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Abstract

In the study of Systems Biology it is necessary to simulate cellular processes and chemical

reactions that comprise biochemical systems. This is achieved through a range of mathe-

matical modeling approaches. Standard methods use deterministic differential equations,

but because many biological processes are inherently probabilistic, stochastic models must

be used to capture the random fluctuations observed in these systems. The presence of

noise in a system can be a significant factor in determining its behavior. The Chemical

Master Equation is a valuable stochastic model of biochemical kinetics. Models based on

this formalism rely on physically motivated parameters, but often these parameters are not

well constrained by experiments. One important tool in the study of biochemical systems

is sensitivity analysis, which aims to quantify the dependence of a system’s dynamics on

model parameters. Several approaches to sensitivity analysis of these models have been

developed. We proposed novel methods for estimating sensitivities of discrete stochas-

tic models of biochemical reaction systems. We used finite-difference approximations and

adaptive tau-leaping strategies to estimate the sensitivities for stiff stochastic biochemical

kinetics models, resulting in significant speed-up in comparison with previously published

approaches for a similar accuracy. We also developed an approach for estimating sensitivity

coefficients involving adaptive implicit tau-leaping strategies. We provide a comparison of

these methodologies in order to identify which approach is most efficient depending of the

features of the model. These results can facilitate efficient sensitivity analysis, which can

serve as a foundation for the formulation, characterization, verification and reduction of

models as well as further applications to identifiability analysis.
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Chapter 1

Introduction

At the intersection of the fields of molecular biology and chemistry is biochemistry: the

study of chemical processes of living organisms. Due to the complex behaviour in the

dynamics of biochemical systems, rigorous mathematical models and powerful simulation

techniques are necessary to better understand them. Various mathematical approaches can

be used to model chemical systems to varying degrees of accuracy. Traditional approaches

use deterministic models for the time evolution of chemical systems. Although this method

is appropriate in many cases, stochastic models must be used to better capture the random

fluctuations observed in chemical systems [61].

Biochemical systems are generally modelled using systems of differential equations which

describe the evolution of the systems through its various parameters. When appropriate,

a system of ordinary differential equations may be used to describe a deterministic model.

However, in the presence of random fluctuations in the system, a probabilistic approach is

1



better suited. The presence of noise in a system can be a significant factor in determining

the system’s behaviour. This cellular noise is due to the stochastic nature of chemical pro-

cesses in biochemical systems [28, 78]. Thus, stochastic models and simulation techniques

are important mathematical tools in the analysis of biochemical systems.

There are many instances where deterministic approaches fail and stochastic models are

necessary for modelling biochemical systems. In living cells, random fluctuations become

prevalent where the molecular populations and volumes can be small and readily subject

to noise. For example, in some genetic switching a system may switch between two steady

states, but a deterministic model can only converge to its single steady state. Therefore,

stochastic models can be used to capture the noise responsible for genetic switching. From

these examples and many more, it is evident that stochastic methods are essential for the

study of biochemical systems.

The Chemical Master Equation (CME) [38] is a discrete stochastic model of biochemical

kinetics describing the time evolution of the probability that the system will be in any given

state. The state of a biochemical system can be described as the number of molecules of

each biochemical species present in the system. In this way the change in the system state

can be modelled probabilistically through a Markov process. Solutions to the CME can

be probabilistically simulated using the stochastic simulation algorithm (SSA). The SSA,

also known as Gillespie’s algorithm [41], is a Monte Carlo method and is often used for

simulating the dynamics of well-stirred biochemical systems [41, 43]. Although the SSA

is an exact way of generating solutions to the CME, the computational resources needed

for the SSA become impractical when applied to many biochemical systems encountered

in practice.
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The SSA requires the simulation of every reaction event that occurs in the system over

some time. Therefore, when the population numbers are large and there are many reac-

tions occurring over some time interval, the SSA may become computationally expensive.

To overcome this, Gillespie proposed the tau-leaping method in order to more efficiently

simulate biochemical systems [42]. In the tau-leaping method, the step-size τ is chosen

small enough such that the reaction rates are almost constant. Then, if many reactions

occur during these time steps, a more efficient simulation can be achieved.

In 2000, Gibson and Bruck [35] offered an improvement to Gillespie’s algorithm known

as the Next Reaction Method, which is exact for the CME. By utilizing an appropriate

data structure for storing the propensities and avoiding unnecessary updates, the time

complexity of the algorithm is improved, leading to a reduction of the computational cost.

The CME and the strategies used to simulate its solution such as the SSA and tau-leaping

method are discrete stochastic models. In connection to the continuous and deterministic

models of biochemical systems, the Chemical Langevin Equation (CLE) provides a natural

transition between the two models. The CLE [37] is a continuous, stochastic model which

yields the deterministic model as a limiting case, and is justified in its use when the

population numbers are large.

Stiff biochemical systems have two well separated time scales: a slow time scale and a fast

time scale, where the fastest modes are stable [93]. Since the explicit tau-leaping method

is limited to the fastest time step, it is not suitable for simulations of stiff systems. The

explicit tau-leaping strategy for discrete stochastic systems is similar to the explicit Euler

method for ordinary differential equations. As such, the explicit tau-leaping method shows
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similar instability as the Euler method when taking large time steps in a stiff biochemical

system.

To overcome this instability at large time steps, the implicit tau-leaping technique was

proposed by Rathinam et al. [93]. This method utilizes time steps that are larger than

those of the explicit tau-leaping strategy.

The implicit tau-leaping strategy produces an accurate approximate solution for the slow

manifold and for the mean of the fast variable on the slow manifold. This solution is

comparable to the solution produced by the explicit tau leaping method [93]. Another

property of the implicit tau-leaping strategy is that it may dampen the noise for some

systems, as they reach a steady state.

Characteristics exhibited by systems can be described by mathematical methods. System

behaviour depends on parametrization. These behaviours or states are outputs affected by

many input parameters. This in turn brings the concept of parametric sensitivity which

is an important tool in the study of biochemical systems. Using parametric sensitivity,

we can study the effect of variations in input parameters on system behaviour [116] and

measure the parametric sensitivity coefficient of systems. Moreover, when some reactant

amounts in a system are small (as is the case for typical biochemical systems) and noise is

present in the system, stochastic models must be used for the sensitivity analysis.

If large changes in a system’s outcomes occur when there is a small change in a certain

input value of a parameter, then the system is highly sensitive to the value of the param-

eter. In chemical reaction models, relevant input parameters are subject to uncertainties.

Reaction kinetics, thermodynamic equilibria and transport properties are measured exper-
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imentally or estimated theoretically [116]. Furthermore, initial and operating conditions

such as initial amounts for each species can change in response to uncertain environmental

reactions. It is therefore important to identify and understand the sensitivity to differ-

ent parameters affecting a system’s behaviour. Useful insight can then be gained about

the model regarding dynamics and even help inform the model’s own development and

accuracy.

A number of approaches to sensitivity analysis of stochastic discrete models of biochemical

kinetics have been developed [2, 46, 96]. Most of the techniques developed for approximat-

ing parametric sensitivities for these models involve a finite-difference estimator, such as

[E(f(Xc+h(t))) − E(f(Xc(t)))]/h, where h represents a perturbation, c is the parameter

of interest, X is the state of the biochemical reaction system, f is the output function of

interest and E the expectation value. If the mean abundance of species is the quantity of

interest, then f(X) = X . Once the mean of the abundance is estimated accurately, the

variance of the abundance of the species can then be evaluated by the choice of f(X) = X2.

This finite-difference estimator (which is discussed further in Section 3.2.2) approximates

the local sensitivity of the expected value of the quantity f(Xc(t)) with respect to a param-

eter c, given a polynomial function f . (Note that higher-order moments can be determined

by appropriate combinations of expected sensitivities). Explicitly, the finite difference es-

timator takes the difference between a nominal system (with parameter value c) and the

perturbed system (with parameter value c+ h) at each time, providing a temporal profile

of system sensitivity by the end of the simulation.

The Common Random Number (CRN) method (further described in Section 3.5.1) intro-

duced by Rathinam et al. [96] employs Gillespie’s SSA with a shared stream of random
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numbers to generate the nominal and perturbed trajectories. A result of sharing a common

random number by both nominal and perturbed trajectories is the reduction of variance

for the estimator. Consequently, better accuracy of the estimator is achieved for the same

computational cost.

The Common Reaction Path (CRP) [96] strategy (which is described in Section 3.5.2) ap-

plies the Random Time Change (RTC) algorithm (described in Section 2.7.2) with common

random number stream to simulate the sample paths. Like the CRN, the consequence of

sharing a common random number stream reduces the variance for the estimator.

The Coupled Finite Difference (CFD) method, proposed by Anderson in [2], simulates

the coupled trajectories with a version of the next reaction method [35]. This sensitivity

estimator is based on the tight coupling between the nominal process, Xc(t), and the

perturbed process, Xc+h(t). Numerical examples demonstrate that the CFD produces the

smallest variance among these finite-difference estimators (see [2] for more details) which

is shown in Section 3.6.

Another sensitivity analysis method for discrete stochastic processes was developed by

Gunawan et al. [46]. Their method is based on the density function sensitivity. In their

work, the authors used an analogue of classical sensitivity and the Fisher Information

Matrix. They compared the deterministic and discrete stochastic analysis when applied to

two different models. The importance of applying an appropriate sensitivity analysis was

demonstrated in their work in relation to the dynamics of the given models.

In Section 3.6, we provide a comparison for the accuracy of the CRN, CRP and CFD meth-

ods on a range of model types. These techniques are based on exact stochastic simulation
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algorithms to generate the trajectories.

We developed a novel finite-difference estimator that utilizes an approximate stochastic

simulation strategy to generate coupled paths, which we called the Coupled Tau-Leaping

scheme (CTL) [83], further discussed in Chapter 4 . To estimate the local sensitivities for

stiff biochemical systems, our novel method [83] is computationally efficient for moderately

stiff systems. Our strategy couples the nominal and perturbed processes in a manner similar

to the CFD method. The CFD scheme couples paths which are in exact agreement with the

Chemical Master Equation (CME), whereas our approach couples paths that are obtained

using the (approximate) explicit tau-leaping method. Our CTL algorithm makes use of

the widely used step-size selection strategy developed by Cao et al. [14] for the explicit

tau-leaping method. Our method applies this efficient tau-selection procedure to both the

nominal and the perturbed trajectories.

We developed another novel algorithm which we called the Coupled Implicit Tau-leaping

(CIT) [84] for estimating local sensitivities that is computationally efficient when applied

to moderately stiff to stiff stochastic biochemical systems. This novel strategy (CIT) is

described further in Chapter 5. In the CIT sensitivity method, the coupling of the nominal

and perturbed processes is similar to that employed by the CFD method [2]. However,

our approach couples paths that are obtained with the (approximate) implicit tau-leaping

strategy, whereas the CFD method couples paths that are in exact agreement with the

Chemical Master Equation (CME). For an efficient implementation of the implicit tau-

leaping scheme on the nominal and perturbed trajectories, the CIT method makes use of

the state-of-the-art step-size selection strategy introduced by Cao et al. [15].
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An effective model of a physical system can be used to predict how it will behave. The

mathematical model of a physical system should be constructed such that a unique set of

parameters can be found to parameterize the model in a way that is consistent with observ-

able data [4]. It is important that the model can be used to simulate results comparable to

the actual observations. Identifiability analysis can be utilized for assessing the confidence

of the estimated parameter values. A model is identifiable if we can theoretically discover

the true values of the model’s parameters by taking an infinite number of observations

from it [99]. Generally, identifiability (analysis) consists of two types of analysis [4]. First,

structural identifiability analysis will be employed to investigate the theoretical possibility

of finding a unique (globally or locally) set of parameter values that are most similar to

the observations. Second, practical identifiability investigates the practical possibility of

finding a unique (globally or locally) set of parameter values that are most similar to the

observations.

The practical idenitifiability analysis is very important in real life situations due to limited

amount and quality of experimental data [99]. In some systems which are very complex

(highly non-linear), obtaining the true values of the parameters may not be possible. How-

ever, in these situations we may obtain quality information about the system, even if the

parameter values are not true. Finally, we present an identifiability approach for stochastic

models to approximate the Fisher Information Matrix (FIM) by constructing the sensitivity

matrix and using it as an identifiability tool to assess the quality of the estimated param-

eter values and finding the confidence intervals for true values of the model parameters.

This is described further in Section 6.5 of Chapter 6.

This thesis is organized as follows. Chapters 2 presents the background on stochastic

8



modelling and simulation of well-stirred biochemical kinetic systems. In Chapter 3, we

describe the established finite-difference approaches to estimating parametric sensitivities

for the Chemical Master Equation (CME), with numerical experiments to illustrate their

performance, by application to some models of simple biochemical networks. In Chapters 4

and 5 we propose new finite-difference strategies for estimating the sensitivity coefficients,

based on the adaptive explicit and implicit tau-leaping methods, respectively. In Chapters 4

and 5, we also present the advantages of our sensitivity estimation methods compared to

previously published finite-difference based sensitivity analysis techniques on systems which

are mildly stiff to stiff. In Chapter 6, we describe identifiability analysis and illustrate it

with applications to some simple model systems. Lastly, in chapter 7 we summarize our

results and discuss several future research projects.
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Chapter 2

Stochastic Models of Biochemical

Kinetics

2.1 Introduction

Many important biological processes have been successfully studied using the techniques of

stochastic modelling and simulations. Stochastic models are useful for accurately describing

the biochemical system dynamics, in particular for systems with low molecular amount of

some species. A widly used stochastic model of well-stirred biochemical systems is the

Chemical Master Equation [38]. The CME is a system of ordinary differential equations.

One ODE represents the evolution of each possible state of the system. In this model, the

continuous time evolution of a system state changes probabilistically through a Markov

process. It is a discrete stochastic model of biochemical kinetics. The molecular numbers
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of each chemical species present in the system describes the state of the system.

The dimension of the CME depends on the total number of possible states of the system,

which inturn depends on its molecular count. Therefore, the CME is often of very high

dimension and is analytically solvable for just a few simple systems. The stochastic simula-

tion algorithm (SSA), known as Gillespie’s algorithm is a Monte Carlo simulation technique

which generates trajactories in exact agrement with the CME. The exact Random Time

Change (RTC) algorithm [1, 25] can also be used to simulate the sample paths of the CME

model. If the molecular amounts of the species in the systems are large, the silmulations

becomes computationally expensive. Gillespie introduced an approximate method called

tau-leaping [42], in which time steps are selected dynamically to skip over many reactions

when accuracy allows.

The numerical strategies presented above, such as the SSA and the tau-leaping method,

apply to the discrete stochastic model of well-stirred biochemical systems, the CME. The

Chemical Langevin Equation (CLE) [37] provides a reasonable transition between the

discrete stochastic and the deterministic continuous models of biochemical systems. The

stochastic continuous CLE model is valid to use for larger molecular populations in each

species.

2.2 Deterministic vs Stochastic Approaches

Biological processes may be modelled deterministically or stochastically, depending on the

dynamics of the system. A deterministic model describes the evolution of a system in a
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predictable manner, whereas a probabilistic description is provided in a stochastic model,

which take into account the inherent randomness of the biochemical system. That is,

given some input data and parameters for a system, a deterministic model provides a

unique evaluation in time of the system. By contrast, a stochastic model yields a variable

system output.

One important class of problems where a deterministic model is suitable consists of bio-

chemically reacting systems with very large molecular numbers of each species. For these

systems, the average behaviour of the system is considered. Thus, the evolution can be

described in a predictable manner. However, when only small numbers of some the molec-

ular species exist in the system, the fluctuations may be significant and a stochastic model

is needed to account for the randomness. Consequently, a deterministic behaviour can be

understood as a limiting case of a stochastic behaviour, when the number of molecules

of each species is large. In Figure 2.1, we illustrate the difference between the stochastic

simulation versus the deterministic simulation of the evolution in time to a steady state for

the Michaelis-Menton model, described in Section 2.11.1. The SSA algorithm described in

Section 2.7.1 has been used for this stochastic simulation.

2.3 Noise and Robustness

The random variability in quantities that arise in cellular biology is referred to as noise [62].

This noise is defined in two ways. Intrinsic noise refers to the inherent stochasticity of

biochemical processes within a single cell, such as binding, transcription, and transla-

tion [28, 78]. Extrinsic noise refers to the variations in the states of components between
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Figure 2.1: Stochastic plot vs. deterministic plot. Evolution in time for steady state.

different cells, such as the variations between cells in the expression of a specific gene.

Environmental parameters like temperature, pH, and other kinetic parameters [90] are

also responsible for extrinsic noise. Cellular noise may play an important role when some

species have a small number of molecules. The probabilistic behaviour of a system is due

to the presence of intrinsic and/or extrinsic noise [20, 86, 87, 120]. Both types of noise

can lead to fluctuations at the single cell level and thus result in cell-to-cell variability.

Identifying the sources of noise is often difficult to do in practice.

The robustness of a system is its ability to maintain its functions in the presence of

noise [68]. Robustness is necessary for a system to function with unreliable components in

the presence of noise [71]. In this regard, it is believed that evolution can be responsible

for selecting and preserving robust traits in a system. This is an example of a system-level

phenomena that is not easily explained in terms of only a system’s individual components.
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This approach of attempting to understand biological systems as a whole is the focus of

System Biology [54].

2.4 Markov Processes

A stochastic process represents a random variable which evolves in time, either discretely

or continuously. A biochemical system can be modelled stochastically when its system

state can be regarded as a random variable. In the special case when the time evolution of

the state at any particular time only depends on the current state of the system, a Markov

process is used to model the systems behaviour [25, 39]. In a Markov process, provided

that the present state of the system is known, the future system state of the system can

be determined independent of any past states.

More precisely, let S be the state space of a system and let X(t) ∈ S represent the

state of the system for discrete time steps t = 0, 1, 2, . . . . For some subset A ⊆ S, let

P (X(t + 1) ∈ A|X(t) = x) denote the probability that X(t + 1) ∈ A provided that

X(t) = x. Then a Markov process can be defined as one that satisfies

P (X(t+ 1) ∈ A|X(t) = x,X(t− 1) = xt−1, ....X(0) = x0) = P (X(t+ 1) ∈ A|X(t) = x),

for all x, xt−1, ...., x0 ∈ S. Thus, knowing any of the past states, X(t − 1), X(t − 2), . . . ,

does not yield any additional information than only knowing the current state X(t), in

determining the future state X(t+ 1).
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In the continuous setting, with t ∈ [0,∞), a Markov process is defined as one that obeys

P (X(t+ dt) = y|X(τ) = x(τ),∀τ ∈ [0, t]) = P (X(t+ dt) = y|X(t) = x(t)),

for states x(τ) ∈ S where τ ∈ [0, t]. Continuous time Markov processes are also called

diffusion processes [48].

In the time-independent case where P (X(t + 1) ∈ A|X(t) = x) does not depend on time,

the probability will simply be written as

P (X(t+ 1) ∈ A|X(t) = x) = p(x,A),∀t.

2.5 Stochastic Chemical Kinetics

In what follows, a presentation of the concepts used in mathematically modelling of ho-

mogeneous biochemical systems will be given, without providing the complete rigorous

mathematical details. Thus, consider a chemical process in which N different chemical

species, or types of molecules, can interact in M different kinds of chemical reactions. A

simple example of one such kind of reaction could be the process in which a molecule of

species A and a molecule of species B react to create a new molecule of some other chemical

species C. In this way, the state of a system can be expressed by specifying the number of

molecules there are of each species at a particular moment in time. This approach bene-

fits from being computationally cheaper in trying to calculate the systems dynamics when

compared to the more general molecular dynamics approach. In the molecular dynamics
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approach, the individual positions and velocities are tracked in order to account for the var-

ious collisions and interactions that may results between molecules. However, the spatial

information necessary to specify particle trajectories makes computations involving them

computationally expensive. Being concerned with the amounts of the chemical species,

without regard to this spatial information, is justified as a simplification when considering

well-stirred biochemical systems. These are systems with the property that molecules of

any type are uniformly spread throughout the reaction volume. These considerations are

further justified by also assuming that the system is in thermal equilibrium and the volume

of the domain is constant.

Let t be some moment in time, and let Xi(t) ≥ 0 be an integer denoting the number of

molecules of species type i present in the system at some time t. Then, the state of the

entire system will be represented as the state vector X(t) = [X1(t), X2(t), ..., XN(t)]T .

The evolution of the state vector X(t) depends on the reactions that take place from one

moment to another. Since this evolution depends on the probability that a certain reaction

will take place, the resulting state of the system is also probabilistic and usually modelled by

a random variable. The Chemical Master Equation, a set of ordinary differential equations

(ODEs), describes the system’s evolution in this way. In the CME, the kth ODE gives the

probability that the system will be in the kth possible system state at time t. The dimension

of this system of ODEs is given by the number of all possible states that the system under

consideration can be in, given the initial state. Thus the dimension of this ODE system

is generally very large in practice and infinite for open systems. The dimension in turn

depends on the total number of molecules present in the system and on the nature of the

relevant chemical reactions.
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Since the CME is a system of ODEs of very large dimension for many systems considered in

applications, it is difficult to analyze this model either analytically or computationally. One

way of computing solutions to the CME indirectly is by using the stochastic simulation

algorithm (SSA), also known as Gillespie’s algorithm [41] which is discussed further in

Section 2.7.1. Instead of computing complete probability distributions over the state space

as the CME is designed to do, the SSA avoids this and merely computes some state

trajectory that is sampled from these distributions in such a way that the realized state

is computed with probability in accordance with the CME’s distributions. Despite being

easily implemented, the SSA is inefficient when reactions occur frequently. However, by

choosing some time steps τ which leap over many reactions and then updating the state

according to what reactions took place over this step, the SSA can be speed-up with only

a minor loss in accuracy. This approximation scheme is referred to as the tau-leaping

strategy.

A simplified model is the Chemical Langevin Equation (CLE) a system of N stochastic

differential equations, where N is the number of different chemical species. The CLE differs

from the CME model in several respects. As just stated, the dimension of the CLE is N

as opposed to the number of all possible states in the case of the CME. Moreover, instead

of the molecule numbers Xi(t) only taking integer values, they now take on real number

values in the CLE. Thus, the CLE describes the evolution of a Markov process continuous

in space as opposed to a Markov process discrete in space used in the CME. The CLE is

easier to analyze and cheaper to solve numerically than the CME. The CLE model is valid

in the regime of large molecular amounts.

Even further approximations of the CME can be made by considering only the deterministic
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parts of the CLE—obtaining an N -dimensional system of ODEs called the reaction rate

equations (RRE). In doing so, this approach ignores certain fluctuations that may be

present in the CLE. When compared to the CME and CLE, the RRE are readily solved

using numerical integration techniques. The RRE model is valid when the thermodynamic

limit (which is discussed further in Section 2.8) applies.

2.6 Chemical Master Equation (CME)

A derivation of the Chemical Master Equation will be presented here. Consider a system

with N chemical species labelled as S1, S2, . . . , SN that can take part in M different of

chemical reactions. In what follows, only two kinds of reactions will be considered: uni-

molecular reactions which involve a single reactant molecule, and bimolecular reactions

that involve two reactant molecules.

Let X(t1) ∈ RN be the state vector of a system at some time t1 with N chemical species

and M permissible reactions. Suppose only a single reaction takes place e.g. Rj in the time

interval [t1, t2]. Then the resulting state X(t2) can be described by introducing the state-

change, or stoichiometric, vector νj ∈ RN that accounts for the change in state. There is

a corresponding vector νj for each reaction Rj for j = 1, 2, ...,M . Note that the matrix

formed by taking its columns to be the state change vectors νj is called the stoichiometric

matrix. In this way, if the jth reaction occurred during the time interval [t1, t2], then the

resulting state is given by X(t2) = X(t1) + νj.

Now returning to the general setting, to describe the dynamics of the system provided the
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initial state X(0) = x0 is known, it is necessary to compute the probability P (x, t) of the

system to be in the particular state X(t) = x at some time t. This probability will depend

on the likelihood of a certain reaction occurring. For each reaction Rj, let aj(X(t)) be

its propensity function, defined as aj(X(t))dt is the probability of the jth reaction taking

place during the time interval [t, t+dt). Depending on the type of reaction, the propensity

for the jth reaction is given by

First Order: Xm → products, aj(X(t)) = cjXm(t)

Second Order: Xm +Xn → products, aj(X(t)) = cjXm(t)Xn(t)

Dimerization: Xm +Xm → products, aj(X(t)) = cj
1
2
Xm(t)(Xm(t)− 1).

In each case, it is seen here that the propensity is proportional to some combinatorial factor

involving chemical species numbers Xi(t) since the likelihood of a certain reaction taking

place depends on the number of available reactants at that time. The proportionality

constant cj characterizes the particular reaction Rj by functioning as a scaling factor.

Let us define P (y, t) to be the probability that X(t) = y if X(t0) = x0. Suppose the

probability P (y, t) is known for any state y at time t. Consider a time interval [t, t + dt)

where dt is taken to be sufficiently small so that at most only a single reaction occurs during

the time interval [t, t+ dt). Now, suppose that at time t+ dt the system happens to be in

the state x, that is X(t + dt) = x. This could occur in the following ways. Trivially, one

way is if the system at time t was already in the state X(t) = x and no reaction occurred in

the interval [t, t+dt) so that the system remains in the state x at t+dt. If the jth reaction

took place during the time interval [t, t + dt), then the only way the state X(t + dt) = x

could result at time t+ dt is if the system was originally in the state X(t) = x− νj.
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Let A be the event where the state of the system at time t + dt is x. To formally derive

an equation for the probability P (A) of the event A occurring also consider the events

B0, B1, . . . , BM+1. Namely, let B0 be the event that the state of the system is x at time

t. For 1 ≤ j ≤ M , let Bj correspond to the event that the system is in the state x − νj

at time t. Lastly, let BM+1 be the event where the system is in any other state at time t.

These events are disjoint so only one event can happen, as well as exhaustive, so at least

one of them must occur. Thus, the probability of event A occurring is given by the law of

total probability:

P (A) =
M+1∑
j=0

P (A|Bj)P (Bj), (2.1)

where P (A|Bj) is the conditional probability of event A occurring given that Bj happens.

Observe that, by definition of the propensity functions,

P (A|Bj) = aj(x− νj)dt, 1 ≤ j ≤M. (2.2)

Now, since either a reaction will happen or not happen, it must be the case that the sum

of these probabilities is 1. This implies that

P (A|B0) = 1−
M∑
j=1

aj(x)dt. (2.3)

Recall that BM+1 is the event where the system is in some state that cannot lead to the

desired state x in a single reaction. Therefore, the conditional probability of the event A
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happening at time t+ dt provided that BM+1 was the case at time t is just

P (A|BM+1) = 0. (2.4)

Using equations (2.2), (2.3) and (2.4), together with the definition of P (x, t), in (2.1) allows

the probability P (A) = P (x, t+ dt) to be expressed as

P (x, t+ dt) =

(
1−

M∑
j=1

aj(x)dt

)
P (x, t) +

M∑
j=1

aj(x− νj)dtP (x− νj, t).

Then upon rearranging this expression, it follows that

P (x, t+ dt)− P (x, t)

dt
=

M∑
j=1

[aj(x− νj)P (x− νj, t)− aj(x)P (x, t)].

In the limiting case where dt → 0 the left-hand side of this equation is precisely the time

derivative of P (x, t) so that

dP (x, t)

dt
=

M∑
j=1

[aj(x− νj)P (x− νj, t)− aj(x)P (x, t)]. (2.5)

For each state x that could have been considered for the system, there is an equation of

the form (2.5). The complete set of such equations gives a system of linear ODEs known

as the Chemical Master Equation. As previously mentioned, the dimension of this system

of equations is often very large in practice and typically infinite for open systems.

The function P (x, t) can be determined using the CME. Numerical solutions to the CME

are generally difficult to compute, and the CME can be solved analytically for only a few
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simple closed systems.

2.7 Simulation Algorithms

2.7.1 Stochastic Simulation Algorithm (SSA)

The stochastic simulation algorithm (SSA) [41] offers a means to overcome the computa-

tional barrier present in the CME due to its large dimension. The SSA accomplishes this by

only computing single realizations of the state in accordance to the underlying probability

distribution, as opposed to computing the entire distribution.

For purposes of deriving the SSA, define the quantity P0(τ |x, t) to be the probability that

no reaction takes place in the time interval [t, t + τ) provided that the state at time t is

X(t) = x. Now consider partitioning the infinitesimally extended time interval [t, t+τ+dτ)

into the two intervals [t, t+ τ) and [t+ τ, t+ τ +dτ). Moreover, assume that what happens

over the first interval, [t, t + τ), is independent of what happens over the later interval,

[t+ τ, t+ τ + dτ). In this way, the probability P0(τ + dτ |x, t) that no reaction takes place

over the extended interval is determined by the probabilities P0(τ |x, t) and P0(dτ |x, t+ τ)

by taking their product since the two events are independent.

Now, since the probability of no reaction happening over a particular interval is complement

to the probability of any reaction happening during that interval,

P0(dτ |x, t+ τ) = 1−
M∑
k=1

ak(x)dτ.
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Therefore,

P0(τ + dτ |x, t) = P0(τ |x, t)
(

1−
M∑
k=1

ak(x)dτ

)
,

which can be alternatively expressed as

P0(τ + dτ |x, t)− P0(τ |x, t)
dτ

= −asum(x)P0(τ |x, t)

where asum(x) :=
∑M

k=1 ak(x) has been introduced for notational convenience.

Then by taking the limit dτ → 0 in the preceding expression a linear ODE is derived,

which with the initial condition of P0(0|x, t) = 1, has a particular solution of the form

P0(τ |x, t) = e−asum(x)τ . (2.6)

With this in mind, consider the probability P (τ, j|x, t) of the conditional event where no

reaction occurs in the first interval [t, t + τ) and only the jth reaction occurs in the later

interval [t+ τ, t+ τ + dτ):

P (τ, j|x, t)dτ = P0(τ |x, t)aj(x)dτ. (2.7)

We assumed that dτ is small enough that at most one reaction may happen during dτ . Upon

substituting (2.6) into (2.7) this probability is then given by P (τ, j|x, t) = aj(x)e−asum(x)τ ,

which can equivalently be expressed as

P (τ, j|x, t) = (
aj(x)

asum(x)
)(asum(x)e−asum(x)τ ). (2.8)
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The probability P (τ, j|x, t) can be interpreted as the joint density function of two random

variables, one corresponding to the time to the next reaction, τ , and the other for the index

of that reaction.

Here j is called the next reaction index. The probability of choosing the jth reaction is

proportional to its propensity aj(x). The other random variable represents the time index

representing the time until the next reaction; it is an exponential random variable with

mean 1
asum(x)

. It has the density function asum(x)e−asum(x)τ .

The SSA is constructed so that it simulates the time and reaction index by sampling a

uniform distribution over (0, 1). Assuming state X(0) = x0, the steps of the SSA are

outlined below:

1. At time t, compute the propensities {ak(X(t))}Mk=1 and their sum

asum(X(t)) :=
∑M

k=1 ak(X(t)).

2. Simulate two independent uniform (0, 1) random numbers, ξ1 and ξ2.

3. Select j to be the smallest integer which obeys the condition∑j
l=1 al(X(t)) > ξ1asum(X(t)).

4. Take τ = ln(1/ξ2)/asum(X(t)).

5. Set X(t+ τ) = X(t) + νj and update from t to t+ τ .

6. Return to step 1 or else stop the simulation.

The simulation will terminate either when t reaches the final time or when some chemical

species is larger than a specified upper or lower bound.
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For comparing the SSA and the direct solution of the CME, recall that the CME is gen-

erally intractable computationally in practice. Similarly, even though the SSA is readily

implemented it too lacks computational efficiency. To understand where the computational

difficulty may arise in the SSA, observe that the time step τ used in the algorithm depends

inversely on the quantity asum(x) which increases as the population numbers grow. Gen-

erally speaking however, perhaps this is to be expected since any algorithmic procedure

that requires simulating the events individually will usually be inefficient.

2.7.2 Random Time Change (RTC)

The Random Time Change (RTC) algorithm [1, 25, 96] is another stochastic simulation

method which has exact agreement with the CME. Hence, it can be used as an alternative

to simulate the sample paths of the CME models that were discussed in Section 2.7.1. It

provides each reaction in the system with its own internal time. The internal time Γj(t) of

the reaction channel Rj is defined by

Γj(t) =

∫ t

0

aj(X(s))ds. (2.9)

The number of firings of the j-th reaction in the interval [0, t] may be represented by

Yj(Γj(t)), where Yj are independent unit rate Poisson processes, for j = 1, . . . ,M . Conse-

quently, the system state X at time t is given by

X(t) = X(0) +
M∑
j=1

νjYj (Γj(t)) . (2.10)
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The RTC method can be implemented as follows [96]. Let the internal times at which

reaction Rj occurs, i.e. the jump times of the Poisson process Yj, be denoted by Ijl (such

that Ij1 < Ij2 < Ij3 < . . .). For each reaction channel, define Ij+(t) as the time at which the

reaction will occur next:

Ij+(t) = min{Ijl |Γj(t) < Ijl , l = 1, 2, . . . }.

Considering all reactions in the network, let Ti indicate the physical time at which the

ith reaction event occurs; let Ji be the index of the corresponding reaction channel. Note

from (2.9) that Γj(t) is piecewise linear, with linear growth at rate aj(X) between firing

events. Thus, at time Ti, the time until the next firing event is given by

∆T = Ti+1 − Ti = min

{
Ij+(Ti)− Γj(Ti)

aj(X(Ti))
, j = 1, . . . ,M

}
.

The corresponding reaction index Ji+1 is the index j for which the minimum is achieved.

The random time change algorithm can thus be implemented as follows

1. Initialize Ij+ = Ej, unit exponential random numbers for j = 1, . . . ,M , and set

T0 = 0.

2. At each reaction time Ti, compute the propensity function, aj(X(Ti)), for each reac-

tion.

3. Evaluate ∆T . Set j∗ to be the index of the minimum.

4. Update the state X(Ti+1) = X(Ti)+νj∗ and the time Ti+1 = Ti+∆T , and increment
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each internal time Γj by aj(X(Ti))(∆T ).

5. Increment Ij
∗

+ by a unit exponential random number Ej∗ .

6. Increment the index i. Return to step 2 or else stop the simulation.

The benefits of the RTC algorithm are three-fold. First, many algorithms and statistical

techniques can be formulated by its explicit representation. Second, the RTC can be used

in the context of a multi-level Monte Carlo simulation for biochemical kinetic systems to

produce an unbiased estimator to couple different versions of processes. This can reduce the

computational cost. Third, the RTC can be used to approximate parameter sensitivities

by finite-difference methods, which is discussed in Section 3.5.3.

2.7.3 Improvements: Tau-Leaping Method

Since the SSA algorithm is often computationally expensive in solving the CME, a more

efficient method is desirable. The tau-leaping method, which was introduced by Gillespie

in 2001 [42], offers a more practical algorithm that produces results without compromising

too much of the accuracy. The SSA has to deal with simulating every reaction of the

system, and is more costly if the system under consideration involves many molecules and

first reactions. If the propensity aj(x) is large, then the time step τ to the next reaction

Rj will be small, since this quantity is inversely proportional to the propensity aj(X(t)).

In the tau-leaping method, a fixed time τ is considered with the assumption that during the

time interval [t, t+τ) the propensities aj(X(t)) remain approximately constant ( aj(X(s)) ≈

aj(X(t)) for any t ≤ s ≤ t+ τ). As a consequence of this assumption, the number of times
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the reaction Rj occurs in the time interval [t, t + τ) may be approximated by a Poisson

random variable, Pj(aj(X(t)), τ), with mean and variance, aj(X(t))τ (see [42]). Then the

state at the later time, X(t+ τ), can be approximated as

X(t+ τ) = X(t) +
M∑
j=1

νjPj(aj(X(t)), τ). (2.11)

Hence the tau-leaping method, with stepsize τ , requires the following steps for the simula-

tion:

1. Using the independent Poisson random variables {Pj(aj(X(t)), τ)}Mj=1, obtain sam-

ples {kj}Mj=1.

2. Update the state as X(t+ τ) = X(t) +
∑M

j=1 νjkj and the time t to t+ τ .

3. Return to step 1 or else stop the integration.

Note that the tau-leaping algorithm coincides with the SSA in the limit where τ → 0. The

tau-leaping algorithm is more efficient than the SSA for some systems if many reactions

occur during the step τ [42]. However, it is important to make sure appropriate assumptions

are in place when using the tau-leaping method.

In the context of stiff systems, which is often the setting for cellular chemical systems,

the time step τ with the explicit tau-leaping method will be small as it is bounded by the

fastest-time scales relevant to the system.
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2.7.4 The Efficient Tau Selection Procedure

Recall the tau-leaping method presented in Section 2.7.3. In this scenario it is necessary

that the time step τ is chosen to satisfy the leap condition. Two issues need to be addressed.

One pertains to the problem of choosing the largest value of τ satisfying the leap condition,

and the other is concerned with being able ensure that the generated samples {kj}Mj=1 do

not cause any of the population numbers to become unrealistic negative values.

In what follows, a method for choosing an appropriate τ satisfying the leap condition for

the tau-leaping method will be presented. This stepsize selection scheme is originally de-

scribed in [42], with further improvements being made in [14, 44]. Consider the relative

change in the propensity functions during the time interval [t, t+τ) given by ∆τaj/aj, where

∆τaj = aj(X(t+ τ))− aj(X(t)).

The objective now is to choose τ so that the ∆τaj/aj is bounded by some small tolerance

0 < ε << 1 , which is prespecified. This in turn results in choosing other bounds εi =

εi(ε,Xi) so that the relative change ∆τXi/Xi of each species population is bounded by εi.

The individual bounds εi = εi(ε,Xi) can be computed according to [14].

However, the above bound for the relative changes in the propensity functions may lead to

inaccurate numerical results in practice. A more accurate and efficient numerical solution

is obtained if instead of bounding the relative change in the propensities, the bound is
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applied to the relative change in molecular populations [14].

Consider the following bound obtained from the tau-leaping formula (2.11):

|∆τXi| ≤ max{εiXi, 1} for any 1 ≤ i ≤ N. (2.12)

This then gives

∆τXi =
M∑
j=1

Pj(aj(X(t)), τ)νij. (2.13)

Denote by 〈.〉 and var {.} the mean and the variance of a random variable, respectively.

Then since the Poisson random variables Pj(aj(X(t)), τ) have mean and variance equal to

aj(X(t))τ , the mean and variance of ∆τXi are given by

〈∆τXi〉 =
∑
j

νij(ajτ), var{∆τXi} =
∑
j

ν2
ij(ajτ). (2.14)

Thus, both of the quantities 〈∆τXi〉 and var{∆τXi} satisfy the bound expressed in (2.12).

This leads to an estimate of the appropriate τ which is explicitly discussed in Section 4.2.

In regards to the second issue of ensuring the sampled numbers {kj}Mj=1 don’t allow the

population numbers to be negative valued, various methods have been proposed. Tian

& Burrage [112] and Chatterjee et al. [17] suggest replacing the unbounded Poisson ran-

dom numbers with bounded binomial random numbers. However, this strategy may give

30



inaccurate results. On the other hand, Cao et al. [13] offer a different method. In this

approach, an integer nc is chosen and then reactions are identified as being either critical

or non-critical in terms of nc. A critical reaction having non-zero propensity is defined as

one that is within nc reactions away from completely depleting a reactant. Otherwise, a

reaction is considered non-critical. Having distinguished between critical and non-critical

reactions, then either of the following two methods are applied. Non-critical reactions are

simulated by computing a time step τ as just described, and then using the standard tau-

leaping method. SSA step is applied to the system of critical reactions. Take,

∑
1≤k≤j, k critical

ak(X(t)) > ξ1asum,cr(X(t))

and

τ ′′ = ln(1/ξ2)/asum,cr(X(t))

to estimate the time τ ′′ to the next critical reaction and its index jc. The time step τ

is then chosen to be the minimum of τ ′ and τ ′′. If the minimum is τ ′, no critical reac-

tion fires, and if it is τ ′′, only one critical reaction Rjc fires. Since the number of critical

reactions firing during τ is at most one, critical reactions do not drive populations negative.

The tau selection strategy described above was introduced in Cao et al. [14]. Provided

that nc is sufficiently large such that every reaction becomes critical, then this procedure
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reduces to the SSA. Tests show that for many biochemical systems, the explicit tau leaping

method leads to significantly faster simulations than the SSA with only a minimum loss of

accuracy.

2.8 Chemical Langevin Equation (CLE)

If, in addition to the assumption that the propensities aj(X(t)) remain constant over a time

interval [t, t+τ) the following assumption is made: τ is large enough such that aj(x) ·τ >>

1 for all j = 1, ...,M , then the tau-leap method may be further approximated. Since

the mean aj(X(t)) · τ of the Poisson random variable Pj (aj(x)τ) is large, then this Poisson

random variable can be approximated by a normal random variable with the same mean

and variance. Making this transition in the state used in the tau-leaping method yields

another less refined model, known as the Chemical Langevin Equation (CLE) [37].

To derive the CLE the Poisson random variables Pj(aj(X(t)), τ) appearing in (2.11) are

substituted with aj(X(t))τ +
√
aj(X(t))τNj(0, 1), where the Nj(0, 1) are independent nor-

mal random variables having a mean of 0 and a variance of 1. This gives what is knows as

the Langevin leaping formula [37] for the state:

X(t+ τ) = X(t) + τ

M∑
j=1

νjaj(X(t)) +
√
τ

M∑
j=1

νj

√
aj(X(t))Nj(0, 1). (2.15)

Now, the state X(t) becomes a continuous random variable as opposed to a discrete one

in the previous setting. Computationally speaking, since normal random numbers can be
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generated more efficiently than Poisson random numbers, the Langevin formula offers an

improvement in comparison to the standard tau-leaping method. The algorithm for solv-

ing the CLE numerically is analogous to the tau-leaping algorithm and is accomplished as

follows:

1. Choosing independent samples {Nj}Mj=1 using the normal (0, 1) distribution.

2. Updating the state X(t+ τ) = X(t) + τ
∑M

j=1 νjaj(X(t)) +
√
τ
∑M

j=1 νj
√
aj(X(t))Nj

and time t to t+ τ .

3. Returning to step 1 or else stopping the integration.

Seperating X(t + τ) − X(t) in (2.15) with the left hand side, dividing through by τ and

taking τ → dt leads to the following stochastic differential equation known as the Chemical

Langevin Equation (CLE) [37]:

dX(t) =
M∑
j=1

νjaj(X(t))dt+
M∑
j=1

νj

√
aj(X(t))dWj(t), (2.16)

where Wj(t) are independent scalar Brownian motions for all 1 ≤ j ≤M . In this context,

the solution provided by (2.15) is commonly referred to as the Euler-Maruyama method [55,

56] for the SDE given by (2.16). Suffice it to say that SDE models are generally derived

through the addition of stochastic terms to an existing deterministic model.

In the thermodynamic limit where species populations Xi and the system’s volume Ω all

approach ∞, while the concentrations Xi/Ω remain constant, the propensity functions
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aj(X(t)) also grow linearly in the size of the system. By examining (2.15) and (2.16), it

is seen that the deterministic terms grow linearly in the system’s size terms, whereas the

stochastic terms grow as the square root of the system’s size. This implies that fluctuations

in systems of interest generally scale as the inverse of the square root of the system’s size.

Recall that one assumption made in this method required the propensities aj(X(t)) to

remain approximately constant over the time interval [t, t + τ), which suggests that τ be

kept small. On the contrary, the additional assumption that was made that the means

aj(X(t))τ also be large requires τ to be sufficiently large. However, these assumptions can

all hold if the molecular numbers of the system are large. Thus the CLE model applies

when all species have large populations. Also, we note that in the thermodynamic limit

the stochastic terms in (2.16) become negligible in comparison to the deterministic terms,

so that the CLE reduces to the RRE (2.17). In this way, the tau-leaping method can be

thought of as a transition from the discrete, stochastic model of the CME to the continuous,

deterministic model provided by the RRE.

2.9 Reaction Rate Equation (RRE)

Modeling of biochemical systems in terms of concentrations and instantaneous rates of

change requires that the molecule count is very large for each species. In the presence of

thermodynamic limit, species populations and the system’s volume all approach ∞, while

the concentrations of the species remain constant [47]. The noise present in the stochastic

model of the CLE becomes negligible in the thermodynamic limit. Therefore, in such a

limit the CLE (2.16) (as was discussed in Section 2.8) can be reduced to the Reaction Rate
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Equation

dX(t)

dt
=

M∑
j=1

νjaj(X(t)), (2.17)

which is a system of ODEs with dimension given by the number of species in the system.

The method of calculating chemical reaction kinetics involves a state vector X(t) ∈ RN ,

where the ith component of the state vector, Xi(t), is a non negative real number which

represents the molar concentration of a species, denoted by Si at a given time t. Molar

concentration is M = moles of species
volume in litres

, where 1 mole = nA ≈ 6.023 × 1023 units. As such,

xi(t) × nA volume is the number of molecules of a species in a given volume. In such

a setting, the concentrations of each species is assumed to vary continuously in time in

accordance with the Reaction Rate Equation (RRE) [47]. To determine the RRE, the law

of mass action is used. This law states that the rate of change of any chemical reaction is

proportional to the product of the concentrations of the reacting species.

Despite being able to model systems satisfying certain assumptions, it is important to note

that noise may still play a significant role in the system if some of the species populations

have small molecular numbers. In such a scenario stochastic models are still required for

an accurate description of the system dynamics.

2.10 Simulating Stiff Systems

When the fast and slow time-scales of a system of ODEs are well separated [93], and the

fastest mode is stable, the system is considered “stiff” [15]. The solution of the deterministic
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problem belongs to a slow manifold [7]. Outside this manifold the state moves rapidly

towards it. Stiff problems arise in many practical applications of interest and much work

has been invested to overcome the computational difficulties in finding numerical solutions

of stiff ODEs [7]. It is worth mentioning that many RREs are stiff.

For simulating the SSA for stiff biochemical systems, small time steps are used. However,

the common reactions occurring in the system are generally the fast ones. In practice, this

implies that the simulation is often too slow to be efficient [15, 93]. The explicit tau-leaping

method is similar to explicit solvers in the context of stiff deterministic systems, in that it

is very slow. Recall that in the tau-leaping algorithm as discussed in Section 2.7.3, the time

step τ is chosen in order to ensure that certain requirements are met, which also restricts

τ to time-scales corresponding to the fasted modes of the system.

2.11 Numerical Simulations

The simulation algorithms for stochastic and deterministic models are previously discussed

in Section 2.7. In this chapter we show how under certain assumptions, the algorithms are

related to each other. In this section, we show the numerical simulations of each type of

algorithm (SSA, Euler-Maruyama for CLE and ODE solver for RRE) on a simple system,

known as the Michaelis-Menton model [47, 119]. We also show how to derive the Chemical

Langevin Equations (CLE) and Reaction Rate Equations (RRE) for this model.
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Table 2.1: Michaelis Menten model

Rj Reaction Propensities Reaction rate

R1 S1 + S2
C1−→ S3 a1 = C1X1X2 C1 = 1.661× 10−3

R2 S3
C2−→ S1 + S2 a2 = C2X3 C2 = 10−4

R3 S3
C3−→ S4 + S2 a3 = C3X3 C3 = 0.1000

2.11.1 Michaelis-Menten Model

We consider a simple model, known as the Michaelis-Menton model (Figure 2.2) for en-

zyme kinetics [47, 119]. The model describes the rate an enzyme transforms a substrate

into a product. In the Michaelis-Menten model, there are four molecular species involved

in three reactions:

S1 + S2
c1−→ S3

S3
c2−→ S1 + S2

S3
c3−→ S4 + S2.

(2.18)

Here, species S1 is a substrate and species S2 is an enzyme. Species S3 represents an

enzyme-substrate complex and species S4 is a product. The values for the Reaction Rate
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Figure 2.2: Michaelis Menten model reaction chain.

Parameters are C1 = 1.661× 10−3, C2 = 10−4 and C3 = 0.1. The propensity functions for

the reactions (2.18) are as follows:

a1(X) = C1X1X2

a2(X) = C2X3

a3(X) = C3X3.

(2.19)

We suppose the solution of the system (2.18) has the following initial conditions: X1(0) =

301, X2(0) = 120, X3(0) = 0 and X4(0) = 0. We perform the simulation on the time-

interval [0, 50] seconds. Note that the values of the rate constants and the initial conditions

are from [47, 119]. The state-change vectors are given by the columns of the following sto-

ichiometric matrix
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V =



−1 1 0

−1 1 1

1 −1 −1

0 0 1



.

Thus, the Chemical Langevin Equations (CLE) for the biochemical system are as follows:

dX1 = [−a1(x) + a2(x)]dt−
√
a1(x)dW1 +

√
a2(x)dW2

dX2 = [−a1(x) + a2(x) + a3(x)]dt−
√
a1(x)dW1 +

√
a2(x)dW2 +

√
a3(x)dW3

dX3 = [a1(x)− a2(x)− a3(x)]dt+
√
a1(x)dW1 −

√
a2(x)dW2 −

√
a3(x)dW3

dX4 = a3(x)dt+
√
a3(x)dW3.
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Finally, the Chemical Langevin Equation (CLE) for the Michaelis-Menten model can be

written as follows:

dX1(t) = [−C1X1(t)X2(t) + C2X3(t)]dt−
√
C1X1(t)X2(t)dW1 +

√
C2X3(t)dW2

dX2(t) = [−C1X1(t)X2(t)+C2X3(t)+C3X3(t)]dt−
√
C1X1(t)X2(t)dW1 +

√
C2X3(t)dW2 +√

C3X3(t)dW3

dX3(t) = [C1X1(t)X2(t)−C2X3(t)−C3X3(t)]dt+
√
C1X1(t)X2(t)dW1−

√
C2X3(t)dW2−√

C3X3(t)dW3

dX4(t) = C3X3(t)dt+
√
C3X3(t)dW3.

There are four species associated with this model and one equation for each different molec-

ular species, as such, the dimension of this system is four for the CLE and RRE models.

By neglecting the stochastic terms, we can derive the the deterministic model of the RRE

as follows:
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dX1(t) = [−C1X1(t)X2(t) + C2X3(t)]dt

dX2(t) = [−C1X1(t)X2(t) + C2X3(t) + C3X3(t)]dt

dX3(t) = [C1X1(t)X2(t)− C2X3(t)− C3X3(t)]dt

dX4(t) = C3X3(t)dt.

These equations can also be expressed as follows:

dX1(t)
dt

= −C1X1(t)X2(t) + C2X3(t)

dX2(t)
dt

= −C1X1(t)X2(t) + C2X3(t) + C3X3(t)

dX3(t)
dt

= C1X1(t)X2(t)− C2X3(t)− C3X3(t)

dX4(t)
dt

= C3X3(t).

The system was simulated with initial conditions X(0) = [301, 120, 0, 0] and the parameters

shown in Table 2.1, on the time interval t = [0, 50]. Figure 2.3 shows the trajectories of

species S1, S2, S3 and S4 as functions of time simulated using Gillespies algorithm (SSA).
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Figure 2.4 shows the trajectories of species S1, S2, S3 and S4 were simulated with the

Euler-Maruyama method for CLE with respect to time. And finally simulations of RRE

are presented in Figure 2.5.

The acceptability of the RRE as a model depends on the initial data, system parameters

and the purpose for which the RRE model is used [47]. We found that the RRE was a fair

match to the single paths that we drew from the Euler-Maruyama method for CLE and

the SSA, although the number of molecules were in the hundreds.

The law of mass action, which states that the rate of a chemical reaction is directly propor-

tional to the product of the activities or concentrations of the reactants is in many cases

not appropriate for biochemistry within a cell, because when population size is extremely

small, describing systems in terms of concentration is inappropriate [47]. Measuring the

system responses of many cellular processes depend on precise quantitative values. Often,

these processes involve population sizes that are very small and the system may switch

between two distinct states that are driven by the inherent noise of the system. As a

consequence, stochastic processes often play a vital role in cellular processes [47].
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Plot: Michaelis-Menten model
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Figure 2.3: Plot for Michaelis-Menten model: Evolution in time of the species S1 (red), S2

(blue), S3 (magenta), S4 (green) with SSA simulated with time.
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Plot: Michaelis-Menten model
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Figure 2.4: Plot for Michaelis-Menten model: Evolution in time of the species S1 (red), S2

(blue), S3 (magenta), S4 (green); CLE simulated with time.
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Plot: Michaelis-Menten model
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Figure 2.5: Plot for Michaelis-Menten model: Evolution in time of the species S1 (red), S2

(blue), S3 (magenta), S4 (green); RRE simulated with time.
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Chapter 3

Sensitivity Analysis

3.1 Introduction

To study various subjects in the sciences, many computational techniques have been de-

veloped in order to simulate and experiment with such systems. One particular tool used

to characterize the model of a system is sensitivity analysis, which attempts to understand

how certain properties of the model change when variations are introduced into the model’s

parameter values [116]. A model output’s sensitivity to a parameter is a measure of how

much change in the system output results as a consequence of varying the parameter val-

ues. Model behaviour is regarded as highly sensitive to a parameter’s value when a small

change in the parameter values results in a large change in the model’s outcome. Sensitiv-

ity analysis is particularly valuable when addressing biochemical systems for which some

parameter values are poorly estimated.
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Sensitivity analysis offers a great utility in being able to describe a system in terms of

perturbations of the system’s parameters. Since there may exist parameters in which

only slight variations result in significant changes in the system’s output, it is therefore

important to identify and understand the effects of such change. In chemical reaction

models the relevant parameters include kinetic parameters and initial conditions such as

initial amounts for each species. Other undetermined parameters may exist that affect the

system due to uncertain environmental interactions. By understanding the sensitivity of a

system’s model to different parameters, useful insights are revealed about the model which

can address issues regarding the model’s dynamics, and even help inform the model’s own

development and accuracy.

Sensitivity analyses can be classified as local (in which only small perturbations around a

nominal set of parameter values are considered) or global (in which values over a wide region

in parameter space can be addressed). Global analyses are computationally expensive, as

they typically demand sampling of a high-dimensional parameter space [107]. In contrast,

for deterministic systems, the computation of local parametric sensitivity coefficients poses

no challenges. The computational cost to perform a local sensitivity analysis is high for a

stochastic model. This is due to the need to simulate a large number of sample paths to

generate accurate statistics [5].

3.2 Mathematical Theory of Sensitivity Analysis

To illustrate sensitivity analysis [116] in the context of models of biochemical systems, we

can use a variety of chemical systems that exhibit different characteristics. In general,
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we use their description in mathematical terms, which is given by models that shows an

explicit or implicit relationship between the system behavior and the input parameters.

The system behaviour can then be described in terms of dependent output variables or state

that change in time and/or space. An important part of these models is input parameters

which include the physiochemical parameters [116]. Some examples of the input parameters

are transport properties, related reaction kinetics as well as initial conditions and operating

conditions. However, these parameters are subject to uncertainties because they are either

measured experimentally or estimated theoretically. Sensitivities can be quantified using

the partial derivative with respect to a certain parameter. The mathematical methods for

estimating parameter sensitivities use finite-difference approximations for derivatives.

3.2.1 Local Sensitivity

Recall the Reaction Rate Equation that was described in Section 2.9. Consider a chemical

system that can be described by the following differential equation of variable of X with

respect to changes in time t [116],

dX

dt
= f(X, c, t) (3.1)

where the function f is dependent on X, the variable t is the time and c is a vector

representing m parameter inputs of the system. To ensure that the above equation has

a unique solution, the function f is assumed to be continuous as well as continuously

differentiable everywhere in its arguments. It should be noted that this statement holds

true for virtually all chemical systems.
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The unique solution, called the nominal solution [116] is represented by

X = X(t, c) (3.2)

which is continuous in t and c.

If the jth parameter in the parameter vector c, is changed from cj to cj + ∆cj, then the

corresponding nominal solution becomes

X = X(t, cj + ∆cj) (3.3)

and is called the current solution.

If ∆cj is sufficiently small, i.e., ∆cj � cj the current solution can be expanded into the

following truncated Taylor series:

X(t, cj + ∆cj) = X(t, cj) +
∂X(t, cj)

∂cj
·∆cj. (3.4)

It follows from this equation that the local sensitivity of the dependent variable, X, with

respect to the input parameter c can be written as follows:

s(X; cj) =
∂X(t, cj)

∂cj
= lim

∆cj→0

X(t, cj + ∆cj)−X(t, cj)

∆cj
. (3.5)

The local sensitivity, s(X; cj) , is also known as absolute sensitivity.
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Normalized magnitudes are often used in sensitivity analysis. This normalized sensitivity

of X with respect to cj is defined as [116]:

S(X; cj) =
cj
X
· ∂X
∂cj

=
cj
X
· s(X; cj). (3.6)

The normalized sensitivity is also referred to as relative sensitivity and serves to normalize

the magnitudes of the input parameter cj and the variable X.

Consider the sensitivity of X with respect to each one of the parameters in the m vector

c. The row sensitivity vector of m indices is now defined as below [116],

sT (X; c) =
∂X

∂c
=

[
∂X

∂c1

∂X

∂c2

· · · ∂X
∂φm

]
= [s(X; c1)s(X; c2) · · · s(X; cm)] . (3.7)

3.2.2 Global Sensitivity

Local sensitivities, s(Xi; cj), describe the effect of a small variation in each parameter,

cj, around a fixed nominal value, on each dependent variable, Xi. On the other hand,

global sensitivities provide information on the effect of simultaneous large variations of all

parameters, c, on the dependent variables [107, 116].

As previously shown, when the perturbation size, ∆cj of input parameter cj, is small, the

Taylor series expansion is truncated after the linear term, and local sensitivities can be

well approximated with partial derivatives. As such, the local sensitivity s(Xi; cj) for a

given cj, is considered as a function of independent variable, t. When considering global

sensitivities, all parameters are simultaneously varied over a wide range of values and
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the corresponding variations of the dependent variables are then functions of the varied

range of the parameters [45, 107, 116]. As such, global sensitivities cannot be defined

by mathematical formulae as easily as local sensitivities and can only be evaluated via

numerical calculations.

3.3 Sensitivity Methods

3.3.1 Direct Differential Method (DDM)

A natural method for computing sensitivities is the direct differential method (DDM) [116].

Consider equation (3.1) for a single variable system. Now, differentiate both sides with

respect to C to compute the local sensitivity of X with respect to the jth parameter,

cj. Applying the definition of (3.5), then the local sensitivity equation can be defined as

follows [116]:

d

dt

(
∂X

∂cj

)
=
ds(X; cj)

dt
=

∂f

∂X
· ∂X
∂cj

+
∂f

∂cj
· ∂cj
∂cj

=
∂f

∂X
· s(X; cj) +

∂f

∂cj
(3.8)

which represents the local sensitivities equation whose initial conditions can be obtained

via a similar differentiation of the initial condition. Furthermore, depending on the chosen

input parameter vector c,

s(X; cj) |t=0 =


0 cj 6= X i

1 cj = X i
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When simultaneously solving the model (3.1) and its sensitivity equation (3.8) along with

their initial conditions, the dependent variable X along with its corresponding local sen-

sitivity s(X; cj) can be obtained, both as functions of time. Together, this method is the

direct differential method (DDM) [116].

In order to compute the sensitivity of the ith output variable, Xi among n output variables

with respect to the jth input parameter, cj, we need to find the sensitivity of all n output

variables with respect to cj due to possible interactions with each other. Therefore we need

to solve n sensitivity equations and the n model equations simultaneously.

The n sensitivity equations can be written as follows [116],

ds(X; cj)

dt
= J(t) · s(X; cj) +

∂f(t)

∂cj

J(t) =
∂f

∂X
=



∂f1
∂X1

∂f1
∂X2

· · · ∂f1
∂Xn

∂f2
∂X1

∂f2
∂X2

· · · ∂f2
∂Xn

...
...

. . .
...

∂fn
∂X1

∂fn
∂X2

· · · ∂fn
∂Xn


,

∂f(t)

∂cj
=



∂f1
∂X1

∂f2
∂X1

...

∂fn
∂X1


where the latter J is the n×n Jacobian Matrix and the former as the n×1 nonhomogeneous

term, respectively.
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3.3.2 Finite Difference Approximations (FDM)

The finite difference approximation can be used to avoid simultaneously solving model and

its sensitivity equation for computing local sensitivities [96, 109, 116]. In trying to estimate

the sensitivities of certain parameters in sensitivity analysis, a function representing some

property of the system is described in terms of input parameters. In the finite difference

method, the derivative of this function is approximated by the difference in the function’s

values at different given values of the variable parameter. Thus, consider some function

X(t, cj) and the Taylor series expansion of X(t, cj + ∆cj):

X(t, cj + ∆cj) = X(t, cj) + ∆cj
∂X(t, cj)

∂cj
+

∆c2
j

2!

∂2X(t, cj)

∂c2
j

+ . . . . (3.9)

Then solving for
∂X(t,cj)

∂cj
gives an expression of the form

∂X(t, cj)

∂cj
=
X(t, cj + ∆cj)−X(t, cj)

∆cj
+O(∆cj)

where O(∆cj) denotes all higher order terms in ∆cj. This first-order approximation for

a given step ∆cj is called the finite-difference interval. A second order estimate can be

obtained by also considering the Taylor expansion of X(t, cj −∆cj):

X(t, cj −∆cj) = X(t, cj)−∆cj
∂X(t, cj)

∂cj
+

∆c2
j

2!

∂2X(t, cj)

∂c2
j

− . . . . (3.10)

Then by subtracting (3.10) from equation (3.9), the resulting equation can be solved for

∂2X(t,cj)

∂cj
to obtain the central difference formula
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f
′
(X) =

X(t, cj + ∆cj)−X(t, cj −∆cj)

2∆cj
+O(∆c2

j),

where now O(∆c2
j) represents all terms of order ∆c2

j or greater.

When determining the local sensitivities of n output variables with respect to one among

m input parameters, the Direct Difference Method (DDM) requires to solve m + 1 × n

model and sensitivity equations simultaneously [116]. To avoid this, the Finite Difference

Method (FDM) is utilized which requires only to solve the n model equations twice for

cj = cj to get X(t, cj) and cj = cj + ∆cj to compute X(t, cj + ∆cj). This method is known

as the Finite Difference Method (FDM) [116].

To compute the sensitivities of one among n output variables with respect to one among m

input parameters at a given point, it is simple to determine the variation ∆cj for different

input parameters. Because of this, the Finite Difference Method (FDM) is very useful [116].

This method can be used in order to find the sensitivity of ith output variable, Xi among

n output variables with respect to the jth input parameter, cj.

In practical uses, there may be cases when DDM cannot be used, since the sensitivity

equations cannot be found by directly differentiating the equations of the model. If the

sensitivity of the output of interest is implicitly given by a complex form or does not have

a mathematical representation, then the FDM is the only method which can be used [116].

54



3.4 Monte Carlo Approach to Sensitivity Analysis

In the previous section, the sensitivity methods that we discussed can be used for ODE

models. These methods are applicable when molecular counts of each species are large.

However, biochemical systems of interest show inherently probabilistic behaviour when the

molecular count is very small. As such stochastic models are needed to capture the random

fluctuations observed in these systems. Stochastic models of biochemical systems and their

simulation techniques were discussed in depth in Chapter 2.

The Monte Carlo sensitivity approaches with finite perturbation [96, 109] includes the in-

dependent sample method (independent random numbers (IRN) with SSA) and correlated

sample method. Among the existing correlated sample methods we have: Common ran-

dom numbers (CRN) with SSA, Common reaction Path (CRP) with RTC and Coupled

finite difference (CFD) method which are discussed in depth in the following sections.

3.5 Established Finite-Difference Methods for Stochas-

tic Systems

In sensitivity analysis, we wish to compare two systems. One system is defined as nominal,

whereas the other system’s parameter value is finitely perturbed. The same stream of

random numbers is used for both systems [96]. This can be achieved by using a common

seed if the scripting language allows for it, or by calling a large array of random numbers to

be used for both systems. The common seed method is more efficient, if system resources
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are sparse or the simulation is sufficiently large.

To approximate the sensitivity of a system output f(Xc(t)) with respect to a parameter

c via a finite difference [2, 96, 109], (as described in depth in Section 3.2.2) we consider a

pair of sample paths, one generated at a nominal parameter value c, the other generated

from a perturbed value c+ h. At a given time t, the nominal system state is Xc(t), while

the perturbed state is Xc+h(t). we use the notation acj(x) to indicate the propensity of

reaction j at state x when the parameter of interest takes the value c, i.e. acj(x) = aj(x, c).

3.5.1 Common Random Numbers (CRN)

In the CRN method [96], Gillespie’s algorithm (as described in depth in Section 2.7.1)

is used to simulate sample paths. To test sensitivity with respect to a parameter, c, of

the system, we consider a pair of systems: the nominal system Xc(t) and the perturbed

system, Xc+h(t). The common random number approach is applied to the SSA with a

shared stream of random numbers, so that both systems experience the same random

input.

Algorithm

1. begin loop over number of trajectories, N , for each i

2. generate large array of random numbers, r∗ (if common seed not used)

3. choose system parameter, c, and execute Gillespie’s algorithm for the nominal system,

Xc(t), using array of random numbers, r∗j
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4. set parameter to c + h, and execute Gillespie’s algorithm, calculating for perturbed

system, Xc+h(t), using the same array of random numbers, r∗j (or common seed)

5. find sensitivity by Zi = (f(Xc+h(t))− f(Xc(t)))/h

6. end loop over i

7. find mean and standard deviation of {Zi}1≤i≤N .

3.5.2 Common Reaction Path (CRP)

In the CRP method [96], the RTC algorithm (as described in depth in Section 2.7.2) is

used to simulate sample paths, with common random number streams, as above. In this

case, the trajectory of the whole system is determined by the collective of the independent

trajectories from each reaction. For each reaction in the system, the trajectory is referred

to as the reaction path. Each reaction path evolves independently as a series of random

exponential numbers with unit rate.

Algorithm

1. loop over number of trajectories, N, for each i

2. generate large array of unit exponential random numbers, Ej
1, E

j
2, . . ., for each reac-

tion (or array of common seeds)

3. choose system parameter, c, and execute RTC algorithm for the nominal system,

Xc(t), using array of random numbers created
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4. set parameter to c+h, and execute RTC algorithm, calculating for perturbed system,

Xc+h(t), using the same array of unit exponential random numbers,Ej
1, E

j
2, . . . (or

common seeds)

5. find sensitivity by Zi = (f(Xc+h(t))− f(Xc(t)))/h

6. end loop over i

7. find mean and standard deviation of {Zi}1≤i≤N .

3.5.3 Coupled Finite Difference (CFD)

The CFD method presented by Anderson [2] imposes tight coupling between the random

processes generating the nominal and perturbed sample paths, thus achieving a reduced

variance in the estimator. Using the random time change representation (2.10), the cou-

pling of the nominal process Xc(t) and the perturbed process Xc+h(t) is obtained as follows:

Xc(t) = Xc(0) +
M∑
j=1

{
νjYj,1

(∫ t

0

mj,c,h(s) ds

)
+ νjYj,2

(∫ t

0

acj(X
c(s))−mj,c,h(s) ds

)}

Xc+h(t) = Xc+h(0) +
M∑
j=1

{
νjYj,1

(∫ t

0

mj,c,h(s) ds

)
+ νkYj,3

(∫ t

0

ac+hj (Xc+h(s))−mj,c,h(s) ds

)}
(3.11)

where mj,c,h(t) = min
{
acj(X

c(t)), ac+hj (Xc+h(t))
}

and Yj,1, Yj,2 and Yj,3 are independent

unit rate Poisson processes. The CFD generates the coupled paths with the next reaction

method:
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1. Begin loop over number of trajectories, N, for each i

2. Initialize the nominal and perturbed system states, X(0) = x0, at t = 0.

3. For each j = 1, . . . ,M and for k = 1, 2, 3, initialize µj,k = rand(0, 1) , Pj,k =

ln(1/µj,k) , Tj,k = 0

4. while t < T

(a) At each time t, for each j:

i. compute the propensities acj(X
c(t)) and ac+hj (Xc+h(t)),

ii. set Aj,1 = min{acj(Xc(t)), ac+hj (Xc+h(t))},

Aj,2 = acj(X
c(t))− Aj,1,

Aj,3 = ac+hj (Xc+h(t))− Aj,1.

iii. for k = 1 : 3, if Aj,k > 0, set ∆tj,k = (Pj,k − Tj,k)/Aj,k,

otherwise set ∆tj,k =∞.

(b) Find minimum: ∆T = min1≤j≤M,1≤k≤3 {∆tj,k} and indices for min, µ = {j∗, k∗}.

(c) Increment the time: t = t+ ∆T

(d) If k∗ = 1, increment both Xc(t) and Xc+h(t):

Xc(t) = Xc(t) + νj∗ and Xc+h(t) = Xc+h(t) + νj∗ ,

if k∗ = 2, increment Xc(t): Xc(t) = Xc(t) + νj∗ ,

if k∗ = 3, increment Xc+h(t): Xc+h(t) = Xc+h(t) + νj∗ .

(e) For each j and each k = 1 : 3, update Tj,k = Tj,k + (Aj,k)∆T .

(f) Compute Pµ = Pµ + ln(1/µ), with µ = rand(0, 1)
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5. Compute sensitivity by Zi = (f(Xc+h(t))− f(Xc(t)))/h

6. End while

7. End loop over i

8. Find mean and standard deviation of {Zi}1≤i≤N .

The mean of the finite differences Z = [f(Xc+h(t)) − f(Xc(t))]/h over an ensemble of

coupled sample trajectories is an estimator for the sensitivity of E(f(Xc(t))) to parameter

c.

3.6 Numerical Results

We carried out an analysis of previously published finite difference approaches to local

parametric sensitivity analysis of chemical master equation models. We provide a compar-

ison of the performance of the Common Reaction Path (CRP), Common Random Number

(CRN) method by Rathinam et al. [96] and Coupled Finite Deference (CFD) method by

Anderson [2] on a range of model types. We tested the method’s performance on a rich set

of model dynamics. The interpretation of the following three models’ results are presented

at the end of this section.

3.6.1 Birth-death Model

The Birth-death model is a simple example of a one species reaction network (Figure 3.1).

The reactions set and propensities for the Birth-death reaction network are given in Table
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Table 3.1: Birth death model

Rj Reaction Propensities Reaction rate

R1 � C1−→ X a1(x) = C1 C1 = 100

R2 X
C2−→ � a2(x) = C2X C2 = 5

Figure 3.1: Birth death model reaction chain.

3.1, along with specific values for the reaction rate parameters. The initial condition

was taken as X(0) = 0. The state-change vectors for the reactions are given by the

stoichiometric matrix V = [1,−1]. For this model, we used the CFD, CRN and CRP

methods to determine the sensitivity of the molecular count of species X over the time

t ∈ [0, 2] with respect to parameter C2. The size of the perturbation was taken as h = 10−1

(i.e. a 2% change); the estimates, shown in Figure 3.2, were each calculated from 80,000

sample paths. Figure 3.3 shows how the standard deviation of the sensitivity estimator

varies with the perturbation size h for each method.

3.6.2 Schlögl Model

The Schlögl model is a simple example of a bistable reaction network (Figure 3.4). The

model is well known for its bistable steady-state distribution. The reaction set and propen-
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Figure 3.2: Birth death model: comparison of sensitivity methods with perturbation pa-
rameter h = 10−1, using 80, 000 trajectories, on the interval [0, 5] (species X). Left:
estimated sensitivity; right: standard deviation of the estimated sensitivity.
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sities for this model are presented in Table 3.2, along with values for the reaction rate con-

stants. The molecular counts for species A and B, which are denoted as buffered species,

are held constant at A = 105 and B = 2 × 105 over the time interval of interest. Species

X’s molecular population is modelled accurately as a homogeneous jump Markov process

X(t) on the non-negative integers [39].

The initial count for species X is taken as X(0) = 250. The stoichiometric matrix for this

system is V = [1,−1, 1,−1]. For this model, we used the CFD, CRN and CRP methods to
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Figure 3.4: Schlögl model reaction network.

determine the sensitivity of the molecular count of species X over the time t ∈ [0, 10] with

respect to parameter C1. The size of the perturbation was taken as h = 5 × 10−8 (i.e. a

17% change); the estimates, shown in Figure 3.5, were each calculated from 10,000 sample

paths.

Table 3.2: Schlögl model

Rj Reaction Propensities Reaction rate

R1 A+ 2X
C1−→ 3X a1 = C1AX(X − 1)/2 C1 = 3× 10−7

R2 3X
C2−→ A+ 2X a2 = C2X(X − 1)(X − 2)/6 C2 = 10−4

R3 B
C3−→ X a3 = C3B C3 = 10−3

R4 X
C4−→ B a4 = C4X C4 = 3.5
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3.6.3 Brusselator Model

The Brusselator model (Figure 3.6) exhibits stable oscillations [41]. The set of reactions

for this model, their propensities and reaction rate parameter values are given in Table 3.3.

The stoichiometric matrix is

V =

 1 −1 1 −1

0 1 −1 0

 .
The initial conditions were taken as [X(0), Y (0)] = [1000, 2000]. For this model, we used

the CFD, CRN and CRP methods to determine the sensitivity of the molecular count of

species X over the time t ∈ [0, 5] with respect to parameter C4. The size of the perturbation

was taken as h = 1 (i.e. a 20% change); the estimates, shown in Figure 3.7, were each

calculated from 200 sample paths.

Table 3.3: Brusselator model

Rj Reaction Propensities Reaction rate

R1 � C1−→ X a1 = C1 C1 = 5000

R2 X
C2−→ Y a2 = C2X C2 = 50

R3 2X + Y
C3−→ 3X a3 = C3Y X(X − 1)/2 C3 = 0.00005

R4 X
C4−→ � a4 = C4X C4 = 5
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Figure 3.6: Brusselator reaction scheme diagram.

Discussion:

In this comparison we chose three different types of model to verify the accuracy of the

existing sensitivity analysis techniques. We consider a simple model (the Birth-death

model), a bistable reaction network model (the Schlögl model) and also a model that

exhibits stable oscillations (the Brusselator model) for a given set of reaction parameters.

For the first model we had the exact solution for comparison. It is to be determined how

the behaviors exhibited by the other two models (particularly oscillations and bistability)

can be handled by the existing methods.

Regarding the estimator variance, our results confirm that for the birth-death and Brus-

selator models, the CFD has the lowest variance, followed by the CRN and then the CRP

method. This is consistent with the results in [109]. However, in the case of the Schlögl

model, the CRN outperforms the CRP, and provides results that are comparable to the

CFD.
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Figure 3.7: Brusselator model: comparison of sensitivity methods with perturbation pa-
rameter h = 1, using 200 trajectories, on the interval t ∈ [0, 5] (species X). Left: estimated
sensitivity; right: standard deviation of the estimated sensitivity.
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As illustrated in Figure 3.3 for the Birth-death process, when the perturbation parameter

h is increased, the variance of the sensitivity is reduced. A reduced variance means that a

smaller number of trajectories are required to maintain the desired accuracy, thus leading

to an improved efficiency of the simulation.
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Chapter 4

Adaptive Coupled Tau-Leaping

Method

4.1 Introduction

The materials in this Chapter are reproduced directly from the jointly-authored publication

by Morshed, Ingalls and Ilie [83]. In this Chapter, we present the new Coupled Tau Leap-

ing (CTL) algorithm [83], that is computationally efficient for approximating parametric

sensitivities in moderately stiff stochastic biochemical systems.

Historically, simulations of stochastic models of well-stirred biochemical systems relied

on the exact methods such as the SSA. While the tau-leaping algorithm has reduced

computational time, large time steps can lead to over-consumption of species, which results

in negative numbers. To address this issue, a tau-selection method is used to ensure that
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the time step will be sufficiently small when reactions are close to exhausting their species.

The state-of-the-art adaptive tau-leaping algorithm due to Cao et al. [14] finds τ such that,

for any critical reaction, only one firing can occur during the leap. For non-critical reactions

the approximate explicit tau-leaping method [42] is used. Because critical reactions are

only allowed to fire once, the chance of a negative result in the reactant population becomes

much smaller.

In the original tau-leaping algorithm, the Poisson distribution is unbounded which can

lead to overfiring in a reaction channel. When a reaction channel overfires, it may lead to

negative numbers in the species populations, which is physically unrealistic and therefore

undesirable. When a reactant species has a small population, overfiring is more likely to

occur. One solution to this problem was to use a bounded binomial distribution [Tian and

Burrage [112] and independently Chatterjee et al. [17]] in place of the Poisson distribution.

The binomial leaping method is less accurate than the (Poisson) tau-leaping strategy.

However, more recent work [Cao et al. [13, 14]] revised the Poisson tau-leaping strategy to

account for negativity.

4.2 Stepsize Selection for Explicit Tau-Leaping

As was discussed in Section 2.7.1, the exact stochastic simulation algorithms are compu-

tationally intensive when applied to stiff biochemical systems. One approach to reducing

the computational burden is to employ the tau-leaping method, proposed by Gillespie [42]

which was discussed further in Section 2.7.3.
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In practice, it is more accurate and easier to implement a leap condition bounding the

relative change in molecular amounts rather than the relative change in propensities [14].

The most widely used version of the leap condition [14] demands that τ is small enough

such that the abundance of each reactant population Xi satisfies (approximately)

|Xi(t+ τ)− xi| ≤ max{εxi/gi, 1} (4.1)

where Xi(t) = xi. Here ε is a user-selected tolerance, and the factor gi is the highest order

at which species Si appears as a reactant (with some modification for reactions in which

multiple molecules of Si occur as reactants, see [14] for details).

As detailed by Cao et al. [14], an efficient implementation of this leap condition begins with

a user-specified control parameter, nc, which characterizes a threshold below which reactant

populations are in danger of dropping below zero. It is recommended that nc ∈ [2, 20]. A

reaction is called critical if nc firings of the reaction would result in the population of one

of its reactants dropping to zero. Critical reactions are then constrained to fire at most

once during a leap. The condition (4.1) is then applied to the non-critical reactions, but

is implemented in terms of the mean and standard deviation of the population changes.

Specifically, with Jncr as the set of indices of non-critical reaction channels, for each reactant

species Xi, we define the auxiliary quantities

µ̂i(x) =
∑
j∈Jncr

νijaj(x) , σ̂2
i (x) =

∑
j∈Jncr

ν2
ijaj(x). (4.2)

The bound on the step then takes the form (for details see [14] and the CTL algorithm
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below):

τ = min
i

{
max{εxi/gi, 1}
|µ̂i(x)|

,
max{εxi/gi, 1}2

σ̂2
i (x)

}
. (4.3)

We make use of this tau-leaping strategy in our algorithm for estimating sensitivities.

We present below a new algorithm for approximating the sensitivity utilizing an adaptive

tau-leaping scheme to generate tightly coupled perturbed and nominal trajectories. Finite

difference approximations are applied.

4.3 Coupled Tau-Leaping (CTL)

In this section, we present our new algorithm (Morshed et al. [83]) for estimating local

sensitivities that is computationally efficient when applied to moderately stiff stochastic

biochemical systems. In our sensitivity method, the coupling of the nominal and perturbed

processes is similar to that employed by the CFD method [2]. However, our approach cou-

ples paths that are obtained with the approximate tau-leaping strategy, whereas the CFD

method couples paths that are in exact agreement with the Chemical Master Equation.

A similar coupling was first introduced in [69]; it was later used in [3] in the context of

multi-level Monte Carlo simulations for biochemical kinetic systems.

In the CTL method [83] the perturbed and nominal sample paths are coupled according
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to (compare with (3.11))

Xc(t+ τ) = xc +
M∑
j=1

νj
[
P1,j(mj,c,h(x

c,xc+h)τ) + P2,j((a
c
j(x

c)−mj,c,h(x
c,xc+h))τ)

]
Xc+h(t+ τ) = xc+h +

M∑
j=1

νj
[
P1,j(mj,c,h(x

c,xc+h)τ) + P3,j((a
c+h
j (xc+h)−mj,c,h(x

c,xc+h))τ)
]

(4.4)

where Xc+h(t) = xc+h and Xc(t) = xc. Here mj,c,h(x
c,xc+h) = min

{
acj(x

c), ac+hj (xc+h)
}

and P1,j, P2,j and P3,j are independent Poisson random variables.

In the CTL algorithm [83] we make use of the stepsize selection strategy developed by Cao

et al. [14] for the tau-leaping method, which proceeds in two steps: candidate tau-leaps

are determined separately for the critical and non-critical reactions, and the minimum is

selected. We apply the tau-selection procedure to both the nominal and the perturbed

trajectories.

CTL Algorithm

1. Specify simulation parameters: set the values for the tolerance ε, the critical

threshold nc and the final time T .

2. Initialize sample paths: for each trial, initialize the time t ← 0 and the states

Xc+h ← x and Xc ← x.

3. Loop: While t < T do (a)–(g)

(a) Compute the propensity functions: ac+hj (Xc+h) and acj(X
c) for each j =

1, . . . ,M .
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(b) Determine the set of critical reactions for the nominal and perturbed

trajectories: on the nominal trajectory, for each reaction Rj with propensity

acj(X
c) > 0, determine

Lcj = min
i=1,...,N ;vij<0

⌊
Xc
i

|νij|

⌋
b·c is the floor function (greatest integer less than).

On the perturbed trajectory, for each reaction Rj with propensity ac+hj (Xc+h) >

0, determine

Lc+hj = min
i=1,...,N ;vij<0

⌊
Xc+h
i

|νij|

⌋
and set Jncr = {j : Lcj ≥ nc and Lc+hj ≥ nc}, the set of non-critical reaction

indexes. That is, min(Lcj, L
c+h
j ) is the maximum number of times that Rj can

occur without exhausting one of its reactants on either the perturbed or the

nominal trajectory.

(c) Determine candidates leap size, τ c1 and τ
(c+h)
1 , for the non-critical re-

actions: Compute first τ candidates, τ
(c)
1 and τ

(c+h)
1 (one candidate for the

nominal and one for the perturbed trajectory). If there are no non-critical re-

actions (Jncr = ∅), set τ1 = ∞. Otherwise, determine the set of indices Incr

of species that are reactants of non-critical reactions. For each i ∈ Incr and on

each of the nominal and perturbed trajectories:

i. Let ψi be the highest order at which Si appears as reactant in a non-critical

reaction.

ii. Determine the factors gi as follows
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A. If ψi = 1, then set gi = 1

B. If ψi = 2, then set gi = 2, unless the left hand side of the reaction

equation is Si + Si, in which case set gi =
(

2 + 1
x1−1

)
.

C. If ψi = 3, then set gi = 3, unless the left hand side of the reaction

equation is of the form Si+Si+Sj, in which case set gi = 3
2

(
2 + 1

xi−1

)
,

or, alternatively, has the form Si + Si + Si, in which case set gi =(
3 + 1

xi−1
+ 2

xi−2

)
.

iii. Evaluate the auxiliary quantities µ̂i(x) and σ̂2
i (x) according to (4.2) and

τ
(c)
1 and τ

(c+h)
1 using (4.3).

(d) Determine candidate leap sizes for the nominal and perturbed tra-

jectories, τ
(c)
2 and τ

(c+h)
2 , for the critical reactions: set a

cr,(c)
0 (Xc) and

a
cr,(c+h)
0 (Xc+h) to be the sum of the critical reaction propensities for the nom-

inal and perturbed trajectories, take ξ
(c)
1 and ξ

(c+h)
1 samples from the uniform

distribution on [0, 1], and compute τ
(c)
2 and τ

(c+h)
2 as

τ
(c)
2 = (1/a

cr,(c)
0 (Xc)) ln(1/ξ

(c)
1 ),

τ
(c+h)
2 = (1/a

cr,(c+h)
0 (Xc+h)) ln(1/ξ

(c+h)
1 ).

(e) Select leap size and determine reaction extents kj: τ1 = min{τ (c)
1 , τ

(c+h)
1 },

τ2 = min{τ (c)
2 , τ

(c+h)
2 }.

i. If τ
(c)
1 < τ

(c)
2 and τ

(c+h)
1 < τ

(c+h)
2 , no critical reaction occurs. Set τ = τ1

and kcj = kc+hj = 0 for all critical reactions. For j ∈ Jncr, compute mj =
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min(acj(X
c), ac+hj (Xc+h)).

A. Generate the samples from Poisson distributions

P1,j = Poisson(mjτ),

P2,j = Poisson((acj(X
c)−mj)τ),

P3,j = Poisson((ac+hj (Xc+h)−mj)τ).

(4.5)

B. Set the reaction extents

kcj = P1,j + P2,j, kc+hj = P1,j + P3,j. (4.6)

ii. else if τ
(c)
2 < τ

(c+h)
2 , a single critical reaction occurs on the nominal trajec-

tory. Generate a sample, ξ2, from the uniform distribution over [0, 1]. Let

jcr be the smallest integer for which
∑j

k=1 a
c
j(X

c) > ξ2a
cr,(c)
0 . Set τ = τ2,

kcjcr = 1, kc+hjcr
= 0. For all other critical reactions set kcj = kc+hj = 0 and for

non-critical reactions compute (4.6) with (4.5).

iii. else if τ
(c+h)
2 < τ

(c)
2 , a single critical reaction occurs on the perturbed trajec-

tory. Generate a sample, ξ2, from the uniform distribution over [0, 1]. Let

jcr be the smallest integer for which
∑j

k=1 a
c+h
j (X(c+h)) > ξ2a

cr,(c+h)
0 . Set

τ = τ2, kcjcr = 0, kc+hjcr
= 1. For all other critical reactions set kcj = kc+hj = 0

and for non-critical reactions compute (4.6) with (4.5).

iv. else a single critical reaction occurs on both the nominal and the per-

turbed trajectories. Set τ = τ2. Generate a sample, ξ2 from the uni-

form distribution over [0, 1]. Let jcr be the smallest integer for which
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∑j
k=1 a

c
j(X

(c)) > ξ2a
cr,(c)
0 . Set τ = τ2, kcjcr = kc+hjcr

= 1. For all other

critical reactions set kcj = kc+hj = 0 and for non-critical reactions compute

(4.6) with (4.5).

(f) Implement the step: update the time t← t+ τ and the state values

Xc ← Xc +
∑M

j=1 k
c
jνj,

Xc+h ← Xc+h +
∑M

j=1 k
c+h
j νj.

(g) Estimate the sensitivity with respect to c, on the sample path, as Z = (f(Xc+h)−

f(Xc))/h at time t.

4.4 Numerical Results

In this section, we illustrate the efficiency of the coupled tau-leaping (CTL) method [83],

over existing finite-difference methods. We benchmark against three biochemical reaction

models with mass action kinetics and simple dynamics. Applications to complex dynamics

are of definite interest, but because their interpretation is the subject on ongoing research

(e.g. bistability [24], sustained oscillations [53], quasi-steady state approximations [110]),

they do not present ideal subjects for unambiguous comparisons.

For each analysis, an ensemble of 10000 pairs of sample paths was simulated. To demon-

strate the proposed method’s performance, for each model we completed analyses over a

range of tolerance values ε. We present the values of the sensitivity estimators in each

case, and report the relative computational times. We find that the accuracy of the pro-
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posed CTL method is comparable to the CFD method (especially for small ε), and that

for systems that are at least moderately stiff, the CTL method is considerably more com-

putationally efficient.

4.4.1 Two-step Closed Reaction Chain Model

Our preliminary analysis is of a simple two-step closed reaction chain (Figure 4.1). The

reactions are listed in Table 4.1, along with the reaction propensities and a nominal set

of parameter values. Here Xi is the molecular abundance of species Si. In this model,

reactions R1 and R2 are fast, while R3 and R4 are slow. The propensities of the fast and

slow reactions are separated by four orders of magnitude, resulting in significant stiffness.

Table 4.1: Two-step closed reaction chain

Rj Reaction Propensity Nominal rate constant

R1 S1
C1−→ S2 a1 = C1X1 C1 = 800

R2 S2
C2−→ S1 a2 = C2X2 C2 = 3200

R3 S2
C3−→ S3 a3 = C3X2 C3 = 0.1

R4 S3
C4−→ S2 a4 = C4X3 C4 = 1

We simulated the system with initial conditions (X1(0), X2(0), X3(0)) = (2000, 1000, 100)

and the kinetic parameters in Table 4.1, on the time-interval [0, 0.1]. The Figure 4.2(a)

shows the mean abundance of species S1 for the proposed tau-leaping algorithm (over a
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Figure 4.1: Two-step closed reaction chain.

range of tolerances ε) and for the CFD method. The standard deviation of the molecular

count of S1(t) is shown in Figure 4.2(b). (The plots in Figure 4.2(a-b) are equivalent to

ensembles generated from independent tau-leaping [14] and next-reaction method [35] sim-

ulations, respectively.) As expected, the performance of the tau-leap method deteriorates

as the tolerance takes higher values. Figure 4.2(c-d) show the sensitivity of the molecular

count of species S1 with respect to the parameter C1, with perturbation h = 1 (i.e. 0.125%

of the nominal parameter value). The insets show the mean (panel (c)) and variance (panel

(d)) of the estimator of the sensitivity from the CRN, CRP, CFD, and the CTL (ε = 0.03)

methods. As demonstrated in [109], the CFD method provides an estimator with con-

siderably lower variance than the CRN and CRP methods; the proposed CTL method is

comparable. The main panels show a comparison of the performance of the CFD and the

CTL methods over a range of tolerances ε.

In [2] it was shown that for the CFD method, the standard deviation of the estimator

for sensitivity depends on the perturbation size h as O(h−1). We investigated this depen-

dence for the simulation of the two-step reaction chain described above. Figure 4.3 shows

numerical observations for the CRN, CRP, CFD, and CTL (for a range of tolerances ε).

As in Figure 4.2(d), the estimator calculated from the proposed tau-leaping method has

variance very close to that of the CFD method, whereas the CRP and the CRN estimators
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exhibit much higher variability. We observe that in this case the variance of our adaptive

tau-leaping sensitivity estimator appears to be O(h−1). The increase in estimator variance

with decreased perturbation size h leads to a trade-off: small perturbation size results in

large estimator variance, but large perturbation size leads to finite differences that poorly

approximate the derivative. We manually explored this trade-off in selecting a value for

the parameter h in the examples we considered, but we did not complete an analysis of

optimal stepsize choice.

Table 4.2 indicates the relative timing of sample path generation for the simulations in

Figure 4.2 (labelled as Simulation I). (Absolute timings will, of course, vary by machine

specifications. As an example, in this case, computation of the CTL over 100 trajectory

pairs with ε = 0.06 took 25.55 seconds on a Macbook Pro with a single 1.3GHz Intel Core

i5 processor the equivalent calculation of the CFD took 2173.74 seconds.) We compared

timing for the CFD and CTL methods. We did not carry out a comparison with the CRN

or CRP methods, as they produce estimators with considerably higher variability. As ex-

pected, the computational efficiency of the CTL depends on the choice of tolerance ε, but,

for this analysis, the CTL provides a significant savings in computational effort compared

with the CFD (while providing comparable results; Figure 4.2(d)). In Simulation I, the

CTL algorithm encountered very few critical reactions. To assess the algorithm’s perfor-

mance when molecule counts are frequently small, we ran another ensemble, with initial

condition X(0) = (3000, 100, 12) and rate parameters (C1, C2, C3, C4) = (800, 3200, 0.1, 5),

labelled as Simulation II in Table 4.2. In this case, about 10% of steps involved molecular

counts below the critical threshold of nc = 10. The efficiency of the method was thus re-

duced. However, as shown, the CTL method is still considerably more efficient than CFD
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for this simulation.

Table 4.2: Closed reaction chain model: efficiency gain of CTL over the CFD, for approx-
imating the sensitivity of the the abundance of species S1 with respect to C1, for h = 1.
The time interval is [0, 0.1].

Method Tolerance Efficiency gain Efficiency gain
Simulation I Simulation II

CTL ε = 0.06 81.87 24.57

CTL ε = 0.05 65.89 18.79

CTL ε = 0.04 44.31 13.04

CTL ε = 0.03 25.12 7.72

CFD – 1 1

4.4.2 Oregonator Model

The Oregonator model [31] (Figure 4.4) describes a chemical reaction network capable of

exhibiting sustained oscillations. Local sensitivity analysis of periodic behaviour is gener-

ally confounded by the fact that phase shifts cause sensitivity coefficients to diverge [53, 97].

Rather than address this issue here, we instead chose nominal rate constants for which the

model exhibits damped oscillations. The reactions, the propensities and a nominal set of

values for the rate constants are given in Table 4.3. With these parameters, the propensi-

ties of the fast reactions (R2, R3 and R5) are two orders of magnitude faster than those of

the slow reactions (R1 and R4).
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Table 4.3: Oregonator model

Rj Reaction Propensity Nominal rate
constant

R1 S2
C1−→ S1 a1 = C1X2 C1 = 5

R2 S1 + S2
C2−→ � a2 = C2X1X2 C2 = 0.0250

R3 S1
C3−→ 2S1 + S3 a3 = C3X1 C3 = 130

R4 2S1
C4−→ � a4 = C4X1(X1 − 1)/2 C4 = 1.6× 10−4

R5 S3
C5−→ S2 a5 = C5X3 C5 = 130

We ran simulations from initial condition (X1(0), X2(0), X3(0)) = (5000, 400, 800) over the

time interval [0, 2], and addressed the sensitivity of the molecular count of species S1 with

respect to parameter C1, with a perturbation size of h = 0.01 (i.e. 0.2% of the nominal

value).

Figure 4.5 (a-b) show the mean and standard deviation of the molecular count of species S1

as simulated by the next reaction method and adaptive tau-leaping scheme (over a range

of tolerances ε). The behaviours are similar, with the tau-leaping approach showing less

accuracy as higher tolerance values are chosen. The mean and standard deviation of the

sensitivity estimators generated by the CFD and CTL methods are shown in Figure 4.5(c-

d). Again, the results are similar, with accuracy dependent on tolerance threshold ε. The

relative timings for this analysis, shown in Table 4.4, show considerable efficiencies (up to

216-fold) for the tau-leap approach.
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Table 4.4: Oregonator model: efficiency gain of CTL over CFD, for approximating the
sensitivity of the abundance of species S1 with respect to C1, for h = 0.01. The time
interval is [0, 2].

Method Tolerance Efficiency gain

CTL ε = 0.05 216.17

CTL ε = 0.04 164.38

CTL ε = 0.03 109.89

CTL ε = 0.02 56.29

CFD – 1

4.4.3 Gene Regulatory Network Model

As a final illustration, we consider a multi-scale reaction network (Figure 4.6), which has

been used previously to benchmark stochastic methods for biochemical systems modelling

[52, 76]. (This model represents a gene regulatory network capable of exhibiting bistabil-

ity [11], but we do not explore that aspect of the dynamics here.) The reactions, propen-

sities and rate constants are shown in Table 4.5. For this parametrization, four orders of

magnitude separate the propensities of the fastest reactions, R3 and R4, from those of the

slowest reactions, R1 and R12.

We simulated the model from initial condition (X1(0), X2(0), X3(0), X4(0), X5(0), X6(0),

X7(0), X8(0)) = (800, 800, 500, 500, 400, 500, 400, 500), on the time interval [0, 0.1], and

addressed the sensitivity of the molecular count of species S2 with respect to parameter
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Table 4.5: Gene regulatory network model

Rj Reaction Propensity Nominal rate
constant

R1 S3
C1−→ S3 + S1 a1 = C1X3 C1 = 0.16

R2 S4
C2−→ S4 + S2 a2 = C2X4 C2 = 0.16

R3 S3 + S2
C3−→ S5 a3 = C3X2X3 C3 = 5

R4 S5
C4−→ S3 + S2 a4 = C4X5 C4 = 3000

R5 S5 + S2
C5−→ S6 a5 = C5X2X5 C5 = 2.5

R6 S6
C6−→ S5 + S2 a6 = C6X6 C6 = 1600

R7 S1
C7−→ � a7 = C7X1 C7 = 0.1

R8 S4 + S1
C8−→ S7 a8 = C8X1X4 C8 = 2

R9 S7
C9−→ S4 + S1 a9 = C9X7 C9 = 3000

R10 S7 + S1
C10−→ S8 a10 = C10X1X7 C10 = 2.5

R11 S8
C11−→ S7 + S1 a11 = C11X8 C11 = 1600

R12 S2
C12−→ � a12 = C12X2 C12 = 0.1

C3, with a perturbation size of h = 0.01 (i.e. 0.2% of the nominal value).

Figure 4.7 (a-b) shows the mean and standard deviation of the molecular count of species
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S2 as simulated by the next reaction method and adaptive tau-leap technique (over a range

of tolerances ε). The results are similar to the previous examples. Figure 4.7 panels (c-d)

show the mean and standard deviation of the sensitivity estimators generated by the CFD

and CTL. As before, accuracy is dependent on the tolerance threshold ε. The speed-up

of the tau-leaping approach (Table 4.6) is reduced compared with the previous examples,

but is still considerable.

Table 4.6: Gene regulatory network model: efficiency gain of CTL over CFD, for approxi-
mating the sensitivity of the abundance of species S2 with respect to C3, for h = 0.01. The
time interval is [0, 0.1]

Method Tolerance Efficiency gain

CTL ε = 0.15 16.43

CTL ε = 0.10 9.28

CTL ε = 0.05 2.57

CFD – 1
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Figure 4.2: Closed reaction chain model. Ensembles of 10000 sample paths were generated
on the time-interval [0, 0.1], starting from initial condition (X1(0), X2(0), X3(0))=(2000,
1000, 100) with parameters as in Table 4.1. (a-b) Mean and standard deviation of the
molecular count for species S1, determined by the next reaction method and the adaptive
tau-leaping algorithm with various tolerances ε. (c-d) Mean and standard deviation of the
finite-difference estimators of the sensitivity of the abundance of S1 to the parameter C1,
calculated by the CRN, CRP, CFD, and CTL methods.
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variability with an O(h−1) dependence on the perturbation size. The estimators generated
by the CRN and CRP methods are considerably more variable.
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Figure 4.4: Oregonator reaction network.
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Figure 4.5: Oregonator model. Ensembles of 10000 sample paths were generated on the
time-interval [0, 2], starting from initial condition (X1(0), X2(0), X3(0)) = (5000, 400, 800)
with parameters as in Table 4.3. (a-b) Mean and standard deviation of the molecular count
of S1, determined by the next reaction method and the adaptive tau-leaping scheme with
various tolerances ε. (c-d) Mean and standard deviation of the finite-difference estimators
of the sensitivity of the abundance of S1 with respect to the parameter C1, determined by
the CFD and the CTL methods.

90



Figure 4.6: Gene regulatory reaction scheme diagram.
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Figure 4.7: Gene regulatory network model. Ensembles of 10000 sample paths were gen-
erated on the time interval [0, 0.1], starting from initial condition (X1(0), X2(0), X3(0),
X4(0), X5(0), X6(0), X7(0), X8(0))=(800, 800, 500, 500, 400, 500, 400, 500) with param-
eters as in Table 4.5. (a-b) Mean and standard deviation of the molecular count of S2,
determined by the next reaction method and the adaptive tau-leaping strategy with vari-
ous tolerances ε. (c-d) Mean and standard deviation of the finite-difference estimators of
the sensitivity of the abundance of S2 to the parameter C3, calculated by the CFD, and
the CTL.
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Chapter 5

Adaptive Coupled Implicit

Tau-Leaping Method

5.1 Introduction

The materials in this Chapter are reproduced directly from the jointly-authored publication

by Morshed, Ingalls and Ilie [84]. In this chapter we propose a novel strategy, the Coupled

Implicit Tau-leaping (CIT) method [84], for estimating local sensitivities. This method is

computationally efficient when applied to stiff to very stiff stochastic biochemical systems.

Recall that stiff systems involve quickly changing dynamics, where fast and slow time

scales are well separated [15, 93] with the fastest mode being stable as was discussed in

Section 2.10. The implicit-tau leaping scheme [93] was designed for such stiff biochemical

systems. When used for solving stiff systems, the explicit-tau leaping method may be-
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come unstable unless τ is chosen to be small enough such that the accuracy requirements

associated with the fast dynamics are satisfied.

Evaluation of the propensity function, aj at the current known state x causes the tau-

leaping method to be an explicit method which was discussed in depth in Section 2.7.3.

The time steps for the explicit tau-leaping strategy are limited to the fastest mode, as

such it is not suitable for stiff biochemical systems. The tau-leaping strategy for the CME

shows a similar instability due to large time steps as the explicit Euler method applied

to ordinary differential equations. This is expected, since the tau-leaping strategy is a

generalization of the explicit Euler scheme to discrete stochastic well-stirred biochemical

systems. To address this issue, Rathinam et al. [93] developed the implicit tau-leaping

method which overcomes the poor stability of the explicit strategy and allows larger time

steps. The implicit tau-leaping strategy produces an accurate numerical solution for the

slow variables in the system, with larger time steps sizes than the explicit tau-leaping

scheme for stiff discrete stochastic systems. Furthermore, the mean for the fast variable

on the slow manifold is accurate.

5.2 Implicit Tau-Leaping

Recall, in Section 2.7.1, we discussed that exact Monte Carlo simulation algorithms [35,

41, 43] for the Chemical Master Equations (CME) are often computationally expensive on

problems of practical interest. An approximate technique which reduces the computational

cost of solving the CME is the tau-leaping method, due to Gillespie [42]. This technique

was discussed in Section 2.7.3.
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Many biochemical systems arising in applications are stiff, displaying both slow and fast

dynamics, with the fast modes being stable. However, the explicit tau-leaping strategy is

impractical for stiff systems, as its time-step is limited to the fastest mode. To deal with

this challenge, Rathinam et al. [93] proposed the implicit tau-leaping method. The implicit

tau-leaping technique overcomes the stability issue of the explicit strategy, allowing larger

steps in time. Consequently, for stiff stochastic biochemical systems, it is more efficient

than the explicit method while maintaining a similar accuracy. In fact, the scheme is semi-

implicit, being implicit only in the mean part of each term Pj(aj, τ), i.e. ajτ . If X(t) = x,

the implicit tau-leaping method updates the system state as

X(t+ τ) = x +
M∑
j=1

νjaj(X(t+ τ))τ +
M∑
j=1

νj [Pj(aj(x), τ)− aj(x)τ ] . (5.1)

5.3 Stepsize Selection for Implicit Tau-Leaping

Reversible reactions are those that can occur going from reactants to products and vice

versa. They can reach an equilibrium between reactants and products. When this occurs

for some reversible reactions while the rest of the system is still undergoing significant

variation, the system is said to be in partial equilibrium. Partial equilibrium occurs when

the forward and backward propensities of the reversible reaction are approximately equal:

their difference should be much smaller than the propensities themselves. More precisely,

if the propensities of the reversible reactions are denoted by a+(x) and a−(x), the partial
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equilibrium condition (Cao et al. [15]) is

|a+(x)− a−(x)| ≤ δmin {a+(x), a−(x)}, (5.2)

for some small quantity δ > 0. (In the implementations below we used δ = 0.05.)

We make use of the step-size selection strategy introduced by Cao et al. [15]. For those

reactions that are not in partial equilibrium, we demand that the mean and variance of

each reactant population Xi should satisfy

|Xi(t+ τ)− xi| ≤ max{εxi/gi, 1} (5.3)

where ε is the given tolerance, and the scalar gi represents the highest order at which

species Si reacts (see Cao et al. [14] for further details).

Following Cao et al. [14], we arrive at an efficient implementation of this leap condition

[14] by classifying all reaction that are not in partial equilibrium as critical or non-critical,

as follows. We begin by specifying the value of a control parameter, nc. (Typically nc ∈

[2, 20]). If a reactant is within nc firings of producing a zero population, it is called a

critical reaction. Let us denote by Jcr, Jncr, and Jne the set of indices of critical, non-critical

reactions and not in partial equilibrium reactions, respectively; denote Jnecr = Jncr
⋂
Jne

the index set of the reaction channels which are non-critical and not in partial equilibrium.

The leap condition (5.3) is implemented for the non-critical reactions, by choosing the

time-step τ as:

τ = min
i

{
max{εxi/gi, 1}
|µ̂i(x)|

,
max{εxi/gi, 1}2

δ̂2
i (x)

}
,
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where

µ̂i(x) =
∑

j∈Jnecr

νijaj(x),

δ̂2
i (x) =

∑
j∈Jnecr

ν2
ijaj(x).

5.4 Coupled Implicit Tau-Leaping (CIT)

This section introduces our novel technique (Morshed et al. [84]) for approximating the

local sensitivities for stochastic discrete models of biochemical kinetics. This method is

effective and accurate for stiff to very stiff models (involving multiple scales in time). Stiff

systems are often encountered in applications, as biochemical systems regularly involve

both fast and slow reactions. In contrast with the existing finite-difference schemes [2, 96],

which utilize exact stochastic simulation algorithms to generate the nominal and perturbed

trajectories, our strategy computes coupled paths using the (approximate) implicit tau-

leaping strategy. The coupling we employ is related to 3.11, which is used in the CFD

method [2]. This coupling shares similarities to the coupling in [69] and is applied in [3]

for designing multi-level Monte Carlo methods for well-stirred stochastic biochemical sys-

tems. The coupled tau-leaping (CTL) method [83] uses finite-differences to estimate the

sensitivities and the (approximate) explicit tau-leaping strategy to generate the coupled

trajectories. However, the CTL was designed for biochemical networks that are at most

moderately stiff. As opposed to these approaches, the novel CIT technique [84] involves

solving implicit equations. For stiff to very stiff models, the new CIT strategy allows much

larger time-steps than the previous methods. Consequently, the CIT algorithm is expected
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to be significantly more efficient than the existing finite-difference estimators for such sys-

tems. Our CIT method is very accurate for approximating the sensitivity of the mean

E (X(t)).

In the CIT algorithm [84], the coupled (i.e. nominal and perturbed) implicit tau-leaping

trajectories are generated as follows

Xc(t+ τ) = xc +
M∑
j=1

νj[(a
c
j(X

c(t+ τ))− acj(xc))τ + P1,j(mj,c,h(x
c,xc+h)τ)

+P2,j((a
c
j(x

c)−mj,c,h(x
c,xc+h))τ)]

(5.4)

Xc+h(t+ τ) = xc+h +
M∑
j=1

νj[(a
c+h
j (Xc+h(t+ τ))− ac+hj (xc+h))τ + P1,j(mj,c,h(x

c,xc+h)τ)

+P3,j((a
c+h
j (xc+h)−mj,c,h(x

c,xc+h))τ)]

(5.5)

with Xc+h(t) = xc+h and Xc(t) = xc. The Poisson random variables P1,j, P2,j and P3,j are

independent. We denoted by mj,c,h(x
c,xc+h) = min

{
acj(x

c), ac+hj (xc+h)
}

. The contribution

of the shared term, P1,j(mj,c,h(x
c,xc+h)τ), is expected to be significant, thus leading to a

strong coupling. A consequence of this strong coupling is the reduced variance observed

for this method (as shown in the next section). Once the Poisson terms are generated,

Newton’s method is applied to solve numerically each implicit equation, (5.4) for Xc(t+ τ)

and (5.5) for Xc+h(t+ τ), respectively.

For advancing the numerical solution, the CIT utilizes an extension of the adaptive time-

stepping strategy introduced by Cao et al. [15], for the implicit tau-leaping method, as

outlined in the previous section. A candidate leap is computed for the critical and non-
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critical reactions, independently, on each of the nominal and perturbed trajectories, and

then the smallest leap size is chosen as the next step.

CIT Algorithm

1. Initialize simulation parameters: assign a value to the tolerance for tau-leaping

ε, the tolerance for Newton’s method, TOL, the critical threshold nc, the final time

T and the partial equilibrium parameter δ.

2. Initialize sample paths: initialize the time t ← 0 and the states Xc+h ← x0 and

Xc ← x0.

3. While t < T

(a) Compute the propensity functions: ac+hj (Xc+h) and acj(X
c) for each j =

1, . . . ,M .

(b) Partial equilibrium condition: for each set of reversible reactions in both

systems, use the propensities to determine if the pair is in partial equilibrium,

given by the condition |a+(x)− a−(x)| ≤ δmin {a+(x), a−(x)}.

(c) Find the set of critical reactions for the nominal and perturbed tra-

jectories: for each non-partial equilibrium reaction Rj in the two systems, with

propensity acj(X
c) > 0 or ac+hj (Xc+h) > 0, determine

Lj = min
i∈[1,N ];vij<0

⌊
xi
|νij|

⌋
b·c is the floor function (greatest integer less than).
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and set Jncr = {j : Lj ≥ nc}, the set of non-critical reaction indexes. (Lj is the

maximum number of reactions Rj that can occur without exhausting one of its

reactants on either the nominal or the perturbed trajectory.)

(d) Compute candidate stepsizes, τ1
c and τ c+h1 , for the non-critical and not

in partial equilibrium reactions: If no non-critical reactions occur (Jnecr =

∅), set τ c1 = τ c+h1 = ∞. Otherwise, determine the set of indices Incr of species

that are reactants of non-critical reactions. For every i ∈ Incr and on each of

the nominal and perturbed paths:

i. Set ψi to be the highest order at which the reactant Si appears in a non-

critical reaction.

ii. Compute gi as follows:

A. If ψi = 1, take gi = 1

B. If ψi = 2, take gi = 2, unless the left hand side of the reaction is Si+Si,

in which case take gi =
(

2 + 1
x1−1

)
.

C. If ψi = 3, take gi = 3, unless the left hand side of the reaction is

Si + Si + Sj, in which case take gi = 3
2

(
2 + 1

xi−1

)
, or the reaction is

Si + Si + Si, in which case take gi =
(

3 + 1
xi−1

+ 2
xi−2

)
.

iii. If at least one reversible reaction has reached partial equilibrium: evaluate

the auxiliary quantities µ̂i(x) and δ̂2
i (x) according to

µ̂i(x) =
∑
j∈J

νija
c
j(x),
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δ̂2
i (x) =

∑
j∈J

ν2
ija

c
j(x),

for J = Jnecr. Here Jnecr = Jne∩Jncr, the reactions that are both non-critical

and not in partial equilibrium.

Finally, find the first τ candidate (τ
(c)
1 and τ

(c+h)
1 ) for each system, using:

τ = min
i

{
max{εxi/gi, 1}
|µ̂i(x)|

,
max{εxi/gi, 1}2

δ̂2
i (x)

}
.

(e) Compute candidate stepsizes, τ
(c)
2 and τ

(c+h)
2 , for the critical reactions:

let a
cr,(c)
0 (Xc) and a

cr,(c+h)
0 (Xc+h) be the sum of the critical reaction propensities

for the nominal and perturbed paths, respectively. Sample ξ
(c)
1 and ξ

(c+h)
1 from

the uniform distribution on [0, 1], and calculate each system’s second τ candidate

(τ
(c)
2 and τ

(c+h)
2 ) with

τ
(c)
2 = (1/a

cr,(c)
0 (Xc)) ln(1/ξ

(c)
1 ) ,

τ
(c+h)
2 = (1/a

cr,(c+h)
0 (Xc+h)) ln(1/ξ

(c+h)
1 ) .

(f) Determine the next stepsize and the number of critical reactions: Let

τ1 = min{τ (c)
1 , τ

(c+h)
1 } and τ2 = min{τ (c)

2 , τ
(c+h)
2 }.

i. If τ
(c)
1 < τ

(c)
2 and τ

(c+h)
1 < τ

(c+h)
2 , no critical reaction occurs. Set τ = τ1 and

kcj = kc+hj = 0 for all critical reactions.

ii. else if τ
(c)
2 < τ

(c+h)
2 , one critical reaction fires on the nominal path. Sample

ξ2 from the uniform distribution on [0, 1]. Choose jcr as the smallest integer
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satisfying
∑

`≤j,`∈Jcr a
c
`(X

c) > ξ2a
cr,(c)
0 . Take τ = τ2, kcjcr = 1, kc+hjcr

= 0 and

kcj = kc+hj = 0 for all the other critical reactions.

iii. else if τ
(c+h)
2 < τ

(c)
2 , one critical reaction fires on the perturbed path. Sam-

ple ξ2 from the uniform distribution on [0, 1]. Choose jcr as the small-

est integer satisfying
∑

`≤j,`∈Jcr a
c+h
` (X(c+h)) > ξ2a

cr,(c+h)
0 . Take τ = τ2,

kcjcr = 0, kc+hjcr
= 1 and kcj = kc+hj = 0 for all the other critical reactions.

iv. else a single critical reaction occurs on each of the coupled paths. Sample

ξ2 from the uniform distribution on [0, 1]. Choose jcr as the smallest integer

satisfying
∑

`≤j,`∈Jcr a
c
`(X

(c)) > ξ2a
cr,(c)
0 . Take τ = τ2, kcjcr = kc+hjcr

= 1 and

kcj = kc+hj = 0 for all the other critical reactions.

(g) Step over the non-critical reactions: For each j ∈ Jncr, compute mj =

min(acj(X
c), ac+hj (Xc+h)).

i. Generate samples from Poisson distributions

P1,j = Poisson(mjτ),

P2,j = Poisson((acj(X
c)−mj)τ),

P3,j = Poisson((ac+hj (Xc+h)−mj)τ).

(5.6)

ii. Apply Newton’s method, with tolerance TOL, to solve each of the systems

U = Xc +
∑
j∈Jncr

{[acj(U)− acj(Xc)]τ + P1,j + P2,j}νj,

V = Xc+h +
∑
j∈Jncr

{[(ac+hj (V )− ac+hj (Xc+h)]τ + P1,j + P3,j}νj.
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where P1,j, P2,j and P3,j are given by 5.6.

iii. Update Xc ← U , Xc+h ← V .

(h) Implement the step: update the time t← t+ τ and the system states

Xc ← Xc +
∑
j∈Jcr

kcjνj,

Xc+h ← Xc+h +
∑
j∈Jcr

kc+hj νj.

(i) Approximate sensitivity on the sample path: Z = (f(Xc+h)− f(Xc))/h

at current time.

5.5 Numerical Results

This section compares the coupled implicit tau-leaping (CIT) method [84] with the coupled

finite-difference (CFD) strategy on some examples of stiff biochemical systems. Recall

that, of the published finite-difference techniques for estimating the sensitivities, the CFD

technique provides estimates with the lowest variance [2].

In our comparisons, we use ensembles of 10,000 paths of the CFD and of the new CIT

methods, respectively. We apply the CIT algorithm as described above with tolerance

ε = 0.05, TOL=0.01, and δ = 0.05. We show that the CIT method produces smaller

variances than the CFD strategy for the first two models and similar variances for the

third model. The CIT estimator is found to be significantly faster than the CFD. The
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Table 5.1: Decay-dimerization model

Rj Reaction Propensity Nominal rate
constant

R1 S1
C1−→ � a1 = C1X1 C1 = 0.05

R2 S1 + S1
C2−→ S2 a2 = C2X1(X1 − 1)/2 C2 = 50

R3 S2
C3−→ S1 + S1 a3 = C3X2 C3 = 106

R4 S2
C4−→ S3 a4 = C4X2 C4 = 0.05

efficiency is measured by

Speed-up over CFD =
CPU(CFD)

CPU (CIT)
.

5.5.1 Decay-dimerization Model

The decay-dimerization model of [93] consists of three molecular species involved in four

chemical reactions (Figure 5.1). The reactions and propensities are given in Table 5.1,

along with a set of nominal values for the rate constants.

The system was simulated on the time-interval [0, 1], with initial conditions (X1(0), X2(0),

X3(0))=(400, 800, 0) and the parameter nc = 10. The mean of the state variable X2 (i.e.

the number of S2 molecules), for the adaptive implicit tau-leaping algorithm and for the

next reaction method, are plotted in Figure 5.2(a); Figure 5.2(b) shows the standard devi-

ation of this state variable. The estimated sensitivity of S2 with respect to the parameter

104



Figure 5.1: Decay-dimerization model reaction chain.

C2 and that its standard deviation are shown in Figure 5.2(c-d). The perturbation param-

eter is h = 0.05 (i.e. 0.1% of the nominal parameter value). Figure 5.2(d) demonstrates

that the variance of the CIT estimator small compared to that of the CFD, demonstrating

accuracy. Moreover, the speed-up of CIT scheme over the CFD technique for estimating

sensitivities for this particular simulation on the time interval is [0, 1] is

Speed-up over CFD = 9632.70.

5.5.2 Genetic Positive Feedback Loop Model

We next consider a simple model of positive feedback in gene expression (Figure 5.3), as

presented in [88]. Referring to Table 5.2, x represents a monomeric protein, y the protein

dimer, d0 - the unoccupied regulatory site on the gene coding for x, dr the dimer-occupied

site, and m, the mRNA transcript. The reactions, propensities and a set of nominal

parameter values are included in the table.
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Figure 5.2: Decay-dimerization model: 10,000 trajectories were generated on the time-
interval [0, 1], with initial condition (X1(0), X2(0), X3(0)) = (400, 800, 0) and parameters
in Table 5.1. (a-b) The mean and standard deviation of the number of molecules for
species S2 were calculated by the next reaction method and the adaptive Implicit tau-
leaping algorithm. (c-d) The finite-difference estimates of the sensitivity of the abundance
of S2 with respect to C2, and the standard deviation of the estimators, for the CFD and
CIT.
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Figure 5.3: Schematic diagram of Genetic positive feedback loop model.
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Table 5.2: Genetic positive feedback loop model

Rj Reaction Propensity Nominal rate
constant

R1 x+ x
C1−→ y a1 = C1X(X − 1)/2 C1 = 5000

R2 y
C2−→ x+ x a2 = C2Y C2 = 106

R3 y + d0
C3−→ dr a3 = C3Y D0 C3 = 5000

R4 dr
C4−→ y + d0 a4 = C4Dr C4 = 106

R5 d0
C5−→ d0 +m a5 = C5d0 C5 = 10

R6 dr
C6−→ dr +m a6 = C6Dr C6 = 20

R7 m
C7−→ m+ x a7 = C7M C7 = 1

R8 x
C8−→ � a8 = C8X C8 = 0.8

R9 m
C9−→ � a9 = C9M C9 = 7

We ran simulations from initial molecular amounts of (X1(0), X2(0), X3(0), X4(0), X5(0)) =

(10, 20, 10, 40, 0) over the time-interval [0, 2], with nc = 10.

Figure 5.4(a) presents the evolution of the mean amount of the x molecules over 10, 000

paths, generated with the coupled implicit tau-leaping algorithm and the next reaction

method, respectively. The standard deviation of the molecular count of x as a function

of time, for each of the two algorithms, is shown in Figure 5.4(b). The behaviours of the

estimated sensitivity of the x molecular numbers with respect to the parameter C1, using
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the CIT and the CFD methods are presented in Figure 5.4(c), whereas the corresponding

standard deviations of the CIT and CFD estimators are given in Figure 5.4(d). The

simulations are performed with a perturbation h = 0.5 (i.e. 0.01% of the nominal parameter

value). From Figure 5.4(d), we observe that the CIT estimator variance is low compared

to the variance of the CFD estimator, therefore the sensitivity estimation of the new CIT

method is more accurate. This result is confirmed by Figure 5.4(c). In addition, for the

set of parameters used, the speed-up, on time interval [0, 2], of the CIT over the CFD is

significant .

Speed-up over CFD = 2656.43 .

5.5.3 Collins Toggle Switch Model

The Collins toggle switch [54] is a gene regulatory network that exhibits bistability: two

genes, each encoding a repressor of the other. Referring to figure (Figure 5.5) the species

p1 and p2 are gene’s protein products, while m1 and m2 denote the corresponding mRNA

transcripts. The parameters α1 and α2 denote the maximal transcription rates. Further-

more, β and γ are the degrees of nonlinearity in the repression mechanisms. Gene 1 and

Gene 2 repress the expression of each other, thereby leading to a bistable system. The sys-

tem is perfectly bistable when α1 = α2 and the maximal expression rates are adequately

large. The stiffness parameter of the model is defined by k, where the propensity of mRNA

transcription and degradation is proportional to the value of k. For increased values of

k, the transcription and degradation rate of mRNA increase thereby the stiffness of the
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Figure 5.4: Genetic positive feedback loop model. 10000 sample paths with initial condi-
tion (X1(0), X2(0), X3(0), X4(0), X5(0)) = (10, 20, 10, 40, 0) and parameters as in Table 5.2
were generated on the time-interval [0, 2]. (a-b) The mean and standard deviation of the
number of molecules for species x were calculated by the next reaction method and the
adaptive Implicit tau-leaping algorithm. (c-d) The mean and standard deviation of the
finite-difference estimators determined via the CFD and Implicit tau leaping methods, of
the sensitivity of the abundance of x to the parameter C1.
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model increases. Table 5.3 lists the reactions, their propensities and rate constants.

Table 5.3: Collin’s toggle switch model

Rj Reaction Propensity Nominal rate constant

R1 � C1−→ m1 a1 = k α1

1+(X2)β
C1 = α1 = 28.98,

β = 4

R2 m1
C2−→ � a2 = kC2X3 C2 = 0.23

R3 m1
C3−→ p1 +m1 a3 = C3X3 C3 = 0.23

R4 p1
C4−→ � a4 = C4X1 C4 = 0.23

R5 � C5−→ m2 a5 = k α2

1+(X1)γ
C5 = α2 = 28.98,

γ = 4

R6 m2
C6−→ � a6 = kC6X4 C6 = 0.23

R7 m2
C7−→ p2 +m2 a7 = C7X4 C7 = 0.23

R8 p2
C8−→ � a8 = C8X2 C8 = 0.23

This system was integrated on the time-interval [0, 2000], with initial conditions X(0) =

(76, 75, 60, 60) and nc = 5. Sample trajectories for all the species, simulated with the un-

derlying implicit tau-leaping method are shown in Figure 5.6(a-d). The mean and standard

deviation number of p1 molecules for the proposed implicit tau-leaping algorithm and for

the the next reaction method are plotted in Figure 5.7(a) and Figure 5.7(b), respectively.

Figures 5.7(c-d) present the finite-difference estimation of the sensitivity of the p1 molec-
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Figure 5.5: Collin’s Toggle Switch model reaction scheme diagram.
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ular amount with respect to the parameter C1 and the estimator’s standard deviation for

each of the CIT and CFD algorithms. In these simulations, the perturbation parameter is

h = 0.05 (i.e. 0.2% of the nominal parameter value). The estimation of the sensitivity is

similar for the CIT and the CFD methods, while the standard deviation of the CIT estima-

tor is slightly larger than that of the CFD estimator. However, for the set of parameters in

Table 5.3, the speed-up of the CIT over the CFD is 74-fold. In addition, the performance

of the CIT and CFD methods was studied for various degrees of stiffness in the system and

the results were reported in Table 5.4. For the parameters tested which lead to a stiff to

very stiff biochemical model, we obtained a speed-up of the new CIT strategy compared

to the existing CFD method of up to 468 times.

For non-stiff models, the CIT algorithm will perform no better than the CFD method.

For this model, a similar computational time for the two algorithms is obtained when

the propensities of the fastest and slowest reactions are separated by about two orders of

magnitude.

As shown in panel (d) of Figures 5.2, 5.4, and 5.7, the variance of the CIT estimator is not

always comparable to that of the CFD estimator (smaller in the first two examples, larger

in the third). For first two models, we observe that our CIT method is more accurate and

far more efficient than the existing CFD strategy. For the third model, when the value

of stiffness parameter k grows, our CIT method becomes increasingly more efficient than

the CFD scheme. On the other hand, for the Collins toggle switch model, the variance

of the CIT estimator is slightly larger than that of the CFD. The implicit tau-leaping

scheme damps the noise for systems reaching a steady state [93]. However, for the toggle

switch model, the implicit tau-leaping scheme does not cause noise reduction. Trajectories
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frequently switch between two states, the model exhibiting bi-stable behaviour. This be-

haviour restricts the noise damping property of the implicit tau-leaping scheme and leads

to a slightly larger variance of the CIT algorithm than that of the CFD, unlike for the

previous two models. According to our numerical experiments, we conclude that our CIT

method is expected to be more accurate and significantly more efficient than the CFD

technique, when the stiff system reaches a steady-state.

Table 5.4: Collin’s toggle switch model: the speed-up of the CIT compared to the CFD for
estimating the sensitivity of p1 with respect to C1 for h = 0.05 on time interval [0, 2000] of
CIT over the CFD.

Method Stiffness Speed-up
parameter k

CIT 300 10.16

CIT 1000 74.71

CIT 3000 468.43

CFD – 1
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Figure 5.6: Collin’s toggle switch model: A sample path of all species with initial condition
(X1(0), X2(0), X3(0), X4(0)) = (76, 75, 60, 60) and the parameters in Table 5.3 generated
with the Implicit tau-leaping method on the time-interval [0, 8000].
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Figure 5.7: Collin’s toggle switch model. 10000 sample paths with initial condition
(X1(0), X2(0), X3(0), X4(0)) = (76, 75, 60, 60) and parameters as in Table 5.3 were gener-
ated on the time-interval [0, 2000]. (a-b) The mean and standard deviation of the number of
molecules for species p1 were calculated by the next reaction method and the adaptive Im-
plicit tau-leaping algorithm. (c-d) The Mean and standard deviation of the finite-difference
estimators determined via the CFD and Implicit tau leaping methods, of the sensitivity of
the abundance of p1 to the parameter C1.
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Chapter 6

Identifiability Analysis

6.1 Introduction

One of the many objectives of constructing a model is to predict how a physical system

will behave in the future. When designing a mathematical model of a physical system, the

key question is that of determining the quality of the estimated parameter values based on

available experimental data. Perhaps the biggest question facing the scientist is whether

the construction of a unique mathematical model is even possible and whether a unique

set of parameters can be found to parameterize the model in a way that is consistent with

observable data [4].

If the simulated results are consistent to the actual observations, we can say that the model

provides a good representation of reality. However simple consistency with observations

may not be enough for the model to be sufficiently useful if the parameters of such model
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cannot be uniquely determined [4]. This means that a useful model cannot provide the

same results for multiple sets of input parameters. The quality of the estimated data is

therefore very important. In the literature this is the problem of identifiability of a model.

To assess the quality of estimated parameter values, identifiability analysis plays an impor-

tant role [4, 68, 89, 98, 121]. The identifiability analysis can be used to assess the quality of

a unique set of model parameters C = (c1, c2, ..., cM) which is closest to the observations.

The parameters can be globally or locally identifiable. A globally identifiable parameter

requires the ability to uniquely determine model parameters, given an ideal set of observa-

tions (data which is free of errors) over the entire parameter space [4]. In contrast, a locally

identifiable parameter C requires a unique output for each set of values of the parameter

only in the neighborhood of C. The parameters, which result in the output of a model,

may not be the only ones in the entire parameter space (there could be countably many

parameter values in the entire parameter space which lead to the same model output) [4].

If there are uncountably many values for parameters C = (c1, c2, ..., cM) , which give the

same output, then the parameter C is not identifiable.

Generally, identifiability consists of two types of analysis [4]. First, structural identifiability

analysis, which is also known as a priori identifiability analysis, investigates the theoretical

possibility of finding a unique (globally or locally) set of parameter values which are most

similar to the observations (where we assume that the observations are free of noise or

errors). Second, a posteriori (practical identifiability), investigates the practical possibility

of finding a unique (globally or locally) set of parameter values which are most similar

to the observations with the available data (but the available data can be noisy or may

have errors). The a posteriori analysis can be very important in real life situations because
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measurement of observables are always associated with error.

An important approach to determining the identifiability of model parameters relates the

sensitivity of the model output to changing model parameters (which was described further

in Chapter 3). In the current approach we use the sensitivity analysis approach adopted

from [68, 98, 122]. In this approach a high level of identifiability is associated with model

parameters cj if small changes in parameter values lead to a large impact on the overall

model output. In addition, confidence intervals for the values of the model parameters are

calculated using the methods adopted from [4, 33]. These are discussed in greater detail

in Section 6.5. The main goal of this analysis is to generalize the identifiability approach,

based on a sensitivity matrix, to stochastic models of biochemical systems.

6.2 Identifiability Approaches for Deterministic Model

There are many approaches in the literature to showing identifiability of a deterministic

model. The existence of so many approaches (in the literature) is mostly due to the

large differences between all available models. Since the different models differ in terms

of structure, complexity and their applications, there is currently no single method or

technique that can be used to determine identifiability with every model.

An important practical identifiability approach by Brun et al. [98] uses a sensitivity anal-

ysis. This approach attempts to understand how certain properties of the system change

when variations are introduced into the model’s parameters. A parameter’s sensitivity is

a measure of how much change in the system output results due to varying the parameter.
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Note that parameter’s sensitivity was extensively described in Chapter 3. Recall that,

a certain parameter of a model is regarded as highly sensitive if a small change in the

parameter results in a large change in the system’s outcome.

In the work of Brun et al. [98], all identifiability indices are computed by using the sen-

sitivity matrix. In their work, they introduced two types of identifiability measures. The

first type of identifiability measures is based on the model output sensitivity to single

parameters:

Sij =
∂xi
∂cj

. (6.1)

The first derivative term is known as the first order sensitivity coefficients and the matrix:

S =
∂X

∂C
=



∂x1
∂c1

∂x1
∂c2

· · · ∂x1
∂cM

∂x2
∂c1

. . . ∂x2
∂cM

...
. . .

...

∂xN
∂c1

∂xN
∂c2

· · · ∂xN
∂cM


=



s11 s12 · · · s1M

s21
. . . s2M

...
. . .

...

sN1 sN2 · · · sNM


. (6.2)

Where:

sij =
∂xi
∂cj

=
xi(t, cj + ∆cj)− xi(cj)

∆cj
. (6.3)

Brun et al. [98] uses the sensitivity matrix to develop the identifiability indexes. An

alternative approach by Brun et al. [98] considered the influence of the entire parameter

set on the output of the model. The objective of this approach was to determine if there
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was a linear dependence between the columns of the relative sensitivity matrix Sj. The

relative sensitivity can be defined by

Sij =
∂xi
∂cj

cj
xi
. (6.4)

The jth column of the relative sensitivity matrix is given by

Sj =

(
∂x1

∂cj

cj
x1

,
∂x2

∂cj

cj
x2

, ...
∂xN
∂cj

cj
xN

)T
(6.5)

for all species with respect to the parameter cj.

In the literature a number of approaches have been developed for the purpose of under-

standing how identifiability can translate to stochastic models. However these are typically

far more complex and require very careful consideration. In fact, a complete approach to

defining identifiability in a stochastic case has not yet been developed in the relevant liter-

ature. In the subsequent section we provide a brief introduction to treating identifiability

in stochastic models. We outline the details of this approach in Section 6.5.

6.3 Fisher Information Matrix (FIM) and Cramer-

Rao Bounds

The evolution of the state variable x = (x1, x2, ..., xN) depends to a large extent on the

values of model parameters C = (c1, c2, ..., cM). The Fisher Information Matrix (FIM)
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presents a way of determining the amount of information that can be obtained about the

unobservable model parameters C = (c1, c2, ..., cM) from the observable state of the system

x = (x1, x2, ..., xN).

By definition, a deterministic model gives the same output for a specific input even if the

procedure is repeated many times. This is different than in the stochastic model where the

output will be different even with the same input (that is true because the input is a random

variable chosen from a probability distribution). In the deterministic case, the parameters

and their relationships are provided by a system of differential equations and do not involve

any random variables. However in a physical system, the measurement of a state (state of

the system) will always include some level of error. The error part will have values within

a region in the parameter space (even in the deterministic model). The error part of the

measurement is associated with unknown parameters Ĉ = (ĉ1, ĉ2, ..., ĉM) (sometimes known

as the nuisance parameters [4]). The nuisance parameters represent those unknown model

parameters, which may include measurement error. The main objective is to find out how

much uncertainty there is in the nuisance parameters or how much useful information is

contained in each measurement with respect to each parameter of the state of the system.

The FIM provides a way to identify the amount of information of a measurement with

respect to a specific parameter. The matrix provides no information about the uncertainty

within the measurement. The level of uncertainty within the measurement is estimated by

the Cramer-Rao bound which provides the lowest uncertainty level of the parameters. The

FIM matrix was defined as a function of the sensitivity matrix by Ashyraliyev et al. [4].

Recall the sensitivity matrix from equation 6.2:
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S =
∂X

∂C
=



∂x1
∂c1

∂x1
∂c2

· · · ∂x1
∂cM

∂x2
∂c1

. . . ∂x2
∂cM

...
. . .

...

∂xN
∂c1

∂xN
∂c2

· · · ∂xN
∂cM


=



s11 s12 · · · s1M

s21
. . . s2M

...
. . .

...

sN1 sN2 · · · sNM


. (6.6)

The FIM [4] can be defined as F = STS. The eigenvalues of this matrix are related to

the identifiability of the model parameters (if the eigenvalues are zero then the model

parameters are not identifiable). The inverse of the FIM is related to the uncertainty of

the measurement with respect to each parameter. The uncertainty of the measurement

with respect to parameter is provided by the standard deviation and can be bound by:

errori =
√
var(ci) ≥

√
F−1
ii (ci) ≥

1√
Fii(ci)

. (6.7)

The above statement (equation 6.7) represents the Cramer-Rao bound for the lowest un-

certainty level of the parameters C = (c1, c2, ..., cM).

6.4 Identifiability Approaches for Stochastic Model

In this section we consider the Chemical Master Equation (CME) model for biochemical

reactions network, which was described explicitly in Section 2.6. Recall that the CME

consists of a set of ordinary differential equations. The state of the system is given by a

state vector x = (x1, x2, ..., xN) where each component of the vector xi denotes the number

of molecules of type i.
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A number of models can be constructed using the CME approach (such as biochemical

kinetic models). An important problem here is to establish if such models are identifiable

with respect to the set of parameters C = (c1, c2, ..., cM). Recall that in the deterministic

case, the identifiability of the model with respect to its parameters could be done using

several different approaches based on the computation of the sensitivity matrix which was

described further in Section 6.2.

In the stochastic case, modeled by the CME, the deterministic sensitivity matrix is no

longer meaningful. This is because in the stochastic case, model variables (such as the

output) represent random variables drawn based on probability density function f(x, t)

instead of a single value. Determining identifiability will need to use this stochastic infor-

mation in order to provide useful analysis. The definition of identifiability requires that

for each set of input parameter values a unique value of model outputs is given. However

in the stochastic case identifiability must be defined with respect to unique distributions

instead of a single output value [68]. A simple way to use the stochastic information is to

compute the sensitivity of probability density function to changes in the parameter values

from the expectation value as:

S = E

[
∂f(x,C, t)

∂c

]
. (6.8)

This is similar to the approach taken by Komorowski et al. [68] where the FIM matrix is

constructed as an expectation value of the rate of change (with respect to each parameter)

of the distribution. As a result, the FIM can be interpreted as the measure of how the

distribution changes in response to the changes in parameter values (this is appropriate in
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the stochastic case).

The construction of the FIM for a general CME model is quite complex and can be done

using a Monte Carlo approach which was described further in Section 2.7.1 and used in the

current analysis. In order to reduce/avoid the complexity of computation, Komorowski

et al. [68] used the linear noise approximation method (LNA) [68] to construct the FIM

without having to use Monte Carlo methods. Unfortunately, this approach (LNA) can only

be used when populations are very large. This is a significant drawback of this approach

because it does not provide a useful alternative to the Monte Carlo approach when the

populations are small. In practical situations when populations are not large enough, no

other methods are available and the Monte Carlo approach must be used to construct the

FIM. In the current approach we are interested in constructing an FIM for populations of

any size. The use of Monte Carlo is therefore a part of the current approach.

The big question is then whether methods used for identifiability in the deterministic

model can be used with the expected value measures such as the FIM (as constructed by

Komorowski et al. [68]). Komorowski et al. [68] provided a justification that the FIM can

be seen as a sensitivity matrix whose eigenvalues are associated with the identifiability of

the model. The number of eigenvalues, which are not zero, provides information about the

number of parameters which are identifiable in the model.

The expectation value of the distribution provides the first order information while the

higher moments are associated with variance, kurtosis, etc., of the distribution. Ko-

morowski et al. [68] shows that the diagonal elements of the inverse of the FIM can be

used to provide the lower bound on the variance of the sensitivity of the distribution to
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changes in the parameter values. This is known as the Cramer-Rao inequality which was

discussed further in Section 6.3. The main idea behind the inequality (Cramer-Rao) is to

provide an additional tool for parameter identifiability. Identifiability estimators (like the

eigenvalues of the FIM) with smaller variance have higher identifiability than those with

higher variance even if they both have the same eigenvalues.

6.5 Current Approach: Application of Monte Carlo

Approaches to Sensitivity Estimation to Identifi-

ability for CME Models

In the current analysis, we attempt to identify and implement a simple approach, based

on the sensitivity matrix, using a Monte Carlo algorithm. An approach based on the

sensitivity matrix was shown by Yao et al. [122] to provide a useful method to ranking model

parameters based on their identifiability. The sensitivity matrix can also be used to obtain

a confidence interval within which the true value of the model parameters can be found.

In the current analysis the parameter ranking algorithm was adopted from [68, 98, 122]).

The method to compute the confidence intervals for all of the model parameter values were

adopted from [4, 33].

In the paper by Komorowski et al. [68], where they concluded that a lot of information

about the identifiability of a stochastic model can be obtained from the FIM matrix. The

FIM is an expectation value of the sensitivity of the distribution (from which all observable

values are chosen) to the model parameters. This strongly suggests that a distribution
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can be build by running the sensitivity calculation over many trials using a Monte Carlo

algorithm which was described further in Section 2.7.1. In the current approach, the

distribution is constructed from the sensitivity algorithm for finding the sensitivity matrix

using the MC approach. In addition, the variability of the distribution (from the Monte

Carlo process) can be used to add new information about the identifiability of the model

using Cramer-Rao bounds (which was described further in Section 6.3) on the variability

of the distribution. Distributions with high variance are less identifiable.

The goal of the current approach is to approximate the FIM by constructing the sensitivity

matrix and using it as an identifiability tool to assess the quality of the estimated parameter

values and finding the confidence intervals for true values of the model parameters. In the

subsequent section we describe the details of this approach.

6.5.1 Procedure for Determining the Sensitivity Score

In Section 6.2, the construction of the sensitivity matrix was outlined in the context of

the deterministic model. In Section 6.4, an approach to constructing a sensitivity matrix

for a stochastic model was introduced as an expected value of a distribution. Finally, in

this section, we expand the analysis to construct a column-wise time dependant sensitivity

matrix (each column of the matrix representing a different parameter). We define, the time

dependant column sensitivity matrix:
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S(t) =
∂X

∂C
(t) =



∂X
∂C

(t1)

∂X
∂C

(t2)

...

∂X
∂C

(tnT )


(6.9)

where, the sensitivity component for each time point ti ∈ {t1, t2, ..., tnT } is given by the

matrix:

∂X

∂c
(tk) =



∂x1
∂c1

(tk)
∂x1
∂c2

(tk) · · · ∂x1
∂cM

(tk)

∂x2
∂c1

(tk)
. . . ∂x2

∂cM
(tk)

...
. . .

...

∂xN
∂c1

(tk)
∂xN
∂c2

(tk) · · · ∂xN
∂cM

(tk)


. (6.10)

In the above, each column is associated with a specific parameter cj .In component form

we can write the sensitivity matrix as:

sij(tk) =
∂xi
∂cj

(tk). (6.11)

In the above, xi represents the ith model output at time tk. We define a relative sensitivity

matrix as:

sij(tk) =
∂xi
∂cj

(tk)
cj
xi
. (6.12)

We seek a measure of sensitivity score that can be ordered with respect to the degree of

influence of each parameter on the model output. For each column of sij(tk) we define the
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norm as:

s̃j =

√√√√ nT∑
k=1

n∑
i=1

(sij(tk))2. (6.13)

The norm of each column represents the sensitivity score of the corresponding parameter.

6.5.2 Procedure for Determining the Identifiability Score

In the previous Section 6.5.1, the column relative sensitivity matrix was constructed to

estimate the sensitivity score. In this section we introduce an algorithm (as originally

proposed by Yao et al. [122]) to rank the model parameters based on their identifiability

score. This approach uses the relative sensitivity column matrix.

The procedure to rank each parameter’s influence on the model output is done using the

orthogonalization procedure by Yao et al. [122]. The key idea of the procedure is to rank

the identifiability score of each parameter (column of sij(tk)) based on how it correlates

with other parameters. Parameters with a high degree of identifiability will have a low

level of correlation with the other parameters.

The vector X1 represents the column of sij(tk) with the largest value of the norm s̃j and
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can be written as:

X1 = Maxcol{s̃ij(tk)} = Maxcol



s11(t1) · · · s1m(t1)

...
. . .

...

sn1(t1) · · · snm(t1)

...
. . .

...

s11(tnT ) · · · s1m(tnT )

...
. . .

...

sn1(tnT ) · · · snm(tnT )



(6.14)

where, in the above, Maxcol represents the column of the matrix with the largest norm

s̃j . This also corresponds to the parameter cj with the largest identifiability. The norm

s̃j represents the identifiability score of the jth parameter. The projection of each other

column j in the sensitivity matrix sij(tk) onto direction orthogonal to X1 is given by the

residual matrix:

R2 = s−X1

(
XT

1 · s
XT

1 ·X1

)
. (6.15)

The residual provides the measure of how uncorrelated each of the parameters is to X1.

That is, the column of sij(tk) which correspond to the largest value of R2 corresponds

to the lowest correlation and therefore the highest identifiability among the remaining

parameters. The column of R2 with the largest norm therefore corresponds to the second

highest identifiable parameter. The vector X1 is then augmented with the column of sij(tk)

which corresponds to that parameter. This augmented matrix gives the matrix X2. The
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residual of the projection of each column of sij(tk) onto X2 is then given by the matrix:

R3 = s−X2

(
XT

2 ·X2

)−1 ·XT
2 s. (6.16)

The next most identifiable parameter corresponds to the column with the highest norm of

R3. The process is repeated until the identifiability score of each parameter is computed.

6.5.3 Estimation of Eigenvalues and Collinearity Index

In the current approach, the distribution is constructed from the algorithm for finding

the sensitivity matrix many times using the MC approach. The expectation value of that

distribution was used previously to rank model parameters based on their identifiability.

In addition, the expectation value of the sensitivity matrix can be further used to provide

additional insight into the identifiability of the model parameters by estimating the corre-

sponding eigenvalues Komorowski et al. [68]. The number of the corresponding eigenvalues,

which are non-zero (or above some threshold value) can be used to estimate the number

of parameters that are identifiable.

In order to ensure that the eigenvalues are relatively meaningful, the sensitivity matrix

must be renormalized. Recall that, in Section 6.5.1, the column relative sensitivity matrix

S was constructed. First, the sensitivity matrix should be computed relatively to the other

parameters and then normalized. The relative sensitivity ensures to distinguish large and

small sensitivities. Normalization ensures that these are relative sensitivities, so that the

choice of units does not play a role in determining their values. The normalization ensures
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that the magnitudes of the sensitivities are standardized within a specified range of numbers

(typically between 0 and 1).

The normalized sensitivity matrix is given by:

Ŝij =
Sij

‖Sj‖
. (6.17)

Where the vector

‖Sj‖ =

√
(S1j)2 + (S2j)2 + ...+ (SNj)2 (6.18)

represents the Euclidean norm of the jth column. Large value of the norm ‖Sj‖ of the

jth column of the sensitivity matrix Sij shows that, when all other parameters are fixed,

a small change in parameter cj will have a large impact on the overall model output. It

suggests that the parameter may be highly identifiable, provided there isn’t a problem with

correlation among parameters.

In order to compute the eigenvalues, a square sensitivity matrix is needed, which is com-

posed from the normalized sensitivity matrix and its transpose. The eigenvalues of the

matrix ŜT Ŝ can be determined and provide a measure of the linear dependency between

the sensitivity functions. An eigenvalue λk, which is close to zero, can be associated with

low identifiability of model parameters. Therefore, a useful measure of identifiability is

related to the minimum eigenvalue (the model identifiability is restricted by its smallest

eigenvalue). The collinearity index is defined by:
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γk =

√
1

minλk
. (6.19)

That is, if the impacts on the model output, due to changing one parameter (or several pa-

rameters), results in the same model output impact by changing another set of parameters

then the model is not identifiable with respect to those parameters. This is because the

change to the output xi, when varying a parameter cj, can always give the same output

by varying a linear combination of the other parameters. When the lowest eigenvalue is

closer to zero, the model is less identifiable. That means, a higher collinearity index indi-

cates a lower model parameter identifiability. Recommended critical threshold values for

collinearity index γk lie in the range γk ∈ [5, 20] [98].

6.5.4 Estimation of the Confidence Intervals

A key aim of this analysis is not just to rank the identifiability of the model parameters

but also to estimate their values. Since the actual (true) value of the model parameters

can usually not be estimated, we can construct confidence intervals in which the true value

of each parameter is expected to occur within a specified confidence level. For instance,

when choosing the significance level of α = 0.05 we require the true value of the parameter

to appear within the boundaries of the confidence interval 95% of the time.

In general, a few approach are available to construct such intervals. A key approach [4]

relies on the construction of an absolute sensitivity matrix (which was described further

in Sections 3.2.1 and 6.2) sij(tk) = ∂xi
∂cj

(tk) as specified before (rather than, the relative
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sensitivity matrix sij(tk)). If we assume that the experimental errors in the model are

independent and normally distributed then we can define the least square error

SSE(c) =
∑
i

∑
k

(yiobs(tk)− yisim(c, tk))
2

(σi(tk))
2 (6.20)

where, yiobs(tk) and yisim(c, tk) represent the ith mean observed and simulated outputs

respectively at time tk and the standard deviation σi(tk) is associated with the observed

output values. We can use the least square error to obtain the lower bound on the radius

of the 95% confidence interval for the parameter:

∆cj =
m

n−m
SSE(c) · F0.05(m,n−m)

(√
(sT (c)s(c))ij

)−1

(6.21)

where m and n correspond to the number of parameters and number of observations

respectively. The function F0.05(m,n−m) represents the 95% inverse of cumulative Fisher

distribution with m and n −m degrees of freedom. The diagonal element of a matrix is

defined as (∗)ij . Given an estimate of the parameter c, we expect to find the true value

of the parameter cj within the confidence interval
[
cj −∆cj , cj + ∆cj

]
95% of the time. It

is convenient to report the relative estimates of the parameters as
(

∆cj

ĉj
× 100%

)
instead

of the absolute confidence intervals.

An additional approach for estimating the lower bound on the radius of the 95 % confidence

interval for a parameter can be obtained [33] using the Fisher information matrix as follows:

∆cj = 1.96
√

(FIM−1)jj. (6.22)
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In the above, the measurement errors are assumed to be independent and normally dis-

tributed. The FIM can be constructed as follows:

FIM = sTWs (6.23)

where W represents the inverse of the measurement covariance matrix. The diagonal

elements of W (the measurement variances) are calculated for each observation, while the

off-diagonal terms (covariance) can be set to zero. As in the case of the previous confidence

estimator, the relative values of the parameter estimates may be used.

6.6 Numerical Results

6.6.1 Constitutive Gene Expression Model

Our preliminary analysis is of a single gene expression model which represents gene tran-

scription and gene translation (Figure 6.1).

The single gene expression model [86] consists of two species and four reactions. The

reactions along with the propensities and parameter values are given in Table 6.1. Here

Xi represents the number of molecular of species Si. The production rate of mRNA was

dependent upon kr, and the translation rate of mRNA to protein corresponds to kp. The

mRNA and protein degradation rate was given by γr and γp respectively.

Given the kinetic parameters in Table 6.1 with three different initial conditions (X1(0),

X2(0))=(5, 5), (40, 500), (100, 1000) the system was simulated on the time-interval [0, 5].
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Table 6.1: Constitutive gene expression model

Rj Reaction Propensity Nominal rate
constant

R1 ∅ kr−→ mRNA a1 = kr kr = 20

R2 mRNA
kp−→ Pro+mRNA a2 = kpX1 kp = 10

R3 mRNA
γr−→ ∅ a3 = γrX2 γr = 1.2

R4 Pro
γp−→ ∅ a1 = γpX2 γp = 0.7

In this analysis, the mRNA and protein abundance levels were being observed on the

time-interval [0, 5].

Three simulated experiments (since actual experimental measurement were not available)

corresponding with the three different initial conditions were completed in triplicate on the

time-interval [0, 5]. At ten time points in the time interval, the abundance of mRNA and

protein in each triplicate experiment were recorded. Then for each experiment, the mean

and variance at each time point were calculated.

Since, three experiments corresponding with three different initial conditions were con-

ducted at ten different time points on the same time-interval [0, 5] therefore, 60 observa-

tions were collected overall for use in the SSE calculations (which was described further in

Section 6.5.4 in equation 6.20) and 60 measurement variances were used to construct the

60× 60 diagonal inverse measurement covariance matrix to obtain the FIM.

In the simulation, we also collected 120 observations: one mean and one variance at each
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Figure 6.1: Constitutive gene expression model reaction scheme diagram.

observation, calculated over a large ensemble using the same initial conditions as in the

three experiments. Data was collected at the same ten time points over the same time-

interval, [0, 5]. Then the corresponding sensitivity, identifiability score and the associated

confidence interval for each parameter are presented in Table 6.2. The corresponding

sensitivity and identifiability score for each parameter are presented in Figure 6.2. The

corresponding eigenvalues are 0.030, 0.113, 0.820, 3.039 and the collinearity index γk is

5.799.

The aim of the analysis is to compute the sensitivity of model output to each parameter,

their identifiability score and to estimate the region within which the true values of the

model parameters can be found 95% of the time. The results indicated the highest degree of

identifiability for the γr parameter, meaning that the the model outputs are most sensitive

with respect to this parameter. The next highest identifiability score is associated with
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Figure 6.2: Constitutive gene expression model (when considering both species observa-
tions). Ensembles of 10000 sample paths with initial condition (X1(0), X2(0))=(5, 5), (40,
500), (100, 1000) and parameters as in Table 6.1 were generated on the time-interval [0, 5].
(a-b) The sensitivity and identifiability score for each parameters.
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Table 6.2: Constitutive gene expression model: Uncertainty analysis (when considering 10
different time points for both species’ observations)

Parameter Parameter
value

Sensitivity score Identifiability
score

95% CI ∆ 95% CI
FIM

kr 20 5.57 1.84 2.46% 13.11%

kp 10 4.26 1.42 1.49% 10.73%

γr 1.2 6.32 6.32 1.70% 11.13%

γp 0.7 4.69 3.87 1.13% 10.38%

the γp parameter and represents the next highest identifiability score. The second highest

sensitivity score is not associated with the γp parameter. This is due to the fact that the

computation of the identifiability score has taken into account its correlation between the

remaining parameters. The identifiability score for the remaining parameters are computed

in the same way.

For each parameter, we were interested in computing the confidence interval. Since, for

any model, we can never have a complete certainty about the exact values of the model

parameters. A confidence interval was obtained around each given parameter value such

that the true value of the parameter would be found somewhere within this interval 95%

of the time and outside of this interval the remaining 5% of the time. Two methods were

used to estimate the confidence interval. Both methods indicated that the true value of

the parameters would be found within a small radius ∆ of the given parameter values.

The small confidence interval indicates a relatively large level of confidence in the given
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parameters. That means that the provided parameters were well estimated, given that

we do not expect for the true values of these parameters to be outside of their very small

confidence intervals more than 5% of the time.

In order to ensure that the algorithm is behaving as expected, tests of the results in special

cases were considered. This provides a simple but useful way to gain confidence that the

use of this algorithm in more complex scenarios may be reasonable. For these reasons, if we

consider only protein observations, the highest identifiability parameter was associated with

the protein parameter γp, as expected. The analysis had shown a similarly small confidence

intervals. Similarly when considering only mRNA observations, the highest identifiability

parameter was associated with the mRNA parameter γr, again as expected. However, the

analysis had now revealed large confidence intervals associated with the protein parameters.

This means that the given parameter values are no longer good estimates of their true value.

It was observed that the sensitivities of the protein parameters were essentially zero, and

associated confidence intervals approaches infinity. This is due to the the fact that mRNA

plays a significant role within the model (the mRNA parameter appears in 3 out of the

four model equations).

If we consider the protein observations only, then we have in total 30 observations. Then

the corresponding sensitivity, identifiability score and the associated confidence interval for

each parameter are presented in Table 6.3. The corresponding sensitivity and identifiability

score for each parameter are presented in Figure 6.3. The corresponding eigenvalues are

0.023, 0.037, 0.274, 3.666 and the collinearity index γk is 6.564.

Again, when considering the mRNA observations only, there are in total 30 observations.
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Figure 6.3: Constitutive gene expression model (when considering the protein observations
only). Ensembles of 10000 sample paths with initial condition (X1(0), X2(0))=(5, 5), (40,
500), (100, 1000) and parameters as in Table 6.1 were generated on the time-interval [0, 5].
(a-b) The sensitivity and identifiability score for each parameters.
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Table 6.3: Constitutive gene expression model: Uncertainty analysis (when considering 10
different time points for the protein observations only)

Parameter Parameter
value

Sensitivity score Identifiability
score

95% CI ∆ 95% CI
FIM

kr 20 3.36 1.88 2.99% 10.48%

kp 10 4.28 0.82 1.78% 16.36%

γr 1.2 3.64 0.16 2.05% 17.55%

γp 0.7 4.69 4.69 1.34% 6.81%

Furthermore, the corresponding sensitivity, identifiability score and associated confidence

interval for each parameter are presented in Table 6.4. The corresponding sensitivity and

identifiability score for each parameter are presented in Figure 6.4.

Table 6.4: Constitutive gene expression model: Uncertainty analysis (when considering 10
different time points for the mRNA observations only)

Parameter Parameter
value

Sensitivity score Identifiability
score

95% CI ∆ 95% CI
FIM

kr 20 4.46 1.41 14.80% 8.36%

kp 10 0 0 Inf % Inf %

γr 1.2 5.17 5.17 10.52% 17.25%

γp 0.7 0 0 Inf % Inf %

Another three simulated experiments corresponding with three different initial conditions
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Figure 6.4: Constitutive gene expression model (when considering the mRNA observations
only). Ensembles of 10000 sample paths with initial condition (X1(0), X2(0))=(5, 5), (40,
500), (100, 1000) and parameters as in Table 6.1 were generated on the time-interval [0, 5].
(a-b) The sensitivity and identifiability score for each parameters.
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were completed in triplicate on the time-interval [0, 4]. This time, however, noise was added

to the data in order to approximate real observational data (since actual experimental

measurement were not available). The addition of noise to the simulated data resulted in a

larger confidence interval than before. This was expected as the noise acted as a source of

additional random error. At three time points in the time interval [0, 4], the abundance of

mRNA and protein in each triplicate experiment were recorded. Then for each experiment,

the mean and variance at each time point were calculated. The corresponding sensitivity,

identifiability score and the associated confidence interval for each parameter are presented

in Table 6.5. The corresponding sensitivity and identifiability score for each parameter are

presented in Figure 6.5. The corresponding eigenvalues are 0.0213, 0.095, 0.846, 3.038 and

the collinearity index γk is 6.845.

This Constitutive Gene Expression Model was used to test the usefulness of the identifia-

bility approach. This approach used to determine out of four parameters, which parameter

plays the most vital role in the model. Simulations revealed that the mRNA degradation

rate parameter given by γr represents the most identifiable parameter in the model.

The algorithms were simulated numerically using MATLAB (Mathworks) [82]. The MAT-

LAB code will be available upon request after publication.

6.6.2 Lac Induction Model

Using flow cytometry experiments and computational analysis [86], a parameter set was

identified to describe single-cell dynamics of green fluorescent protein (GFP) controlled by

the lac operon under IPTG induction in vivo (Figure 6.6). The response of the system
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Figure 6.5: Constitutive gene expression model (when noise was added to the data).
Ensembles of 10000 sample paths with initial condition (X1(0), X2(0))=(5, 5), (40, 500),
(100, 1000) and parameters as in Table 6.1 were generated on the time-interval [0, 4]. (a-b)
The sensitivity and identifiability score for each parameters.
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Table 6.5: Constitutive gene expression model (when noise was added to the data): Un-
certainty analysis (when considering 3 different time points for both species’ observations)

Parameter Parameter
value

Sensitivity score Identifiability
score

95% CI ∆ 95% CI
FIM

kr 20 2.74 0.85 30.52% 16.71%

kp 10 2.09 0.58 19.05% 31.26%

γr 1.2 3.21 3.21 20.57% 13.81%

γp 0.7 2.36 1.95 13.80% 23.22%

at multiple time points and several IPTG levels was then explored. Focus was placed

on the simplest consistent model of diffusion of IPTG into the cell and production and

degradation of LacI and GFP. Diffusion of IPTG was given by

[IPTG]in = [IPTG]out(1− exp(−rt))

where, r and t are the diffusion rate parameter and time respectively. Production and

degradation of both LacI and GFP were given by four basic reactions, R1, R2, R3 and R4.

The Lac Induction model [86] consists of two species and four reactions. The reactions

along with the propensities and parameter values are given in Table 6.6. Here Xi represents

the number of molecular species Si.

The production rate of LacI is a constant which corresponds to the constitutive expression

C1 , where C1 = KL. The degradation rate of LacI is dependant on IPTG concentration.
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Figure 6.6: Schematic diagram of Lac induction model.
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Table 6.6: Lac induction model

Rj Reaction Propensity Nominal rate
constant

R1 ∅ C1−→ LacI a1 = C1 = kL kL = 1.7× 10−3

R2 LacI
C2−→ ∅ a2 = C2X1 = δLX1 δ0

L = 3.1× 10−4

δ1
L = 5.0× 10−2

r = 2.8× 10−5

R3 ∅ C3−→ GFP a3 = C3 = KG
1+α[X1]η

KG = 1.0× 10−1

α = 1.3× 104

η = 2.1

R4 GFP
C4−→ ∅ a1 = C4X2 = δGX2 δG = 3.8× 10−4

This rate is assumed to have form

C2 = δL × [LacI],

where δL depends upon positive real parameters for the regulatory system, δ0
L and δ1

L such

that,

C2 = [δ0
L + δ1

L[IPTG]in]× [LacI] = [δ0
L + δ1

L[[IPTG]out × (1− exp(−rt))]× [LacI].

The production rate of GFP is a nonlinear function dependent on the concentration of

LacI, given by
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C3([LacI]) =
KG

1 + α[LacI]η

where, KG, α and η are positive real parameters of the unrepressed GFP production rate,

the LacI occupancy strength and the Hill coefficient respectively. The Hill coefficient

accounts for the cooperative binding of LacI. The GFP degradation rate is fixed to the

concentration of GFP, given by

C4 = δG × [GFP ].

Given the kinetic parameters in Table 6.6 with initial conditions (X1(0), X2(0)) = (500, 500),

the system was simulated on the time-interval [0, 5] hrs. In this analysis, the GFP abun-

dance levels are being observed at several time points (0 hours, 3 hours, 4 and 5 hours).

The results are presented for the amount of GFP with varying level of extracellular IPTG

induction (5, 10, 20, 40 and 100 µM).

In this Lac induction model, Munsky et al. [86] conducted an experiment of GFP expres-

sion on two different days and collected data at different measurement times (t=0,3,4,5

hours) after induction. In this experiment different levels of extracellular IPTG induction

(5,10,20, 40 and 100µM) were used. For the purpose of the current analysis, the data

was collected from the published histogram figures [86]. Web Plot Digitizer software was

used to collect the data from the publication and used directly with the current analysis.

The identifiability analysis revealed that out of eight parameters, two parameters given

by α and η had shown zero sensitivity and therefore zero identifiability. The analysis also
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Figure 6.7: Lac induction model. Ensembles of 10000 sample paths with initial condition
(X1(0), X2(0)) = (500, 500) and parameters as in Table 6.6 were generated on the time-
interval [0, 5]hrs. (a-b) The sensitivity and identifiability score for each parameters.

150



Table 6.7: Lac induction model: Uncertainty analysis

ParameterParameter
value

Sensitivity
score

Identifiability
score

95% CI ∆ 95% CI
FIM

kL 1.7× 10−3 0.05 0.004 74708.13% 7080.46%

δ0
L 3.1× 10−4 0.001 0.0004 2767330.27% 120457.92%

δ1
L 5.0× 10−2 0.06 0.04 65161.77% 11047.47%

r 2.8× 10−5 0.05 0.002 75195.38% 10894.80%

kG 1.0× 10−1 3.81 0.08 1021.69% 688.66%

δG 3.8× 10−4 3.85 3.85 1010.35% 677.42%

α 1.3× 104 0 0 Inf % Inf %

η 2.1 0 0 Inf % Inf %

revealed that only two parameters δG and kG had shown high levels of identifiability. The

remaining parameters had shown low levels of identifiability. The corresponding sensitivity,

identifiability score and the associated confidence interval for each parameter are presented

in Table 6.7. The corresponding sensitivity and identifiability score for each parameter are

presented in Figure 6.7. The corresponding non-zero (6 out of 8 parameters) eigenvalues

are 0.00005, 0.0005, 0.005, 0.14, 0.98, 4.87 and the collinearity index γk is 141.62.

The results reveal that parameters with high level of identifiability have relatively smaller

confidence intervals. On the other hand, the parameters with very low levels of identifia-

bility show confidence intervals which tend to infinity. The direct collecting of data from
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the plots in [86] likely resulted in large data errors and inaccuracies. The result of this

error could be a key contributor to the large confidence intervals seen in the results of the

confidence intervals of the δG and kG parameters.
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Chapter 7

Conclusions

There are various mathematical models that can be used to describe the dynamics of a

biochemical system. Depending on the essential features present in the system, different

models may be more appropriate. Stochastic models must be used to capture the random

fluctuations observed in these systems. The presence of noise in a system can be a sig-

nificant factor in determining its behavior. The Chemical Master Equation is a valuable

stochastic model of biochemical kinetics. Solutions to the CME can be probabilistically

simulated using the exact stochastic simulation algorithm (SSA) but it is computationally

expensive. Tau-leaping methods can be used in order to speed-up the simulation of bio-

chemical systems. More sophisticated techniques are necessary for dealing with systems

which manifest stiffness.

As an important mathematical tool, sensitivity analysis can serve as a foundation for the

formulation, characterization, and verification of models. Sensitivity analysis is used to
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identify important reaction rate parameters that are essential to a system’s dynamics. A

number of approaches to sensitivity analysis of stochastic discrete models of biochemical

kinetics have been developed [2, 46, 96]. We discussed the finite-difference based numer-

ical approaches of sensitivity analysis for the stochastic model of well-stirred biochemical

systems and made comparisons among these methods in Chapter 3. We concluded that

the CFD algorithm performs better in determining sensitivity for non-stiff biochemical

systems.

We also presented an application of adaptive tau-leaping to sensitivity analysis in Chapter

4. Our proposed finite-difference based method for estimating sensitivity for stochastic

models of biochemical systems, named Coupled Tau-Leaping (CTL) [83], produces the

nominal and perturbed trajectories with strong coupling. Our analysis showed that among

finite-difference sensitivity estimators the Coupled Finite Difference (CFD) method pro-

posed by Anderson [2] provides higher accuracy for estimating the sensitivity of a biochem-

ical system. That is why we compared our novel method to the Coupled Finite Difference

method. Numerical tests showed that our novel algorithm is significantly more efficient

than the Coupled Finite Difference (CFD) algorithm while producing sensitivity estimators

that are of similar accuracy. These results showed that our Couple Tau-Leaping (CTL)

method outperforms the CFD method when applied to moderately stiff stochastic models

of biochemical networks with molecular populations bounded away from zero.

Implicit tau-leaping schemes are preferred over exact Monte Carlo simulations for stochastic

models of biochemical systems that are mathematically stiff. The implicit methods are

more efficient for accurately determining the slow variables and the mean behaviour of the

fast variables of the system. When stiffness is encountered, the Monte Carlo stochastic
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simulations have to take very small step-sizes, whereas the implicit tau-leaping method

can take large step-sizes and maintains the solution close to the slow manifold.

We also proposed another finite-difference based method for estimating sensitivity for

stochastic discrete models of biochemical kinetics named Coupled Implicit Tau-Leaping

(CIT) [84] in Chapter 5. This method uses the adaptive implicit τ -leaping strategy to

simulate the nominal and perturbed trajectories. Our CIT algorithm produces a strong

coupling between the nominal and the perturbed paths to enhance the accuracy of the

estimation. Our numerical tests showed that the novel CIT method greatly reduced the

computational cost when compared to the CFD while maintaining similar accuracy. There-

fore, the CIT method is a better choice than the CFD method for estimating the sensitivity

of stochastic models of biochemical reaction networks that are considerably stiff to very

stiff.

When designing a model of a physical system, it is very important to identify all of the

relevant model parameters and find their mathematical relationship to all of the obser-

vations. Identifiability analysis provides a clear way of determining which parameters in

the model are well estimated. Identifiability also provides a way to assess the quality of

the estimated parameter values. A result with a high level of identifiability provides confi-

dence that the model behaviour is relatively reliable. In any physical models the confidence

intervals provide us with a way of estimating the region (in parameter space) where the

true values of the model parameters lie. For this reason, identifiability plays an essential

role in model parametrization. Lastly, we presented an identifiability approach for discrete

stochastic models of biochemical systems by using the sensitivity matrix in Chapter 6.

This approach was used as an identifiability tool to assess the quality of estimates.
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In the future, there are several directions in which we would like to extend our research.

We are interested in finding a single sensitivity technique which can be applied to both

stiff and non-stiff biochemical systems. This method will ideally be computationally more

accurate and efficient than existing methods.

There are many approaches in the literature for determining identifiability of a model.

There is currently no single method or technique that can be used to determine identifiabil-

ity for every model. We are interesting in extending our techniques to finding identifiability

of stochastic models of biochemical kinetics with higher moments.
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