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ABSTRACT 
 

  A previous mathematical model of ligament force-generation treated their behavior as a 
population of collagen fibres arranged in parallel. When damage was ignored in this model, an expression 
for ligament force in terms of the deflection,  , effective stiffness,  , mean collagen slack length,  , and the 
standard deviation of slack lengths,  , was obtained. We present a simple three-step method for 
determining the three model parameters ( ,  , and  ) from force-deflection data: (1) determine the equation 
of the line in the linear region of this curve, its slope is   and its  -intercept is –  ; (2) interpolate the force-
deflection data when   is –  to obtain   ; (3) calculate   with the equation          . 
 Results from this method were in good agreement to those obtained from a least-squares procedure 
on experimental data – all falling within 6%. Therefore, parameters obtained using the proposed method 
provide a systematic way of reporting ligament parameters, or for obtaining an initial guess for nonlinear 
least-squares. 
  

                                                
1 Corresponding author. 
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INTRODUCTION 
 

 Some ligaments, on a histological level, are composed of a population of collagen 

fibres arranged parallel to one-another (Chazal et al., 1985; Kumar, 2001). The primary 

function of ligaments is to maintain the structural integrity of joints by transmitting 

tensile forces between bones. A secondary, but equally important, role is sensory in 

nature, which provides proprioceptive information (Johansson, 1991; Solomonow, 2004). 

Damage to ligaments alters the stability of joints, may cause pain, and may be a catalyst 

for chronic disorders like osteoarthritis (Kumar, 2001). Because of their pivotal role in 

healthy joint function, accurate models of their force-production behavior have far-

reaching applications from improving larger scale biomechanical models to aiding 

foundational research that examines the function of ligaments. 

  Ligaments respond to tensile loading with a characteristic force-deflection curve: 

featuring a prominent toe region immediately followed by a linear region (Chazal et al., 

1985; Frisén et al., 1969a, 1969b; Rigby et al., 1959). The toe region is attributed to the 

progressive recruitment of collagen fibres as they uncrimp in resisting the applied load 

(Franchi et al., 2007). As more fibres are gradually involved in providing tension, there is 

a corresponding gradual increase in the stiffness of the ligament. As there are only a finite 

number of collagen fibres in a ligament, this process saturates as the stiffness reaches a 

constant value. With continued stretching the fibres progressively break as their 

individual tolerance is exceeded. Eventually this can cumulate into complete ligament 

rupture. This mechanism has now been represented in a model (Barrett and Callaghan, 

2017), which, when failure is ignored, encapsulates the toe and linear region behavior 

with Equation 1.  
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 Here,   is the force produced by a ligament and   is its elongation. There are 

three parameters:  , the ligaments effective stiffness;  , which describes the standard 

deviation of collagen slack lengths;   is the average collagen slack length; and        is 

the error-function.  Here we present a straightforward method for determining these 

parameters from experimental data. In addition, we attempt to disseminate the 

implications each model parameter in Equation 1 has on the resulting shape of the force-

deflection curve. 

 

METHODS 
 

2.1 A Stepwise Parameter Finding Technique 

 

With an increase in  , Equation 1 is asymptotically equivalent to the equation of a 

line with slope   and intercept    (Equation 2). This is because the first term tends to 

zero, while the term in the square brackets tends to two. This coincides with the linear 

region from the model, and thus, measuring the slope of the ligament’s linear region is 

equivalent to  . 

            (2) 
 

 This equation has an  -intercept at   – , thus, extending this line to the  -axis 

gives the value for  . Denoting the  -intercept as   , with corresponding force-value of 

  . Substituting      –  into Equation 1, the second term becomes zero and the 
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exponential in the first term becomes unity. This yields a relationship between  ,   and 

   which can be rearranged for  : 

  
      

 
 (3) 

 

 Where   , in this investigation, was obtained using third-order spline interpolation 

on the original force-deflection curve. This process is graphically illustrated in Figure 1. 

 

[Please Insert Figure 1 Here] 

 

 This method was applied to the force-deflection data from Mattucci (2011) for the 

anterior longitudinal ligament of the middle cervical spine (C4-C6) of males loaded at a 

low strain-rate (0.5 /s). Results using this stepwise procedure were compared to a 

nonlinear least-squares method fitted to the data provided by the scipy python package. 

The initial guess for the fitting algorithm were the parameters identified through this 

stepwise procedure. The linear region was pre-determined by Mattucci (2011) using the 

methods of Chandrashekar (2008). 

 

2.2 Sensitivity Analysis and Compliance Function from Equation 1 

 To perform a sensitivity analysis on Equation 1, its partial derivative was taken 

with respect to each parameter (     ), and evaluated at the parameter values obtained 

using the stepwise method (c.f. Cashaback et al., 2014). We plotted these partial 

derivatives over a range of displacements to determine which regions were more sensitive 

to changes in which parameters. Additionally, we increased and decreased each 
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parameter value by 10%, independently, and noted the corresponding change in the 

resulting force-deflection curve, to provide further analysis on these parameters. 

 Calculating tendon compliance is a crucial step in solving the differential 

equations that govern the Hill-type muscle model (Zajac, 1989). As tendons and 

ligaments are similar histologically, it stands to reason that Equation 1 may also be useful 

as a model of tendon force. We have included the compliance function calculated from 

Equation 1 in Appendix B.  

 

RESULTS 
 

 The results obtained from this simplified method compare very well to using a 

non-linear least-squares optimization (Table 1), and the resulting curves from the two 

methods agree very well with experimental data (Figure 2). 

[Please Insert Tables 1] 

[Please Insert Figure 2 Here] 

Perturbations in each parameter resulted in noted changes to the force-deflection 

curve (Figure 3). Of note, the effects of   perturbations are quite small, indicating that it 

takes a fairly substantial perturbation in   to induce notable changes. Unaltered partial 

derivatives are calculated and presented in Appendix A. 

[Please Insert Figure 3 Here] 

 

DISCUSSION 
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 The proposed method, along with a rigorous sensitivity analysis clarifies how the 

parameters in Equation 1 interact with one-another in relation to the force-elongation 

curve. For instance, the effective collagen stiffness,  , is the slope of the linear region of 

the force-deflection curve (Figure 4): exactly what has been reported in several previous 

ligament studies (Chandrashekar et al., 2008; Chazal et al., 1985; Trajkovski et al., 2014; 

Yoganandan et al., 1989). The parameter   acts as a translation of the force-deflection 

curve along the  -axis, and essentially quantifies the overall slack length of the ligament. 

This result is not surprising, as   represents the average slack length of collagen fibres in 

the underlying mechanistic model. Finally,   quantifies the “sharpness” of the toe-region, 

that is, how quickly the curve transitions from zero-force to the linear region. In 

particular, a smaller   is indicative of a more rapid transition from the toe region to the 

linear region. Together these parameters give future investigators new measures that can 

be used to compare ligament mechanics between experimental conditions. 

 The least-squares method provides parameter estimates that are averaged across 

the entire force-deflection curve, which is appealing since it does not entirely depend on 

the accuracy of two points on the force-deflection curve. To this end, the proposed 

method, at the very least, provides a good starting point for a non-linear least-squares 

optimization approach, seeing as these values are similar to those obtained by least-

squares. Using the values obtained here may provide a suitable initial guess for a 

nonlinear optimization routine to ensure that it falls in a successful local minimum. 

 Using Equation 1 provides two advantages when compared to its alternatives: an 

experimental advantage and a modelling advantage. From an experimental point-of-view, 

deriving parameters using this standardize approach allows for easier comparison 
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between studies. Currently, studies characterizing the mechanical properties of ligaments 

measure the slope of the linear region (Bass et al., 2007; Chazal et al., 1985; Trajkovski 

et al., 2014; Yoganandan et al., 1989), there have also been those which report the secant 

slope (the average rate of change in force with respect to elongation) from onset to failure 

(Przybylski et al., 1996; Shim et al., 2006). Additionally, little attention has been payed to 

the toe region, with parameter studies abstracting the force-deflection curve as either a 

piecewise-linear (Chandrashekar et al., 2008) or piecewise-quadratic (Li et al., 1999) 

approximation which does not respect its underlying mechanism. The lack of 

standardization makes it difficult to compare stiffness values across studies, and 

impossible to appraise potential differences in the toe region. The proposed method is an 

approach that can address these limitations by offering a systematic means of arriving at 

parameters, which have physical interpretation that are derived from a mechanistic model 

of ligament force generation behaviour. Secondly, using Equation 1 in biomechanical 

models is that it is infinitely differentiable. This means that it is straightforward to 

evaluate instantaneous stiffness or compliance values (see Appendix B), which may be 

useful in future biomechanical models. Since tendons and ligaments are similar 

histologically, and portray similar force-elongation curves (Gutsmann et al., 2004), 

Equation 1 may also be useful for quantifying the tendon compliance in forward dynamic 

biomechanical models. 

  The most substantial limitation of this model is its oversimplification of ligament 

histology. Indeed, ligaments are inherently more complex than bands of collagen fibres 

arranged in parallel: some have collagen fibres spanning many directions, while others 

contain a considerable amount of elastin relative to collagen. Inclusion of these 
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histologies requires a generalization to three dimensions and the inclusion of elastin as 

part of the mechanistic model. 

 
 
 

CONCLUSION 
 

 The proposed method for ascertaining ligament force-displacement parameters in 

the toe and linear regions was successful. This simple analytic method performed similar 

to a non-linear least-squares routine. It may be useful for future investigators to quantify 

characteristic parameters of these regions in ligament loading. Furthermore, it highlights 

how the parameters in Equation 1 interact in relation to the force-elongation curve.  

 

FUNDING 

Jack P. Callaghan is supported by the Tier 1 Canada Research Chair in Spine 

Biomechanics. Jeff M. Barrett is supported by an NSERC PGS-D Scholarship. 

 

CONFLICT OF INTEREST STATEMENT 

We declare that we have no financial or personal relationships with people or 

organizations which could alter the integrity of our work. 

  



  

A Procedure for Determining Parameters for a Simplified Ligament Model 
 

9 
 

APPENDIX A 

In analyzing the partial derivatives of Equation 1, it became clear that the model is 

mainly sensitive to   and   in the linear region, and   in the toe region (Figures 3 and 4). 

[Please insert Figure 4 Here] 

 

APPENDIX B 

 Equation 1 is not easily invertible. However, the derivative of its inverse 

(sometimes termed ligament or tendon compliance) can be easily computed by way of the 

Inverse Function Theorem. To begin with we have the derivative of Equation 1 with 

respect to displacement: 

  

  
 
 

 
     

   

   
     (A.1) 

 

From the inverse function theorem we have: 

  

  
  

  

  
 
  

 (A.2) 

 

And so the compliance is given by: 

  

  
 

 

      
   

   
    

 (A.3) 

 

 And this is a useful function of displacement, which are the variables that the 

differential equations which it applies to (c.f. Zajac, 1989) are cast in. 
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NOMENCLATURE 
 

  Force 

  Displacement from neutral 

  The average slack length in the population of collagen fibres. 

  The standard-deviation of slack lengths in the population of collagen 

fibres. 
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Figure 1: A graphical representation of the procedure for obtaining model parameters. Starting 
with a Force-Deflection Curve, obtained from experimental data (F(x)), continuing the line from 
the linear region to the  -axis provides - . Taking a vertical line from this point up to the original 
Force-Deflection curve gives the value   , which can be used to calculate  , with    being the 
slope of the linear region of the original force displacement data. 

 
 

 
Figure 2: Comparison of the fit between the piecewise method, least-squares and the data 
presented by Mattucci (2011). 

 
 

 
 

 
Figure 3: Response of the force-deflection curve to 10% changes in parameters. In each case, the 
black line indicates the force-deflection curve using parameters obtained from the stepwise 
procedure, and the grey lines what the curve looks like once a given parameter has been perturbed 
by 10%. On the left,   has been perturbed by 10%; in the middle, the parameter is   and; on the 
right, it is   that has undergone the perturbation. Note that changes in   yield very small responses 
on the force-deflection curve (the inset) magnifies part of the toe region where changes in   
impact the curve.  

 
 

 
 

 
Figure 4: Partial derivatives of            with respect to its parameters. 
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Table 1: Comparison of Parameters obtained from this method versus that of least-squares (      , and the coefficient 
of determination and the root-mean-squared error between each method and least-squares. 

Parameter Stepwise Method Least-Squares 
  (N/mm) 138.8 140.7 
  (mm) 0.3114 0.3302 
  (mm) -0.992 -1.011 
   0.99979 0.99987 

RMSD (N) 1.29 1.07 
 
 


