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Abstract

Damage detection and prognosis are integral to asset management of critical mechanical

and civil engineering infrastructure. In practice, these two aspects are often decoupled,

where the former is carried out independently using sensor data (e.g., vibrations), while

the latter is undertaken based on reliability principles using life time failure data of the

system or the component of interest. Only in a few studies damage detection results are

extended to remaining useful life estimation, which is achieved by modeling the underlying

degradation process using a surrogate measure of degradation. However, an integrated

framework which undertakes damage detection, prognosis, and maintenance planning in a

systematic way is lacking in the literature. Furthermore, the parameters of degradation

model which are utilized for prognosis are often solely estimated using the degradation data

obtained from the monitored unit, which represents the degradation of a specific unit, but

ignores the general population trend.

The main objectives of this thesis are three-fold: first, a mathematical framework using

surrogate measure of degradation is developed to undertake the damage detection and

prognosis in a single framework; next, the prior knowledge obtained from the historical

failed units are integrated in model parameter estimation and residual useful life (RUL)

updating of a monitored unit using a Bayesian approach; finally, the proposed degradation

modeling framework is applied for maintenance planning of civil and industrial systems,

specifically, for reinforced concrete beams and rolling element bearings. The initiation of

a fault in these applications is often followed by a sudden change in the degradation path.

The location of a change-point can be associated with a sudden loss of stiffness in the case

of structural members, or fault initiation in the case of bearings. Hence, in this thesis,

the task of change point location identification is thought of as being synonymous with

damage or fault detection in the context of structural health monitoring. Furthermore,

the change point results are used for two-phase degradation modeling, future degradation

level prediction and subsequent RUL estimation. The model parameters are updated using

a Bayesian approach, which systematically integrates the prior knowledge obtained from

historical failure-time data with monitored data obtained from an in-situ unit. Once such

a model is established, it is projected to a failure threshold, thereby allowing for RUL

estimation and maintenance planning.
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Results from the numerical as well as actual field data shows that the proposed degra-

dation modeling framework is good in performing these two tasks. It was also found that

as more degradation data is utilized from the monitoring unit, the progressing fault is de-

tected in a timely manner and the model parameters estimates and the end life predictions

become more accurate.
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Chapter 1

Introduction

1.1 Background

Civil and mechanical systems such as buildings, bridges, and machinery are an integral part

of a modern society. Many of these systems operate under harsh operating and loading

conditions, a significant portion nearing their end of design life. This combination of factors

often leads to a decrease in their overall reliability. Capital and other resource constraints

means that replacement at the end of their design life is often not feasible, and a more

proactive maintenance technique based on the monitored health of system has been argued

to increase performance and reliability for expensive equipment (preventative maintenance

make more economic sense for cheap components), while reducing the overall capital and

maintenance costs.

An effective framework which allows measurements to be formally integrated into main-

tenance planning is condition based maintenance (CBM). CBM entails judgmental main-

tenance, repair, and replacement on the basis of the actual condition of the system, rather

1



than being reactive or on pre-set schedules. The basic argument for making the case of

monitoring is that for expensive components, there is still some useful life left if the com-

ponent is removed preventively from service. A well-implemented CBM could make use

of nearly the entire life of a system or a component and prolong a components’ (or a sys-

tem, for this thesis this distinction is not as important) maintenance action, while avoiding

catastrophic failures.

Diagnostics and prognostics are two main components in a CBM program. Diagnostics

tries to answer questions such as: is there something wrong in the monitored system

(i.e., fault detection)? If yes, then which component is faulty (fault isolation)? What

is the nature of the fault (fault identification)? On the other hand, prognostics deals

with fault prediction prior to its occurrence. It addresses questions like: what is the

speed of a progressing fault? When and with what probability is a progressing fault likely

cross a predefined failure threshold? When should one plan for a maintenance action?

Diagnostics involves posterior event analysis, while prognostics is a prior event analysis. A

CBM program can be used to perform diagnostics or prognostics, or both.

This thesis mainly deals with the problem of how best to undertake diagnostics and

prognostic tasks when the underlying damage mechanisms remain hidden, and indirect

measurements are the only feasible means of inferring their condition. This is best ex-

plained using an example of a rolling element bearing. Figure 1.1 shows a typical bearing,

in which faults could manifest in the inner race, outer race, or on the rolling element.

Bearings are typically sealed and hence a direct inspection of the fault is generally not

possible. An extensively studied problem in the literature is how to diagnose the progress

of the three types of faults using indirect monitoring means such as vibrations, oil moni-

toring or temperature. Amongst these, vibration monitoring is by far the most commonly

used method. The underlying principle is that faults manifest themselves as modulations

2



Figure 1.1: Typical rolling element bearing [1]

in the vibration signatures and hence monitoring such changes provide insight into the un-

derlying degradation mechanisms. One of the questions relevant to this thesis is how best

to interrogate such indirect vibration measurements for fault detection and to estimate

the remaining useful life of a bearing, given that both the occurrence of the fault and the

failure time are random in nature, even for bearings of similar type.

Such problems are of great practical importance in civil infrastructure applications as

well. Fatigue in metal connections found in buildings and bridges, loss of bondage in

embedded steel inside reinforced concrete members (see Figure 1.2), erosion in structural

foundations, to name a few examples. In many of these cases, the underlying damage

mechanism may not be directly observable, but it may be possible to indirectly measure

its effects. For example, loss of stiffness in a metal connection due to fatigue could manifest

itself in the strain or acceleration measurements, or a loss of bonding of steel reinforcement

bars within a reinforced concrete member may manifest itself in changes in the deflection.
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Figure 1.2: Loss of bonding between concrete and the embedded steel bars, resulting in
slip [2]

This thesis attempts to develop a mathematical framework to undertake diagnosis (detec-

tion, which is of primary interest in this thesis, can be thought of the first level in diagnosis)

and prognosis in such situations by using surrogates of the underlying damage/degradation

mechanism.

Damage or fault detection by itself may be useful in cases where such a damage may

render a component useless and a replacement may be necessary, but often there is residual

useful life left in components after damage initiation, which can be used to schedule main-

tenance. In such cases, the process of damage detection and residual useful life predictions

have largely been addressed in silos. While the issue of damage detection (the reference

here is to vibration based methods) has been dealt with extensively in the realm of signal

processing or statistical classification, the end of life predictions have been dealt with based

on reliability principles using historical failure data. The issue of integrating the process
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Figure 1.3: Reliability based approach for end of life prediction

of damage diagnosis and prognosis is of central importance in this thesis and will be dealt

with extensively later.

In the reliability approach to end of life prediction, an appropriate distribution is fitted

to the historical life-time data and reliability is assessed at any given time in the future.

One such example distribution based on simulated failure-time data for a bearing is shown

in Figure 1.3. The probability of failure at time t for an in-situ unit (from the same pop-

ulation) is given by the area under curve until the time, t. This approach is good for the

components that are relatively cheap, where the failure cost is not high and maintenance
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Figure 1.4: Condition based approach for end life predictions

decisions are conducted on a large scale (e.g., replacement of street lamps). However, for

expensive and highly reliable systems with significant failure consequences, it is better to

integrate condition monitoring information into maintenance interval planning. Such a

strategy would allow one to extend a component’s operational life, while providing contin-

uous information regarding the health of the component and the ability to adapt inspection

intervals based on such information.

Figure 1.4 illustrates the condition monitoring approach for the end of life prediction

in the context of condition monitoring pursued in this thesis. Let y1, y2, · · · , yt denote the

degradation measurements, stochastic in nature, from the monitored unit until time t. The

first step is to describe these measurements in terms of a degradation model. The choice of

degradation model depends upon the application type and can be chosen based on domain

knowledge and/or engineering judgment.
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Much of the work in the literature involving degradation models assume that the dam-

age mechanism is directly observable (e.g., wall thinning due to corrosion, loss of material

due to friction). This thesis deals with those cases when such degradation may not directly

be observable. Specifically, two cases, one involving rolling element bearings and the other

involving loss of bond in embedded steel bars within concrete, will be studied. In both

cases, the degradation modeling approach using indirect measures (surrogates) will be ex-

plored. A versatile model which can address such problems will be presented along with

the necessary parameter estimation algorithms. Once such a model is established, it will

be projected to a failure threshold (ηD), thereby allowing for RUL estimation and mainte-

nance planning. The model parameter estimation will be based on a Bayesian approach,

which can systematically integrate prior knowledge obtained from historical failure-time

data with monitored data from an in-situ unit.

Amongst various degradation models, one of the models explored extensively in this the-

sis is a model containing an abrupt change (change-point), called a two-phase degradation

model. Such a model is capable of modeling sudden changes in the rate of degradation,

such as those found in bearings and in civil structures. Abrupt changes in the overall

stiffness, and hence rate of degradation, is commonly associated with bearing faults and

structural damage and hence a two-phase degradation model is naturally suited for such

problems. One of main aspects which will be studied in this thesis is to model indirect

measures of degradation using such a two-phase model. Figure 1.5 shows a few examples

where the degradation path contains a change point. As seen form this figure, a two-phase

degradation model can be used not only for bearings, but also for modeling deterioration

of capacitance, decrease in luminosity of plasma display panels (PDPs) or light emitting

diodes (LEDs), and sudden decrease in the number of accidents in coal mines.

In dealing with two-phase degradation, it is important to identify or locate the change
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Figure 1.5: Degradation paths containing a change point: (a) rolling element bearing [74]
(b) a capacitor; [61] (c) an LCD, and [238] (d) coal mine accidents [177]

point first, and then project the degradation path to the the failure threshold for RUL

estimation. The location of change-point can be associated with a sudden loss of stiffness

in the case of structural members, or fault initiation in the case of bearings. Both these

phenomena are associated with a change in the degradation path, or the rate of deterio-

ration. Hence, the task of change point location identification can be thought of as being

synonymous with damage or fault detection in the context of structural health monitor-

ing. This is illustrated in Figure 1.6 for a sample degradation path containing one change

point, i.e., a two-phase degradation model. A closer look of figure reveals that, there is

a discontinuity in the degradation indicator value around t = t1. Figure 1.6 also depicts

the estimated RUL distribution for two specific times, t = t1 and t = t2. Note that the

RUL estimate corresponding to t = t1 has a larger uncertainty associated with it than for

t = t2, which is the consequence of smaller degradation rate during the first phase. In the
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Figure 1.6: condition based approach in case of a change point

context of Bayesian estimation, this under-scores the importance of prior selection, which

will be dealt with in detail in this thesis.

1.2 Objectives

Given the above context and background, the overarching objectives of this thesis are as

follows:

• Develop an integrated mathematical framework for damage (or, fault) detection and

prognosis incorporating measured condition information and prior knowledge about

similar units obtained from historical data.

• Demonstrate the applicability of this approach along with a systematic evaluation

of the results when combined with surrogate degradation measures for applications

where the degradation process is not directly observable.
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• Apply the proposed framework to two case studies involving rolling element bearings

and structural components.

1.3 Overall Methodology

The overall methodology of the methodology presented in this thesis is illustrated in Figure

1.7. First, a surrogate measure of degradation (often called a degradation indicator or

Sensory data
collection

Surrogate measure
of degradation

Damage detection &
degradation modeling

Bayesian update of
model parameters

Remaining useful
life estimation

Maintenance
planning

Figure 1.7: Overall methodology

a damage sensitive feature) is extracted from the sensory measurements. In both cases,

these measures are surrogates for the underlying hidden degradation mechanism. Next,

a suitable degradation model such as random variable (e.g., regression type) or stochas-

tic (e.g., Gamma, Weiner process) is selected for degradation modeling. The degradation

model parameters are updated in a Bayesian framework, where the prior knowledge ob-

tained from historical data is integrated with the sensory measurements of a monitored

component. For the cases where historical run-to-failure degradation signals are not avail-

able, a diffuse prior is used with the philosophy “let the data speak for itself.” Next, the

degradation model in conjunction with a pre-set threshold is used for reliability assessment

and RUL predictions. The task of RUL prediction is straight forward where a closed form
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solution for the failure time distribution can be derived (e.g., Weiner process). However,

if an analytical solution is difficult to derive, the RUL distribution can be found using

sampling techniques such as Markov chain Monte Carlo (MCMC). Finally, the predicted

RUL distribution is used for maintenance planning, where the optimum replacement time

is obtained by minimizing the expected cost rate. The above described maintenance cycle

is updated time-to-time with available degradation data.

1.4 Organization of the thesis

A flow chart showing the thesis organization is given in Figure 1.8, which contains six

chapters and organized as follows:

General
introduction

(Ch. 1)

Background and
literature review

(Ch. 2)

Degradation
model for

damage detection
and prognosis

(Ch. 3 & Ch. 4 )

Application to civil
and mechanical

systems

( Ch. 5)

Conclusions
and recom-
mendations

(Ch. 6)

Figure 1.8: Thesis organization

1. Chapter 1 provides a brief introduction to the problem of damage detection and

prognosis for critical infrastructure and a summary of overarching research objectives.

2. A detailed background and literature review on damage detection and prognosis

methods for civil and industrial application is presented in Chapter 2. Damage de-

tection methods using condition information are reviewed first, followed by the prog-

nosis models. Next, literature on different degradation models (e.g., random variable

and stochastic model) applied to damage prognosis are reviewed. Finally, change
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point based degradation models and various maintenance models are reviewed. Dur-

ing the course of relevant literature review, the basic demerits of these methods are

highlighted to underscore the importance of the proposed research. More specific

objectives of this thesis are described following the identified gaps in the literature.

3. Chapters 3 & Chapter 4 present the theoretical development of integrated degra-

dation modeling framework for damage detection, prognosis and maintenance plan-

ning. In Chapter 3, two degradation models namely, linear and exponential models

are considered. For these two models, the analytical expression for posterior dis-

tribution of model parameters and remaining useful life distribution are derived.

More advanced two-phase degradation models are presented in Chapter 4. First,

the motivation for two-phase degradation modeling is presented followed by problem

formulation for three different cases: random variable, Gamma and Weiner process.

Next, the mathematical details for parameter estimation, RUL predictions and main-

tenance planning are provided for the two-phase models. The overall methodology

is illustrated with a numerical example.

4. Chapter 5 summarizes the results of application of the proposed methodology for

damage detection and prognosis of civil and industrial systems. The two example

applications investigated are for the deterioration of a reinforced concrete member

and the degradation of a rolling element bearing. The degradation of reinforced

concrete is modeled using a stochastic gamma process with mid-span beam deflection

and slip of steel bars, separately as a measure of degradation. The degradation of

the rolling element bearing is undertaken using a random variable model. For both

applications, the model parameters and RUL of a monitored unit are updated with

available condition data.
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5. Finally, a number of conclusions resulting from the presented work are discussed in

Chapter 6. Several recommendations for future study are also discussed, followed by

a summary of the significant contributions of the current work. A list of publications

resulting from this work are included in Appendix E.
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Chapter 2

Literature review and background

In this chapter, a review of relevant literature on damage detection and prognosis methods

for civil and industrial applications is presented. It is important to recognize that the

volume of literature, especially in the general areas of fault detection of bearings and

damage detection of structures, is extensive. However, most of the literature on these

subjects (especially so in the case of bearings) tend to focus on the signal processing

aspects; while important, this aspect is not central to this thesis. Hence, a balanced review

of the same is presented in this context. Secondly, for the purposes of this thesis, only

fault detection is dealt with. This is because for the two applications considered herein, of

primary importance is to establish whether a fault or damage exists; knowing the type of

damage (diagnosis) is not as critical. Hence damage detection and diagnosis are sometimes

used interchangeably throughout this thesis. In this chapter, first, a background on damage

detection methods including data-driven methods, time domain methods and frequency

domain techniques are presented. Following this, a background on damage prognosis is

presented where the literature on various degradation models are reviewed in the context

of present research. Finally, a summary of various maintenance models and gap areas in
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existing literature are given, followed by the specific objectives of this thesis in the context

of this literature review.

2.1 Background on fault detection using condition in-

formation

In this section, the relationship between measurable quantities and damage (or, faults)

is described from a literature review standpoint, in the context of civil engineering and

industrial engineering applications. Along-side this, a brief description of the methods

used to process measured information to extract the underlying damage information is also

reviewed. This review will provide a segue into the following section on prognostics, which

deals with using such measured information to make predictions on RUL and maintenance

planning.

2.1.1 Damage detection in civil engineering applications

Damage detection in civil infrastructure such as buildings, bridges and dams has witnessed

significant activity during the last two decades [60]. A wide range of non-destructive

techniques such as acoustic emission, eddy current, thermal field, radio-graphs, strain

measurements, magnetic field methods and ambient vibration response monitoring have

all been studied and have been shown to be effective for undertaking damage detection

[201, 191, 212, 140]. The basic premise of most of these methods is that structural dam-

age manifests itself indirectly through changes in measurable quantities, even though the

mechanism may not directly be measurable in most cases. For example, changes in physical

properties such as stiffness, damping or mass of the system, will result in changes in the
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vibration data and also in the modal properties: frequencies, mode shape and modal damp-

ing, and an extensive review can be found in these papers [41, 26, 57]. Hence, tracking the

evolution of parameters obtained using indirect measurements enables damage detection.

Damage detection methods in civil engineering literature can be classified into physics

based and data-driven methods. Physics based methods model the governing equations

(say, equilibrium) in order to construct a mathematical abstraction of the physical problem,

parametrized by variables which have direct physical meaning, followed by a comparison

between predicted and measured vibration outputs to quantitatively assess damage e.g.,

[159, 194]. While these models have shown to work well, they are often accompanied

by finite element models which are computationally expensive to build and run for large

systems. On the other hand, data-driven approaches do not rely on physical models and

use statistical principles in conjunction with monitored data to construct models (input-

output models such as auto-regressive (AR) family of time-series models) representing

observations. In addition to being able to apply directly to a range of measurement types,

the computational complexity in such models is significantly less than physics based models,

and hence have been extensively adopted by the researchers [124, 204, 250, 63]. However,

the main drawback in these methods is that the quantity being measured and used for

decision-making is often indirectly related to the underlying mechanism of interest, and

hence can sometimes obfuscate the presence of damage.

Auto-regressive moving-average (ARMA) time series models [204, 142, 154], support

vector machines (SVM) [250, 24], neural networks (NNs) [126, 59], self-organizing maps

(SOMs) [215], principle component analysis (PCA) [124] and statistical process control

[203, 243, 139, 244, 245, 138] are all examples of powerful data driven tools to undertake

damage detection tasks. Sohn et al. [204] presented an auto-regressive time series modeling

approach for damage localization using acceleration data obtained from an eight degree-of-
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freedom lumped parameter structural dynamic system. A more general time series model

including AR as well as moving-average (MA) parameters for damage detection and local-

ization was proposed by Nair et al. [142], where the first three AR coefficients were used

to derive a damage sensitive feature. Time series models (e.g., AR, MA) combined with

SVM [24], hidden Markov model (HMM) [134], and Gaussian mixture model [141] have

all been used successfully for feature extraction, damage diagnosis and damage classifica-

tion. In all these cases, surrogate measures such as Mahalanobis distance, residual error,

features extracted from ARMA coefficients have been used in lieu of the physical damage

mechanism.

When used in conjunction with time-series models, statistical process control (SPC)

charts [135] are powerful on-line monitoring tools for anomaly detection in structural

health monitoring (SHM) applications. Sohn et al. [203] used an univariate Shewhart

X̄ control chart for damage detection, where the control limits are constructed based on

features constituted from AR coefficients obtained from an undamaged structure. The use

of multivariate Hotelling’s T 2 control chart to monitor progressive damage in a reinforced

concrete (RC) frame was presented by Wang et al. [243]. Other studies based on SPC

charts include Wang et al. [244, 245] who proposed an exponentially weighted moving aver-

age control chart, Yao et al. [254] who utilized Mahalanobis distance and spectral distance

measures for damage detection, and Mujica et al. [138] who used principal component

based Q-statistic and T 2-statistic for damage detection. Ubertini et al. [220] presented

multivariate T 2 control charts to track the time evolution of five natural frequencies of

structure and successfully applied these charts to condition monitoring of a bell tower in

Italy. Comanducci et al. [36] proposed the use of such techniques for damage detection in

a long-span arch bridge and applied to Infante D. Henrique bridge, which is the second-

largest arch bridge in Europe. Here, it should be pointed out that most of the literature
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based on data driven techniques only focuses on the damage detection, and not on damage

prognosis, which is an important focus of the present thesis.

Prognosis in civil engineering applications

Unlike damage detection, the volume of literature related to damage prognosis for civil

infrastructure is relatively small. The common prognosis problems addressed in civil en-

gineering include fatigue cracking in steel structures, steel rebar corrosion in reinforced

concrete structures and age related loss of structural stiffness. Prognosis is the task of

assessing the future performances of a structure, given its present health condition. This

is often done by projecting the condition information acquired from the system to a pre-

defined threshold. The end result of prognosis is given in terms of RUL, health index, or

the probability of failure at a given time in the future.

RUL of riveted aluminum alloy lap joints with multiple cracks subject to fatigue load-

ing was undertaken by Singh et al. [199]. A structural damage prognosis procedure for

large structural systems was presented by Haldar et al. [7]. In their study, the health

of the structure is assessed through system identification by tracking the stiffness param-

eter using a ian unscented Kalman filter (UKF) algorithm. Wang et al. [232] proposed

an expectation-maximization (EM) algorithm embedded statistical damage prognosis al-

gorithm for in-service civil structures against natural hazards. An extreme value theory

(EVT) based Bayesian approach for prognosis of cover plate in a highway steel girder

bridge, and pitting corrosion of steel rebars in RC structures, was undertaken by [113].

One advantage of the EVT-based prognosis method is that only a small set of full sensor

data is used in Bayesian updating and RUL prediction. This is very important for real

time implementation because Bayesian updating tasks are computationally computation-
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ally expensive and time consuming. Li et al. [114] presented a framework for sensor-driven

structural health prognosis and its application to probabilistic maintenance scheduling and

applied this to prototype steel girder bridges.

A probabilistic approach for reliability predictions of nuclear piping system [160, 258],

oil and gas pipelines [162], highway bridges [64], deteriorating structure [65] and rein-

forced concrete bridge beams under corrosion [55] have previously been undertaken in a

reliability framework. In [258] Yuan et al. modeled the wall thinning of nuclear feeder

pipes in CANDU reactors using a stochastic gamma process and predicted their end of

life characteristics. A probabilistic model for condition assessment and determination of

optimum replacement interval for oil and gas pipelines was undertaken by Pandey et al.

[162]. Frangopol and his colleagues have extensively studied the life-cycle management of

highway bridges [64, 65, 66] and concluded that current bridge management system based

on condition states has several limitations, which can be overcome using a reliability based

approach. To better predict the future states of a bridge, inclusion of monitoring data was

deemed necessary. They demonstrated the use of monitored data for reliability assessment

of an existing highway bridge (the Lehigh River Bridge SR-33) located in Pennsylvania

[66].

The aforementioned studies using degradation modeling or the reliability-based ap-

proach do not consider the existence of a change point in the degradation path. However,

in the case of shock events, a change point(s) is often found in the degradation path and

needs to be considered for accurate RUL predictions. Moreover, integration of damage de-

tection results for prognosis has not been studied comprehensively in the civil engineering

literature.
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2.1.2 Industrial applications

Much of industrial applications of relevance in this thesis is related to gearbox and bearing

diagnostics. The volume of literature on these topics is vast and a comprehensive literature

review is not attempted. Numerous methods using indirect measurements have been de-

veloped for damage detection of rolling element bearings. Indirect fault sensitive features

have been extracted from acoustic measurements [84], temperature [83], electrical motor

current [192], wear debris analysis [50] and vibrations [181, 236]. Amongst these, vibration

analysis has shown to have several advantages [181]. First, it is easy to implement and

reliable [181]. Secondly, it has been shown that various defect types in gears and bearings

produce different vibration patterns; hence, vibration signatures can be related to a spe-

cific type of defect [182] (see Appendix A for background). However, it can sometimes be

expensive compared to methods such as current monitoring and furthermore direct access

to the rotating component is required to install the sensors.

The ensuing discussion relates to the literature which relies on vibration measurements

for bearing fault detection, as this is the mode employed in this thesis. Furthermore,

to limit the scope of the review, the focus will be on literature on bearing faults. One

of the first steps in the detection of bearing faults is to acquire vibration measurements

using accelerometers from the bearings, bearing support housing, or other structural parts

that respond to the impulsive forces resulting from these faults. The acquired signal is

then analyzed using various signal processing techniques to ascertain the presence of faults

and if possible to diagnose them. In general, these techniques can be summarized as

belonging to the class of: i) time domain methods ii) frequency domain methods, and (iii)

time-frequency methods. In the following section, pertinent literature belonging to these

classes are reviewed. A brief background on bearing faults and the resulting vibration
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characteristics is given in Appendix A.

Time domain methods

In time-domain analysis, a bearing fault is detected by monitoring the variation of statisti-

cal moments (often called condition indicators) such as the mean, variance, skewness, peak

value, root mean square (RMS) value, the crest factor, or the kurtosis [226]. Mathematical

expressions for these condition indicators are given in Appendix A. A bearing is assumed

to be damaged when a condition indicator value exceeds a pre-defined threshold; however,

it is usually difficult to determine the appropriate thresholds because they may vary in

different applications and depends upon operating and loading conditions.

RMS value of a signal represents the signal energy and has been applied for the detection

of localized defects by Miyachi et al [133]. It was shown that the RMS value with defects

is always higher than without defects, which makes RMS a good indicator to monitor the

damage progression. The fourth moment, normalized with respect to the fourth power

of standard deviation called kurtosis has proven to be another good indicator of fault.

It has good sensitivity to shocks and impulses. Kurtosis is also widely used to detect

non-periodic shocks. For a healthy bearing, kurtosis value should be very close to three,

which is a Gaussian distribution [249]. In the initial stages, when the bearing deteriorates,

this value initially increases, but later decreases. This happens because severely damaged

bearings produce frequent impulses, which makes vibration signals nearly Gaussian [156].

However, if the signal is filtered to accentuate these impulses (e.g., using minimum entropy

deconvolution (MED) filter), the kurtosis value is found to increase with the progression of

the fault, as shown in [190]. Another indicator, crest factor, which is defined as the ratio of

the maximum peak of the signal to its RMS value is often used for fault detection. It is very
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sensitive to the shape of the signal and detects the impulsive nature in the signal better

than many indicators. Crest factor greater than six is generally considered as a reliable

sign for fault [40] and has been used for bearing fault detection in [186]. In all these

studies, the primary aim is to extract various damage sensitive features from raw vibration

measurements are use it for diagnosis. A link between such indicators for prognosis has

not been pursued extensively in the literature. Another important point worth mentioning

here is that compared to pure time-domain methods, there is a disproportionately large

volume of methods and studies on bearing diagnostics based on time-frequency methods,

which will be described later.

Frequency domain analysis

Frequency domain analysis (also called spectral analysis) is based on the spectral content

of a vibration signal. In this method, the time domain signal is transformed from the time

domain to the frequency domain using Fourier transform (its fast version, FFT) and power

spectrum [56]. The FFT permits to: (1) recognize and separate harmonic or side-band

patterns and (2) identify the different types of bearing faults by monitoring the increasing

amplitude of the characteristic fault frequencies. A detailed presentation of the fundamen-

tals of frequency analysis can be found in the book by Randall [180] and a brief review of

the same is presented in Appendix A. Chao et al. [30] classify frequency domain methods

into two categories: direct spectrum analysis and processed spectrum methods. The pro-

cessed spectrum methods such as envelope spectrum [129], cepstrum analysis [183], time

synchronous averaging [130] and Hilbert transform [169, 155] is generally used when the

signal to noise ratio is low. Recently, Wang and Osman [155] developed a novel normalized

HHT technique for bearing fault detection. Envelope analysis (see Appendix A) is a fault

detection technique that is widely used in the industry. It consists of a sequence of op-
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erations where the raw vibration signal is band-pass filtered,enveloped (or rectified), and

then the spectrum of the enveloped signal is calculated. An adaptive envelope spectrum

technique for bearing fault detection was proposed by [210].

Time-frequency analysis

Time as well as frequency domain analysis are based on the assumption that statistical

characteristics such as mean and variance of signals do not vary over time. Such signals are

known as stationary signals, but when signals are non-stationary, the above methods are

unable to capture the variations. Deterioration is inherently a non-stationary event and

since time frequency domain transforms retain both the time and frequency information,

it provides the requisite tools to deal with non-stationary signals. A number of time-

frequency domain techniques have been used bearing fault detection, including the Short

Time Frequency Transform (STFT), the Wigner-Ville Distribution (WVD), the empirical

mode decomposition (EMD) [107], the spectral kurtosis [14] and the Wavelet Transform

(WT) [185, 172, 119]. STFT and WVD have many limitations (for example constant

window size for STFT and spectrum aliasing in the case of WVD) that prevent their

effective use. These limitations were discussed in detail in the following reference [170]. As

mentioned previously, the field of bearing fault diagnostics—even pertaining to just time-

frequency analysis—is quite vast. Only a brief background on the underlying methodology

and some relevant references are included here.

Wavelet transform based techniques

Wavelet transform (WT) is one of the most widely used tools in time-frequency domain

analysis [185, 146, 170]. It is defined in terms of an inner product between the signal and
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the wavelet basis, which unlike the sine and cosine bases used in the Fourier transform,

provides a richer variety of orthogonal and non-orthogonal bases to capture a variety of

vibration signals. The Wavelet basis function is obtained by a dilation and translation

from the mother wavelet or wavelet prototype ψ(t) given by [173]:

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
(2.1)

where a is the scale factor and b is the time location. The factor 1√
a

takes care of energy

preservation of the signal. The wavelet transform of signal x(t) is the inner product in the

Hilbert space of the L2 norm

W (a, b) = < ψa,b(t), x(t) > =
1√
a

∫
x(t)ψ∗a,bdt (2.2)

where the asterisk denotes the complex conjugate.

Leducq et al. [103] first used WTs to analyze the hydraulic noise of the centrifugal

pump, which is possibly the first paper on the use of wavelets in diagnostics. Later, Wang

and McFadden [234] applied wavelets to analyze gear vibration signals and they found

that wavelets are able to detect different types of faults simultaneously. Denoising and

extraction of weak signals are very important aspects for bearing fault diagnostics, espe-

cially for early fault detection where features are often very weak and masked by noise

from other components, especially from gear meshing. The powerful de-noising capability

of wavelets makes them suitable for bearing fault detection and has been used extensively

by many researchers [117, 90, 76, 206]. Yang and Liao [253] proposed a wavelet-based de-

noising approach, in which the noise thresholds are adjusted adaptively according to the

background noise. Altmann and Mathew [10] used discrete wavelet packet analysis-based
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multiple band-pass filtering to deal with the vibration signals from a low speed rolling-

element bearing and they presented results which were significantly improved compared to

their high-pass counterpart in terms of SNR. Wang et al. [233] proposed an energy kur-

tosis demodulation (EKD) technique that uses WT and maximum kurtosis deconvolution

(MKD) filter for bearing fault detection. Wavelets have proved to be useful for detection of

non-stationary and irregular signals, such as transient signals for the reason that it could

eliminate background noise. Lin [117] applied a wavelet-based method to remove the noise

from the machine sound, and, furthermore to extract the fault features for diagnostics.

The principle of wavelets for denoising is different from that of traditional filter-based

methods. In brief, in the filter-based methods, the frequency components outside a certain

range are generally set to zero, which may cause some useful fault information to be lost.

This is because some burst faults often appear as impulses in signals and these impulses

cover a wide frequency range; filter-based denoising methods will smooth such impulses.

On the other hand, wavelet-based methods set some wavelet transform coefficients to zero,

which can retain such impulses in signals. Examples include edge cracks in cantilever

beams [213], crack in rotors [264], cracks in beam structures [176], damage in structures

[231, 38], cracks in composite plates [39], etc. Staszewski [205] presented an extensive

review on structural and mechanical damage detection using wavelets, which covers a wide

range of techniques and applications involving WT.

Spectral Kurtosis

Spectral kurtosis (SK) is a statistical parameter which measures the impulsive nature of a

signal as a function of the frequency present in the signal [14, 48, 190]. SK was first applied

by Dwyer et al. [48] to detect impulsive events in sonar signals. Kurtosis has long been
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used as a measure of severity of machine faults, since it was first proposed by Stewart et al.

[49] in the 1970s. The application of SK to bearing faults was clearly explained by Antoni

et al. [14], who developed the methods for calculation of SK. Recently, it has been applied

for bearing fault detection by Sawalhi et al. [190], Zhang et al. [262] and Randall et al.

[182]; for gear fault detection by Barszcz et al. [19] and Combet et al. [37]; gear-bearing

interactions by Sawalhi et al. [188, 189].

Figure 2.1 illustrates the procedure for the calculation of SK as described by Randall and

Antoni [14, 182]. To calculate SK, first the STFT of a non-stationary signal is obtained

by translating a window along the signal and evaluating the frequency spectra for each

window [190]. The square of resulting time-frequency envelope H(t, f) represents the

power spectrum values as a function of time. The average of all these short-time power

spectra is the power spectrum of the whole record. The kurtosis K(f) for each frequency

f can be calculated by taking the fourth power of H(t, f) at each time and averaging its

value along the record, then normalizing it by the square of the mean square value. It has

been shown that subtracting 2 from this ratio results in a zero value for, K(f) a Gaussian

signal [227]:

K(f) =
〈H4(t, f)〉
〈H2(t, f)〉2

− 2 (2.3)

The numerator in Eq. 2.3 depends on the window length. To maximize kurtosis, the

window length must be shorter than the spacing between the pulses, but longer than the

individual pulses.

To maximize the SK value in a given frequency band, different window lengths are

considered. This can be visualized using a “kurtogram” [15], which is a two dimensional

color map indicating the optimum center frequency and range for the bandpass filter which
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Figure 2.1: Calculation of SK from the STFT for a simulated bearing fault signal adopted
from [14] (a) simulated time signal (b) STFT (c) SK as function of frequency

maximizes the kurtosis. An example kurtogram is shown in Figure 2.2. In this case, the

optimum center frequency is 10.68 kHz and the bandwidth 50 Hz. This means that if the

signal is band-passed with a central frequency of 10.68 KHz with a spectral band of 50 Hz,

the impulsiveness can be captured well. In this range, the maximum kurtosis is found to

be 27.2 as shown in Figure 2.2, indicating the presence of a fault. Many researchers have

combined SK with other signal de-noising techniques for effective bearing fault detection.

For example, SK with MED [190], SK with AR modeling [187], SK with envelop analysis

[22] and SK with EMD [209] have all been studied in the literature.
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Figure 2.2: Kurtogram

Empirical mode decomposition

Empirical mode decomposition [86] is one of the most powerful time-frequency analysis

techniques. It is based on the local characteristic time scales of a signal and can decompose

a signal into a set of complete and almost orthogonal components called intrinsic mode

function (IMF). The IMFs indicate the natural oscillatory mode embedded in the signal

and serves as the basis functions, which are determined by the signal itself, rather than

pre-determined kernels. Thus, it is a self-adaptive signal processing technique that is

suitable for nonlinear and non-stationary processes. EMD has been extensively applied
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to detect and diagnose faults in rolling element bearings. Xu et al. [251] used EMD to

analyze vibration signals obtained from accelerated life tests of bearings and investigated

the evolving trend of a bearing life cycle. Cheng et al. [95] proposed the energy operator

demodulation approach based on EMD for bearing fault diagnosis. Fan and Zuo [58]

utilized the amplitude acceleration energy of IMFs to represent fault characteristics for

both bearings and gears. Yan and Gao [252] detected the deterioration in a test bearing

through instantaneous frequencies identified by EMD. Li et al. [108] utilized the marginal

spectrum based on EMD to identify different patterns of bearing faults.

In recent years, many researchers have integrated EMD with other techniques such

as: independent component analysis [132], Teager-Kaiser energy operator [110], Fourier

transform of IMFs [179], Wigner–Ville distribution [111], order tracking [109] and wavelet

packet transform [106] for effective bearing fault detection. The use of EMD continues to

see significant activity and adoption in bearing fault diagnostics community.

2.2 Background on damage prognosis

In the previous section, the literature on damage detection was reviewed, which is only

one component of a CBM program. If a progressing damage is detected early on, then

the condition information acquired from the monitored unit can be utilized for damage

prognosis. RUL prediction and maintenance planning are two major components of prog-

nosis. The task of RUL estimation is achieved by modeling the underlying degradation

process using a surrogate measure of degradation and projecting it to the failure threshold.

The estimated RUL distribution can then serve as input to the maintenance model and

an optimum replacement interval can be sought. These aspects are briefly discussed along

with the relevant literature, next.
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2.2.1 Degradation modeling

Failure in most of the engineered systems result from a gradual and irreversible accumula-

tion of damage, which occurs during its operation. The evolution of underlying degradation

processes can be monitored directly (e.g., crack length) or indirectly (e.g., vibration, acous-

tic or ultrasonic, magnetic field, radiography, thermal and eddy-current signal) using sensor

technology. These periodically acquired signals are collectively known as degradation sig-

nals and can serve as a basis for degradation modeling. Degradation modeling focuses on

mathematical modeling of degradation signals and estimation of remaining useful life dis-

tribution based on pre-defined failure thresholds [143]. Degradation modeling using direct

measurements have been studied in a variety of applications such as crack growth in met-

als [122], nuclear piping system [160], oil and gas pipelines [162] and wall thinning due to

flow-accelerated corrosion [258]. Where degradation is not directly observable, surrogate

measures such as those extracted from vibration measurements [226, 9, 260, 27, 147, 77],

strain measurements [127, 69, 70, 171] and current measurements [225], have been employed

in the literature. It is important to mention here that the use of surrogate measures of

degradation for modeling of civil and mechanical infrastructure is still in the initial stages

of research.

Generally speaking, existing probabilistic degradation models can be classified into

broad two categories: (i) parametric models with random/mixed coefficient and (ii) stochas-

tic process models [122, 75, 221, 52]. The former implies a mean degradation path that

varies from unit to unit, which is suitable for unit-to-unit variation. The second approach

describes the variation in degradation data by a time-dependent stochastic process such

as Markov, Gamma or a Wiener process. These two types of degradation models are

illustrated in Figure 2.3 and their mathematical details are given in Appendix B.
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Figure 2.3: Degradation models (a) Stochastic Gamma process and (b) Linear random
coefficient

A detailed classification of various degradation models is presented in Figure 2.4 and

a summary of their applications including issues addressed are presented in Table 2.1. In

the following subsections, literature on random variable models, stochastic process models

and two-phase models, which is the focus of this study, are reviewed.

Table 2.1: Summary of degradation models for reliability assessment

Model References Issue addressed Application

Random Variable [122] Time to failure distribution Fatigue-crack-growth

[75, 71, 72] Remaining useful life Rolling element bearing

[257] Nonlinear mixed-effects model Flow-accelerated corrosion

[67, 68] Model parameters estimation Train wheel degradation

[118] Parametric Bayesian models Locomotive wheels

[81] Life-time vs degradation data Laser degradation

[94] Graphical representation data Numerical example

[211] Dynamic maintenance threshold Numerical study

[265] Mixture model Valve recession data
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Table 2.1: Summary of degradation models for reliability assessment

Model References Issue addressed Application

[224] Bayesian approach Resistance heating cables

Gamma Process [221] Theoretical aspects Inspection and maintenance

[87, 51, 163] Time-dependent reliability Deteriorating structures

[100] Covariates and random effects Fatigue-crack-growth

[123, 259, 223] Parameters and RUL estimation Corrosion of nuclear pipes

[35] Calculation of confidence limits Creep of concrete

[157] Bivariate degradation Fatigue crack

[218] With random effects Laser degradation

[78, 115, 34] Condition based maintenance Numerical example

[207] Integration of SHM data Creep deformations of bridges

[88] Temporal variability and uncertainties Concrete sewer pipes

[89] Aging and shock events Bilinear structural systems

Weiner Process [246] Time scale transformation Heating cable

[256] With measurement error Wear of magnetic heads

[237] With random effects bridge beam degradation

[197] RUL using recursive filter Gyros used for navigation

[247] Bivariate Weiner process Aluminum reduction cells

[112] Time correlated structure Resistors and sliding metal

[241] Real-time reliability evaluation Capacitance loss over time

Inverse Gaussian [32] With random-drift Optimal CBM policy

[242] Maximum likelihood estimation Laser devices

[255] Random effects, explanatory variables Laser devices

[174] Bayesian method using inspection data Corrosion growth modeling

[167] A Bayesian perspective GaAs laser degradation data

Change point [31] Two-phase, Bayesian approach RUL prediction of bearings

[17] Piecewise linear model Light display units

[239] Gamma and Wiener process Liquid coupling devices

[151] Structural damage diagnosis Four-story steel frame

[79, 80] Poisson process Earthquake occurrence data
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Table 2.1: Summary of degradation models for reliability assessment

Model References Issue addressed Application

[62] Multi-phase Weiner Storage life of capacitor

[13] Two-phase Weiner Liquid coupling devices

[99] Abrupt jump at change point Numerical Example

[43] Weiner and Inverse Gaussian Variable-stress testing

[145] Localized damage detection A steel tube frame testbed

Markov processes [20] Hidden Markov model Diagnosis and prognosis

[216, 217] Mixture of Gaussian HMM RUL estimation

[44, 168, 46] Hidden semi-Markov model Diagnosis & prognosis of pumps

[153, 172, 261] Hidden Markov model Bearing fault diagnosis

[136, 137, 96] Markov model Bridge deck systems

[144] Semi-Markov model Bridge deterioration modeling

2.2.2 Random variable degradation model

One of earliest studies based on a random coefficient model (also referred to as the general

path or a random variable model) was undertaken by Lu and Meeker [122]. Let Yij be the

observed degradation for the ith unit at the jth time tij. Then, the random coefficient

model is given by:

Yij = η(tij,θi,φ) + εij (2.4)

where η(·) is some function, θi is a vector of random effects and φ is a vector of parameters

common to all units. Previously, linear, exponential, power law, logistic and Gompertz

functional forms η(·) have been used [202] in Eq. 2.4. Typically, measurement errors εij are

assumed to be additive, conditionally independent and normally distributed with mean 0
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Figure 2.4: Degradation models

and variance σ2
ε [122]. But it need not have to be normally distributed and additive always.

For example, a multiplicative measurement error model has the form Yij = η(tij,θi,φ)εij,

and the εij might have a log-normal distribution [82], or can follow a Brownian motion [75].

Failure of a unit is declared when the degradation level first reaches a predefined failure

threshold, ηD i.e.,

Ti = inf{tj : Yij ≥ ηD} (2.5)

where Ti is failure time of ith unit.

Lu and Meeker [122] used a random coefficient model to analyze and assess the reliability

of fatigue crack growth data. They also derived closed form analytical solutions for the

cumulative failure time distribution for the special functional forms η(·) of exponential

and linear. Gebraeel and his colleagues [75, 71, 52, 72] used an exponential functional

form for bearing degradation modeling using vibration measurements and derived a closed
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form expression for residual life distribution. Other works using this approach include a

non-linear random coefficients model with a non-parametric degradation path to capture

the burn-in characteristics of vacuum fluorescent displays by Bae et al. [16], a random

coefficient degradation model with random sample size by Su et al. [208] and lifetime

distribution based degradation analysis by Chen et al. [33].

The random coefficient model is a simple model to study, and it is directly related

to statistical analysis of deterioration data. However, a fixed functional form η(·) may

not be conducive under variations in the environmental and operational loading condi-

tions. Another problem is that this model does not account for temporal uncertainty, i.e.,

uncertainty associated with the evolution or progression of deterioration over time [161].

2.2.3 Stochastic degradation model

A special category of stochastic processes that have been used extensively in degradation

modeling is the process with stationary and independent increments (called Lévy process)

[147]. A stochastic process Y (t) is said to have stationary and independent increments if

it has the following two properties:

1. For any 0 ≤ t1 ≤ · · · ≤ tn, random variables Y (t1)−Y (0), Y (t2)−Y (t1), · · · , Y (tn)−

Y (tn−1) are independent.

2. For any t ≥ 0 and s > 0, the distribution of increments Y (t + s)− Y (t) depends on

the time difference s.

When the random increments Y (tn) − Y (tn−1) between two consecutive time periods is

normally distributed, it is called a Wiener process [97]. Doksum et al. [42] modeled the
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variable-stress accelerated life testing fatigue failure data using a Wiener process. In their

study, the accumulated fatigue decay was modeled using two separate Wiener processes

which change from one to another at a certain stress change point, t. Wang [237] applied

a Wiener process with random effects to analyze bridge beam degradation data. In their

model, the unit-to-unit variability was incorporated through random effects and the un-

certainties in the model parameters were estimated using a bootstrap method. In another

study, Wang and his colleagues [197] used a Wiener-process-based degradation model with

a recursive filter for RUL estimation of gyros in an inertial navigation system. They were

able to update the drift coefficient in the Wiener process using a recursive filter and other

parameters using an EM algorithm. In this way the updating was done in real-time upon

the availability of online degradation data.

Time scale transformation of a Wiener diffusion process was considered by Whitmore et

al. [246] and applied towards degradation modeling of a self-regulating heating cable. The

problem of measurement noise in the degradation signal, which gives inaccurate Wiener

process parameter estimates was undertaken by Ye et al. [256]. They modeled a tradi-

tional Wiener process with positive drifts compounded with identically and independently

distributed Gaussian noises and improved its estimation efficiency compared to existing

inference procedures. The developed methodologies that are applicable to the wear prob-

lem of hard disk drive magnetic heads and the light intensity degradation problem of LED

lights. Wiener process is good for modeling the stochastic nature of degradation, which can

increase or decrease between two consecutive times. However, in many cases, degradation

is monotonically increasing, where this cannot be applied.

Another Lévy process that has been widely used for degradation modeling is the Gamma

process, which assumes Gamma distributed random increments. The monotonically in-

creasing property of the Gamma process makes it ideal for modeling gradual damage that
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accumulates over time. It is also well suited for modelling the temporal variability of de-

terioration and proven to be useful in determining optimal inspection and maintenance

decisions. Noortwijk [221] first introduced the application of Gamma process to the civil

engineering community for degradation modelling and the aforementioned paper presents

an exhaustive survey for maintenance applications. Huang et al. [87] used a Gamma pro-

cess to develop a time-dependent reliability model for deteriorating structures. A stochastic

Gamma process model was used for building deterioration by Edirisinghe et al. [51], for

creep of concrete by Cinlar et al. [35], for fatigue crack growth by Lawless et al. [100], and

for thinning caused by corrosion by Noortwijk et al. [222]. Grall et al. [78] used a Gamma

process to analytically model the deterioration of a continuously deteriorating single-unit

system and proposed an optimum preventive replacement policy structure. Liao et al. [115]

presented a condition-based maintenance model for continuously degrading systems under

continuous monitoring. The use of Gamma process for modeling degradation of products

involving multiple performance characteristics was undertaken by Pan et al. [158]. Re-

cently, the probability distribution of maintenance cost of a system affected by the Gamma

process of degradation was undertaken by Cheng et al. [34].

Both random coefficient and stochastic models can be used for RUL estimation of a

monitored unit once the corresponding parameters are estimated. However, such a degra-

dation model may not be able detect fault localized in time; for example, as a change point

in the degradation signal. Such models incorporating change points are effective for dam-

age detection and damage prognosis within a single framework. This aspect is discussed

next in the context of a two-phase model.
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2.2.4 Two-phase degradation model

Most of the existing literature for degradation modeling (either random variable or stochas-

tic process) assume that the deterioration of the system is governed by a single stochastic

process. However, in many situations, the degradation signal often contains a change point,

which occurs due to a sudden change in the operating or in the environmental condition,

impurities in the material, or damage initiation. For example, empirical results have shown

that bearing degradation generally consists of two phases: in the first phase, the deterio-

ration is slow until a spall or a defect is formed in the bearing raceways. Once a defect is

formed, the degradation process grows rapidly in the second phase [75]. Figure 2.5 shows
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Figure 2.5: Example run-to-failure bearing degradation signal ([166])

an example for one run-to-failure bearing degradation (RMS value of vibration with time)

where a two-phase degradation rate with a change point can be clearly observed.
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A two-phase degradation modelling approach was used for rolling elements bearings

by Gebraeel et al. [75, 71, 73]. In the aforementioned work, the authors developed a

two-phase degradation model using the RMS value of acceleration and they integrated

real time condition data in a Bayesian framework. In their model, the first phase consists

of a relatively constant signal representing the period before damage initiation, followed

by a second phase—monotonically increasing—representing damage progression. Using

this approach, they arrived at a closed form solution to predict and update the RUL.

Their study underscores the use of change point detection as a proxy for bearing fault

detection. Change point detection along with RUL estimation was studied by Chen et al.

([31]). The authors in this study proposed a Bayesian change point detection approach for

two-phase degradation modeling and RUL predictions, assuming that the location of the

change point does not have a significant effect on other degradation parameters such as the

degradation rate. This approach reduces the Bayesian computations significantly, since the

estimation process for the parameters of the two phases can be decoupled. Furthermore,

this approach is limited to those cases where the posterior distribution of the change point

is narrow enough to be assumed to be concentrated at a point. Moreover, experimental

data on bearing degradation has shown [31] that the degradation rate and the change point

are often correlated, which is undertaken in the thesis. In an another study [98] a two-

phase Weiner process was used to model bearing degradation, where change detection and

failure prediction were undertaken using a Kalman filter. However, these studies do not

update the model parameters and the reliability with the availability of monitored data.

Recently, Wang et al. [228] proposed a two-phase mixed effects model to analytically

model the bearing degradation process. In their model, two cases for the error term

namely, multiplicative normal random error and multiplicative Brownian motion error, are

considered and two different closed-form distributions for bearing remaining useful life are
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derived. It was found that the model with a multiplicative Brownian motion error results

in lower prediction errors than the model with multiplicative normal random error for

bearing RUL prediction.

The Bayesian change point approach is not limited to rolling element bearings only. Bae

et al. ([17]) used this approach to model the degradation of light display units (plasma

display panels) and derived a prediction for the failure time distribution of a randomly

selected unit, while Vanli ([225]) utilized a Bayesian approach to model the degradation

of a heating cable. Recently, Yan et al. [13] applied change point based two-phase Weiner

degradation process for real-time reliability evaluation of liquid coupling devices (LCDs).

In their method, change point detection was undertaken using the Akaike information crite-

rion and a bootstrap method wass used to obtain the confidence interval of reliability. The

application of two-phase degradation model is relatively new in the civil engineering dis-

cipline, compared to either the mechanical or computer engineering disciplines. Recently,

Noh et al. [150] applied the change point detection method for sequential structural dam-

age detection of a four-story steel special moment-resisting frame and Gupta et al., [79] for

change detection in seismic rates. In the latter, a Bayesian change point model was imple-

mented to find when the number of earthquakes events suddenly increased in Oklahoma

city.

Two-phase degradation modeling with two different functional forms in the two phases

has been undertaken by Wang et al. [240] for real time reliability evaluation of LCDs,

in which the initial sharply increasing phase was modeled using a Gamma process, while

the latter using a Weiner process. The approach used for two-phase degradation modeling

can be extended to model the processes which shows multi-phase degradation. Feng et al.

[62] used a multi-phase Weiner degradation model for storage life prediction for a high-

performance capacitor. It was found in this study that ignoring change points which exist
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in the degradation path could lead to significant prediction uncertainty in the storage life

of a capacitor.

2.3 Maintenance models

Maintenance decision models focus on establishing economical policies for inspection, re-

pair, replacement and spare parts inventory, and they have been studied extensively in the

literature [4, 229, 23, 52, 78]. In general, maintenance policies can be divided into two cat-

egories: preventive maintenance and corrective maintenance (also known as run-to-failure

or reactive maintenance). Preventive maintenance is carried out at predetermined inter-

vals, while corrective maintenance is undertaken when a break-down occurs in the system.

Preventive maintenance can be further divided into two categories: (i) time (age) based

maintenance (TBM) and (ii) condition based maintenance. Ahmad et al., [4] presented an

overview of various maintenance strategies for industrial applications. Under TBM pol-

icy—which is generally applied to non-repairable systems—a unit is replaced after a time

tp, or at failure, whichever occurs first. The mathematical formulation for this model was

developed by Barlow et al. [18], which was based on minimization of expected cost rate

(ECR), details of which are discussed in Appendix C.

In recent years, CBM has emerged as an effective maintenance program that utilizes

condition information for maintenance planning. CBM attempts to avoid unnecessary

maintenance tasks by taking maintenance actions only when there is evidence of abnormal

behaviour of a physical asset. A CBM program, if properly established and effectively

implemented, can significantly reduce maintenance cost by reducing the number of unnec-

essary scheduled preventive maintenance operations [91]. The concept of CBM was first

introduced by the Rio Grande railway company in late 1940s and initially it was called
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predictive maintenance [195]. Ever since, CBM has been widely applied in rotating ma-

chinery applications [45, 53, 229, 92], wind turbines [214], bridges [66] and various other

deteriorating systems [3]. The performance measures widely used for CBM models are cost

minimization and reliability or availability maximization. Wang et al. [235] developed a

model which can be used to determine the optimum critical level (also called the thresh-

old or the control limit) and monitoring interval in CBM by minimizing the long-term

expected cost per unit time. The model was established on the basis of a random variable

model, where the coefficients of the regression model were assumed to follow known dis-

tribution functions. The minimization of the ECR was further investigated by Grall et al.

[78], where both the replacement threshold and the inspection schedule are considered as

decision variables for the maintenance optimization problem.

Castanier et al. [29] assumed a multi-level control-limit rule repair/replacement policy

and obtained optimal inspection scheduling based on a cost criterion and an availability

criterion. Amari and McLaughlin [11] utilized a Markov chain to describe the CBM model

for a deteriorating system subject to periodic inspection. The optimal monitoring interval

frequency and failure threshold were found to maximize the system availability. Elwany

et al. [53] formulated the single-unit replacement problem as a Markov decision process

to determine the optimal replacement policy and successfully applied this to rotating ma-

chinery. Abdel-Hameed [3] studied CBM of a system subject to stochastic deterioration.

A recent review on condition-based maintenance optimization models for stochastically

deteriorating systems was presented by Alaswad et al. [8].

Even though the theory of CBM is well developed, its on-line implementation is lim-

ited due to integration of a variety of software and hardware components. A guide for

implementing CBM in manufacturing industry considering the technical constituents and

organizational aspects (during execution of CBM) are given by Rastegari et al. [184]. Niu
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et al. [149] presented a CBM system that uses reliability-centered maintenance mechanism

to optimize maintenance cost, and employs data fusion strategy for improving condition

monitoring, health assessment, and prognostics. One of the most important steps for CBM

implementation was undertaken by the Machinery Information Management Open System

Alliance (MIMOSATM) for next generation of machinery diagnosis and prognosis [102].

This framework employs an open system architecture for CBM that uses a distributed

software model approach to facilitate the integration and interchangeability between a

variety of hardware and software components.

2.4 Gaps in the research literature

For the damage detection and prognosis of highly reliable systems, a large amount of re-

search, as discussed in the previous sections, has been published in recent years, which

broadly focuses on damage detection, degradation modeling, change detection and main-

tenance planning. However, several important issues such as an integrated framework for

damage detection and prognosis, use of historical failure data for maintenance planning

of a monitored unit, updating the model parameters and RUL with available condition

information, remain at best only partially addressed in the literature. A summary of the

gap areas in the existing research on damage detection and prognosis is described below,

which forms the motivation for the current thesis.

1. Integration of damage detection and prognosis: The literature review showed

that most of the work is focused on damage detection. Research using condition

information for damage prognosis of civil and mechanical infrastructure is lacking

and needs to be expanded upon. Only in a few studies, damage detection results are
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extended to RUL estimation. An integrated framework which undertakes damage

detection, prognosis, and maintenance planning in a systematic way is lacking in the

literature.

2. Use of historical data for better reliability assessment: Although many degra-

dation models have been developed, their parameters are solely estimated using the

degradation data obtained from the monitored unit. In other words, the established

model may represents the degradation of a specific unit, but ignores the general pop-

ulation trend. If the prior knowledge obtained from the historical degradation data

are integrated in the parameter estimation of an in-situ monitored unit, then more

accurate failure predictions can be made possible.

3. Consideration of correlation amongst model parameters: Most of the existing

research using two-phase degradation models do not consider the correlation amongst

model parameters. However, run-to-failure experiments on bearing degradation have

shown that the degradation rate in the second phase depends upon the change point

location. Hence, it is imperative to consider the correlation between change point

and other model parameters, especially the second phase degradation rate.

4. Application to civil and industrial disciplines: Finally, most of the studies

using degradation modeling are applied in the computer and electrical engineering

disciplines such as: light emitting diodes, hard disks, liquid coupling devices, capac-

itor and laser devices. Few studies exist for industrial components such as bearings

and gyros, however, very little for civil infrastructure. Hence, there is an immedi-

ate need for the transfer of technology from other disciplines to civil and industrial

applications.
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2.5 Specific objectives

Based on the identified gaps in the literature, the specific objectives of this thesis are as

follows:

1. develop a degradation modeling framework using surrogate measures of degradation

to integrate damage detection and prognosis for highly reliable components, with

particular emphasis on models enabling change point detection;

2. develop a systematic methodology which combines prior knowledge obtained from

the historical failed units with degradation model parameter estimation and RUL

prediction for a monitored unit;

3. account for the correlation between different degradation model parameters in the

methodology, in particular the second phase degradation rate and change point lo-

cation; and,

4. evaluate the performance of the proposed degradation modeling framework for main-

tenance planning of civil and industrial engineering systems with focus on deteriora-

tion of reinforced concrete beams and rolling element bearings, respectively.
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Chapter 3

Degradation modeling and RUL

estimation

In this chapter, the basics of degradation modeling and the basic concepts of parameter es-

timation and RUL estimation employing Bayesian principles are presented. A justification

for using surrogates to model the underlying degradation process is presented, followed

by a general approach to degradation modeling and end life predictions for a component.

Next, the methodology is illustrated for use through linear and exponential degradation

models, where the parameters and RUL estimation are updated in a Bayesian framework.

The primary focus of this chapter will be for those cases where analytical solutions are

possible. Finally, a numerical example is presented to illustrate this approach.
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3.1 Degradation modeling

Degradation modeling is a way to mathematically quantify the underlying degradation

mechanism and subsequently predict incipient faults. In general, deterioration-related

failures can be classified into two categories: i) hard failures and ii) soft failures. A hard

failure (also called shock failure) occurs when a system experiences sudden shock (e.g.,

earthquake, tsunami, tornado, sudden load increase etc), irrespective of the current health

state of the system. On the other hand, a soft failure is directly related to the continuous

deterioration process, and occurs when the degradation level first reaches a preset failure

threshold. Degradation modeling of soft failures is the major concern of this thesis.

For some degradation processes such as wear, corrosion and crack-growth, it is possible

to measure a physical quantity that is directly related to the underlying degradation mech-

anism or failure. However, for many degradation processes such as bearing degradation

and deterioration of reinforced concrete structures, the degradation process can only be

modeled through some indirect measure of degradation (called a surrogate) derived from

the sensory measurements. Let Xt be the underlying degradation process, Yt the surrogate

measure at time t and F denote the mapping from the original degradation space to the

surrogate space. This is depicted in Figure 3.1. The mapping function F in some cases

can be derived from the physics of the process (e.g., equilibrium, deflection). However, in

general, F is unknown. In the absence of such knowledge, the mapping F is assumed to

preserve the monotonic trend of the actual degradation process into the surrogate space. In

other words, the increasing degradation level is reflected in the magnitude of the surrogate

Yt. Furthermore, the functional forms describing Xt and Yt may or may not be the same

in the two spaces. For example, if the actual degradation Xt follows a quadratic form, it

can be mapped to a linear form in Yt. As long as the thresholds are set in the surrogate
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Figure 3.1: Actual degradation process and indirect measure

space to predict the end of useful life, it is not mandatory to preserve the functional form

in the two spaces.

Given this context, let the surrogate measure Yj of an unit at time tj be given by:

Yj = η(tj,θ,φ) + εj, j = 1, 2, · · · ,m (3.1)

where η(·) is some function (e.g., linear, exponential, power law, gamma process, Weiner

process, logistic and Gompertz forms), εj is the measurement error at time tj, θ is a vector

of random parameters which vary from unit to unit and φ is a vector of fixed-parameters,

which is identical for all units. Let, Lk be a random variable representing the RUL at

time tk, given the observation history Y1, Y2, · · ·Ytk . The distribution of Lk is obtained by

evaluating the distribution of time left until the surrogate reaches a predefined threshold

ηD, as given below:

FLk =P{Lk < t|Y1, · · ·Yk} = P{η(t+ tk,θ, φ) + εt+tk > ηD|Y1, · · ·Yk} (3.2)

As discussed above the actual degradation process is complex and degradation models
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as in Eq. 3.1 is only a simplified representation of the underlying degradation process. In

other words, there is always an uncertainty associated with model predictions, which may

or may not be reduced depending upon its origin.

3.2 Uncertainties in degradation modeling

In general, the uncertainties can be classified into two categories: aleatory uncertainty

and epistemic uncertainty. The word aleatory derives from the Latin alea, which means

the rolling of dice. Thus, aleatoric uncertainty appears in the model due to the intrinsic

randomness of the degradation process. Such a randomness can either be parameter-

ized by discrete probability values or by a PDF, depending upon the nature of variable.

Aleatory uncertainty can further be classified into unit-varying uncertainty (or random

effect across units) and time-varying uncertainty (or temporal uncertainty). In this the-

sis, a random variable model is employed to address the unit-varying uncertainty; and a

stochastic degradation model (e.g., Gamma and Weiner process) has been considered to

model the temporal uncertainty. Aleatory uncertainty is inherent property of a degrading

system, hence, cannot be reduced.

On the other hand, epistemic uncertainty arises due to the lack of knowledge. The

word epistemic derives from the Greek episteme, which means knowledge. This lack of

knowledge can come from many sources such as, partial understanding of underlying degra-

dation mechanism, uncertainty in model structure and parameters, or measurement error,

etc. The epistemic uncertainty can be reduced by acquiring more knowledge about the

degrading system, e.g., by taking more measurements, by conducting more tests, and by

selecting a proper model structure etc. According to the origin of the epistemic uncer-

tainty, different theories such as, probability theory, possibility theory, fuzzy logic, expert
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judgment and convex modeling has been applied in the literature [263].

In this thesis a Bayesian framework has been employed to address the parameter un-

certainty [47]. Let M = (S,θ) denotes the model, where S is the model structure (e.g.,

deterministic or stochastic) and θ is the model parameters. In Bayesian approach, to solve

the problem of structural uncertainty model M = (S,θ) is considered as nuisance param-

eter, and the conditional predictive distribution of future degradation level Yt is obtained

by marginalizing with respect to model M . Mathematically, it can be written as:

p(Yt|t) =

∫
M

p(Yt|t,M)p(M |t)dM (3.3)

=

∫ ∫
p(Yt|t, S,θ)p(S,θ|t)dSdθ (3.4)

=

∫ ∫
p(Yt|t, S,θ)p(S, |t,θ)p(θ|t, S)dSdθ (3.5)

Note that in Eq. 3.3, the first term, i.e., p(Yt|t,M) incorporates the aleatory uncertainty,

and the second term, i.e., p(M |t) incorporates the epistemic part. In the special case, when

p(S, |t,θ) is concentrated on S∗, i.e., a specific model is chosen, Eq. 3.5 reduces to:

p(Yt|t) =

∫
p(Yt|t, S∗,θ)p(θ|t, S∗)dθ (3.6)

where p(θ|t, S∗) is the parameter uncertainty. In this thesis, the model structure S is

kept fixed (e.g., single phase degradation model or two-phase degradation model) and the

parameter uncertainty is assessed using MCMC sampling.

In the following section, two types of degradation models are considered—linear and

exponential models—to illustrate the parameter estimation process and RUL predictions

for a monitored unit in a Bayesian framework. The first model is used to characterize

degradation signals that follow a linear path, whereas the second considers signals that
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grow exponentially. It is important to note that for these two degradation models, an

analytical solution for the posterior distribution of parameters and RUL can be derived,

which provides valuable insights into the Bayesian mathematics. Other degradation models

which require Markov chain Monte Carlo simulations for Bayesian inference are described

in the next chapter.

3.3 Linear degradation model

The linear degradation model is typically used for modeling degradation processes where

the rate of degradation remains constant throughout the system’s life. For example, wear

of brake pads follows linear degradation, where the decrease in the thickness in any given

time interval remains the same irrespective of the age of the brake pad. For a given unit,

the linear degradation model is expressed as:

Yj = φ+ θtj + εj (3.7)

where, θ is a random coefficient which can vary from unit to unit, φ is a deterministic

parameter, which remains constant for all the units. The error εj is assumed to be nor-

mally distributed with mean 0 and variance σ2. The model parameters are (θ, σ2) can be

estimated using standard Bayesian approach. According to the Baye’s rule, the posterior

distribution of the parameters, p(θ, σ2|Y ) is given by:

p(θ, σ2|Y ) ∝ π(θ, σ2)L(Y |θ, σ2) (3.8)
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where, Y is the vector of surrogates, L(Y |θ, σ2) is the likelihood of the vector, given the

parameters, and π(θ, σ2) is the prior distribution of the parameters. For this model, a

conjugate prior exists, which is a normal-inverse Gamma distribution. Using the total

probability rule, the joint prior π(θ, σ2) can be written as product to two separate priors:

π(θ|σ2) and π(σ2), where π(θ|σ2) follows a normal distribution and π(σ2) follows an inverse-

gamma distribution.

For degradation model in Eq. 3.7, residual error εj, which consists of model error

(error in model structure) and measurement error, is an example of aleatory uncertainty.

The uncertainty associated with the parameter (θ, σ2) is the epistemic uncertainty. Once

the marginal posterior distribution of θ and σ2 is estimated, the epistemic uncertainty

is quantified by using the estimated distribution. In this case, p(θ|σ2) follows normal

distribution and P (σ2) follows inverse gamma distribution. For other degradation models,

such as, nonlinear and stochastic, MCMC techniques can be used to estimate the posterior

distribution and subsequently uncertainty quantification.

The future degradation level Yt+tk at any time t from the current time tk can be pre-

dicted using:

p(Yt+tk |Y1, · · ·Yk) =

∫ ∫
p(Yt+tk |θ, σ2)p(θ, σ2|Y1, · · ·Yk)dθdσ2 (3.9)

which can be evaluated numerically using sampling techniques such as MCMC. Through

the use of modern computing hardware and software tools, e.g., like WinBUGS [152],

evaluating the above integral is relatively straight-forward. The RUL distribution can be

estimated by comparing the predicted future degradation level with a failure threshold.

The MCMC based approach is generally applicable to any degradation model. How-

ever, it does not provide insights into the details of Bayesian mathematics. If one of the

52



parameters of the linear degradation model (say, σ2) was to be known independently, then a

closed-form expression for the posterior distribution and RUL can be derived, which helps

us understand the updating procedure for a monitored unit. Let the prior distribution

π(θ) be normally distributed with mean µθ and variance σ2
θ and (Y1, Y2, · · ·Yk) represent

the measurements monitored at times (t1, t2, · · · tk). The prior distribution and likelihood

function for this model are given by:

π(θ) =
1

(2πσ2
θ)

1/2
exp

(
−(θ − µθ)2

2σ2
θ

)
(3.10)

L(Y |θ) =
1

(2πσ2)k/2
exp

(
−

k∑
j=1

(Yj − θtj − φ)2

2σ2

)
(3.11)

The posterior distribution p(θ|Y , σ) is obtained by multiplying Eq. 3.10 and Eq. 3.11,

which is found to be a normal distribution with mean µ̃θ and variance σ̃2
θ :

µ̃θ =
σ2
θ

∑k
j=1(Yj − φ)tj + µθσ

2

σ2
θ

∑k
j=1 t

2
j + σ2

(3.12)

σ̃2
θ =

σ2σ2
θ

σ2
θ

∑k
j=1 t

2
j + σ2

(3.13)

Once the model parameters are updated, the updated values can be used to predict

the future degradation level. Let the random variable Ytk+t denote the value at a time t

in the future, given that the current time is tk. The mean and variance of the predictive

distribution of Yt+tk are given by:

µYt+tk = E(Ytk+t) = E(φ+ θ′(tk + t) + εtk+t) = φ+ µ̃θ(tk + t) (3.14)

σ2
Ytk+t

= V ar(Ytk+t) = V ar(φ+ θ′(tk + t) + εtk+t) = σ̃2
θ(tk + t)2 + σ2 (3.15)
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Thus, each time the monitored data is available, the parameters µ̃θ, σ̃
2
θ are updated and

subsequently used to modify the trajectory of the degradation signal.

The predictive distribution estimated above is used to compute the distribution of RUL,

Lk. The definition for RUL is given in Eq. 3.2 and used to derive the expression for RUL.

Mathematically, it can be written as:

FLk =P (Lk < t|Y1, · · ·Yk) (3.16)

=P (Yt+tk > ηD|Y1, · · ·Yk) (3.17)

=1− P (Z ≤
ηD − µYt+tk
σYt+tk

) (3.18)

=Φ

(
µYt+tk − ηD
σYt+tk

)
(3.19)

where Φ(Z) is the cumulative density function (CDF) of standard normal random variable

Z.

3.4 Exponential degradation model

The exponential model performs well in those applications where the rate of degradation

depends upon the cumulative degradation level. Corrosion, crack-growth, deterioration of

civil structures, and bearing degradation are some examples of such cases. Gebraeel et al.

[72] described the following form for an exponential degradation model:

Yj = φ+ θ1exp

(
θ2tj + εj −

σ2

2

)
(3.20)
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where, Yj is an appropriate surrogate measure of degradation at time tj, φ is a constant, θ1

is a log-normal random variable, where lnθ1 has mean µθ1 and variance σ2
θ1

, θ2 is a normal

random variable with mean µθ2 and variance σ2
θ2

and εj is the random error with mean

0 and variance σ2, which is assumed to be known. It is assumed that the θ1, θ2 and εj

are mutually independent, and that ε1, · · · εk are independent and identically distributed

random variables. For this model it can be shown that the expectation E[exp(εj−σ2/2)] =

1 and hence E[Yj|θ1, θ2] = φ+ θ1exp(θ2tj).

Proof : Let z = εj, then

E

[
e

(
z−σ

2

2

)]
=

∫ ∞
−∞

e

(
z−σ

2

2

)
f(z)dz (3.21)

=

∫ ∞
−∞

e

(
z−σ

2

2

)
e−

z2

2σ2 dz

=

∫ ∞
−∞

e
− 1

2

(
z2

σ2
−2z+σ2

)
dz

=

∫ ∞
−∞

e−
(z−σ2)2

2σ2 dz = 1

and E[Yj|θ1, θ2] =E

[
φ+ θ1exp

(
θ2tj + εj −

σ2

2

)]
(3.22)

=φ+ θ1e
θ2tjE

[
e

(
εj−σ

2

2

)]
=φ+ θ1e

θ2tj

For the exponential model given in Eq. 3.20, it will be convenient to work with the

logarithm of the signal. Moreover, the logarithm is a monotonic function and hence retains

the monotonic nature of the degradation. By taking logarithm on both sides of Eq. 3.20:

log(Yj − φ) =logθ1 + θ2tj + εj −
σ2

2
(3.23)

Lj =θ′1 + θ2tj + εj (3.24)
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where Lj = log(Yj − φ) and θ′1 = logθ1 − σ2/2, θ′1 is normally distributed with mean

µθ′1 = µθ1 − σ2/2 and variance σ2
θ′1

= σ2
θ1

. Note that in the log-transformed domain,

the exponential degradation model (i.e., Eq. 3.24) is very similar to the linear degradation

model, with the key difference that the exponential model has more number of parameters.

Let the logged surrogates L1,L2, · · · ,Lk constitute measurements at times (t1, t2, · · · tk),

respectively. Assuming that θ′1 and θ2 are independent, the joint prior distribution π(θ′1, θ2)

can be written as the product:

π(θ′1, θ2) =π(θ′1)π(θ2) (3.25)

=
1

(2πσ2
θ′1

)1/2
exp

(
−(θ′1 − µθ′1)

2

2σ2
θ′1

)
1

(2πσ2
θ2

)1/2
exp

(
−(θ2 − µθ2)2

2σ2
θ2

)
(3.26)

∝ exp

(
−(θ′1 − µθ′1)

2

2σ2
θ′1

)
exp

(
−(θ2 − µθ2)2

2σ2
θ2

)
(3.27)

Similarly, the likelihood of the data given the parameters can be written as:

L(L|θ′1, θ2) =
1

(2πσ2)k/2
exp

(
−

k∑
j=1

(Lj − θ′1 − θ2tj)
2

2σ2

)
(3.28)

where L is a vector of logged values of the surrogate measurements. Note that in Eq. 3.27,

µθ′1 , σ
2
θ′1
, µθ2 and σ2

θ2
are the hyper-parameters which are estimated from historical failure

data. Estimation of hyper-parameters from historical failure data is discussed in the next

chapter. Given the prior and the likelihood of the data, an expression for the joint posterior
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distribution of parameters (θ′1, θ2) can be derived as follows:

p(θ′1, θ2|L) ∝ π(θ′1, θ2)L(L|θ′1, θ2) (3.29)

∝ exp

(
−(θ′1 − µθ′1)

2

2σ2
θ′1

)
exp

(
−(θ2 − µθ2)2

2σ2
θ2

)
1

(2πσ2)k/2
exp

(
−

k∑
j=1

(Lj − θ′1 − θ2tj)
2

2σ2

)

∝ exp

{
−1

2

[
1

σ2

(
kθ′1

2
+ θ2

2

k∑
j=1

t2j − 2θ′1

k∑
j=1

Lj − 2θ2

k∑
j=1

Ljtj + 2θ′1θ2

k∑
j=1

tj

)

+
1

σ2
θ′1

(θ′1
2 − 2µθ′1θ

′
1 +

1

σ2
θ2

(θ2
2 − 2µθ2θ2)

]}

∝ exp

{
−1

2

[
θ′1

2

(
k

σ2
+

1

σ2
θ′1

)
+ θ2

2

(∑k
j=1 t

2
j

σ2
+

1

σ2
θ2

)
− 2θ′1

(∑k
j=1 Lj
σ2

+
µθ′1
σ2
θ′1

)

− 2θ2

(∑k
j=1 Ljtj
σ2

+
µθ2
σ2
θ2

)
+ 2θ′1θ2

(∑k
j=1 tj

σ2

)]}

∝ exp

{
−1

2

[
θ′1

2

(
1

σ̃2
θ′1

(1− ρ2)

)
+ θ2

2

(
1

σ̃2
θ2

(1− ρ2)

)
− 2θ′1

(
µ̃θ′1

σ̃2
θ′1

(1− ρ2)
− µ̃θ2
σ̃θ′1σ̃θ2(1− ρ2)

)

− 2θ2

(
µ̃θ2

σ̃2
θ2

(1− ρ2)
−

µ̃θ′1ρ

σ̃θ′1σ̃θ2(1− ρ2)

)
− 2θ′1θ2

(
ρ

σ̃θ′1σ̃θ2(1− ρ2)

)]}

∝ 1

2πσ̃θ′1σ̃θ2
√

(1− ρ2)
exp

{
−

[
σ2
θ2

(θ′1 − µθ′1)
2 + 2σθ′1σθ2ρ(θ′1 − µθ′1)(θ2 − µθ2) + σ2

θ′1
(θ2 − µθ2)2)

2σ2
θ′1
σ2
θ2

(1− ρ2)

]}
(3.30)

Eq. 3.30 reveals that the joint posterior distribution of (θ′1, θ2) follows a bi-variate normal

distribution with mean (µ̃θ′1 , µ̃θ2), variance (σ̃2
θ′1
, σ̃2

θ2
) and the correlation coefficient ρ given
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by:

µ̃θ′1 =

(∑k
j=1 Ljσ2

θ′1
+ µθ′1σ

2

)(∑k
j=1 t

2
jσ

2
θ2

+ σ2

)
−
(∑k

j=1 tjσ
2
θ′1

)(∑k
j=1 Ljtjσ2

θ2
+ µθ2σ

2

)
(
kσ2

θ′1
+ σ2

)(∑k
j=1 t

2
jσ

2
θ2

+ σ2

)
−
(∑k

j=1 tjσ
2
θ2

)(∑k
j=1 tjσ

2
θ′1

)

µ̃θ2 =

(
kσ2

θ′1
+ σ2

)(∑k
j=1 Ljtjσ2

θ2
+ µθ2σ

2

)
−
(∑k

j=1 tjσ
2
θ2

)(∑k
j=1 Ljσ2

θ′1
+ µθ′1σ

2

)
(
kσ2

θ′1
+ σ2

)(∑k
j=1 t

2
jσ

2
θ2

+ σ2

)
−
(∑k

j=1 tjσ
2
θ2

)(∑k
j=1 tjσ

2
θ′1

)
σ̃2
θ′1

=
σ̄2

σ2
θ2

×
∑k

j=1 t
2
jσ

2
θ2

+ σ2(
kσ2

θ′1
+ σ2

)(∑k
j=1 t

2
jσ

2
θ2

+ σ2

)
−
(∑k

j=1 tj

)2

σ2
θ′1
σ2
θ2

σ̃2
θ2

=
σ̄2

σ2
θ′1

×
kσ2

θ′1
+ σ2(

kσ2
θ′1

+ σ2

)(∑k
j=1 t

2
jσ

2
θ2

+ σ2

)
−
(∑k

j=1 tj

)2

σ2
θ′1
σ2
θ2

ρ =
−σθ′1σθ2

∑k
j=1 tj√

kσ2
θ′1

+ σ2

√
σ2
θ2

∑k
j=1 t

2
j + σ2

; σ̄2 = σ2σ2
θ′1
σ2
θ2

(3.31)

Note that while the priors of the model parameters (θ′1, θ2) are assumed to be independent,

their posterior distribution is correlated with a correlation coefficient ρ. This correla-

tion will influence the future degradation level predictions, as shown later in Eq. 3.33.

Moreover, posterior means (µ̃θ1 , µ̃θ2) and posterior variances (σ̃2
θ′1
, σ̃2

θ′2
) depends upon the

available degradation data. In other words, with increasing value of k the mean of posterior

distribution will shift and spread of distribution will change.

The updated posterior distribution of (θ′1, θ2) can be used to predict the RUL of a

monitored unit. The key idea for RUL prediction is the same as that for a linear degra-

dation model given earlier in Eq. 3.16. A failure happens when the logged value of the

measurement reaches a failure threshold, ηD. Let, after time t from the current time tk,

58



the surrogate value first cross the threshold. Thus, the RUL t can be found by substituting

Lj = ηD in Eq. 3.24 (i.e., ηD = θ′1 + θ2tj + εj ) and solving for t. However, the parameters

(θ′1, θ2) are random variables and will result in multiple values of t. Alternatively, the RUL

distribution can be estimated by finding the mean and variance of the surrogate at time

t+ tk, which is given by:

µ̃Lt+tk = µ̃θ′1 + µ̃θ2(t+ tk)− σ2/2 (3.32)

σ̃2
Lt+tk

= σ̃2
θ′1

+ σ̃2
θ2

(t+ tk)
2 + σ2 + 2ρ(t+ tk)σ̃θ′1σ̃θ2 (3.33)

With known µ̃Lt+tk and σ̃2
Lt+tk

, the CDF of the RUL is given by:

FLk =P (Lk < t|L1, · · · ,Lk) = P (Lt+tk > ηD|L1, · · · ,Lk) (3.34)

=1− P (Z ≤
ηD − µ̃Lt+tk
σ̃Lt+tk

) (3.35)

=Φ

(
µ̃Lt+tk − ηD
σ̃Lt+tk

)
(3.36)

where, φ(·) is the CDF of the standard normal random variable Z.

The model parameters and RUL distribution can be updated each time a new observa-

tion is acquired from a monitored unit. In other words, each time a new measurement is

acquired, the posterior distribution for (θ′1, θ2) can be calculated and used to obtain new

estimates for µ̃θ′1 , µ̃θ2 , σ̃
2
θ′1
, σ̃2

θ2
and ρ. Then, given the updated value of the parameters,

the RUL distribution can be updated using µ̃Lt+tk and σ̃2
Lt+tk

. Since this procedure only

requires the computation of CDF for a standard normal random variable, the procedure

can be implemented online.

In the above sections, the procedure for estimating the model parameters and RUL up-
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dating for two degradation models namely, linear and exponential has been discussed. The

basic framework remains same for more complex degradation models such as, exponential

degradation model with a Brownian error term, Gamma process model, or a two-phase

degradation model. The case of a two-phase degradation model is taken up in detail in the

next chapter. Next, to illustrate the overall approach, a numerical example is presented.

3.5 Numerical Example

The following values for parameters φ = 2, θ1 = 0.1, θ2 = 0.3, σ = 0.2 are used in Eq. 3.20

to simulate an exponential degradation path. The simulated degradation path is shown

in Figure 3.2, where the y-axis represents the a degradation measure and the x-axis is the

monitoring time. The log-transformed signal is shown in Figure 3.3, where the linear trend

in the degradation path is observed following the assumptions in Eq.3.24.

Next, the prior information obtained from historical data can be used to update the

model parameters and RUL distribution of this unit. Assume that the following prior

distributions are obtained using historical degradation signals:

θ′1 ∼ N(−2, 0.52), θ′1 ∼ N(0.4, 0.32). (3.37)

The mean and variance of the model parameters (θ′1, θ2) are updated according to Eq. 3.31

with the availability of monitored data. Two such updates, say, tk = 2.5 and tk = 9, which

correspond to 25 and 90 percent of degradation respectively, are presented in Figure 3.4.

Note that the posterior distributions for θ′1, θ2 are correlated as illustrated earlier in Eq.

3.31. Moreover, as more data is utilized, the densities of the parameters concentrate and

converge to their true values.
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Figure 3.2: Simulated exponential degradation paths
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Figure 3.3: Log-transformed degradation paths
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Figure 3.4: Updated degradation model parameters (a) at tk = 2.4 (b) tk = 9

The mean and variance of the future degradation level at any time t + tk is predicted

using Eq. 3.32 and Eq. 3.33, respectively. Furthermore, the estimated mean and variance

along with Eq. 3.36 are used to predict the RUL distribution, where the failure threshold

ηD is set equal to 1. For two specific times, tk = 2.5 and tk = 9, the updated RUL CDF

are shown in Figure 3.5. Note that the RUL estimates tend towards their actual end of

life values over time.

3.6 Summary

In this chapter, a brief background on Bayesian degradation modeling and RUL estimation

are presented. In those cases where direct degradation measurements are impractical to

obtain, a surrogate measure obtained from the sensory data can be used for degradation
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Figure 3.5: RUL CDF estimated at (a) tk = 2.5 (b) tk = 9

modeling. It was shown that for simple degradation models such as linear and exponential,

a closed form expression for the posterior distribution of parameters and RUL is possible

to derive. This makes computations relatively easy, even conducive to online implemen-

tation. The numerical example shows that the model parameters and RUL predictions

of a monitoring unit becomes more accurate with the availability of monitored data over

time. This framework is further explored for more advanced degradation models such as

the two-phase degradation model, in the next chapter.
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Chapter 4

An integrated approach to detection

and prognosis using a two-phase

degradation model

4.1 Introduction

In the previous chapter, the basics of degradation modeling and RUL estimation for the

simple cases of linear and exponential degradation was discussed. In both of these cases,

under simplifying assumptions, the mathematics of parameter estimation and RUL calcu-

lations within the Bayesian framework are greatly simplified. Such simplifications, while

helps us understand the basic procedures of importance in this thesis, does not adequately

address the complexity associated with real-world applications. This chapter extends the

previous concepts to cases where the degradation occurs in distinct phases (see Figure

4.1(a)), which is typical of those cases where an incipient fault or damage changes the
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rate of degradation. Of primary importance in such cases is to not only estimate when

such changes occur, but also to estimate the parameters associated with such changes

and the RUL. This chapter presents an integrated framework for damage detection and

maintenance planning which can systematically integrate sensor measurements with prior

information, for the case of models exhibiting such changes in the rate of degradation.
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(b)

time timet1 = λ
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change point

Figure 4.1: Schematic of a: (a) multi-phase degradation model; (b) two-phase model with
a change-point

As discussed in the previous chapter, one of the main issues in dealing with degradation

of many engineering components is that the underlying degradation mechanism is unob-

servable and can only be inferred through appropriate surrogate measures obtained from

the sensor measurements. Moreover, the stochastic nature of the degradation path ren-

ders fault detection and estimating the end of life characteristics from such data extremely

challenging. Furthermore, in many cases damage or incipient faults can cause a change in

the rate of degradation, which manifests as jump or slope discontinuities.

The main objective in this chapter is to present the details of a two-phase degradation
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model (see Figure 4.1(b)) utilizing surrogate measures of degradation. This model is the

simplest extension of a single phase model described in the previous chapter. A Bayesian

approach is employed to estimate the model parameters. Within the framework of this two-

phase model, the problem of fault detection is posed as a change point location problem

and the prognosis task is undertaken using the estimated parameters of the degradation

model.

The chapter is organized as follows: first, the two-phase degradation model problem

is formulated in the context of random variable (RV), gamma process (GP) and Weiner

process (WP). Next, the mathematical details for parameter estimation, RUL predictions

and maintenance planning are given. The effect of correlation between the degradation

rate and change point location is discussed next. Finally, the proposed methodology is

validated using a numerical example, which mainly serves to illustrate various steps in the

approach.

4.2 Probabilistic degradation modeling

Modeling degradation is the first step towards fault detection and RUL estimation. Two

classes of degradation models, namely: (i)RV model and (ii) stochastic model have been

widely studied in the literature. RV model, also called a general path model, consists of

a functional form η(·)—which depends upon the nature of the degradation process—with

deterministic and stochastic coefficients. Stochastic models such as GP and WP models

can include temporal uncertainty i.e., uncertainty associated with the evolution or pro-

gression of deterioration over time. The monotonically increasing property of a GP makes

it ideal for modeling the gradual damage that accumulates over time. However, in many

engineering applications, sensory data are often contaminated with measurement noise or

66



environmental conditions change, which makes the degradation signal non-monotonic. In

such cases, a WP has proven to be a good choice.

Going from a single phase to two-phase is not that straight forward due to mathemat-

ical challenges associated with the two-phase degradation modeling. First, the likelihood

expression for the two-phase model is more complicated due to the discontinuity intro-

duced by the change-point location. Hence, the likelihood expression cannot be directly

maximized to obtain the estimate of model parameters. Secondly, in contrast to the sin-

gle phase model, a two-step procedure is required for prior specification for a two-phase

model. Specifically, in the first step, all possible change points are considered and an

optimum change point location is selected which results in maximum likelihood. In the

second step, with the known change point location, the degradation path is divided into

two regions and the associated model parameters are estimated. Finally, in contrast to a

single-phase, an analytical expression for posterior distribution of model parameters and

RUL distribution is not generally possible to derive for a two-phase model.

The overall methodology followed in this chapter consists of following three key steps:

(i) probabilistic degradation modeling; (ii) parameters estimation and update; and, (iii)

RUL prediction and maintenance planning of a monitored unit. A flow chart showing the

summary of the proposed methodology is given in Fig. 4.2 and details of each step are

described next.

Let yt denote a surrogate measure of degradation at time t, which can be modeled using

a n−phase degradation model. In general, the degradation occuring within a phase can be

described by a stochastic (e.g., GP or WP) or a random co-efficient (e.g., regression type)

model. Let λ1, λ2, · · · , λ(n−1) denote the change point locations and y0, yλ1 , yλ2 , · · · , yλ(n−1)

be the degradation at the beginning of the 1st, 2nd, 3rd, · · ·nth phases, respectively. With
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these notations, a general multi-phase degradation model can be written as:

yt =[y0 + y1(t)]I(0,λ1)(t) + [yλ1 + y2(t− λ1)]I(λ1,λ2)(t) + [yλ(n−1)
+ yn(t− λ(n−1))]Iλ(n−1,∞))(t)

(4.1)

where I(a,b)(t) is the indicator function, which is unity in interval [a, b] and zero elsewhere.

For the simplest case of a two-phase degradation model:

yt =[y0 + y1(t)]I(0,λ)(t) + [yλ + y2(t− λ)]I(λ,∞)(t) (4.2)

It is important to recognize that even for this simple model, many permutations are possi-

ble. For example, the degradation in both the phases can have the same functional form;

gamma-gamma, Weiner-Weiner or exponential-exponential etc., or it can be mixed func-

tions such as, linear-Gamma, Gamma-Weiner, linear-Weiner etc. The ensuing discussion

is restricted to the same functional form in both the phases. In the following section, the

mathematical formulation for the two phase degradation model employing various func-

tional forms is presented.
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4.2.1 Linear random variable model

Let the degradation rate in the first and second phases be given by θ2 and β2, respectively;

then, the two-phase RV model can be written as:

yt =


θ1 + θ2t+ ε1 if t ≤ λ

β1 + β2t+ ε2 if t > λ

(4.3)

where, θ1, θ2 are constants, ε1, ε2 are the additive errors, which are assumed to be i.i.d and

normally distributed with mean 0 and variances σ2 and τ 2, respectively. Here, it should be

mentioned that many degradation mechanisms such as in rolling element bearings, follow

an exponential behaviour, which can be made linear by taking logarithms of the surrogate

measures of degradation. It is implicitly assumed here that these surrogate measures

are linear mappings from the underlying degradation mechanisms, which means that the

exponential degradation form is preserved in this transformation. Figure 4.3 shows a few

sample paths for two-phase linear RV model.

This model can be used to detect faults by locating the discontinuity (change-point)

caused by a jump in time and the rate of degradation by estimating the intercept and slope

after the occurrence of such a discontinuity. The parameters of this model are contained in

Θ = {θ1, θ2, β1, β2, λ, σ
2, τ 2}, where λ is change point location, (θ1, θ2, σ

2) and (β1, β2, τ
2)

are the parameters corresponding to the first and second phases, respectively. The steps

for undertaking this estimation are outlined later in the chapter.
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Figure 4.3: Simulated sample paths for two-phase linear RV model

4.2.2 Gamma process model

In this model, the degradation in each phase can be represented using a separate GP, given

by:

yt ∼


y01 + Γ(a1t, b1) if t ≤ λ

y02 + Γ(a2t, b2) if t > λ

(4.4)

where y01, y02 initial degradation in phase-1 and phase-2, respectively, Γ(at, b) is the GP

with the shape parameter, at and the scale parameter, b (a, b ≥ 0). A GP model {Y (t); t ≥

0} is defined as a continuous time stochastic process in the sample space [0,∞), if it has

the following properties [200]:

• Let 4Yk = Y (tk)− Y (tk−1) be the increment in Y (t) in the time interval [tk − tk−1];

then, the random variables 4Y1,4Y2, ...4Yk are independent for any t0 ≤ t1 ≤ ... ≤

tk.
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• For 0 ≤ s < t, the random variable Y (t)−Y (s) is Gamma distributed, Γ(a(t− s), b),

as in Eq. (4.5):

Y (t)− Y (s) ∼ Γ(a(t− s), b) = f(a(t−s),b)(y) =
ba(t−s)ya(t−s)−1e−by

Γ(a(t− s))
(4.5)

Using moment generating functions, it can be shown that the expectation and the variance

of the process Y (t) are given by [221]:

E(Y (t)) =
a

b
t, Var(Y (t)) =

a

b2
t (4.6)

The monotonically increasing property of the GP makes it suitable for modeling gradually

increasing damage, which accumulates over time. According to the additivity property of

the gamma distribution, process Y (t) also follows the gamma distribution, Γ(at, b) [230].

Using this property, the two-phase model in Eq. 4.4 can be written as:

4yt = y(t+t0) − yt ∼ Γ(a1t0, b1); t0 < t ≤ λ+ 1

4yt = y(t+t0) − yt ∼ Γ(a2t2, b2); λ+ 1 < t ≤ T (4.7)

where 4yt is the increment in yt from time t to t + t0, t0 is the time interval between

two successive measurements and T is the time when the last measurement was obtained.

This formulation is later used to develop the likelihood expression and subsequently for

parameter estimation. The parameters of this model are Θ = {a1, b1, a2, b2, λ}. Figure 4.4

shows a few sample paths for two-phase gamma process model.
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Figure 4.4: Simulated sample paths for two-phase gamma process model

4.2.3 Weiner process model

In this model, the cumulative degradation is given by two separate WPs (also called gen-

eralized WP) in two different phases. Mathematically, it can be written as:

yt =


y01 + ν1t+ σ1W (t) if t ≤ λ

y02 + ν2t+ σ2W (t) if t > λ

(4.8)

where (y01, ν1, σ1) and (y02, ν2, σ2) are the constants, drift and diffusion parameters in the

1st and 2nd phases, respectively. W (t) is the standard Brownian motion term. A standard

WP (often called Brownian motion) in the interval [0, T ] is a random variable W (t) that

depends continuously on t ∈ [0, T ] and has the following properties [219]:
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• W (0) = W0.

• For 0 ≤ s < t ≤ T ; 4Wt = W (t) − W (s) ∼ ε
√
t− s = ε

√
4t. Where ε is a

standard normal random variable N(0, 1) and 4t = t − s. In other words, 4Wt is

normally distributed with mean zero and variance 4t i.e., 4Wt ∼ N(0,4t).

• For 0 ≤ s < t < u < v ≤ T ; W (t)−W (s) and W (v)−W (u) are independent. In

other words, 4Wt is independent of 4Wv for all v ≤ t

In fact, the generalized WP is a special type of a diffusion process. Let the diffusion

processes Y(t) be given by the following stochastic differential equation (SDE):

dY(t) = a[Y, t]dt+ b[Y, t]dW(t) (4.9)

where a[Y, t] is the drift vector function, b[Y, t] is the diffusion matrix and W(t) is a vector

function of a standard Weiner process. By taking a[Y, t] = ν, b[Y, t] = σ, W(t) = W (t),

Y(t) = Y (t) in Eq. 4.9, the SDE for a generalized WP can be written as:

dY (t) = νdt+ σdW (t) (4.10)

With the initial conditions, Y (0) = y0 and W (0) = 0, the integral form is given by:

Yt − y0 =

∫ t

0

νdt+

∫ t

0

σdW (t)

Yt = y0 + νt+ σ[W (t)−W (0)]

= y0 + νt+ σW (t) (4.11)
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Figure 4.5: Simulated sample paths for two-phase Weiner process model

where E[Wt] = 0 and V ar[Wt] = t. The mean and variance of Yt is therefore E[Yt] = y0+νt

and V ar[Yt] = σ2t, i.e., Yt ∼ N(y0 + νt, σ2t).

This property will be used for parameter estimation subsequently. The parameters of

a two-phase Weiner process model are given by Θ = {ν1, σ1, ν2, σ2, λ}. The advantage

of using a Weiner process for degradation modeling is two fold: first, the degradation

path need not be strictly monotonic, which often occurs when noise is present in the

measurements, or the degradation measure fluctuates; secondly, a closed form expression

for failure time distribution can be derived which simplifies the Bayesian computations

significantly. Figure 4.5 shows a few sample paths for two-phase Weiner process model.
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4.3 Estimation of parameters

A Bayesian approach is employed for parameter estimation, which allows us to combine

prior knowledge of the parameters Θ = {θ1,θ2, λ} i.e., π(Θ), and their likelihood L(y|Θ)

obtained from the data y = {y1, y2, · · · , yt}, to obtain the posterior distribution for the

parameters, p(Θ|y) according to:

p(Θ|y) =
π(Θ)L(y|Θ)∫
p(Θ)L(y|Θ)dΘ

∝ π(Θ)L(y|Θ) (4.12)

where θ1, θ2 are the parameters in the two phases. The prior distribution π(Θ) can be

expressed as a parametric model π(Θ|ξ) with hyper-parameters ξ. These hyper-parameters

can be estimated by maximizing the marginal likelihood of data:

ξ̂ = argmax
ξ

n∏
i=1

∫
L(yi|Θi)π(Θi|ξi)dΘi (4.13)

where yi = [yi1, yi2, · · · , yimi ]T is the historical degradation signal of unit i, mi is the

number of observations and Θi contain the parameters of the degradation model of unit i.

Unfortunately, the parametric form of Eq. 4.13 is complex, which makes integration and

optimization tasks difficult to conduct.

In this thesis, an alternative approach is employed to estimate the prior distribution

and hyper-parameters. Instead of maximizing the marginal distribution of historical data,

the maximum likelihood estimates of their model parameters Θi of each unit i = 1, 2 · · · , n

are considered as samples from the prior distribution, i.e.,

Θ = {Θ1,Θ2, · · · ,Θn} (4.14)
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Subsequently, the hyper-parameters are estimated by fitting the appropriate distribution.

Once the prior distribution π(Θ) is estimated, this can be integrated with the likelihood

of the degradation data available from a monitored unit to update its model parameters

(see Eq. 4.12) and subsequently the RUL. Next, the parameter estimation procedure for

the three degradation models is discussed.

4.3.1 Linear RV model

Given the degradation measure yt at time t, the likelihood function can be written as:

L(y|Θ) =
∏
t≤λ

φ(yt; θ1 + θ2t, σ
2)
∏
t>λ

φ(yt; β1 + β2t, τ
2) (4.15)

=
1

(
√

2Πσ2)λ
exp

[
−

λ∑
t=1

(yt − θ1 − θ2t)
2/2σ2

]
· · ·

1

(
√

2Πτ 2)(t−λ)
exp

[
−

t∑
t=λ+1

(yt − β1 − β2t)
2/2τ 2

]
(4.16)

where φ(yt; θ1 + θ2t, σ
2) denotes a normal probability density function with mean θ1 + θ2t,

variance σ2 and evaluated at yt. In addition to the likelihood function, a joint prior

distribution of all parameters (θ1, θ2, β1, β2, σ
2, τ 2, λ), i.e.,

π(Θ) = π(θ1, θ2, β1, β2, σ
2, τ 2, λ) (4.17)

is required to calculate the posterior distribution. To estimate such a multi-dimensional

prior distribution, a very large number of degradation paths are required. However, in

practice, only a few historical run-to-failure degradation signals may be available; hence,

the prior distribution is simplified by assuming most of the parameters to be independent.
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By using the law of total probability and independence of θ1, θ2, β1, σ
2, τ 2, the prior π(Θ)

is given by:

π(Θ) = π(θ1, θ2, β1, σ
2, τ 2, β2, λ)

= π(θ1)π(θ2)π(β1)π(σ2)π(τ 2)π(β2)π(λ) (4.18)

Moreover, the following prior distributions in terms of hyper-parameter ξ = (µθ1 , σ
2
θ1
,

µθ2 , σ
2
θ2
, µβ1 , σ

2
β1
, µβ2 , σ

2
β2
, aσ2 , bσ2 , aτ2 , bτ2) are assumed:

π(θ1) ∼ N(µθ1 , σ
2
θ1

);π(θ2) ∼ N(µθ2 ;σ
2
θ2

); (4.19)

π(β1) ∼ N(µβ1 , σ
2
β1

);π(β2) ∼ N(µβ2 , σ
2
β2

)

λ ∼ U(0, T );π(σ2) ∼ IG(aσ2 , bσ2);π(τ 2 ∼ IG(aτ2 , bτ2) (4.20)

Where N, IG and U denotes normal, inverse Gaussian and uniform distribution, respec-

tively. The joint posterior distribution for Θ can then be obtained by substituting Eq.

4.18 and Eq. 4.16 into Eq. 4.12:

p(Θ|y) = π(θ1)π(θ2)π(β1)π(β2)π(σ2)π(τ 2)π(λ)× 1

(
√

2Πσ2)λ
exp
[
−
∑λ

t=1 (yt − θ1 − θ2t)
2/2σ2

]
× 1

(
√

2Πτ2)(t−λ)
exp
[
−
∑t

t=λ+1 (yt − β1 − β2t)
2/2τ 2

]
(4.21)

Clearly, the functional form of p(Θ|y) as given in Eq. 4.21 does not correspond to any

recognizable joint distribution function. As a consequence, the marginal posterior density

functions are estimated by taking random samples from the joint posterior distribution

using MCMC algorithm.

The hyper-parameters ξ = (µθ1 , σ
2
θ1
, µθ2 , σ

2
θ2
, µβ1 , σ

2
β1
, µβ2 , σ

2
β2
, aσ2 , bσ2 , aτ2 , bτ2) are ob-
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tained by fitting the appropriate distribution to the model parameters estimated from the

historical units. The following steps are performed to achieve this:

• Step-I: For a given change point location λ of unit i, divide the degradation data into

two regimes and fit linear models to each regime, separately. The model parameters

θi,βi,σ
2
i , τ

2
i can be found using standard linear regression results [193] :

θ̂i = (XT
iθXiθ)

−1XT
iθyiθ (4.22)

β̂i = (XT
iβXiβ)−1XT

iβyiβ (4.23)

σ2
i =

1

niθ
(yiθ −Xiθθ̂i)

T (yiθ −Xiθθ̂i) (4.24)

τ 2
i =

1

niβ
(yiβ −Xiββ̂i)

T (yiβ −Xiββ̂i) (4.25)

where

yiθ =

[
yi1 yi2 · · · yiλ

]T
; (4.26)

yiβ =

[
yi(λ+1) yi(λ+2) · · · yimi

]T
(4.27)

Xiθ =

 1 1 · · · 1

ti1 ti2 · · · tiλ


T

(4.28)

Xiβ =

 1 1 · · · 1

ti(λ+1) ti(λ+2) · · · timi


T

(4.29)

At this point, it should be pointed out that this approach is similar to the Bayesian

approach of change detection with a diffuse/uniform prior and the change point
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distribution assumed to be concentrated at a point [31]. Mathematically, MLE and

Bayesian maximum a posteriori (MAP) estimate for parameters Θ can be given by:

ΘMLE = argmax
Θ

p(y|Θ) (4.30)

= argmax
Θ

∏
i

p(yi|Θ) (4.31)

ΘMAP = argmax
Θ

p(y|Θ)p(Θ) (4.32)

= argmax
Θ

∏
i

p(yi|Θ)× const. (4.33)

Note that, if prior is diffuse, i.e., p(Θ) = constant, then the two estimates become

same. In other words, MLE is a special case of MAP, where the prior is uniform or

relatively diffuse.

• Step-II: With the estimated parameters in step-I calculate the likelihood of degrada-

tion data for unit i using Eq. 4.16 .

• Step-III: Repeat Step-I and Step-II, by varying the change point location λ =

1, 2, · · · ,mi. The most likely change point λi for unit i is the one that results in

the maximum likelihood. Perform this step for all the n historical units and collect

the model parameters corresponding to the optimum change point locations.

• Step-IV: Fit the distributions (as described in Eq. 4.20) to the parameters collected

in Step-III and obtain the hyper-parameters.
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4.3.2 GP model

Let, for the undamaged case, the GP process be parameterized by the shape parameter a0

and a scale parameter, b0. At a certain time instant, say λ+ 1, a shock causes the process

parameter to change from b0 to b1, while a0 remains the same. In other words, the degra-

dation during the first phase is given by Γ(a0t0, b0) and in the second phase by Γ(a0t0, b1).

This choice (i.e., the shape parameter kept fixed) is made to simplify the calculations and

to obtain a closed form expression for the posterior distribution of the model parameters

by using a conjugate prior. With known damage increments, 4y1,4y2, · · ·4y(T−1), the

likelihood function of the parameters b1 and λ can be obtained using Eq. 4.5, and written

as:

L(b1, λ) =
λ∏
t=1

[
ba0t00

Γ(a0t0)
4ya0t0−1

t exp (−4ytb0)

]
×

T−1∏
t=λ+1

[
ba0t01

Γ(a0t0)
4ya0t0−1

t exp (−4ytb1)

]

=Γ(a0t0)−(T−1)bλa0t00 × b(T−λ)a0t0
1 ×

T−1∏
t=1

4ya0t0−1
t × exp

[
−

λ∑
t=1

4ytb0 −
T−1∑
t=λ+1

4ytb1

]
(4.34)

and the log-likelihood is given by:

L(b1, λ) = lnL(b1, λ) = −(T − 1)lnΓ(a0t0) + λa0t0lnb0 + (T − λ)a0t0lnb1

+(a0t0 − 1)
T−1∑
t=1

ln4yt −
λ∑
t=1

4ytb0 −
T−1∑
t=λ+1

4ytb1 (4.35)
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The maximum likelihood estimate of b1 is obtained by partially differentiating Eq. 4.35

with respect to b1 and setting the equation equal to zero, which is given by:

∂L(b1, λ)

∂b1

= −(T − λ)a0t0
b1

+
T−1∑
t=λ+1

4yt = 0⇒ b̂1 =
(T − λ)a0t0∑T−1

t=λ+14yt
(4.36)

Once b̂1 is estimated, this is substituted into equation (4.35) to calculate the profile log-

likelihood value L(b̂1, t) for any time t. This process is repeated for all t (1 < t < T ) and

the profile log-likelihoods L(b̂1, t) and the corresponding times t are stored in an array.

Finally, the value of t that maximizes L(b̂1, t) is selected as the most likely change point

location λ̂. Mathematically, it can be written as:

λ̂ = arg max
t

L(b̂1, t) (4.37)

The above procedure is repeated for all the historical units, separately. The estimated

parameters (λ̂, b̂1) are collected. The hyper-parameters (α0, β0) for the scale parameter b1

are estimated by distribution fitting, which is a Gamma distribution in this case. Note that

for a Gamma distribution with a known shape parameter and an unknown scale parameter,

the conjugate prior for b1 is a Gamma distribution and is given by:

p(b1;α0, β0) =
βα0t0

0 bα0t0−1
1 e−β0b1

Γ(α0t0)
(4.38)

Next, the estimated prior information is used to obtain the posterior distribution of b1
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of a monitored unit. The likelihood of the available data y is given by:

L(y|a0, b1) =
n∏
t=1

Γ(4yt; |a0t0, b1) =
n∏
t=1

ba0t01 4ya0t0−1
t e−b14yt

Γ(a0t0)

=
ba0t01 4ya0t0−1

1 e−b14y1

Γ(a0t0)
× ba0t01 4ya0t0−1

2 e−b14y2

Γ(a0t0)
× . . . b

a0t0
1 4ya0t0−1

n e−b14yn

Γ(a0t0)

(4.39)

where t0 = ti − ti−1 for all i. Using Eqs. 4.38 and 4.39, the posterior distribution for b1 is

given by:

p(b1|y) ∝ ba0nt01 e−b1
∑n
t=14yt

∏n
t=14y

a0t0−1
t

Γ(na0t0)
× βα0t0

0 bα0t0−1
1 e−β0b1

Γ(α0t0)

∝ bna0t0+α0t0−1
1 βα0t0

0

∏n
t=14y

a0t0−1
t e−b1(

∑n
t=14yt+β0)

Γ(na0t0)Γ(α0t0)
(4.40)

The posterior of b1 follows a Gamma distribution, as expected, for the conjugate prior.

The posterior hyper-parameters α′0, β
′
0 and the posterior distribution p(b1|y) in terms of

α′0, β
′
0 are given by:

α′0 = na0 + α0; β′0 = β0 +
n∑
t=1

4yt

p(b1|y) ∝ βα0t0
0 b

α′0t0−1
1

∏n
t=14y

a0t0−1
t e−(β′0b1)

Γ(α0t0)Γ(na0t0)
(4.41)

Eq. 4.41 can now be updated as new condition data becomes available. The continual

update of b1 provides a refined degradation model that can be utilized for RUL prediction

and maintenance planning.
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4.3.3 WP model

Here, again, a maximum likelihood approach is used for change point detection and pa-

rameter estimation for the historical degradation paths. To formulate the likelihood ex-

pression the differential damage 4yj = yj − yj−1 in the time interval 4tj = tj − t(j−1) for

a WP is assumed to be normally distributed with mean ν14tj and variance σ2
14tj i.e.,

4yj ∼ N(ν14tj, σ2
14tj) if tj < λ. Similarly, when tj > λ, i.e., in the second phase of

degradation, 4yj follows N(ν24tj, σ2
24tj). The four steps as described for the case of a

RV model (see Section 4.3.1) will also be followed here for optimum change point detection

and parameter estimation.

In step-I, for a given change point location t, the parameters (ν1, σ1) and (ν2, σ2) are

estimated using the maximum likelihood principle. Then, in step-II, the estimated param-

eters ν̂1, σ̂1, ν̂2, σ̂2 are used to estimate the joint profile likelihood. Mathematically, this can

be written as:

L(4yt|ν̂1, σ̂1, ν̂2, σ̂2, t) =
t∏

j=1

φ(4yj; ν̂14tj, σ̂2
14tj)

m∏
j=t+1

φ(4yj; ν̂24tj, σ̂2
24tj)

=
t∏

j=1

1√
2Πσ̂2

14tj
exp

[
−(4yj − ν̂14tj)2

2σ̂2
14tj

] m∏
j=t+1

1√
2Πσ̂2

24tj
exp

[
−(4Xj − ν̂24tj)2

2σ̂2
24tj

]
(4.42)

where φ(x;µ, σ2) denotes a normal probability density function (PDF) with mean µ, vari-

ance σ2 and evaluated at x, and m is the number of measurements. In step-III, the process

is repeated for all t (1 < t < m) and the profile likelihoods L(4yt|ν̂1, σ̂1, ν̂2, σ̂2, t) and

the corresponding times t are stored in an array. Finally, the value of t that maximizes

L(4yt|ν̂1, σ̂1, ν̂2, σ̂2, t) is selected as the optimum change point location λ̂. Since the loga-
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rithm is an increasing function, the log-likelihood (LL) can be maximized according to:

λ̂ = arg max
t

LL(4yt|ν̂1, σ̂1, ν̂2, σ̂2, t) (4.43)

This step is repeated for all the historical units, the model parameters are collected and

the hyper-parameters are estimated through distribution fitting.

The following form of prior distributions σ2
1 ∼ IG(a1, b1), σ2

2 ∼ IG(a2, b2), ν1 ∼

N(c1, d
2
1) and ν2 ∼ N(c2, d

2
2) are considered for the model parameters. The posterior

distribution of the model parameters for a monitored unit is given by:

p(Θ|y) =π(ν1, σ
2
1)π(ν2, σ

2
2)

t∏
j=1

φ(4yj; ν̂14tj, σ̂2
14tj)

m∏
j=t+1

φ(4yj; ν̂24tj, σ̂2
24tj)

= G(a1, b1)N(c1, d1)G(a2, b2)N(c2, d2)
t∏

j=1

1√
2Πσ̂2

14tj
exp

[
−(4yj − ν̂14tj)2

2σ̂2
14tj

]

×
m∏

j=t+1

1√
2Πσ̂2

24tj
exp

[
−(4Xj − ν̂24tj)2

2σ̂2
24tj

]
(4.44)

The Bayesian inference of parameters is undertaken using MCMC sampling (see Appendix

D). At this point, having discussed the parameter estimation steps using a Bayesian ap-

proach, the RUL estimation and maintenance planning steps are explained next.

4.4 RUL predictions and maintenance planning

The RUL of an asset or a system is defined as the length from the current time to the end

of its useful life [198]. However, what constitutes the end of useful life depends upon the

context and/or application and the operation characteristics. For example, in accounting,
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RUL is defined in relation to the productivity of a depreciating asset [198], whereas in

mechanical systems this could be a critical flaw size or breakdown [122]. In this thesis,

RUL is defined as the time remaining from the last measurement when the degradation

parameter yt first reaches a pre-defined threshold level, ηD. This definition of RUL is

commonly used in the literature [122, 196, 101]. Figure 4.6(a) illustrates the concept of

RUL using a stochastic (WP) process and the variation in RUL caused by the uncertainty

in the model parameters Θ is shown in Figure 4.6(b). Clearly, RUL of an asset is a

RV and depends on the current age, operational environment and the observed condition

monitoring information.

Figure 4.6: (a) Illustration of RUL; (b) effect of unit heterogeneity on RUL

Mathematically, RUL Lk at time tk given the observation history y1, y2, · · · ytk is defined
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as [198]:

Lk =inf{lk : y(tk+lk) > ηD|y1:k < ηD} (4.45)

with the the associated PDF and CDF f(Lk|y1:k) and F (Lk|y1:k), respectively.

It can be seen from Eq. 4.45 that the RUL is degradation path (characterized by Θ)

dependent, whose PDF and CDF are updated with the availability of new data. Using the

law of total probability, these can be estimated by integrating over parameter Θ as follows:

f(Lk|y1:k) =

∫
f(Lk|Θ, y1:k)p(Θ|y1:k)dΘ (4.46)

F (Lk|y1:k) =

∫
F (Lk|Θ, y1:k)p(Θ|y1:k)dΘ (4.47)

where the p(Θ|y1:k) is the posterior distribution of Θ at time tk as estimated earlier using

Eq. 4.12. The expression for f(Lk|Θ, y1:k) or F (Lk|Θ, y1:k) can either be derived as a

closed form solution (e.g., WP, GP) or can be estimated empirically. Once F (Lk|Θ, y1:k)

and p(Θ|y1:k) are estimated, the CDF of Lk can be updated using Eq. 4.47. The up-

dated distribution of RUL CDF can subsequently be used for reliability assessment and

maintenance planning [196, 93]. Here, it is important to mention that the second phase

parameters are used for future degradation level y?t prediction and RUL estimation. If a

significant change point is not observed, then the second phase parameters are governed

by the prior distribution obtained from historical data, which is the process followed in

standard reliability theory.

The probability of failure calculated above will be utilized for maintenance planning of a

monitored unit. For illustration purposes, a relatively simple age based replacement (ABR)

policy can be employed (see Appendix C for derivations under ABR policy). Under ABR,
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the system is replaced preventively after an interval of tp with a preventive replacement cost

of Cp. Moreover, a failure replacement is performed with a cost of Cf (assume Cf > Cp),

whenever the degradation level exceeds a pre-defined threshold ηD in the time interval

[0, tp]. The expected cost rate (ECR) ([125]) for this model is then given by:

ECR(tp) =
Expected total replacement cost per cycle

Expected cycle length

=
Cp[1− F (tp)] + CfF (tp)∫ tp

0
[1− F (t)]dt

(4.48)

where, F (t) is probability of failure at time t as estimated using Eq. 4.47. The optimum

replacement time tp is found by minimizing Eq. 4.48. The failure time distribution F (t) is

updated as condition monitoring data becomes available and the preventive replacement

time tp is calculated. The above maintenance step is the same for all the three models

considered in this thesis, once the probability of failure F (t) is known. In the following

sections, the estimation of RUL and F (t) are described for the models considered in this

chapter.

4.4.1 Linear RV model

A simulation based approach is employed in this thesis to predict the future degradation

level and the RUL distribution. The predictive distribution of future degradation level y∗t

of an unit at future time t, which is generated during the second phase of degradation, can

be obtained by numerically evaluating the following integral:

p(y∗t |y) =

∫ ∫
p(y∗t |y,β, τ 2)p(β, τ 2|y) dβ dτ 2 (4.49)
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If ε∗ is independent of ε, then y and y∗t are independent, hence, p(y∗t |y,β, τ 2) = p(y∗t |β, τ 2),

which can be written as,

p(y∗t |β, τ 2) =
1

(2Πτ 2)
exp

[
− 1

2τ 2
(y∗t − β1 − β2t

∗)2

]
. (4.50)

The following procedure is used to draw the samples of y∗t from Eq. 4.49 :

Step I: jointly draw (β(s), τ 2(s)) using MCMC;

Step II: draw y∗t from p(y∗t |β(s), τ 2(s)); and

Step III: repeat steps I and II for each draw using MCMC.

Once predicted y∗t is known at different times t, the RUL and failure time distribution can

be estimated. For example, the posterior cumulative distribution of the failure time T is

given by,

F (t) =p(T < t|y) = p(y∗t > ηD|y) (4.51)

=

∫ ∞
ηD

p(y∗t |y)dy =
1

M

M∑
s=1

I(y
∗(s)
t > ηD) (4.52)

where y
∗(s)
t is the predicted value of degradation signal at time t for sth draw, I(·) is the

indicator function. Other statistics of interest, such as the predictive mean of y∗t , can be

calculated using:

E[y∗t |y] =

∫
y∗t p(y

∗
t |y)dy∗t =

1

M

M∑
s=1

y
∗(s)
t (4.53)

The probability of failure calculated in Eq. 4.52 above will be utilized for maintenance

planning.
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4.4.2 GP model

Park et al. [164] derived a closed form expression for the PDF and CDF of the failure time

distribution for a Gamma process. The CDF F (t) estimated at time t is given by [164]:

F (t) =
Γ(a0t, b1(ηD − y0))

Γ(a0t)
(4.54)

where, y0 is the initial degradation, ηD is the failure threshold. The CDF can be updated

with new measurements by marginalizing Eq. 4.54 with respect to parameter b1, as given

below:

F (t|y) =

∫ ∞
0

Γ(a0t, b1(ηD − y0))

Γ(a0t)
× b

α′0−1
1 e−(β0b1)β′0

α′0

Γ(α′0)
db1 (4.55)

The update of failure CDF is a two-step procedure: first b1 is updated using Eq. 4.41,

following which marginalization with respect to b1 using Eq. 4.55 is undertaken, resulting

in the updated CDF. The distribution of RUL at time tk given the degradation histories

y1, y2, · · · yk, can be obtained by replacing t = t− tk and ηD − y0 with ηD − yk.

4.4.3 WP model

It is well known that the first hitting time (FHT) for the WP follows an Inverse Gaussian

distribution [196]. The proof is given in Appendix B. The PDF and CDF of failure time
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T are given by:

fT (t|Θ, y1:k) =
ηD − yk√

2Π(t− tk)3σ2
2

exp

(
−(ηD − yk − ν2(t− tk))2

2σ2
2(t− tk)

)
(4.56)

FT ((t)|Θ, y1:k) = 1− φ

(
ηD − yk − ν2(t− tk)

σ2

√
(t− tk)

)
+ exp

(
2ν2(ηD − yk)

σ2
2

)

+ φ

(
−(ηD − yk)− ν2(t− tk)

σ2

√
(t− tk)

)
(4.57)

where ν2 and σ2 are the parameters of the second phase. The PDF and CDF of the RUL

distribution at time tk can be obtained by substituting t− tk = lk in the above equations,

and given by:

fLk(lk|Θ, y1:k) =
ηD − yk√

2Πl3kσ
2
2

exp

(
−(ηD − yk − ν2lk)

2

2σ2
2lk

)
(4.58)

FLk(lk|Θ, y1:k) = 1− φ
(
ηD − yk − ν2lk

σ2

√
lk

)
+ exp

(
2ν2(ηD − yk)

σ2
2

)
φ

(
−(ηD − yk)− ν2lk

σ2

√
lk

)
(4.59)

It is interesting to note that only the last measurement yk directly appears in the expression,

while the degradation histories (i.e., y1:k) are used in the estimation of model parameters

Θ (i.e., ν1, σ1, ν2 and σ2). It can be seen from Eq. 4.58 that the RUL PDF is degrada-

tion path dependent and depends upon the stochastic nature of Θ. In order to compute

fLk(lk|y1:k) or FLk(lk|y1:k), the joint posterior density of fLk(lk|Θ, y1:k) or FLk(lk|Θ, y1:k)

can be marginalized with respect to Θ as follows:

fLk(lk|y1:k) =

∫
fLk(lk|Θ, y1:k)p(Θ|y1:k)dΘ (4.60)

FLk(lk|y1:k) =

∫
FLk(lk|Θ, y1:k)p(Θ|y1:k)dΘ (4.61)
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where the p(Θ|y1:k) is the posterior distribution of Θ at time tk as estimated earlier using

Eq. 4.44.

Si et al. [197] kept the diffusion coefficient σ constant, which allowed them to estimate

the RUL using a state space model. Assuming y01 = 0 in Eq. 4.8, they considered the

following single phase WP model:

yt = νt+ σW (t) (4.62)

For a monitored unit at time ti, with the obtained degradation measurement xi, Eq. 4.62

can be re-written as:

yt − yti = [νt+ σW (t)]− [νti + σW (ti)] (4.63)

= ν(t− ti) + σ [W (t)−W (ti)]

yt = yti + ν(t− ti) + σW (t− ti) (4.64)

Now, Eq. 4.64 can be reconstructed via a linear state-space model as,

Λti = Λti−1
+ η (4.65)

yti = yti−1
+ ν(ti − ti−1) + σW (ti − ti−1) (4.66)

where, W (ti−ti−1) ∼ N(0, ti−ti−1). Note that in contrast to this method, both parameters

ν and σ are considered as time-varying random variable in our approach and updated for

RUL estimation. This is achieved because a flexible MCMC sampling based approach for

posterior estimation is used.
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4.5 Effect of correlation

For many degradation processes, the degradation rate in the second phase is correlated

to the change point location. For example, based on experimental data from bearings,

Chen et al. [31] concluded that when a change point occurs during the later stages of a

bearing’s life, the degradation rate in the second phase tends to be faster. This means

that if a fault develops during the initial operational period, then the damage will progress

slower, providing ample time for maintenance actions prior to complete failure. On the

other hand, when a system or a component has already been in operation for a long period

of time, then the RUL predictions and subsequent maintenance planning are critical due to

the faster rate of degradation. Hence, it is important to consider this correlation between

when the change point occurs and the degradation rate, for obtaining better estimates for

the RUL.

Most previous studies [31, 17] assume that the location of change point does not have a

significant effect on other degradation parameters, and independent priors for the change

point λ and other model parameters (say, regression coefficients) are employed. For ex-

ample, two separate multivariate normal priors for the two phases and a discrete uniform

prior for λ, which is independent of the multivariate normal priors, were used by Chen

et al. [31]. Similarly, an independent prior for each parameter was used by Carlin et al.

[28]. However, including correlation through historical data can result in better failure

time predictions.

Here, the method is illustrated for a random variable model; however, the proposed

method is general and is applicable to other model types as well. The likelihood for a

RV model has been given earlier in Eq. 4.16 and the joint prior of all the parameters
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(θ1, θ2, β1, β2, σ
2, τ 2, λ) is given by:

π(Θ) = π(θ1, θ2, β1, β2, σ
2, τ 2, λ) (4.67)

The correlation structure between the degradation rate β2 and the change point λ can be

captured, say, using a bi-variate distribution (say, Gaussian). Let π(β2, λ) denote the joint

prior distribution of (β2, λ) and π(θ1, θ2, β1, σ
2, τ 2|β2, λ) be the conditional distribution of

other model parameters, given (β2, λ). Now, the total probability theorem can be used to

derive the joint prior distribution π(Θ) as follows:

π(Θ) = π(θ1, θ2, β1, σ
2, τ 2, β2, λ)

= π(θ1, θ2, β1, σ
2, τ 2|β2, λ)π(β2, λ) (4.68)

It is possible to perform Bayesian inference using the prior in Eq. 4.68. However, it

will be computationally expensive and will require a large number of historical data sets

for estimating the hyper-parameters. In the absence of such information, a simplified

expression can be derived by assuming independence of parameters as given below:

π(Θ) = π(θ1, θ2, β1, σ
2, τ 2|β2, λ)π(β2, λ)

= π(θ1|β2, λ)π(θ2|β2, λ)π(β1|β2, λ)π(σ2|β2, λ)π(τ 2|β2, λ)π(β2, λ)

= π(θ1)π(θ2)π(β1)π(σ2)π(τ 2)π(β2, λ) (4.69)

Finally, the following prior distributions in terms of hyper-parameters ξ = (µθ1 , σ
2
θ1
, µθ2 , σ

2
θ2
, µβ1 ,
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σ2
β1
, aσ2 , bσ2 , aτ2 , bτ2 ,µ,Σ) are considered:

π(θ1) ∼ N(µθ1 , σ
2
θ1

);π(θ2) ∼ N(µθ2 , σ
2
θ2

);π(β1) ∼ N(µβ1 , σ
2
β1

)

π(σ2) ∼ IG(aσ2 , bσ2); π(τ 2 ∼ IG(aτ2 , bτ2)

π

β2

λ

 = BV N

(
µ,Σ

)
= BV N


µβ2
µλ


σβ2

2
ρσβσλ

ρσβσλ σ2
λ




where N, IG and BV N denotes a normal, inverse Gaussian and bi-variate normal distri-

bution, respectively. With this, the joint posterior distribution for Θ is given by:

p(Θ|y) = π(θ1)π(θ2)π(β1)π(σ2)π(τ 2)π(β2, λ)× 1

(
√

2Πσ2)λ
exp
[
−
∑λ

t=1 (yt − θ1 − θ2t)
2/2σ2

]
1

(
√

2Πτ2)(t−λ)
exp
[
−
∑t

t=λ+1 (yt − β1 − β2t)
2/2τ 2

]
(4.70)

The marginal posterior density functions are estimated by taking random samples from

the joint posterior distribution using MCMC algorithm.

4.6 Significant change point

An important issue to address in the proposed degradation modeling approach is when

multiple candidate change points are present in the signal. To explain this, consider the

degradation paths shown in Fig. 4.7. These degardation paths will be used for the case

study in the next chapter; the purpose here, however, is to illustrate how to ascertain a

significant change point from multiple candidates if they exist in the degradation paths.

The degradation paths in Fig. 4.7 show multiple change points which exist in each degra-

dation path and do not appear to follow a clear two-phase behaviour in their degradation
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Figure 4.7: Significant change point
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(the details are provided in the next chapter). For example, the degradation path in Fig.

4.7a contains five change point candidates and labeled in the figure.

Now, the question is which one of these change points is to be considered as the most

significant change point for two-phase degradation modeling? Note that the problem is

already constrained in that only one of the change points can be considered in the math-

ematical formulation. One approach is to select the most suitable change point based on

practical constraints. For example, the change point location can be constrained to occur

during a monitoring period only, which is typically during the later stages of its expected

life and not during its initial operational life. This is applicable in those cases where the

monitoring program only occurs during the most critical phase of a components’ or a sys-

tems’ life and not throughout the entire operational life. This is also consistent with the

previous assumption that such monitoring is cost-effective for long-life components, where

in most cases, only a limited monitoring program towards the expected end of life may

be expected. The other constraint is that the estimated slope during the second phase is

larger than during the first phase. This is also based on physical reasoning and assumes

that a change point accelerates degradation. However, as seen subsequently, the latter

constraint is automatically satisfied because a larger slope would naturally maximize the

posterior density.

In using the Bayesian approach, the most significant change point is the one which

maximizes the posterior density. For the degradation paths shown Fig. 4.7 posterior

probability of a change point is shown in Fig. 4.8, along with the degradation path.

Clearly, in each case, the most appropriate change point is associated with the maximum

posterior density and is detected. For the detected change point, a two-phase model fit

is also shown in the same figure. Alternatively, a ML approach can be used and change

point with maximum likelihood value is selected. Table 4.1 presents the log-likelihood
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Figure 4.8: Posterior density of change point and two phase degradation model

Table 4.1: Log-likelihood for various change points

Beam CP-1 CP-2 CP-3 CP-4 CP-5

F200RM90 -45 12 25 8 -10

F200RM96 -52 -48 21 7 -36

F200RH96 -50 22 14 -30 NA

F200RH75 -35 27 -47 NA NA
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values for different change point locations associated with the degradation signals. Based

on maximum log-likelihood, the most probable change points are CP-3, CP-3, CP-2 and

CP-2 for the four cases: F200RM90, F200RM96, F200RH96 and F200RH75, respectively.

Clearly, both the Bayesian and ML approaches are in agreement. The results are explored

in more detail in the next chapter when dealing with the case study for the civil engineering

case.

4.7 Numerical example

Twenty five simulated degradation signals are generated according to Eq. 4.3. The rela-

tionship between the second phase degradation rate β2 and the change point location λ is

given by the following assumed relationship:

β2 = 0.1(
λ

50
)2 (4.71)

This equation assumes a quadratic relationship between the time of occurrence of the

change point and the ensuing slope in the second phase. The change point location λ was

varied from 50 to 100, in increments of 2. The parameters θ1, θ2, β2, σ and τ are assumed

to follow a normal distribution according to:

θ1 ∼ N(1, 0.52), θ2 ∼ N(0.01, 0.0052), σ ∼ N(0, 0.22), τ ∼ N(0, 0.32) (4.72)

and the continuity constraint (i.e., θ1 + θ2λ = β1 + β2λ) is imposed at the junction of the

two phases. Figure 4.9 shows the simulated degradation paths, where the y-axis is some

measure of degradation yt and the x-axis is the time. In Fig. 4.9 the relationship between
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the degradation rate β2 and the change point can easily observed. For this example, it

is assumed that these degradation signals represent historical data from a population of

units similar in characteristics to a monitored unit. These simulated paths will be used to

generate prior specifications.

4.7.1 Prior specification

The four steps as discussed in subsection 4.3.1 are followed to develop the prior for use with

the monitored information. Figure 4.10 shows the variation of log-likelihood with change

point locations for all the units. The optimum change point location corresponding to the

maximum log-likelihood is also shown in the same figure. The two phase model parameters

and optimum change point locations for all the units are collected and distributions fit

to the data (see Step-IV). The Q-Q plot for θ1, θ2 and β1 are presented in Figure 4.11.

As expected, most of the data points fall on to a straight line. The maximum likelihood

principle is used to fit the distributions and the hyper-parameters for priors. The estimated

prior distributions are given below:

π(θ1) ∼ N(0.8, 0.52); π(θ2) ∼ N(0.017, 0.0042)

π(β1) ∼ N(−16, 102);π(σ2) ∼ IG(4.3,
1

2
); π(τ 2) ∼ IG(15,

1

0.9
)

π

 λ

β2

 ∼ BV N


75.0

0.23


 200 1.23

1.23 0.008


 (4.73)

Note that the parameters (β2, λ) follow a bi-variate normal distribution. The joint prob-

ability densities for (β2, λ) are shown in Figure 4.12, where the correlation between the

degradation rate and the change point location is clearly observed. As expected, the prob-
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Figure 4.9: Simulated two-phase bearing degradation paths
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Figure 4.10: Variation of log-likelihood with change point location

ability increases along the diagonal, which means that with increasing λ, the degradation

rate β2 also increases.

4.7.2 Updating parameters

The prior distribution π(Θ) estimated from the historical units can now be integrated with

the sensory data obtained from a monitored unit for model updating, RUL estimation

and maintenance planning. To simulate a monitored unit, a degradation signal with the

following parameters θ1 = 1.5, θ2 = 0.02, β2 = 0.15, σ1 = 0.5, σ2 = 0.8, λ = 50 in Eq. 4.3 is
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Figure 4.11: Q-Q plot for (a) θ1 (b) θ2 and (c) β1

generated. The continuity constraint θ1 + θ2λ = β1 + β2λ is imposed at the change point

location.

The first step is the identification of the most probable change point location and

the estimation of the two-phase model parameters using the degradation signal. In the

proposed methodology these two (i.e., change point locations and model parameters) are

estimated simultaneously using MCMC sampling. MCMC sampling is performed using

the software package Winbug R©. The sample size is calculated using the Raftery and Lewis

diagnostics [178], which turns out to be approximately 15, 000 for reliable 95% highest

posterior density (HPD) interval of parameters. The details of MCMC algorithm and

Raftery and Lewis diagnostics can be found in Appendix D. A total of 20,000 samples are

drawn from the joint posterior distribution p(Θ|y) as given in Eq. 4.3. It is found that the

simulated Markov chain converges to its stationary distribution after the first 5000 samples.

Hence, the last 15,000 samples are retained to obtain the statistical estimates. Figure 4.13

shows the autocorrelation plot for a simulated degradation path of 15,000 samples. Clearly,
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Figure 4.12: Correlation between change point location λ and degradation rate β2

after three lags, the autocorrelation becomes almost insignificant, which means that that

the distribution is stationary.

With this sample size, the posterior distribution of the change point location and the

model parameters are updated at four time intervals namely, t = 50, 60, 70 and 80. Note

that for this degradation path, the actual change point location is at t = 50. Figure 4.14

shows the degradation data available at different updating times and the corresponding

marginal posterior density of the change point. In Fig. 4.14a, the model is updated when

the degradation is still in its first phase. The corresponding posterior mean is approximately

equal to 75, which is basically the same as the prior mean of λ as estimated using the

historical data (see Eq. 4.73). In other words until t = 50 the posterior distribution is
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governed by the prior obtained from the historical data, as no change point is detected.

In Fig. 4.14b to Fig. 4.14d, the model is updated when the degradation has already

entered into the second phase. The posterior distribution then concentrates around the

actual change point. Figure 4.15 shows the estimated posterior distribution of degradation

rates θ2 and β2. It is important to note that the posterior distribution of β2 is initially

diffused, and becomes narrower in the subsequent updates. This is because the posterior

distribution of β2 is governed by the prior in the initial stages of degradation. However,

as more data becomes available from the second phase, estimates for β2 improve and more

accurately represents the degradation of a particular unit. In other words, mean of β2

converges to its true value as more degradation data is utilized in the analysis (see 4.15b).
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Figure 4.14: Posterior distribution of change point location at different times

In Bayesian statistics, uncertainty in parameter estimation, i.e., epistemic uncertainty,

is generally quantified in terms of credible interval such as, highest posterior density (HPD).

HPD intervals are the Bayesian analogue for classical confidence intervals and they sum-

marize the distribution by specifying an interval which spans most of the distribution, say

90%, such that every point inside the interval has higher credibility than any point outside

the interval. To estimate a HPD interval, first, samples are taken from posterior parameter

distribution using MCMC, then, predicted samples are sorted from smallest to largest, and

finally, various quantiles are estimated. Here, 5% quantile and 95% quantile are considered

for 90% HPD interval estimation. It is worth to mention here that the similar steps are

taken to estimate the credible interval of RUL prediction, with key difference that the
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Figure 4.15: Posterior distribution of degradation rates at different times

MCMC samples are drawn from the predictive posterior distribution (see Eq. 4.49).

A summary of model parameters along with the various quantiles updated at time

t = 80 is given in Table 4.2. It can be seen from the table that the posterior mean of

model parameters (i.e., θ1 = 1.55, θ2 = 0.02, β2 = 0.14, σ1 = 0.49, σ2 = 0.66, λ = 50) are

very close to the true values (i.e., θ1 = 1.5, θ2 = 0.02, β2 = 0.15, σ1 = 0.5, σ2 = 0.8, λ = 50)

and true values lies within the 90% HPD interval.
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Table 4.2: Posterior distribution summaries of model parameters estimated at t = 80

Quantile

Parameter Mean Std Dev MC Error # 0.025 0.050 0.500 0.950 0.975

θ1 1.55 0.08 6.6E-04 1.39 1.49 1.55 1.60 1.70

θ2 0.02 0.00 2.5E-05 0.01 0.02 0.02 0.02 0.02

β1 -3.79 0.57 7.8E-02 -4.85 -4.18 -3.82 -3.46 -2.52

β2 0.14 0.01 1.2E-03 0.12 0.14 0.14 0.15 0.16

σ1 0.49 0.03 2.9E-04 0.43 0.47 0.49 0.51 0.56

σ2 0.66 0.05 1.1E-03 0.57 0.63 0.66 0.70 0.78

λ 50.00 0.72 1.4E-02 48.81 49.39 49.93 50.65 51.31

# MC stands for Monte Carlo.

4.7.3 RUL prediction and maintenance planning

Once the degradation model of a monitored unit is updated using the available degradation

data, Eq. 4.49 can be used to predict the degradation magnitude at any future time t.

Here, it is important to mention that in this approach, the second phase model parameters

are used for future predictions, which means that the RUL distribution is based upon

the change point location. When a significant change point is not detected, predictions

are influenced by priors. However, once the system enters into the second phase, the

degradation data from the monitored unit governs the RUL distribution.

The updated RUL PDF corresponding to t = 50, 60, 70 and t = 80 are shown in Fig.

4.16 and a summary of the same is given in Table 4.3. Not surprisingly, the RUL PDF

narrows over time. Moreover, one can see from Table 4.3 that the actual RUL is very close

to the predicted mean RUL and lies within 90% HPD interval. Clearly, model predicts

reasonably accurate RUL is both phases of degradation.
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Table 4.3: A summary of RUL distribution estimated at different times

Quantile

Mean Std Dev 0.05 0.250 0.750 0.95 Actual
t = 50 83 60 10 34 66 104 70
t = 60 77 25 49 64 73 87 60
t = 70 38 10 22 34 54 62 50
t = 80 25 6 12 17 25 38 40
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Finally, the model predictions can be used to estimate the optimum replacement time.

The probability of failure at different times (t = 50, 60, 70, 80) is calculated using Eq. 4.52,

which is subsequently used in Eq. 4.48 to optimize the expected cost rate. The following

replacement cost cp = 1 and cf = 5 is assumed for this example. Figure 4.17 shows the

variation of expected cost rate (ECR) with replacement time interval for different times.

The optimum replacement times tp updated at t = 50, 60, 70, 80 are 16, 30, 60 and 66. The
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Figure 4.17: Optimal replacement time with increasing degradation

replacement time tp is sensitive to the replacement cost cp and cf , so their values need to

be estimated well by practitioners based on past failures and experience.
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4.7.4 Effect of correlation on RUL

To illustrate the effect of correlation on RUL, additional 10 degradation paths are simulated

according to the two-phase model in Eq. 4.3. These signals represents 10 in-situ units,

which is monitored separately and will be used to evaluate the performance of the proposed

methodology. The RUL for each path is estimated using Eq. 4.45, where the future

degradation level y?t is simulated from the marginal posterior distribution given in Eq.

4.49. First, consider the scenario when the degradation is in the first phase say, t = 50. A

total of 15,000 Monte Carlo samples are taken and a posterior summary of the RUL for the

two approaches are calculated. Figure 4.18 shows the posterior mean, 5% quantile and 95

% quantile of the predicted RUL for the two cases (i.e., correlated and un-correlated). The

actual RUL is also shown in the same figure. It is easy to observe that including correlation
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Figure 4.18: RUL prediction before the occurrence of the change point

results includes the actual RUL and results in a narrower prediction interval. Note that
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the RUL predictions in the first phase are mostly governed by the prior knowledge. Next,

the RUL for these signals are updated when the degradation is in the second phase, say

t = 80. The previous steps are repeated and RUL is predicted. Figure 4.19 shows the

posterior mean and 90% HPD interval of the predicted RUL. As expected, the 90% HPD

interval for the correlated case is narrower than the independent case and the actual RUL

is very close to the mean predicted RUL. Also, different bearings provide similar prediction

intervals for this case. Note that the data from the second phase mostly governs the RUL

predictions after a change point is detected. Moreover, if Fig. 4.18 is compared with Fig.
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Figure 4.19: RUL prediction after change point

4.19, it is seen that the prediction interval for both cases (with and without correlation) is

much smaller when the RUL is estimated after the change point.
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4.8 Summary

In this chapter, an integrated approach for damage detection and prognosis incorporat-

ing measured condition information is presented. The proposed method is applicable to

many civil and mechanical engineering infrastructure applications, whose degradation can

be modeled as a two-phase process, where the transition from the first phase to the second

phase can be viewed as an incipient fault. Three model types: random variable, Gamma

process and Weiner process, are presented to model degradation. For these models, the pro-

cedure to estimate the model parameters and RUL using a Bayesian approach is described.

The prior knowledge obtained from the historical degradation data is utilized to update

the parameters and the RUL of a monitored unit. The proposed method also considers

the correlation between degradation rate and change point location for better failure pre-

dictions. Finally, a simulated example was presented which demonstrates the effectiveness

of this approach for damage detection and end of life predictions for components.
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Chapter 5

Application case studies

5.1 Introduction

This chapter demonstrates the application of the methodology presented in Chapter 4 for

damage detection and prognosis for civil and industrial applications. First, the proposed

methodology is applied to the degradation of a concrete beam. In this case, the corrosion

in embedded reinforcing bars causes a loss of bondage between concrete and the steel

bar, while the corrosion itself is unobservable directly. In this case study, the slip in the

reinforcing steel bar and the mid-span beam deflection are taken as surrogate measures.

These measurements obtained from fatigue tests from the literature are modeled using a

stochastic Gamma process and the end life characteristics of the beam are estimated. In

a second case study, the degradation of rolling element bearings is considered. Vibration

measurements (surrogates of degradation) obtained from run-to-failure bearing degradation

test data are modeled using a two-phase random coefficient model and the RUL of a working

unit is updated with monitored data. The main objective of this chapter is to demonstrate
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the application of the proposed methodology to real-world case studies and to underscore

both the advantages of the methodology being presented and its limitations.

5.2 Case study: corrosion in reinforced concrete beams

The fatigue strength and serviceability of a flexural reinforced concrete member depends

upon the bond between steel and concrete, which is essential for the transfer of the load

from concrete to the steel bars. In other words, bond is the mechanism by which stresses

are transferred between the reinforcing steel bars and the concrete in a reinforced concrete

member. The corrosion of steel reinforcement significantly reduces this bond strength.

Corrosion produces corrosion rust products higher in volume than the original steel mate-

rial, resulting in cracking of the concrete surrounding the bars. With increasing corrosion,

the bond stresses between reinforcing steel and concrete decreases and the slip of the rein-

forcing bar relative to the concrete increases [6]. A typical example for such a condition is

shown in Fig. 5.1 [2].

Another factor which contributes to the slip of steel bars is the repeated loading, causing

fatigue. Repeated loading can initiate cracks in the concrete surrounding the steel bars,

which propagate as the number of load cycles increases, leading to a destruction of the

concrete-steel interface. This eventually results in the slip of the steel bars embedded

within the concrete matrix. Often, such a loss of bond between concrete and steel results

in a loss of composite action and is manifested as an increased overall deflection of the

beam.

While the corrosion itself is not directly measurable, the slip of the reinforcing bars

or the beam deflection are more readily observable using sensors and can be taken as an
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Figure 5.1: Loss of bond between concrete and steel bars resulting in slip

indirect measure of bond strength between the reinforcing steel and concrete and used

for degradation modeling. In the following section, the experimental steel-slip data ob-

tained from near full-scale tests on reinforced concrete beams is utilized [5] for degradation

modeling and RUL estimation, as described in the previous chapter.

5.2.1 Details of the experiments

The data-set analyzed here consists of slip versus load and beam mid-deflection versus load

for eight corroded reinforced concrete beams repaired with carbon fiber-reinforced polymer

(CFRP) sheets. All the beams were of the same size with a rectangular cross-section (254

x152 mm) and a length of 2000 mm (see Fig. 5.2 for longitudinal and cross sectional

details). The beams were reinforced in the flexural zone with two external CFRP (each

100 mm wide x 1370 mm long trapezoidal in shape) sheets along both sides. The fatigue
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Figure 5.2: Schematic drawing for the experimental specimen [5]

tests under load control condition were performed in structural engineering laboratory at

the university of Waterloo[5]. The test set-up is shown in Fig. 5.3. Beams were subjected

to four point bending loads. A sine-wave load cycle was applied about the mean load using

a MTS 407 controller at a frequency of 2 Hz. The minimum load was set at 10% of the

maximum static load capacity of the control beam, so that the beam would not slip or

bounce. The maximum load levels were varied to achieve fatigue lives between 10,000 and

1,000,000 cycles. As the number of cycles increased, a longitudinal crack initiated and

propagated at the loaded end of the anchorage zone from the bottom of the beam. This

crack continued to increase in length and width until the final failure of the beam.

Table 5.1 presents the maximum applied load, the fatigue lives of the specimens and

the failure mode for the eight beam specimens. The nomenclature for the beam is given

in Table 5.1, and is as follows: the first letter F signifies the fatigue loading, the number

200 is the anchorage length in mm, second letter R signifies that the beam is repaired by

wrapping a CFRP sheets following corrosion, third letter M or H denotes the mild or high

level of corrosion, respectively and the number in end is the range of applied load in KN.

For example, the beam F200RH80 is tested under fatigue loading with an applied load

range of 80 KN, which has an anchorage length of 200 mm and repaired using CFRP sheet
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Figure 5.3: Test set-up for generating fatigue loads [5]

Table 5.1: Fatigue life for eight tested beams

Beam Corrosion Maximum load Load range Fatigue life Failure mode

(mass loss in %) (KN) (KN) (cycles)

F200RM72 6.18 82 72 301,163 Flexure

F200RM80 6.36 90 80 714,313 Flexure

F200RM90 6.18 100 90 63,961 Bond

F200RM96 7.28 106 96 19,723 Bond

F200RH75 13.33 85 75 523,369 Bond

F200RH80 13.92 90 80 634 Bond

F200RH88 10.58 98 88 70,369 Bond

F200RH96 13.80 106 96 4,093 Bond
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Figure 5.4: Slip length measured for the four beams

followed by a high corrosion level. Linear variable differential transducers (LVDTs) (range

= 50 mm, accuracy = 0.01 mm) were used to measure the slip between concrete and steel

bar at the free end of beam and the midspan beam deflection.

5.2.2 Details of the data-set

Fig. 5.4 and Fig. 5.5 show the relationship between the slip length and mid-span beam

deflection measured for four of the beams, as a function of the number of cycles tested

prior to failure. It is clear from Fig. 5.4 and Fig. 5.5 that the specimens show several

phases in their fatigue characteristics: first, a gradual increase in the degradation measure

118



Fatigue life (cycles)

M
id
-s
p
a
n
d
efl

ec
ti
o
n
(m

m
)

0 2 4 6

×104

0

5

10

15

20

25
(a)

F200RM90

0 0.5 1 1.5 2

×104

0

5

10

15

20
(b)

F200RM96

0 1 2 3 4 5

×105

0

5

10

15

20
(d)

F200RH75

0 1000 2000 3000 4000
0

10

20

30
(c)

F200RH96

Figure 5.5: Mid-span beam deflection

during most of their life life, followed by a sharp increase in the slope during their final

stages. This behaviour can be modeled using a two-phase degradation model described

earlier, based on the constraint arguments and posterior probabilities computed at various

change point locations. To elaborate the data presented, in Fig. 5.4a the slip reaches a

value of 2.06 mm slip at 7200 cycles (≈ 10% of its fatigue life), then the slip increases

at a slower rate until it reaches a value of 2.9 mm at 48000 cycles (≈ 80% of the fatigue

life). This slip continues to increase to a value of 3.77 mm at 55000 ( ≈ 90% of the

fatigue life), after which it increases rapidly to 9.2 mm at 64000 (100% of the fatigue life).

From a practical stand-point, if the 90% fatigue life point were to be estimated during
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its operational life, then intervention should in theory be possible to avoid catastrophic

failure. Hence, the main objectives of this case-study are two-fold: detect the change-point

as it occurs from monitored information and subsequently estimate the RUL once this

change-point is detected.

5.3 Results

As mentioned earlier, the increasing slip length of the steel bars and the mid-span beam

deflection can be taken as surrogate measures for deterioration due to corrosion. Let yit

denote an appropriate surrogate measure of degradation of the ith beam measured at time t.

A stochastic Gamma process is selected to model the evolving degradation and subsequent

RUL estimation of concrete beams. The GP is chosen because it can account for the

temporal uncertainty associated with the degradation path, which could potentially better

represent the characteristics of corrosion. Temporal uncertainty can also be modeled using

other precesses (e.g., WP), but the GP has the monotonically increasing property, which

makes it suitable to model the increasing slip and mid-span beam deflection (see Fig. 5.4

and 5.5). The validity of GP assumption is verified by plotting the slip measurements in a

Q-Q plot. Fig. 5.6 shows that the measurements fall onto nearly a straight line confirming

this assumption.

According to the definition of a Gamma process, the differential increment in the degra-

dation measure 4yik = ytik − yti(k−1)
in time interval 4tik = tik − ti(k−1) follows a Gamma

distribution Γ(ai4tik, bi) with shape parameter ai4tik and scale parameter bi. Let the

measurements be taken at equal time intervals 4tik = t0, then the probability density
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Figure 5.6: Q-Q plot for gamma distributed slip measurements for a beam

function for 4y for the ith beam is given by:

f(ait0,bi)(4y) =
bait0i 4yait0−1e−bi4y

Γ(ait0)
(5.1)

The likelihood function of the observed degradation increments 4yik is a product of inde-

pendent Gamma densities, and given by:

L(4yi1, · · ·4yin|ai, bi) =
n∏
k=1

bait0i 4y
at0−1
ik e−b4yik

Γ(ait0)
k = 1, 2, · · · , n (5.2)

where n is the number of observations.

The results of prior estimation and end life predictions using slip as well as mid-span

beam deflection data are presented in the following sections. For comparison purposes,
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both the two-phase and single phase models have been applied to this case-study.

5.3.1 Two-phase model

In this section, degradation data is modeled first using a two-phase model. The first step

in the proposed methodology is change point detection and prior estimation.

Change detection and prior estimation

For prior specification, the slip data taken from seven of the beams (i.e., F200RM72,

F200RM80, F200RM90, F200RH75, F200RH80, F200RH88 and F200RH96), and mid-span

beam deflection data taken from five of the beams (i.e., F200RM90, F200RH75, F200RH80,

F200RH88 and F200RH96) are considered. In both cases, data from one of the beams (say,

F200RM96) is not included in the prior estimation and the test data from this beam will be

treated as monitored data and will be used for posterior inference. Even though deflection

measurements are taken for all of the eight beams, only six were considered in analysis

because readings for the two beams (i.e., F200RM80 and F200RM72) were found to be

defective.

For each beam considered above, first the change point location were identified (ac-

cording to the procedure explained in Chapter 4 to identify the significant change point

amongst all candidates). Figure 5.7 shows the posterior probability of change point loca-

tion along with the deflection degradation path for four of the beams. It can be seen from

the figure that the posterior density is localized to a small region and coincides with the

actual change point location in the degradation path.

With the estimated change point, each degradation path was divided into two segments

and Gamma degradation models were fitted to each segment, separately. Table 5.2 and
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Figure 5.7: Degradation path and change point detection
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Table 5.3 presents the estimated change point locations and the associated two-phase model

parameters using slip and deflection data, respectively.

Table 5.2: Two-phase parameters and change point locations using slip data

1st phase 2nd phase change point

Beam â1i b̂1i â2i b̂2i (cycles)

F200RM90 0.22 0.30 0.75 1.20 5.3 ×104

F200RH75 0.60 1.12 1.60 3.20 4.3×105

F200RH80 1.22 3.60 3.25 4.20 6.4 ×102

F200RH88 0.44 1.42 1.40 3.50 6.0 ×104

F200RH96 0.31 0.45 1.30 1.80 2.8×102

F200RM72 0.10 0.30 0.35 0.95 2.1 ×105

F200RM80 1.50 3.20 4.20 5.30 3.5 ×105

Table 5.3: Two-phase parameters and change point locations using deflection data

1st phase 2nd phase change point

Beam â1i b̂1i â2i b̂2i (cycles)

F200RM90 0.31 0.15 1.2 0.72 5.2 ×104

F200RH75 0.42 0.32 1.80 1.40 4.3×105

F200RH80 1.92 2.66 3.25 4.20 6.4 ×102

F200RH88 0.67 1.95 2.46 3.50 6.0 ×104

F200RH96 0.35 0.24 1.55 1.20 2.8×102

Results show that the estimated change point locations are very similar using both the

surrogates. This is not surprising since the slip and deflection curves as shown Fig. 5.4

and Fig. 5.5 exhibit similar characteristics.

Each estimate (â1i, b̂1i) and (â2i, b̂2i) is considered as a sample drawn from the prior

distribution from the first and second phases, respectively. Hence, the prior distributions
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are estimated using distribution fitting. Moreover, for Gamma distributed surrogate mea-

surements, if the shape parameter a is kept fixed, then a conjugate prior exists for the

unknown scale parameter b (see Eq. 4.38). Accordingly, the parameter a is fixed at its

mean value a0 and the hyper-parameters (α0, β0) for the scale parameter are estimated by

distribution fitting. The estimated prior distributions for the two phases are :

For slip: a01 = 0.62, π(b01) ∼ Ga(α01 = 1.28, β01 = 0.87) (5.3)

a02 = 1.83, π(b02) ∼ Ga(α02 = 3.16, β02 = 1.11) (5.4)

For deflection: a01 = 0.73, π(b01) ∼ Ga(α01 = 1.30, β01 = 1.96) (5.5)

a02 = 2.05, π(b02) ∼ Ga(α02 = 2.48, β02 = 1.12) (5.6)

where Ga(·) denotes the Gamma distribution.

Parameter and end of life updates for the monitored specimen

The prior information obtained from the seven specimens are then used to update the

model parameters and the end of life of the monitored unit. As mentioned previously, one

of the specimens, F200RM96, is assumed to be the monitored unit, whose parameters and

end of life are to be updated with measurement data. For this beam, a change point is

detected at 70% of degradation (≈ 1.4 × 104 cycles). The degradation model parameters

of this beam are updated at six time intervals, in which three intervals are taken from the

first phase (i.e., before the change detection) and three intervals from the second phase.

Note that, for the update in the second-phase of degradation, data taken only after the

change point detection are utilized.

Fig. 5.8 and Fig. 5.9 show the updated posterior distributions of b using slip and
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Figure 5.8: Update of b using slip data (a) before and (b) after change detection

deflection data, respectively. Note from these plots the shift in the posterior mode before

and after the change detection for both of the surrogates. For example, in case of slip,

the shift occurs from b = 3.7 to b = 4.5 for 60% to 75% degradation data, respectively.

This is to be expected, as the process parameter has changed once a damage is initiated at

70% degradation. Another thing that can be observed from Fig. 5.8 and Fig. 5.9 is that

at a higher degradation magnitude (between 80 to 100 percent), the posterior distribution

narrows and better aligns with the true value of b with a smaller HPD interval (HPD

interval is the Bayesian analog of the classical confidence interval).

The next step is to predict and update the end life for the beam specimen F200RM96

using monitored data. As described earlier, if the shape parameter is fixed, then a closed
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Figure 5.9: Update of b using deflection data (a) before and (b) after change detection

form expression for the probability of failure at any time t in the future can be derived.

The failure CDF is obtained using Eq. 4.55, where the failure threshold ηD is assumed

to be 6 mm over the slip length and 15 mm over the mid-span deflection. This choice is

made arbitrarily and is based upon the visual inspection of the degradation path for this

beam. In other words, the beam is considered to have failed if the slip length or mid-span

deflection is greater than 6 mm or 15 mm, respectively.

Fig. 5.10 and Fig. 5.11 show the updated end of life using slip and deflection mea-

surements, respectively. The failure times are updated at 20, 40, 60, 75, 80 and 90

percent of degradation, respectively. Note that for this beam, a change point is detected

at 70 percent degradation. In other words, three time intervals before the change point

detection and three intervals after the change detection are considered for failure time

updating. From Fig. 5.10 and Fig. 5.11, it can be seen that both surrogates (i.e., slip
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Figure 5.10: Updated end life predictions using slip measurements: (a) before and (b)
after, change detection
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Figure 5.11: Updated end life predictions using deflection measurements: (a) before and
(b) after, change detection
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Table 5.4: End life predictions and error in prediction

based on slip length based on mid-span deflection

% Deg. 95% End life Prediction error 95% End life Prediction error

(×104 cycles) (×104 cycles) (×104 cycles) (×104 cycles)

0 6.12 4.15 6.50 4.53

20 5.32 3.35 6.02 4.05

40 5.02 3.05 5.15 3.18

60 3.60 1.63 4.02 2.05

75 2.95 0.98 3.61 1.64

80 2.36 0.39 2.81 0.84

90 2.17 0.20 2.35 0.38

and deflection) predict very similar end of life values. However, the predicted failure time

before change detection is relatively large compared to the failure time predicted after the

change detection. For example, when 60% of slip data is utilized, the 95 percent CDF of

failure time is 3.8× 104 cycles; this changes to 2.7× 104 cycles when predicted using 75%

monitored data. Moreover, different failure curves before change point detection are well

separated and have lower slopes relative to the curves after change detection. In other

words, predictions made after change point detection are relatively precise.

Based on Fig. 5.10 and Fig. 5.11, the performance of the two surrogate measures i.e.,

slip and mid-span deflection for end life predictions can be compared. Table 5.4 presents

the predicted end of life and error in the prediction calculated at various degradation level

for the two cases. A closer look at the results in Table 5.4 reveals that the prediction

error is low when slip is used for degradation modeling compared to deflection, which is

not surprising. However, it is often impractical to measure the slip length for an in-situ

component, where deflection can be measured easier. Based on the analysis described

above, the two phase degradation model either using slip of reinforcing bars or the mid-
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span beam deflection can be used for monitoring and for the prediction of beam structural

failure. For comparison purposes, in the following section, the proposed methodology is

illustrated using a single phase model.

5.3.2 Single-phase model

In this section, results using a single phase degradation model fit to the degradation data

are presented, assuming that the degradation path does not contain a change point. As with

the two-phase model, results were obtained using both slip and deflection as surrogates.

For this model, all the steps remain same as described above, excluding the change point

detection step.

Prior estimation

For prior specification, Gamma degradation models were fit for each specimen separately,

and the model parameters estimated. Table 5.5 summarizes the estimated parameters using

slip and deflection measurements. Each estimate (ai, bi) is considered as a sample drawn

from the prior distribution and the prior distributions are estimated using distribution

fitting. As in the previous section, the parameter, a is fixed at its mean value a0 and

the hyper-parameters (α0, β0) were estimated by fitting a Gamma distribution to bi’s.

The validity of the assumption that the scale parameters b̂i’s indeed follow a Gamma

distribution is checked using a q-q plot. For example, Fig. 5.12 shows the q-q plot for slip

measurements. Clearly, the points fall approximately on to a straight line, confirming that

b̂i follows a Gamma distribution. The estimated priors for the single phase models are:
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Table 5.5: Single phase parameters using slip and deflection

Using slip Using deflection

Beam Shape (âi) Scale (b̂i) Shape (âi) Scale (b̂i)

F200RM90 0.49 0.58 0.61 0.37

F200RH75 1.08 2.24 0.56 0.50

F200RH80 2.45 4.65 2.63 2.95

F200RH88 0.83 2.37 1.16 2.13

F200RH96 0.61 0.50 0.63 0.24

F200RM72 0.11 0.40 NA NA

F200RM80 2.69 3.97 NA NA

Figure 5.12: Q-Q plot of scale parameters for slip
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Figure 5.13: Model parameter update using monitored (a) slip and (b) deflection measure-
ments

For slip: a0 = 1.18, π(b0) ∼ Ga(α0 = 1.41, β0 = 0.67) (5.7)

For deflection: a0 = 1.12, π(b0) ∼ Ga(α0 = 1.20, β0 = 0.97) (5.8)

Parameter and end of life updates for the monitored specimen

The prior information given previously is used to update the model parameters and the end

of life for the monitored specimen, F200RM96. The posterior distribution of b is obtained

using Eq. 4.41. Fig. 5.13 shows the updated value of b for this beam, when 40, 60, 75 and

90 percent of degradation data are utilized. It is clear from the results that as more data

instances are utilized, the posterior mode of b increases for both slip as well as deflection
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Figure 5.14: Updated RUL distribution using (a) slip (b) mid-span beam deflection

measurements. For example, the posterior mode of b̂ corresponding to 40, 60, 75 and 90

percent of degradation are 1.7, 2.9, 3.6 and 3.9, respectively. This gradual increase in the

parameter estimates is expected for increasing degradation. It is worth mentioning here

that the posterior mode, which is the MAP estimate for a parameter, is often taken as the

point estimate (analogous to the ML estimate) in Bayesian statistics. Another point to

notice in Fig. 5.13 is that there is no sudden shift in the posterior mode as observed earlier

in the two-phase model.

Next, the end of life for this beam is updated with the monitored data. Figure 5.14,

shows the predicted failure time for 40, 60, 75 and 90 percent of degradation. It can be

seen from Fig. 5.14 that the mid-span deflection gives longer predictions for the end of

life compared to using slip as the surrogate. This behaviour is also observed for the two-
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Table 5.6: End life predictions using slip measurements for two models

Two-phase model Single phase model

% Deg. 95% End life Prediction error 95% End life Prediction error

(×104 cycles) (×104 cycles) (×104 cycles) (×104 cycles)

0 6.12 4.15 6.83 4.86

40 5.02 3.05 5.35 3.38

60 3.60 1.63 4.81 2.84

75 2.95 0.98 4.53 2.56

90 2.17 0.20 3.15 1.18

phase model earlier. Moreover, for both of the surrogates, the failure curve is relatively

flat during the initial stages of degradation, which results in unrealistic long fatigue life for

the beam. For example, when only the 40 percent of slip data is utilized, the 95% failure

CDF corresponds to 5.32× 104 cycles, which is much greater than the actual fatigue life of

1.97× 104 cycles. However, as more data points are utilized in the estimation, the failure

curve becomes steeper and the end of life predictions improve. But the results are never

better than obtained using the two-phase model. To compare the performance of the two

models, the predicted failure times and the respective errors are presented in Table 5.6. It

can be seen from the results that the prediction error for the two-phase model is relatively

less, for nearly all degradation magnitudes. In summary, the two-phase model is a better

choice (based on the results obtained from the experimental study) compared to the single

phase model for health monitoring and RUL estimation of concrete beams. In the following

section, another application of the two-phase degradation model is presented.
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Limitations for practical implementation

One of the main limitations of this methodology for practical implementation (e.g., on

bridges) is that both load variations and actual degradations could result in change points.

Of course, the change points from structural changes are of interest, not from load vari-

ations. This issue was avoided in this study by utilizing data from load-controlled tests.

One way address this limitation in practical applications is to either employ this method-

ology under controlled conditions, that is by loading the bridge with known weights (e.g.,

trucks), or to isolate the portion of the data into that caused by the load alone from the one

caused due to changes in the member properties. This topic needs to be further explored

and addressed adequately before this method can be directly implemented in practice.

5.4 Case study: application to rolling element bear-

ings

In this section, the proposed methodology is applied to rolling element bearing degradation

data. Generally, defects in a bearing occur on the inner race, outer race or in the rolling

elements (see Appendix A). Once a fault develops on any one of the components, it grows

over time due to fatigue, i.e., the balls impacting the fault periodically. Each time a ball

passes over the fault an impulse is generated. Vibration measurements are ideal surrogates

to detect such faults as these periodic impulses become more prominent with increasing

fault size [54].
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5.4.1 Bearing data-set

The data utilized in this thesis is from from the publicly available Prognostics Center of

Excellence (PCoE) through the prognostic data repository contributed by the Intelligent

Maintenance System (IMS), University of Cincinnati [104]. The schematic diagram of the

experimental test rig is shown in Fig. 5.15, which comprises of four bearings installed on

a shaft. The rotation speed was kept constant at 2000 RPM by an AC motor coupled to

the shaft through rubber belts. A radial load of 6000 lbs is applied to the shaft on two

bearings (bearing 2 and bearing 3) through a spring mechanism. High sensitivity quartz

ICP accelerometers (PCB 353B33) were installed on the bearing housing as shown in Fig.

5.15. Data collection was facilitated by NI DAQ card 6062E at a sampling rate of 20 kHz

Figure 5.15: Schematic of the bearing test rig and sensor placement ([175, 116])

for one second, in intervals of ten minutes until bearing failure. Three sets of experiments
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Table 5.7: Bearing test-to-failure result

Bearing-1 Bearing-2 Bearing-3 Bearing-4

Set-1 ND ND IRD RED

Set-2 ORD ND ND ND

Set-3 ND ND ORD ND

were performed, each consisting of four bearings. The results from experiments are given in

Table 5.7, where IRD, ORD, RED, ND denotes the inner race, outer race, rolling element

and no defect, respectively. The inspection pictures taken at the end of the test showing

various faults are presented in Figure 5.16.

Figure 5.16: (a) Inner race fault (b)Rolling element fault (c) Outer race fault [175]

It is well known that faults that occur in bearings result in impulses during contact.

These impulses excite the fundamental frequencies of the structure supporting the bearing

and manifest themselves in the spacing of the impulses, rather than in the overall fre-

quency content [54]. Hence, the main challenge in quantifying bearing degradation lies in

our ability to isolate the aforesaid impulses, from the resulting vibration measurements

which are convolved with the transmission path. The impulsivity of the signal become

more pronounced and easier to detect using signal processing techniques once the flaws

reach some critical size (unknown). Hence, the physics that govern the underlying degra-
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dation phenomenon described here is naturally suited to be modeled using the two-phase

model described in this study. First, an auto-regressive minimum entropy deconvolution

(MED) filter is described, which is utilized to de-noise the raw signal and accentuate the

impulsiveness of the signal. This forms the backbone of the method in that this is used as

the degradation signal.

Background on AR-MED filter

Suppose that the bearing impulses are labeled x, then the output of a FIR filter, with h

representing the propagation as well as the transducer impulse response characteristics, is

given by:

z(k) =
L∑
l=1

h(l)x(k − l) (5.9)

where, L is the filter order. Ideally, if the impulses x(k) were to be recovered from z(k), then

it is possible to quantify the extent of degradation using the extent of impulsiveness of x.

At best, however, what we can hope to achieve is to recover an estimate of x since we have

access only to the noise corrupted measurements z and the transmission path characteristics

are unknown. In this seminal work ([248]), this problem of blind deconvolution was solved

by estimating the inverse filter coefficients, g, which produces estimates of x, according to:

y(k) =
L∑
l=1

g(l)z(k − l) (5.10)

such that y(k) = βx(k − δ), where β is an arbitrary scaling constant and δ is an arbitrary

constant time delay.

Wiggins’ minimum entropy deconvolution (MED) algorithm poses the estimation of

the deconvolution filter coefficients g as an optimization problem, where the objective is
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to maximize the sum of normalized squares of the variances :

V =

∑
k y

4
k

(
∑

k y
2
k)

2 ; i = 1 · · ·Ns (5.11)

This objective measure maximizes the numbers of the large, nonzero spikes compared with

the small ones, or in other words, it has the effect of simplifying the appearance of a signal.

Solving this optimization problem, results in the following matrix equation:

∑
k y

2(k)∑
k y

4(k)

∑
k

y3(k)z(k − l) =
∑
l

g(l)
∑
k

z(i− l)z(i− k). (5.12)

The left hand side of this equation contains the cross-correlation of the filter outputs

cubed with the inputs and the right hand side contains the autocorrelation of the inputs

and the filter coefficients. The nonlinear nature of this equation requires an iterative

numerical solution procedure to solve for the deconvolution filter coefficients, and this

procedure, called the objective function method (OFM), is described in these references

([105, 190, 248]).

Measurements typically contain both deterministic (e.g., gear meshing, shaft rotation)

as well as impulsive parts, convolved through the transmission path characteristics, ac-

cording to:

z(n) = (w(n) + d(n))� h(n) + e(n) (5.13)

where � represents convolution and e(n) represents uncorrelated additive noise in the

measurements. As proposed here ([190]), the deterministic part can be removed from the

measurements by retaining just the residual of the AR model ε(n) for MED processing.
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Such a model is given by:

z(n) = −
p∑
i=1

ψ(n)z(n− i) + ε(n) (5.14)

where, ψi are the AR coefficients and ε is the residual. The model order p is selected

by a suitable measure such as AIC, or in this case by maximizing the kurtosis of the

residual signal since this is a natural measure for impulsiveness of the signal [190]. If the

Figure 5.17: Signal enhancement using AR-MED filter

measurement noise is assumed to be uncorrelated to both inputs and outputs, it is easy

to see from Eq. 5.12, that this will not affect the results of the OFM algorithm. The

residual so obtained will retain the impulsive parts of the signal, provided p is so selected

that it is less than the spacing between two consecutive impulses, as this ensures that the

model does not treat these impacts as being deterministic. Next, this method is applied

to pre-process the run-to-failure bearing signal.

Signal processing

First, the raw vibration measurements in ten minute intervals (for one second window

length) are enhanced using the AR-MED filter and the kurtosis value is calculated. For
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illustration purposes, Fig. 5.18 shows the signal enhancement for bearing-1 of set-2, which

was identified as having with a severe outer race fault at the end of experiment. The

raw vibration signal, 3 hours prior to failure is also shown in Fig. 5.18(a), which shows

a kurtosis value of 3.2 (nearly Gaussian), and this does not indicate an impending failure

of the bearing. However, when this signal is filtered using an AR(20) filter, the kurtosis
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Figure 5.18: (a) Bearing-1 signal 3 hours prior to failure; (b) residual of the AR filter; (c)
signal enhancement using AR-MED filter

increases to 3.7; while slightly higher than the raw signal, but still relatively low to be

characterized as faulty. Moreover, when the MED filter is applied to the AR residual (as

in Fig. 5.18b), the kurtosis value increases to 11 and the bearing fault impulses are clearly
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visible, as evident in Fig. 5.18c.

The first step is the prior specification. Since, failure data for the population of similar

bearings is unavailable, failure data from four bearings of the same test are used for prior

specification. For this purpose the historical data obtained from four failed bearings as

given in Table 5.7 is considered. These bearings are Bearing-4 (set-1), Bearing-3 (set-

1), Bearing- 3, (set-3) and Bearing-1 (set-2), and represented by B-1, B-2, B-3 and B-4

respectively in the ensuing discussion. These bearings were selected because a defect (either

in the outer race, inner race or the rolling element) was identified during tests. First, the

run-to-failure vibration signals for these bearings was de-noised by applying the AR-MED

filter. For this purpose, the vibration signal of each bearing at an interval of 10 minutes

was used to calculate kurtosis. To generate the degradation paths, kurtosis values were

further transformed to the logarithmic scale, as the degradation phenomenon is assumed

to grow exponentially , and their transformation fits the linear model.

In Figure 5.19 the degradation paths for bearings B-1, B-2, B-3 and B-4 are shown,

where the y-axis is the logarithm of the kurtosis and x-axis is the time. In the same figure,

the posterior density of the change point location is also overlaid for clarity. It is interesting

to note that the posterior density is very narrow and can be assumed to be concentrated

at a point. In other words, t = 260, 110, 338, 116 (see Fig. 5.19 ) are considered as the

change locations for bearing B-1, B-2, B-3 and B-4, respectively and the parameters are

estimated using the maximum likelihood principle. Table 5.8 summarizes the estimated

two-phase model parameters for these bearings.

Despite the rather limited sample size, this information can still be used to obtain a
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Figure 5.19: Degradation path for four failed bearings (a) B-1 (b) B-2 (c) B-3 (d) B-4

rough prior distribution, which is given below:

π(θ1) ∼ N(1.6, 0.072);π(θ2) ∼ N(0.0005, 0.00042)

π(β1) ∼ N(1.9, 0.92);π(σ2) ∼ IG(140,
1

.6
);π(τ 2) ∼ IG(125,

1

0.9
)

π

 λ

β2

 ∼ BV N


 206.0

0.0030


 12500 0.15

0.15 1.12× 10−6


 (5.15)

Once the prior is specified, parameter updating and RUL predictions of a monitored

unit are performed next. For this, it is assumed that the Bearing B-1 is monitored in

real time and its degradation model and RUL needs to be updated with available data.
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Table 5.8: Two-phase parameters for four run-to-failure bearing

Bearing θ1 θ2(×10−2) σ β1 β2(×10−2) τ λ

B-1 1.67 0.09 0.10 1.40 0.31 0.10 258
B-2 1.70 0.08 0.11 1.33 0.21 0.15 110
B-3 1.74 0.01 0.10 1.85 0.45 0.05 338
B-4 1.57 0.03 0.11 2.33 0.23 0.28 116

Consider three updates, corresponding to the three stages of degradation—first, when the

degradation is in the initial phase (say, t = 150); second, when the state transitions from

the first phase to the second phase (say, t = 250) and finally, when the bearing is in the

second phase of degradation (say, t = 300).

The posterior distribution of the change point corresponding to these times are esti-

mated using MCMC sampling. Figure 5.20 shows the trace and density plots of the change

point updated at t = 150, 250 and t = 300, respectively. From Fig. 5.20 it can be seen

that the 90% HPD interval of change point is approximately confined between 185 to 225,

when estimated at t = 150. Clearly, at the earlier stages of degradation the change point

estimate is influenced by the prior distribution obtained from the historical data (see Eq.

5.15). However, as more data is utilized, the estimates represent the observed change point

location of B-1. For instance, when updated at time t = 250 the posterior shifts, and is

confined between 250 to 260, which includes the actual change point (actual value is 258).

Finally, the posterior distribution becomes very narrow and concentrates around t = 255

when estimated at t = 300.

The other model parameters (i.e., degradation rates, intercepts and error variances of

the two phases) and RUL are also updated with the available degradation data. Figure

5.21 presents the posterior distribution of first and second phase model parameters updated

at t = 150, 250 and 300, respectively. Note the slight shift in the mean values of the
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distribution, which is a result of the number of samples of the degradation data used in the

posteriori calculations. This aspect was discussed earlier with reference to a single-phase

model in Chapter 3 (see Section 3.4). Similar shift is also observed in the two-phase model

resulting from MCMC simulations. The posterior summaries including the mean value and

the 90% HPD interval of the same are given in Table 5.9. From Table 5.9 (or from Fig.

5.21) it is clear that the mean value of the degradation rate θ2 changes significantly from

t = 150 to t = 250, which stabilizes after t > 250. This happens because, as more data

is utilized in updating the first phase parameters improve, however once a change point

is detected, the same set of data is used to estimate the first phase parameters. However,
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Table 5.9: Posterior distribution summaries for two phase model parameters

t = 150 hr. t = 250 hr. t = 300 hr.

Parameter Mean (Q0.05 −Q0.95) Mean (Q0.05 −Q0.95) Mean (Q0.05 −Q0.95)

θ1 1.62 (1.61 - 1.64) 1.70 (1.69 - 1.71) 1.69 (1.68 - 1.70)

θ2(×10−2) 0.19 (0.18 - 0.21) 0.07 (0.06 - 0.08) 0.08 (0.07 - 0.09)

σ(×10−1) 0.84 (0.80 - 0.89) 0.92 (0.88 - 0.96) 0.93 (0.89 - 0.97)

β1 1.60 (0.79 - 2.44) 1.60 (0.78 - 2.43) 1.20 (1.06 - 1.34)

β2(×10−2) 0.33 (0.26 - 0.4) 0.38 (0.33 - 0.45) 0.37 (0.33 - 0.42)

τ 0.29 (0.23 - 0.36) 0.29 (0.23 - 0.36) 0.21 (0.18 - 0.23)

Table 5.10: A summary of RUL distribution estimated at different times

Quantile

Mean Std Dev 0.05 0.250 .50 0.750 0.95 Actual

t = 150 145 25 13 60 140 205 260 210

t = 250 96 16 10 42 92 123 155 110

t = 300 43 11 6 33 45 65 103 60

the second phase degradation rate has a relatively large value, even at t = 150, when

the degradation is still in its initial stages, since the prior information obtained from the

historical units influences the posterior distribution of the second phase parameters. For

bearing B-1 the estimated RUL PDF is shown in Figure 5.22, which shows that the RUL

PDF sharpens as more data is utilized in the predictions. The summary of predicted RUL

estimates along with various quantiles and the actual RUL are summarized in Table 5.10.

Clearly, for all the three times considered, the 90% HPD interval contains the actual RUL.

Moreover, the predicted mean RUL is very close to the actual RUL. This shows that the

method proposed in this thesis produces reasonably good estimates even when the bearing

is in its initial stages of degradation. The effect of correlation between β2 and λ on RUL is
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investigated and the results are presented in Fig. 5.23. One can observe from the results

that considering correlation results in a smaller RUL interval and hence is important to

consider this relationship in prognosis of bearings.
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Figure 5.23: Effect of correlation on RUL

5.5 Summary

In this chapter, the proposed degradation modeling framework is applied to both civil

and industrial engineering components. The two degradation processes investigated are:

the deterioration of reinforced concrete structure and the degradation of rolling element

bearings. The degradation of reinforced concrete is modeled using a stochastic gamma

process, while the degradation of rolling element bearings is undertaken using random

variable model. The main objective of this chapter is to demonstrate the application of

various steps described in the previous chapter to real-life examples. Results shows that
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the model parameters and end life predictions of a working unit in both cases improves

as more condition data becomes available. Moreover, the integration of historical data to

construct priors results in reasonably good RUL estimates even during the initial stages of

degradation. It is found that the slip length of reinforcing concrete bar or mid-span beam

deflection is a good surrogate measure for concrete degradation modeling. For rolling

element bearing, the surrogates are obtained through more sophisticated signal processing

techniques. It was also shown that the resulting RUL intervals are narrower when the

correlation between the degradation rate and change point location is considered in the

formulation.
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Chapter 6

Conclusions and recommendations

The thesis presents an integrated approach for effective maintenance planning using mea-

sured condition information for civil and industrial infrastructure applications. The two

aspects of CBM—damage detection and prognosis—are undertaken in a single Bayesian

framework, where the prior knowledge obtained from historical data is integrated with

monitored information and used for RUL estimation and maintenance planning of the

monitored unit. This study has resulted in a holistic approach to utilize indirect measure-

ments for degradation of critical components and subsequently to predict the RUL and

to plan maintenance actions in cases where degradation is not directly observable. Most

importantly, the feasibility in such cases has been demonstrated. This chapter highlights

the significant contributions, key conclusions, and recommendations for future work.

6.1 Significant contributions

The significant contributions resulting from this work is as follows:
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1. An integrated framework for damage detection, RUL estimation and maintenance

planning for components where direct degradation is unobservable has been devel-

oped and shown to be feasible. Within the proposed framework of a two-phase degra-

dation modeling approach, damage is detected by identifying the change point in the

degradation path, while RUL estimation and maintenance planning are undertaken

using the estimated model parameters.

2. A Bayesian approach has been developed to integrate the degradation information

obtained from the historical units for effective maintenance planning of a monitored

unit. The advantage of this approach is that it results in reasonably good RUL

predictions, even when the system or component is in the initial stages of degradation.

3. The methodology developed in this dissertation is general and has been success-

fully applied to three types of degradation models: random variable, Gamma and

Weiner process models. For these processes, algorithms for change-point detection,

parameter updating and RUL prediction are developed in detail. Through this

methodology, the proposed framework can be applied to a wide verity of degradation

processes and applications.

4. An attempt to incorporate the correlation structure amongst various model param-

eters has been made in the current thesis. In particular, the degradation rate and

change point location, which are often found to be correlated for bearing degradation,

has been explicitly accounted for in the formulation.

5. The proposed method has been successfully applied to bearing degradation and the

deterioration of reinforced concrete beams under fatigue loading. For both appli-

cations, the parameters of the degradation model are estimated using experimental
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data, and the RUL distribution of a monitored unit is updated with monitored

condition data.

6. Several peer-reviewed journal and conference articles (see Appendix E) have resulted

from this work.

6.2 Conclusions

Having highlighted the significant contributions of this dissertation, the central conclusions

are summarized as follows:

1. The examples and case studies demonstrate that integrating prior knowledge from

the historical units with the degradation data of a working unit results in more cost

effective maintenance decisions.

2. It was found that as more degradation data is utilized from the monitoring unit, the

progressing fault is detected in a timely manner and result in better model parameter

estimates. Moreover, the reasonable accurate estimates of RUL can be achieved even

during the initial stages of degradation.

3. From the comparison study using numerical as well as experimental bearing degra-

dation data, it was found that including correlation between the degradation rate

and the change point in the model results in a narrower RUL distribution.

4. The case study demonstrated that the proposed degradation modeling framework

can successfully be applied to various real-life applications such as bearing degra-

dation and deterioration of reinforced concrete structure. However, developing an
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appropriate surrogate measure is critical and may not be an easy task. For instance,

developing an appropriate surrogate measure for bearing deterioration involves ex-

tensive signal pre-processing and this has to be taken into account while trying to

implement this methodology.

6.3 Recommendations for future work

There are several possible extensions of the current research in the context of effective

condition based maintenance of critical civil and mechanical infrastructure using condition

monitoring data. A few such extensions are outlined as follows:

1. The proposed algorithm assumes that the degradation can be modeled in two-phases.

However, several processes show multi-phase degradation. Future studies could ex-

tend the two-phase degradation model to a more general multi-phase model, where

the optimum number of phases can be chosen by applying model selection principle

such as Akaike information criterion (AIC), Bayesian information criterion (BIC) or

on Bayes factor.

2. The current study is limited to a model that has the same functional form in both

the phases of degradation. A model with different functional forms in the two phases

such as, linear-exponential, Weiner-Gamma, linear-Weiner could be investigated to

expand the scope of what was proposed here.

3. Degradation signals are often compounded and contaminated by measurement errors,

making change detection and degradation modeling a difficult task. Therefore, a two-

phase model with measurement noise can be investigated. Moreover, the degradation
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rate in any given phase is not constant. The use of time-scale transformation can be

investigated to make it approximately constant.

4. For degradation modeling of rolling element bearings, more sophisticated features

from the signal processing literature could be used and the relative performance

compared with the current feature types.

5. The experimental data for the case of structural engineering application was limited

to just 8 specimens. The applicability of this method using a more elaborate data set

and application examples would likely enhance our understanding of the performance

of the proposed method, including effective features to use for damage detection and

prognosis, in the civil engineering domain.
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Appendix A

Bearing faults and vibration

condition indicators

A.1 Bearing vibration signatures

The main components of a bearing are: inner race, outer race, ball and cage, as shown in

Figure A.1. The inner race remains fixed to the shaft and rotates with the shaft-speed.

The outer race is fixed to a housing and remains stationary during operation. The rolling

balls are placed between the inner and outer races and transfer the load over a very small

surface (ideally point contact) on the raceways. The cage separates the rolling elements,

preventing contact between them during operation [131]. Loads and their distribution

resulting from the shaft are transferred to other components through the balls as shown in

Figure A.1.

There are many mechanisms that can lead to bearing failure, including mechanical dam-

age, crack damage, misalignment, overload, faulty installation, brinelling, fatigue, contam-

193



ination, loss of lubrication and corrosion. Generally, defects occur in the outer race, inner

race, rolling element or in the cage. A detailed review on the causes of bearing failures can

be found in [148]. Once a defect occurs in the bearing, its vibrational behaviour changes

with respect to a healthy bearing, which is key to vibration based bearing monitoring.

Figure A.1: Rolling element bearing components and load distribution

The vibration characteristics generated by various bearing defects are explained in

[25, 128]. When a defect in a bearing component contacts another surface, periodic impulses

are generated, causing the bearing to vibrate. The bearing responds by “ringing” at its

natural frequency, a response that decays quickly because of damping. The excitation

and response occur each time one of the balls rolls over the flaw, so that the fundamental

frequency of the response waveforms is the rate at which the elements roll over the flaw. It

is this fundamental frequency that is of interest in the detection of bearing faults, not the

resonance frequency at which the bearing rings, and it can be predicted from the bearing

geometry and the speeds at which the bearing shaft rotates. It can be calculated using the
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following formulae [165, 12]:

Ball pass frequency, outer race : BPFO =
nfr
2

(1− d

D
cosφ) (A.1)

Ball pass frequency, inner race : BPFI =
nfr
2

(1 +
d

D
cosφ) (A.2)

Fundamental train frequency (cage speed) : FTF =
fr
2

(1− d

D
cosφ) (A.3)

Ball (roller) spin frequency BSF =
D

2d
(1− (

d

D
cosφ)2) (A.4)

where, fr is the shaft speed, d is the mean diameter of the rolling element, D is the pitch

diameter of the bearing, n is the number of rolling elements, and φ is the angle of the load

from the radial plane.

A.2 Condition indicators

Time domain condition indicators [21] are widely used in the literature for fault diagnosis of

rolling element bearings and gear-boxes. These condition indicators are simple to calculate

and can be implemented in real time. Table A.2 presents some of these condition indicators

with their mathematical expressions, where s is a window of vibration signal containing N

measurements and si is the ith measurement point.
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Table A.1: Condition indicators

Condition indicators Expression

Mean value s =
∑N
i=1 si
N

Root-mean-square value (RMS) srms =
√

1
N

∑N
i=1(si2)

Skewness g =
1
N

∑N
i=1(si−s)3

[ 1
N

∑N
i=1(si−s)2]3/2

Kurtosis κ =
N
∑N
i=1(si−s)4

[
∑N
i=1(si−s)2]2

Shape factor sshape = srms
s

Crest factor CF = smax−smin
srms

A.3 Fast Fourier transform

The Fourier transform of a signal x(t) in terms of the cyclic frequency f can be written as

X(f) = F [x(t)] =

∫ +∞

−∞
x(t)e−j2πftdt (A.5)

and its inverse Fourier transform is given by

X(t) = F−1[X(f)] =

∫ +∞

−∞
X(f)ej2πftdf (A.6)

FFT is an algorithm that numerically approximates the Fourier transform. An example

FFT for an inner race fault is shown in Figure A.2, where the characteristic frequency

(BPFI = 160 Hz) and its harmonics can be seen. Note that the sidebands corresponding

to the 7th harmonic in Figure A.2 is separated by 30 Hz, which is the rotating frequency.

Ideally, such sidebands should be visible in all the harmonics, but due to noise present in
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Figure A.2: Inner race fault (7 mils diameter)

the signal it is clearly visible only in some of the harmonics.

Another application of the frequency spectrum is to quantify the severity of faults.

As an example, Figure A.3 shows the time history and frequency spectrum for a normal

and defective bearing. For the defective case, fault diameters are 7, 14 and 21 millinches,

respectively. Clearly, defective bearings generate a boarder spectrum spread than their

corresponding normal bearing [121]. The main vibration components of a normal bearing

are concentrated in the lower frequency region (below 1 kHz) and its overall power spectrum

energy is significantly lower than that of the defective bearing. The spectrum of the

defective bearings spread from the low to high frequency ranges with several frequency

regions. Moreover, as the defect size increases, changes in the energy in the higher frequency

region is more sensitive to bearing defects than the frequency components in the lower

frequency region.
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A.4 Amplitude modulation

Identification of critical fault frequencies allows us to monitor the progression of a bearing

fault. However, amplitude modulations in the vibration signal could make this task diffi-

cult. Amplitude modulation is caused when the load on a bearing varies, typically with

rotational speed. For example, consider a bearing which is mounted horizontally. Due to

the gravitational forces or vertical load coming onto the shaft, the pressure between the

element and the bearing surfaces may be greater at the bottom of the bearing than the

top. If there is a defect on one of the rolling elements, then the impact from this may be

stronger when the element is at the bottom of the bearing than when it is at the top. If the

defect occurs in the outer race, the amplitude modulation subjected to load variations will

not be as prominent in the vibration signal. Figure A.4 shows an amplitude modulated

bearing signal, where the defect signal is assumed to be sinusoidal with a frequency of 100

Hz and modulated by by another sinusoid of frequency 10 Hz.

The amplitude modulation, caused by the multiplication of the higher frequency signal

(fH) and the lower frequency modulation signal (fL), results in a signal, a(t) which can be

given as:

a(t) = sin(2πfHt)(1 + sin(2πfLt))

a(t) = sin(2πfHt) +
cos(2π(fH − fL)t)

2
+

cos(2π(fH + fL)t)

2
(A.7)

That is, the resultant frequency spectrum will contain peaks at frequencies fH , fH−fL and

fH + fL. For the faulty bearing signal, the components fH − fL and fH + fL are the side

bands and fH is characteristic fault frequency. Figure A.5 shows the frequency spectrum

for the simulated amplitude modulated signal. Clearly, two side-bands and bearing fault
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Figure A.4: A simulated signal showing amplitude modulation

frequencies are visible in the spectrum.

A.5 Envelope analysis

Envelope analysis [85, 120], also known as high frequency resonance technique, is frequently

used for extracting the impulsive characteristics from a vibration signal in the presence of

high background noise. As its name suggests, envelope analysis attempts to determine

the overall extremities of a signal. This technique is widely used by the maintenance

industry for early gear and bearing fault detection [129]. Impacts produced due to rolling

element faults modulate a signal at the associated bearing pass frequencies, such as: BPFO,

BPFI and BSF as described in the previous section. Envelope analysis is based on the
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demodulation of high frequency resonance associated with bearing element impacts. The

process of recovering the modulating signal from the amplitude modulated signal is called

demodulation and it is accomplished by a detector circuit. A detector circuit performs

the following two functions: i) it rectifies the modulated wave i.e. negative half of the

modulated wave is eliminated and ii) it separates the modulating signal from the carrier.

This is achieved by a low pass filter, which removes the carrier frequency. The vibration

signal obtained after demodulation contains only the fault information. The power of this

method comes from the fact that it can detect faulty conditions even in the case of low

SNR.

To illustrate the process of envelope analysis a series of impulses are simulated as shown

in Figure A.6. The impulse repeats at a frequency of 100 Hz and the modulation frequency

is 10 Hz. The envelope spectrum of the simulated pulse train is shown in Figure A.7. One

can see that the 10 Hz modulating frequency (which is the rotational speed) and defect
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Figure A.6: Amplitude modulated simulated impulse train and envelope

frequency 100 Hz and its harmonics with the side-bands. The side-bands are separated by

10 Hz from each of the defect harmonics.

Finally, Gaussian noise was added to the simulated amplitude modulated impulse trains

as shown in Figure A.8. Frequency spectrum of this signal is shown in Figure A.9, where

the defect frequency with its harmonics and side-bands separated by the rotating speed is

clearly visible.
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Appendix B

First hitting time for Weiner process

Let Wt be a standard Weiner process. Let b > 0 and define Tb as the first time that Wt = b.

That is:

Tb = min {t ≥ 0 : Wt = b} (B.1)

Here, the objective is to compute the distribution of Tb. Define Ŵt = WTb+t − WTb to be

the future value of Wt after time Tb. Note that Tb is random, so Ŵt is random as well.

Here, it is possible to verify all the conditions of Lévy’s Theorem and conclude that Ŵt is

again a Weiner process. This is because Wt is a strong Markov process, which means the

Markov property of Wt will hold when applied at random times, e.g., Tb. Thus, the future

of Wt after Tb is independent of its history up to Tb.

From this, the following relationship can be written:

P (Wt > b|Tb < t) = P (Ŵt−Tb > 0) = 1/2 (B.2)
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since P (Ŵs > 0) = 1/2 for any time s by symmetry. However, the LHS of Eq. B.2 can

also be written as:

P (Wt > b|Tb < t) =
P (Wt > b, Tb < t)

P (Tb < t)
=
P (Wt > b)

P (Tb < t)
(B.3)

since the only way that Wt is above b is if the hitting time of b has already occurred. From

Eq. B.2 and Eq. B.3:

P (Wt > b)

P (Tb < t)
=

1

2
(B.4)

P (Tb < t) = 2P (Wt > b) (B.5)

= 2

∫ ∞
b/
√
t

1√
2π
e−x

2/2dx (B.6)

It can be observed from Eq. B.6 that, as t→∞ then the integral 2
∫∞
b/
√
t

1√
2π
e−x

2/2dx = 1,

which means P (Tb) = 1, irrespective of the value of b. Therefore, the Weiner process hits

any level b with probability 1.

Furthermore, PDF of Tb can be found by differentiating Eq. B.6 with respect to t:

f(Tb) =
dP (Tb < t)

dt
=
|b|e−b2/2t√

2πt3
(B.7)

which is basically an inverse-gamma distribution. This proves that the first hitting time

for a Weiner process follows an inverse-gamma distribution.
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Appendix C

Maintenance policies

A deteriorating system can either be replaced at a constant time interval (called preventive

replacement) or at failure (called failure replacement). Generally, failure replacement cost is

greater than the preventive replacement cost. This is because failure could lead to indirect

consequences resulting from the delay related to the maintenance action. A balance is

required between the amount spent on preventive replacement and its resulting benefits and

failure replacements. The two replacement policies, age based and constant replacement

policy as proposed by Barlow and Hunter [18], are widely employed in the industry. In the

following section, a brief background on age based replacement policy is presented. These

two polices are illustrated in Fig. C.1.

C.1 Age based replacement

Let Cf be the unit cost due to replacement after failure and Cp be the unit cost due to

preventive replacement (assume Cf > Cp). A schematic diagram of age based preventive
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replacement is shown is Figure C.1. Whenever a failure occurs, failure replacement is

performed and the time is reset to zero and then the system runs for a time tp, after which

preventive replacement is performed. The expected cost rate (ECR) can be expressed as:

time0

PR

time0

FR FR

PRPR

(a) Age based (b) Constant interval based

PR PR

FR

Figure C.1: Preventive replacement policies (a) Age based (b) Constant interval based

ECR(tp) =
Expected total replacement cost per cycle

Expected cycle length

=
CpR(tp) + Cf [1−R(tp)]

tpR(tp) +m(tp)[1−R(tp)]

=
CpR(tp) + Cf [1−R(tp)]

tpR(tp) +
∫ tp

0
tf(t)dt

(C.1)

where,

m(tp) =

∫ tp
−∞ tf(t)dt

1−R(tp)
(C.2)

f(t) = probability function of the life time of the system

R(t) = survival or the reliability probability function

where tp is the age of system and m(tp) is the mean time of failure (MTTF). The opti-

mization problem is to minimize the expected cost rate (i.e., the cost per unit of operation

time). It is easy to check that tp →∞, R(tp)→ 0 and correspondingly ECR → Cf
m(tp)

. By
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using integration by parts, the denominator of Equation C.1, tpR(tp) +
∫ tp

0
tf(t)dt can be

simplified to
∫ tp

0
R(t)dt and Equation C.1 can be written as:

ECR(tp) =
CpR(tp) + Cf [1−R(tp)]∫ tp

0
R(t)dt

(C.3)

The optimal replacement time can be found by minimizing ECR(tp) i.e., setting the deriva-

tive equal to zero i.e.,

dECR(tp)

dtp
= 0 (C.4)

For this case, a closed form solution also exists and is given by Equation C.5

λ(t)G(t) =
c

c− 1
−R(t) (C.5)

where,

c =
Cf
Cp

> 1, G(t) =

∫ t

0

R(t)dt, λ(t) =
f(t)

1− F (t)
;

It is important to note that the cost rate depends upon the type of distribution. For

example, if the lifetime follows a Weibull distribution, the reliability is given by Equation

C.6:

R(t) = e−( t
α

)β (C.6)
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and Equation C.1 can be written as:

ECR(tp) =
Cpe

−(
tp
α

)β + Cf [1− e−(
tp
α

)β)]∫ tp
0
e−( t

α
)βdt

(C.7)

The corresponding optimal replacement time is given by Equation C.5, where the hazard

rate,

λ(t) =
β

α
(
t

α
)β−1 (C.8)

G(t) =
α

β

∫ z

0

z
1
β
−1e−zdz =

α

β
Γ(

1

β
, z); where, z = (

t

α
)β (C.9)

where, β is the shape parameter and α is the scale parameter of the Weibull distribution

and

Γ(k, z) =

∫ z

0

xk−1e−xdx (C.10)

where, Γ(k, z) is the lower incomplete gamma function.
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Appendix D

Metropolis-Hastings algorithm

The posterior distribution p(θ|y) of parameter θ given the data y can be obtained using

Baye’s rule:

p(θ|y) =
π(θ)L(y|θ)∫
p(θ)L(y|θ)dθ

(D.1)

where π(θ) is the prior, L(θ|y) is the likelihood of data and
∫
p(θ)L(y|θ)dθ is the normaliz-

ing constant. It is not always possible to calculate the normalizing constant, which makes

estimation of posterior distribution almost impossible in many cases. However, a sampling

based approach can be taken to evaluate the posterior distribution. One of the well known

sampling techniques is the Markov chain Monte Carlo (MCMC) procedure, which uses

Metropolis-Hastings (MH) algorithm for random draws. The key idea of MH algorithm is

to construct and sample from a Markov chain whose stationary distribution is the target

distribution g(θ|y). The posterior distribution and target distribution are related as:

p(θ|y) =
π(θ)L(y|θ)∫
p(θ)L(y|θ)dθ

∝ π(θ)L(y|θ) = g(θ|y) (D.2)
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Let us say that the objective is to sample from a posterior distribution p(θ|y). Instead

of sampling directly from the posterior distribution (which is not possible since the normal-

izing constant is unknown), samples are drawn from an alternative proposal distribution

q(θ|y). The MH algorithm consists of choosing an initial value θ0, and iteratively accept-

ing or rejecting the candidate samples drawn from the proposal distribution q(θ|y). The

algorithm proceeds according to the following four steps:

1. Select an initial value θ0.

2. Given θi−1, draw a candidate value θ∗ from the proposal distribution q(θ∗|θi−1).

3. Compute the acceptance ratio, α

α =
g(θ∗)/q(θ∗|θi−1)

g(θi−1)/q(θi−1|θ∗)
(D.3)

=
g(θ∗)q(θi−1|θ∗)
g(θi−1)q(θ∗|θi−1)

(D.4)

4. If α ≥ 1, then set θi = θ∗ and if α < 1 then set θi = θ∗ with probability α or θi = θi−1

with probability 1− α.

Note that, both the target distribution g(θ) and the proposal distribution q(θ) are used to

calculate the acceptance ratio (see Eq. D.4) in step-3. Basically, step-3 and step-4 work

as a correction mechanism, since the proposal distribution is not the target distribution.

Based on the choice of proposal distribution q(θ), various MH algorithms can be con-

structed. In general, a proposal distribution may or may not depend upon the previous

iteration’s value of θ. If it does not depend upon the previous iteration value i.e.,

q(θ∗|θi−1) = q(θ∗) (D.5)
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then the resulting algorithm is called an independence chain. In other words, in this case

candidate samples are always drawn from the same distribution q(θ∗). On the other hand, if

the proposal distribution depends upon the previous iteration then it is named as Random-

Walk Metropolis-Hastings. A typical random walk MH algorithm can be expressed as:

q(θ∗|θi−1) = h(θ∗ − θi−1) (D.6)

where h is a symmetric density function about the origin. For example, h(·) can be a normal

density function. If h(·) is normal then the candidate samples are drawn from a normal

distribution with mean θi−1 and a constant variance. For such a case, the calculation

of acceptance ratio α (see Eq. D.4) becomes simple. Since, the normal distribution is

symmetric, the following relation holds,

q(θ∗|θi−1) = q(θi−1|θ∗) (D.7)

and the acceptance ratio (α) is simply equal to g(θ∗)/g(θi−1).

It is clear from the step-4 of the MH algorithm that not all the candidates are accepted.

There are two things that needs to be considered to decide how often a candidate is ac-

cepted? First, it is required that the proposal density q(θ|y) should approximate the target

distribution g(θ|y), which suggests a high acceptance rate. Second, the ratio g(θ|y)/q(θ|y)

should be bounded, which means a lower acceptance rate. This is because, to bound

g(θ|y)/q(θ|y), particularly in the tail portion of the posterior distribution, a relatively dif-

fuse posterior distribution is required. Clearly, a balance is needed between the two for

the selection of an optimum acceptance rate. For example, in the case of a Random-Walk

MH sampler, if the acceptance rate is high, then the random walk will take very small
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steps and will take a very long time to converge to the posterior distribution. On the other

hand, if the acceptance rate is low, then the random walk takes too large a step and many

of the candidate samples will be discarded due to low acceptance rate. For random walk

chains with normal proposal densities, a acceptance rate between 25% to 45% has been

suggested in the literature.

Another important question in MCMC sampling is “how many samples needs to taken

so that the posterior distribution is fully explored ?” This is often done by performing

Raftery and Lewis diagnostics test[178]. This test checks during sampling to providea a

bound for the accuracy of the estimated quantiles of the variables of interest.

Let it be desired to measure some posterior quantile of interest Q. If some acceptable

tolerance r for Q and a probability s of being within that tolerance is defined, then the

Raftery and Lewis diagnostic will calculate the number of iterations N and the number of

burn-ins M necessary to satisfy the specified conditions. In other words, Θ = {M,N} is

chosen such that,

P (Θ < Q± r) < s (D.8)

The number of iterations and burn-in needed is first approximated by running and testing

a shorter pilot chain. The minimum length of pilot Markov chain can be calculated using

the following formula:

nmin =

[
φ−1

(
s+ 1

2

) √
q(1− q)
r

]2

(D.9)

where φ−1 is the inverse of normal CDF.
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Appendix E
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for damage detection and prognosis. Journal of Engineeing Mechanics, 144(2).

2. Prakash, G., Narasimhan, S., & Pandey, M. D. (2017), Condition based maintenance

of low speed rolling element bearings using hidden Markov model, International Jour-

nal of Prognostics and Health Management, 8(5), 16pp.

<https://www.phmsociety.org/node/2183>

3. Prakash, G., Narasimhan, S., & Pandey, M. D. (2017), A probabilistic approach

to remaining useful life prediction of rolling element bearings, Journal of Structural

health monitoring (Accepted)
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