and 6 exchange the hubs that they are

allocated to. Figure 2(e) represents the insertion of a new hub node: non-hub node 4 becomes

a hub and the total number of hubs is increased by one. Figure 2(f) shows the removal of a

hub, hub node 2 becomes a non-hub and the total number of hubs is decreased by one. Finally,
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Figure 2(g) demonstrates the deletion of a hub arc from the hub network. The hub arc directed

from hub 1 to hub 3 is deleted.

In order to generate neighbors of a solution, a point is selected at random by using a discrete

uniform distribution from each of the neighborhoods. Each neighborhood structure is taken

into consideration for every solution. In order to avoid cycling, if an already generated neighbor

is found, then another neighbor is searched using the same structure until a given maximum

number of iterations is reached. If a new neighbor cannot be found within this limit, then this

neighborhood structure is not evaluated for that particular solution.

The hub network should be designed in a way that it is possible to send flow between any

pair of demand nodes. So, we need to ensure that the hub network is strongly connected even

after the removal of a hub arc. For this purpose, we route all the flow on the network on their

shortest paths and initially pick the hub arc that has the least amount of flow routed on it for

deletion. When the arc is removed from the hub network, total flow on that arc is routed on

the shortest path containing the remaining arcs of the hub network. A hub arc on the path of

a re-routed flow is not considered as a candidate for further removal. This way, we ensure the

connectivity of the hub network and the feasibility of the solution. This neighborhood structure

is applied only if the total number of hubs is greater than or equal to three.

Each neighborhood structure is first applied to the initial solution and six distinct neighbors

of the initial solution are generated. Vehicle assignment phase of the algorithm is then applied

to each neighbor and objective function value of the six neighbors are calculated. The algorithm

moves to the neighbor with the best objective function value among the six. At this step, a

move to a worse solution is allowed. Next, six neighbors of the new solution is generated and

evaluated, and the algorithm continues in the same manner. Each solution is stored in the

Solution set. The solution with the best objective function value is reported at the end of the

algorithm.

3.3 Vehicle Assignment

Vehicle assignment phase of the algorithm determines the transportation modes to be served

at hubs as well as the number of vehicles of each type to serve on the hub network. Since the

capacity of a hub is expressed as the maximum number of vehicles of each type to be handled

at a hub, the capacity of the hubs for each transportation mode is also determined through the

vehicle assignment phase of the heuristic algorithm.

Vehicle assignment is a local search algorithm. It consists of a greedy construction phase

followed by an improvement phase.
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In the construction phase, the demand of the origin-destination pairs are initially routed on

their shortest paths on the available hub network. Then, vehicle assignments are considered for

each hub arc starting from the one which has the highest amount of flow. Each arc is evaluated

one by one considering the purchasing, operational, and transportation costs of vehicles on that

particular connection. Flow on an arc is loaded onto vehicles starting from the least cost vehicle

corresponding to that distance and flow. Both the fixed and variable costs are considered at

this stage. Flow is allocated to the best vehicle type for a particular connection considering the

available capacities. The capacities of the hubs on each end of a hub arc are checked before

assigning any vehicles. No new vehicle is assigned to a hub arc for a given transportation mode,

if the maximum available capacity of a hub is to be exceeded. If the next vehicle to be assigned

to a hub arc exceeds the maximum available capacity of a hub incident to it, then the second best

vehicle type is considered for the remaining flow. The flow is allocated to vehicles considering

the costs incurred in the objective function, until all the flow on an arc is allocated. If no

feasible solution can be found at this stage due to available hub capacities, then this neighbor

is discarded from further evaluation.

Once all the flow on the hub network is assigned to vehicles, hub capacities are set to the

minimum feasible capacity level for each transportation mode. If hubs were uncapacitated, one

could have found the optimal vehicle allocations with a greedy type algorithm for given flows on

the hub network. As hubs are capacitated, with a limit on the number of vehicles that can be

handled, it is not possible to allocate flow on hub arcs to vehicles optimally by using the greedy

approach described above. The order of hub arcs to be considered for vehicle allocation may

affect the quality of the resulting solution. In order to obtain better quality solutions, we added

an improvement phase to the vehicle assignment part of the algorithm.

The improvement phase of the vehicle assignment algorithm is a random local search with

a limit on the number of iterations. A 2-opt type neighborhood structure is considered for this

local search. Two distinct hub arcs that are incident to the same hub, which is used at its

capacity, are selected randomly. The idea is to interchange the vehicle assignments on these hub

arcs. Since the capacity of a hub is defined as the number of vehicles of each type that can be

handled at the hub, there is a certain type of vehicle which is used up to its maximum number

for a hub used at its capacity. The flow on that specific vehicle type is loaded onto the next

best vehicle type for a hub arc, to make room for that type of vehicle on the other hub arc. The

interchange is considered one vehicle at a time for the vehicle type limiting the capacity. Note

that the removal of a single vehicle may lead to the addition of more than one vehicle of another

type as vehicles are of different capacities. Similarly, the addition of one vehicle may result
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in the removal of more than one vehicle of another type. For every exchange, the algorithm

calculates the necessary number of vehicles to be removed and added. When assigning new

vehicles to hub arcs, the capacities of the hubs on each end of the hub arcs are checked once

again to ensure the feasibility of the solution. A move is made to a neighbor in this phase only

if it improves the current solution. The neighborhood is searched randomly until a prescribed

number of maximum iterations.

The algorithm is implemented by using Eclipse Java EE IDE. Extensive computational anal-

ysis with the heuristic algorithm on two data sets from the literature are presented in the next

section.

4 Application of the Heuristic Algorithm

We tested our heuristic algorithm on the Turkish network and the well-known CAB data set

introduced by O’Kelly [25]. The Turkish network contains 81 and CAB data set contains 25

demand nodes. All of the demand nodes were included in the potential hub set (|H| = |N | = n).

Distance and flow data regarding both of these data sets are readily available in OR Library

(Beasley [6]). While comparing our heuristic algorithm with the optimal solutions, we used a

smaller version of the Turkish network containing 16 nodes (Yaman et al. [32]).

We conducted interviews with three of the largest cargo companies operating in Turkey in

order to obtain data regarding different types of vehicles to operate on the hub network. Only

ground and air transportation are employed for small parcel delivery in Turkey. Commonly,

four basic types of vehicles are employed. Vans are operated on the allocation connections to

carry flow to be transported between demand nodes and hubs. Airplanes, trailers, and trucks

on the other hand, are operated on the inter-hub network to carry flow to be transported in-

between hubs. The capacities are 3.5, 15, 25, and 200 tons, and the fuel costs are 0.5, 1.0, 1.2,

and 6.4 TL/km, for a van, truck, trailer, and airplane, respectively. The total of purchasing

and operational costs were taken as 5,000, 364, and 309 TL for airplanes, trailers, and trucks,

respectively. As there is no real data for different types of vehicles to be operated on the CAB

data set, we used the same set of vehicles with corresponding parameter values.

We tested different values ranging between 50,000 and 150,000 TL for the fixed cost of

establishing hubs. We did not differentiate fixed costs for different potential hub locations; i.e.,

we took fcj = fc for all j ∈ H. We again used the same values for the CAB data.

For both of the data sets, two different capacities were made available for each transportation

mode depending on the maximum number of vehicles that can be served at a hub. These

capacities are referred as small and large. For the Turkish network, we additionally generated two
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sets of capacities, referred as tight and loose, each set containing again two different capacities

for each transportation mode.

Optimal solutions were obtained by solving the mathematical model using CPLEX 12.4. As

there is randomness involved in the heuristic algorithm, we took five different runs for each

problem instance. For each instance, we report the average results obtained at the end of these

five runs. All experiments were run on a HP Z600 workstation with a 2xIntel Xeon 2.40 GHz

processor and 48 GB RAM.

We initially tested our heuristic on the 16-node Turkish network. We experimented different

parameter settings for the heuristic. For the max number of solutions, we tested generating

6,000 and 12,000 solutions. For the number of hubs to be established in the initial solution (p),

we tested three different values:
√
n− 2,

√
n, and

√
n+ 2, where n is the number of nodes in the

network. The results obtained with the loose and tight capacity sets are presented in Table 1

and Table 2, respectively.

The first columns of Tables 1 and 2 list the fixed cost values for establishing hubs. Second and

third columns present the results of the optimal solution obtained by using CPLEX. Remaining

columns of the tables present results obtained with the heuristic algorithm. For each parameter

setting with the heuristic algorithm, we report the solution time in seconds as well as the percent

gap from the optimal solution. There are a total of eleven instances in each of the tables. Each

instance was run five times. The reported values in Tables 1 and 2 for each instance is the

average value obtained at the end of these five runs. The last row of both of the tables report

the average solution times and gaps obtained by the heuristic algorithm corresponding to each

column.

As expected, percent gaps from the optimal solution decreases when the algorithm searches

for more solutions. When the number of solutions generated by the algorithm was doubled from

6,000 to 12,000, the average CPU time requirement of the heuristic went from approximately 7

to 59 seconds with the loose, and from 9 to 39 seconds with the tight capacity set. However,

the improvement in the quality of the solutions was not as much. Considering all the instances

presented in Tables 1 and 2, the average optimality gaps were 0.75% and 0.63%, for generating

6,000 and 12,000 solutions, respectively.

Observe from both of the tables that the number of hubs in the initial solution affects both

the solution time and quality. The optimality gaps and solution times tend to increase when

the heuristic starts with an initial solution containing more hubs. The worst performance was

obtained when p =
√
n + 2. The performances with p =

√
n − 2 and p =

√
n, on the other

hand, were comparable. Especially with some higher fixed cost values, there are instances when
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p =
√
n obtained the lowest gaps. The average optimality gaps of all the instances listed in

Tables 1 and 2 are 0.50%, 0.62%, and 0.95%, for p =
√
n − 2,

√
n, and

√
n + 2, respectively.

When the average values are compared, p =
√
n− 2 is evidently superior.

Table 3 presents the average gaps that were obtained as a result of 660 runs with the 16-node

Turkish network under different parameter settings. Observe from the table that the optimality

gaps were slightly lower at the instances with the loose capacity set. The heuristic algorithm

performed a little better when the capacities were loose.

Table 3: Average values obtained with the 16-node Turkish network.

Capacity Solutions Average gaps (%)

set generated p =
√
n− 2 p =

√
n p =

√
n + 2

Loose 6,000 0.53 0.69 0.92

12,000 0.45 0.56 0.78

Tight 6,000 0.54 0.73 1.11

12,000 0.49 0.50 0.97

When the average gaps were compared under different p values,
√
n + 2 had the worst

performance and
√
n − 2 had the best. As expected, optimality gaps decrease when more

solutions were generated. However, there was no drastic decrease in the average optimality gaps

when the number of generated solutions were doubled from 6,000 to 12,000. In order to observe

the effects of parameters on both optimality gaps and solution times, we conducted a statistical

analysis with the heuristic algorithm. The results of this statistical analysis are provided in

Section 4.1.

For the CAB data set with 25 nodes, we tested only p =
√
n − 2 and p =

√
n, as the

performance with p =
√
n+ 2 were not satisfactory on the Turkish network. Since the number

of nodes were increased from 16 to 25, we increased the number of solutions to be generated

by the heuristic algorithm as well. We tested generating 12,000 and 24,000 solutions. Table 4

presents the results that were obtained with the CAB data set.

Observe from the third column of Table 4 that the CPU time requirement by CPLEX

increased considerably to solve the model to optimality on the CAB data set. The instance

corresponding to the fixed cost value of 50,000 could not be solved optimally in 12 hours. The

gap reported by CPLEX at the end of 12 hours was still 8%, thus, we omitted that instance from

the computational analysis. This instance clearly justifies the need for a heuristic algorithm.

On the average, the heuristic algorithm required 13 seconds for generating 12,000 and around 5

minutes for generating 24,000 solutions.

The last row of Table 4 summarizes the average gaps obtained with the CAB data. Again,
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Table 4: CAB data set solutions.
Optimal solution Heuristic algorithm

Fixed Objective Solution Generating 12,000 solutions Generating 24,000 solutions

cost function time p =
√

n− 2 p =
√

n p =
√

n− 2 p =
√

n

value (sec) Solution Gap Solution Gap Solution Gap Solution Gap

time (%) time (%) time (%) time (%)

60,000 859,086 1062 15 1.87 14 2.22 279 1.07 285 1.08

70,000 909,086 1474 13 1.27 13 1.17 298 0.98 301 1.07

80,000 959,086 1124 14 1.03 12 1.10 275 1.08 312 0.99

90,000 1,009,086 889 13 1.02 12 1.33 259 0.63 311 0.77

100,000 1,059,086 1304 12 0.85 13 1.08 285 0.74 320 0.86

110,000 1,109,086 1117 13 0.62 13 0.65 286 0.45 315 0.47

120,000 1,150,660 1012 11 0.72 13 0.67 272 0.37 311 0.40

130,000 1,190,660 1160 11 0.67 15 0.72 274 0.46 301 0.41

140,000 1,230,660 740 13 0.56 16 0.78 272 0.42 296 0.41

150,000 1,270,660 1742 14 0.64 13 0.75 270 0.31 293 0.39

Average 13 0.93 13 1.05 277 0.65 305 0.69

we had lower averages when p =
√
n − 2 compared with p =

√
n. Generating 24,000 solutions

naturally resulted in better quality solutions than generating 12,000 solutions. In the best case,

our heuristic was able to obtain solutions within 0.65% of optimality on the average. Average

gaps with the CAB data turned out to be slightly higher than the average gaps obtained with

the Turkish network.

For both of the data sets, observe from Tables 1, 2, and 4 that the quality of the heuristic

solutions are dependent on the fixed cost of establishing hubs. The statistical analysis presented

in the next section also confirms that the fixed cost has significant effects on both the solution

time and the optimality gap. We verified by comparing the optimal hub networks and hub

networks of the heuristic solution that the heuristic algorithm is able to find the optimal hub

locations and allocations in almost all of the instances. Optimality gaps usually result from

vehicle assignments. With lower fixed cost values, more hubs are established and, thus, hub

networks contain more connections resulting in higher gaps due to inefficient vehicle assignments.

One way to overcome this issue is to consider additional neighborhood structures in the vehicle

assignment phase of the algorithm. There is surely room for improvement. Nevertheless, we

believe our heuristic algorithm is able to find good quality solutions in reasonable CPU times

in its current form.

4.1 Statistical Analyses

We additionally conducted a statistical experiment to observe the effects of parameters on the

performance of the heuristic algorithm. We tested the effects of the number of hubs in the initial
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solution, number of solutions generated, set of hub capacities, and fixed costs of establishing

hubs, on both the solution times and quality. This experiment was conducted using Design-

Expert Software Version 9 considering a total of 660 runs taken with the 16-node Turkish

network.

The hypotheses for this analysis were as follows:

H0 = The factor is not significant at the 95% confidence level.

Halternative = The factor is significant at the 95% confidence level.

The critical p-values, which represent the significance level of each factor, are shown in

Table 5.

Table 5: Statistical analyses with the heuristic.

Factors
p-values

Solution time Optimality gap

Number of hubs in the initial solution (
√
n− 2,

√
n,
√
n+ 2) < 0.0001 0.0003

Number of solutions generated (6,000, 12,000) < 0.0001 0.004

Capacity set (loose, tight) < 0.0001 0.004

Fixed hub establishment cost (50,000–150,000) < 0.0001 < 0.0001

In Table 5 the first column lists the factors, the second and third columns show the corre-

sponding p-values for the effect of each factor on the solution time and optimality gap of the

heuristic solution. If the p-value of a factor is less than 0.05, the null hypothesis is rejected and

the alternative hypothesis is accepted. Otherwise, the null hypothesis cannot be rejected.

According to the results of the statistical analysis, we conclude that each of the factors that

were tested has a significant effect on both the solution time and the optimality gap.

4.2 Lower Bound

In order to comment on the solution quality of the heuristic algorithm for larger-sized instances,

one needs a good lower bound. We propose solving a relaxed version of the problem in order

to obtain lower bounds. To generate a lower bound we relaxed the integer variables in the

mathematical model which determine the number of vehicles of each type to use (zvij). Only this

set of variables were relaxed, the remaining binary variables were not relaxed. We tested the

quality of this lower bound on the optimal solutions obtained with the 16-node Turkish network

and the CAB data set. Averages of the results are provided in Table 6.

For each data set, Table 6 presents the average CPU time requirements by CPLEX to solve

both the original and the relaxed model to optimality under different fixed cost values. The last

column of the table lists the percent gap of the lower bound from the optimal value.
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Table 6: Performance of the lower bound.

Data set
Optimal solution Relaxed solution Lower bound

time (sec) time (sec) gap (%)

Turkish network – loose capacity set 134 6 0.30

Turkish network – tight capacity set 115 5 0.38

CAB data 1,162 57 0.47

The average CPU time requirement to obtain the lower bound was a few seconds for the 16-

node Turkish network, whereas, it was just less than a minute with the CAB data set containing

25 nodes.

We were able to obtain very good quality lower bounds with the proposed methodology. In

the worst case, our lower bounds were within 0.47% of the optimal on the average. On the

other hand, for the same instances, the average lower bound obtained by the LP relaxation was

84.75%.

One may utilize this lower bound for developing an exact solution methodology for the

problem. However, note that the relaxed problem is still an integer programming formulation

due to the binary variables. When the dimension of the problem is large, even the relaxed

problem could not be solved exactly. In this case, one needs to develop a solution methodology

for the relaxed problem as well, and this is beyond the scope of the current study.

In the next section, we present sensitivity analyses with the 81-node Turkish network. For

these instances, unfortunately, we could not solve the relaxed problem optimally within ten

hours using CPLEX. We used the best lower bound of the relaxed solution reported by CPLEX

at the end of ten hours to comment on the quality of the solutions we obtained with the 81-node

Turkish network. The results are presented in the next section.

5 Sensitivity Analyses with the Turkish Network

In this section, we used all the 81 nodes in the Turkish network and analyzed the resulting hub

networks under different values of problem parameters. All nodes were included in the potential

hub set.

Initially, we did a preliminary analysis with the heuristic using the 81-node Turkish network.

We found that using p =
√
n−2 = 7 hubs in the initial solution results in good quality solutions.

In addition, we observed that generating more than 75,000 solutions does not improve the

solution quality much. So, we generated a maximum of 75,000 solutions with the heuristic. The

heuristic algorithm required 15 minutes on the average to generate 75,000 solutions. We tested
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different values for the fixed hub establishment costs and the fixed costs of vehicles (the total of

purchasing and operational costs), then we observed the effects of changing these values on the

resulting hub networks.

It is computationally very demanding to compute lower bound values for all of the instances

that we tested with the 81-node Turkish network. As noted in the previous section, in order to

obtain a lower bound, we put a ten hour limit to CPLEX while solving the relaxed problem.

Unfortunately, CPLEX could not find the optimal solutions of the relaxed problem within ten

hours. We used the best lower bound of the relaxed solution reported by CPLEX at the end of

ten hours to comment on the quality of our heuristic solutions. We computed the gaps between

this lower bound and the heuristic solution for some selected instances. In these instances, the

average gap from the lower bound was 4.5%.

First, we tested different fixed cost values for establishing hubs. Similar to the analysis

we did in the previous section, we varied the fixed cost values from 50,000 to 150,000 TL in

increments of 10,000. Table 7 shows the results.

Table 7: The effects of changing fixed hub establishment costs.
Fixed Number Air hub Ground hub Number of Number of Number of

cost of hubs locations locations airplanes trailers trucks

50,000 9 1, 6, 29, 34,

35, 63

1, 6, 7, 16, 29,

34, 35, 42, 63

9 297 20

60,000 8 6, 25, 27,

34

6, 7, 16, 25,

27, 34, 35, 42

10 241 30

70,000 7 1, 6, 21, 34,

42

1, 6, 7, 21, 34,

35, 42

11 311 27

80,000 7 6, 12, 34 1, 6, 7, 11, 12,

34, 35

11 241 43

90,000 6 1, 6, 12, 34 1, 6, 12, 16,

34, 35

10 238 85

100,000 6 1, 6, 21, 34 1, 6, 21, 34,

35, 42

11 230 49

110,000 6 1, 19, 21,

34, 45

1, 19, 21, 34,

41, 45

13 223 27

120,000 6 1, 6, 24, 34,

35

1, 6, 16, 24,

34, 35

13 209 58

130,000 6 1, 6, 21, 34,

35

1, 6, 21, 26,

34, 35

14 217 29

140,000 6 6, 27, 34,

35, 42, 69

6, 27, 34, 35,

42, 69

14 215 32

150,000 4 6, 21, 34 6, 21, 34, 35 14 145 77

Table 7 analyzes the effects of changing fixed cost values on the resulting hub locations

and number of different types of vehicles purchased and operated on the inter-hub network.
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Locations of air and ground hubs listed in this table correspond to the node numbers presented

in the Turkish network data set (Beasley [6]).

There were two capacity levels available for each transportation mode: small and large. For

example, a small air hub can handle 6 airplanes whereas a large one can handle 12. There is

cost incurred for installing capacities for each transportation mode. The bold node numbers

listed under the columns reporting air and ground hub locations identify large capacity levels.

For instance, when the fixed hub cost was 100,000 in Table 7, a small capacity air hub was

established at locations 1, 6, 21, and a large capacity air hub at node 34. Similarly, a ground

hub with small capacity level was established at locations 21 and 42, whereas a ground hub with

large capacity level was established at 1, 6, 34, and 35.

When the fixed costs increase, total number of hubs tends to decrease. For each air hub

location in Table 7, a capacity for ground transportation was also installed. Actually, this is a

result that we obtained in all of our solutions. That is, air hubs were selected from among the

set of ground hub locations. This is a very realistic insight as it should be possible to employ

ground transportation between any pair of hubs in real-life.

Hub locations tend to differ with varying fixed costs. Even though fixed cost values were

the same for all potential hub locations, some locations were commonly preferred, such as 6,

34, and 35. On the other hand, there were also some nodes which was chosen as a hub only in

one instance in Table 7, such as nodes 26, 45, and 63. Commonly preferred nodes generate high

amount of flow in the Turkish network. For example, Ankara (6) and Istanbul (34) are the two

largest cities in Turkey generating the highest amount of flow and they appeared as a hub in

all of our solutions. This result is realistic as every small parcel delivery company operating in

Turkey has a hub operating both in Ankara and Istanbul.

When the fixed costs are high, less number of hubs are established and, hence, the amount

of flow concentrated at each hub is high. Consequently, hub arcs carry relatively higher amounts

of flow. When the amount of flow to be carried on a hub arc is high, using an airplane is usually

more advantageous than using trailers or trucks. Observe from Table 7 that when less number

of hubs were established, more airplanes were employed on the hub network.

According to our results, the most preferred vehicle for the Turkish network data was trailer.

This result coincides with the current networks of the three largest small parcel delivery compa-

nies operating in Turkey. The analysis presented in Table 7 may be very valuable for a company

in providing managerial insight for determining the number of vehicles of each type to purchase

and operate on the hub network.

Next, we varied the total cost of purchasing and operating vehicles to observe the effect of
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changing fixed costs of vehicles on the resulting solutions. For this analysis, we took the fixed

hub establishment cost to be 100,000. The results are presented in Table 8.

Table 8: The effects of changing fixed costs of vehicles.

Airplane- Number Air hub Ground hub Number of Number of Number of

trailer-truck of hubs locations locations airplanes trailers trucks

4000-275-225 6 1, 6, 12, 34,

35

1, 6, 12, 16,

34, 35

15 197 46

4025-300-250 6 1, 12, 34, 35,

52

1, 7, 12, 34,

35, 52

14 213 24

4050-325-275 6 1, 6, 21, 34,

35

1, 6, 21, 34,

35, 42

13 228 21

4075-350-300 6 6, 25, 27, 34 6, 25, 26, 27,

34, 35

12 221 50

5000-364-309 6 1, 6, 21, 34 1, 6, 21, 34,

35, 42

11 230 49

5025-375-315 6 1, 6, 12, 34 1, 6, 12, 34,

35, 42

10 215 68

5050-400-325 6 1, 21, 34, 35,

42

1, 16, 21, 34,

35, 42

10 233 34

5075-425-350 6 1, 6, 12, 34 1, 6, 12, 34,

35, 42

9 210 93

6000-450-375 6 6, 12, 34 6, 9, 12, 16,

34, 80

8 214 92

The fixed costs for each type of vehicle are presented in the first column of Table 8. We

ranged the fixed airplane costs from 4,000 to 6,000, trailer costs from 275 to 450, and truck costs

from 225 to 375. The combination 5000-364-309 corresponds to the values used in the previous

analyses.

In Table 8, for each combination of fixed costs, we present the total number of established

hubs, locations of air and ground hubs, and the number of vehicles of each type employed on

the hub network. Again, the bold node numbers represent hubs with large capacities.

Similar to our previous analysis, some hub locations were commonly preferred in most of

the instances, such as 6, 34, and 35. As can be observed from Table 8, even though the number

of hubs to be established is exactly the same, hub locations tend to differ with varying fixed

vehicle costs. These results clearly demonstrate the need to jointly consider hub location and

vehicle assignment decisions.

As expected, when the fixed cost of an airplane was lower, more airplanes were employed

on the hub network. At the instances presented in Table 8, the number of airplanes to be
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employed on the hub network ranged between 8–15, the number of trailers between 197–233,

and the number of trucks between 21–93. At each instance, the number of vehicles of each type

to employ on the hub network was determined considering the capacities and costs of different

types of vehicles.

When we compared our findings with the hub networks of the small cargo delivery companies

operating in Turkey, we found out that our methodology resulted in establishing less number of

hubs compared with their currently operating hub networks. Even though locations of the hubs

varied with different values of problem parameters in our results, our solutions usually contained

at least one hub from each of the seven geographical districts in Turkey. Figure 3 demonstrates

a solution on the map of Turkey.

Figure 3: Solution with the fixed cost value of 100,000 on the map of Turkey.

The solution depicted in Figure 3 corresponds to the instance with the 100,000 fixed cost

which is presented in the sixth row of Table 7. The figure shows the locations of air and ground

hub nodes, airline and ground connections on the hub network as well as the allocation of non-

hub nodes to hubs. Four air hubs (1, 6, 21, and 34) and six ground hubs (1, 6, 21, 34, 35, and

42) were established in this solution. Observe from Figure 3 that the locations of the hub nodes

are geographically dispersed in the region.

11 airplanes, 230 trailers, and 49 trucks were purchased and operated on the hub network

depicted in Figure 3. The number of vehicles of each type operated on each hub arc are presented

in Table 9.

Observe from Figure 3 and Table 9 that airplanes were operated only to and from the hub

26



Table 9: Number of vehicles of each type operated between the hub nodes in the solution depicted

in Figure 3.

Hub 1 6 21 34 35 42

node A Tra A Tra Tru A Tra Tru A Tra Tru Tra Tru Tra Tru

1 - - - 11 - - 10 - - 13 - 6 1 - 10

6 - 11 - - - 1 8 - 2 2 2 10 - 9 -

21 - 10 1 8 - - - - 2 1 3 10 - 9 -

34 1 6 2 2 6 2 3 3 - - - 14 - 14 -

35 - 7 - 10 - - 10 - - 13 - - - - 10

42 - 6 - 9 - - 7 4 - 11 - - 10 - -

node 34 (Istanbul). On the other hand, ground connections were present between each pair

of hubs. Hence, ground inter-hub network turned out to be complete, whereas, air inter-hub

network was incomplete.

Flows on the Turkish network are not symmetrical. Even though they are not symmetrical,

the values of wij and wji are very close to each other. Because of this, total number of vehicles

of each type operated on the hub arcs in each direction were close to each other. For example,

in Table 9, 11 trailers were employed between hub nodes 1 and 6 in each direction, similarly,

10 trailers operated between hub nodes 6 and 35 in each direction. This result is very desirable

from the cargo companies’ perspective as they prefer to transport the flow with the same set

of vehicles in the opposite direction the very next day. The analyses and the realistic outcomes

presented in this section show that our model and algorithm is a valuable tool for decision

making.

6 Conclusion

In this paper, we allowed using alternative transportation modes and different types of vehicles

in hub networks to be designed. The contributions of this paper are many fold. We developed

a mixed-integer programming formulation of the problem. The model determines the optimal

number of vehicles of each type to purchase and operate on the hub network; i.e., the optimal fleet

size. We modeled economies of scale correctly to reflect the trade-off between the capacities of

different types of vehicles, and the purchasing, operational and transportation costs. The model

also considers material handling costs of flow arriving to hubs with different transportation

modes. Based on real-life observations, hub capacities were defined, for the first time, as the

maximum number of vehicles of each type that can be handled at hubs.

In order to solve realistically sized instances, we developed a variable neighborhood search
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algorithm as a solution methodology for this problem. We tested our heuristic algorithm both

on the Turkish network and CAB data sets. The heuristic algorithm found good quality so-

lutions in reasonable CPU times. On the average, the heuristic algorithm was able to obtain

solutions within 0.49% and 0.65% of optimality with the Turkish network and the CAB data

set, respectively.

We conducted extensive sensitivity analyses with the 81 node Turkish network. Our results

provided managerial insights for the decisions on the locations and capacities of hubs, trans-

portation modes to serve at these hubs, allocations of non-hub nodes to hubs, and how many

vehicles of each type to purchase and operate on the hub network. The developed model and

heuristic algorithm were proved to be valuable tools for the decision makers in the design of

intermodal hub networks.

For future research, one may consider developing exact solution methodologies for the prob-

lem. Incorporating tactical decisions such as the frequency and schedules of the vehicles is

another area of research which is definitely worth pursuing. With the integration of tactical op-

erations and consideration of material handling constraints, the interdependency and complex

choreography of transportation modes can better be modeled.
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