
Accepted Manuscript

Research papers

Comparative study of transient hydraulic tomography with varying parameter-
izations and zonations: Laboratory sandbox investigation

Ning Luo, Zhanfeng Zhao, Walter A. Illman, Steven J. Berg

PII: S0022-1694(17)30649-2
DOI: https://doi.org/10.1016/j.jhydrol.2017.09.045
Reference: HYDROL 22265

To appear in: Journal of Hydrology

Received Date: 23 June 2017
Revised Date: 21 September 2017
Accepted Date: 25 September 2017

Please cite this article as: Luo, N., Zhao, Z., Illman, W.A., Berg, S.J., Comparative study of transient hydraulic
tomography with varying parameterizations and zonations: Laboratory sandbox investigation, Journal of
Hydrology (2017), doi: https://doi.org/10.1016/j.jhydrol.2017.09.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jhydrol.2017.09.045 © 2017. This manuscript version is 
made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jhydrol.2017.09.045
https://doi.org/10.1016/j.jhydrol.2017.09.045
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jhydrol.2017.09.045


  

 1

Comparative study of transient hydraulic tomography with varying 

parameterizations and zonations: Laboratory sandbox investigation 

 

Ning Luo
a
, Zhanfeng Zhao

a,b
, Walter A. Illman

a
 and Steven J. Berg

a,c
 

 

Revised manuscript submitted to Journal of Hydrology 

September 20, 2017 

 

a
 Department of Earth and Environment Sciences, University of Waterloo, Waterloo, ON, 

N2L3G1, Canada 

b
 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of 

Sciences, Beijing, China 

c
 Aquanty Inc, Waterloo, ON, N2L5C6, Canada 

 

 

Keywords: Aquifer heterogeneity; Hydraulic tomography; Transient analysis; Geological 

information; Inverse modeling; Model calibration and validation; Model comparison 

 

* Corresponding author: Ning Luo, nluo1222@gmail.com  



  

 2

Abstract 

 Transient hydraulic tomography (THT) is a robust method of aquifer characterization to 

estimate the spatial distributions (or tomograms) of both hydraulic conductivity (K) and specific 

storage (Ss). However, the highly-parameterized nature of the geostatistical inversion approach 

renders it computationally intensive for large-scale investigations. In addition, geostatistics-

based THT may produce overly smooth tomograms when head data used to constrain the 

inversion is limited. Therefore, alternative model conceptualizations for THT need to be 

examined. To investigate this, we simultaneously calibrated different groundwater models with 

varying parameterizations and zonations using two cases of different pumping and monitoring 

data densities from a laboratory sandbox. Specifically, one effective parameter model, four 

geology-based zonation models with varying accuracy and resolution, and five geostatistical 

models with different prior information are calibrated. Model performance is quantitatively 

assessed by examining the calibration and validation results. Our study reveals that highly 

parameterized geostatistical models perform the best among the models compared, while the 

zonation model with an excellent knowledge of stratigraphy also yields comparable results. 

When few pumping tests with sparse monitoring intervals are available, the incorporation of 

accurate or simplified geological information into geostatistical models reveals more details in 

heterogeneity and yields more robust validation results. However, results deteriorate when 

inaccurate geological information are incorporated. Finally, results reveal that transient 

inversions are necessary to obtain reliable K and Ss estimates for making accurate predictions of 

transient drawdown events. 
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1. INTRODUCTION 

 The detailed and accurate characterization of subsurface heterogeneity in hydraulic 

conductivity (K) and specific storage (Ss) are of great importance to groundwater resource 

management, its security, and remediation of contaminants. Typically, mapping of subsurface 

heterogeneity in K is accomplished through the geostatistical analyses of small-scale K values 

obtained from core samples, slug tests, flowmeter surveys, and single-hole pumping or injection 

tests. In contrast, heterogeneity in Ss has been ignored in many studies as its variability is 

considered to be much less than K. Hence, little work has been done in characterizing Ss 

heterogeneity. 

 One alternative to the geostatistical analysis of small scale data is hydraulic tomography 

(HT). The performance of HT has been evaluated through a number of numerical (Yeh and Liu, 

2000; Bohling et al., 2002; Zhu and Yeh, 2005), laboratory (e.g., Liu et al., 2002, 2007; Illman et 

al., 2007, 2008, 2010, 2015; Berg and Illman, 2011a, 2012; Zhao et al., 2015, 2016), and field 

(e.g., Bohling et al., 2007; Straface et al., 2007; Illman et al., 2009; Cardiff et al., 2009, 2012, 

2013; Berg and Illman, 2011b, 2013, 2015; Brauchler et al., 2011; Castagna et al., 2011; Paradis 

et al., 2016; Zha et al., 2015, 2016; Zhao and Illman, 2017) studies.  

Fundamentally, HT involves the inverse modeling of hydraulic head data obtained during 

multiple pumping/injection tests. There are a number of inverse modeling approaches (e.g., Yeh 

and Liu, 2000; Bohling et al., 2002; Brauchler et al., 2003; Zhu and Yeh, 2005, 2006; Xiang et 

al., 2009; Cardiff and Barrash, 2011; Mao et al., 2013) to map the spatial variations of hydraulic 

parameters. For instance, Yeh and Liu (2000) proposed a sequential successive linear estimator 

(SSLE) to interpret steady state HT (SSHT) data. They evaluated this approach through the 
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examination of uncertainties associated with input parameters, such as mean values and 

correlation scales. However, the uncertainty related to the assumption of boundary conditions 

was not addressed. Zhu and Yeh (2005), then developed a transient hydraulic tomography (THT) 

algorithm based on SSLE that allowed for the joint estimation of heterogeneity in K and Ss as 

well as their uncertainties. 

To overcome the impact of uncertain boundary conditions on K estimation and to 

maintain computational efficiency, Bohling et al. (2002) proposed a steady shape analysis of 

transient drawdown data for HT. Later, through a field study conducted in an alluvial aquifer 

located in Kansas, USA, Bohling et al. (2007) concluded that the steady shape analysis of 

transient drawdown data yields similar performance in estimating K profiles when compared to 

THT, suggesting the viability of the steady shape inversion approach. Nevertheless, the steady-

state and steady shape approaches do not allow for the estimation of Ss, which is critical for 

assessing the availability of groundwater in a basin and is of paramount importance to 

groundwater resource management (Wu et al., 2005). 

Hu et al. (2011) proposed a combined procedure of travel time (Brauchler et al., 2003) 

and steady shape (Bohling et al., 2002) inversions for subsurface heterogeneity characterization. 

In their study, the K distribution was estimated from steady shape inversion, while Ss values were 

calculated based on the estimated K profile and the obtained diffusivity (D) distribution from the 

travel time inversion (Ss = K / D). Therefore, Ss values were not jointly estimated with K during 

the inversions. Brauchler et al. (2013) then demonstrated through a field study at the Stegemuhle 

site in Germany that the combination of travel time and steady shape inversions is an efficient 

approach to characterize aquifer heterogeneity and to estimate the spatial distributions of 

hydraulic parameters. 
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However, through a HT survey conducted in one isolated subhorizontal bedrock fracture, 

Castagna et al. (2011) demonstrated that accurate knowledge of the spatial structures of Ss would 

help to obtain consistent representations of K and Ss fields. In contrast, the inaccurate assumption 

of spatial Ss structures (i.e., spatially heterogeneous Ss field is assumed to be homogeneous) 

would lead to misrepresentations of the Ss fields or poor representations of both K and Ss fields. 

Furthermore, based on the pilot point inversion results of HT data collected at the Stegemuhle 

site, Germany, Jimenez et al. (2015) pointed out that the inclusion of Ss in addition to K in 

inversions could help to minimize model misfit to field data. Contrasting results were obtained 

by Cardiff and Barrash (2011) who found that estimation of K is slightly degraded if storage 

parameters are jointly estimated. Therefore, further research is necessary in assessing the results 

from the simultaneous estimation of K and Ss from transient head data during HT surveys. 

 Another issue that deserves significant attention is what level of model complexity is 

required for HT analysis? To help answer this question, Illman et al. (2015) compared HT with 

different model complexities through the analysis of laboratory sandbox data of Illman et al. 

(2010). In particular, they compared the performance of: (1) isotropic and anisotropic effective 

parameter models, (2) a geological model with constant K value in each layer, and (3) a 

geostatistical model with a spatially variable K field. Only steady state head data were utilized 

for calibration and validation purposes. Results revealed that the geological model with perfect 

knowledge of stratigraphy performed nearly as well as the geostatistical model, especially when 

the number of pumping test data utilized for model calibration was reduced. Schöniger et al. 

(2015) also examined the issue of groundwater model complexity and experimental effort 

through a Bayesian model selection analysis using the steady state head data utilized by Illman et 
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al. (2015).  They concluded that the geological zonation approach was most robust, but only if 

the zonation is accurate.  

 Illman et al. (2015) also concluded that the resulting resolution and accuracy of aquifer 

heterogeneity from the geostatistical interpretation of steady state head data depended on the 

amount of information included for model calibration affirming the conclusions by Yeh and Liu 

(2000) and Cardiff et al. (2013). Results from the study by Illman et al. (2015) revealed that 

details of aquifer heterogeneity were lost when the number of hydraulic head data was reduced 

for geostatistical inverse modeling, especially at or near locations where observation data were 

lacking. In particular, the estimated K tomograms from the sequential or simultaneous 

geostatistical inversions of head data were able to recover the major layers of high and low K 

values, but distinct layer boundaries were not recovered. These relatively smooth K fields were 

adequate in predicting the distributions of drawdowns from independent pumping tests not used 

in the calibration effort. However, the recovery of a finer scale resolution tomogram including 

layer boundaries is likely needed for improved predictions of solute and contaminant transport.  

 Parallel to the findings by Illman et al. (2015), Ahmed et al. (2015) demonstrated that K 

tomograms obtained from the geostatistical interpretation of steady state head data might still 

suffer from the issue of smoothness due to the inherent estimation of conditional means implied 

in most geostatistical inversion approaches, such as the quasi-linear geostatistical approach 

(Kitanidis, 1995) as well as the SSLE (Yeh and Liu, 2000) or the Simultaneous Successive 

Linear Estimator (SimSLE) (Xiang et al., 2009).  

The issue of smooth distributions of estimated hydraulic parameters has also been 

discussed by Hu et al. (2011) and Jimenez et al. (2013, 2015). In particular, Jimenez et al. (2015) 

applied the travel time inversion of hydraulic head response data to obtain the information of 
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domain structural features, which in turn was used to guide the pilot point inversion of head data 

to estimate K and Ss tomograms. Zhou et al. (2014) also incorporated geological information in 

their inverse modeling of geophysical data. They proposed an image-guide inversion approach, 

in which, structural information was extracted from known geology and introduced to regularize 

the inversion process. More recently, Zhao et al. (2016) examined the value of integrating 

geological information on a HT survey through the SSHT analyses of multiple pumping test data 

from a laboratory sandbox (Illman et al., 2010). They found that utilizing an accurate geological 

model as a prior estimate for geostatistical inversions was beneficial in improving the K 

tomograms, layer boundaries and their connectivity. 

Most recently, Zhao and Illman (2017) investigated the value of geological information 

on SSHT analysis of multiple pumping tests at the North Campus Research Site located on the 

University of Waterloo campus in Waterloo, Canada. Both the laboratory (Zhao et al., 2016) and 

field-based (Zhao and Illman, 2017) studies suggested the importance of including accurate 

geological information to improve the results of SSHT analyses of pumping test data. However, 

whether this conclusion translates to THT analysis in which both K and Ss are jointly estimated 

remains unknown. 

 The main objectives of this study are: 1) to extend the work of Illman et al. (2015) to the 

transient case to compare HT inversions of varying model complexities; and 2) to extend the 

work of Zhao et al. (2016) to evaluate the utility of geological information for THT analysis 

through the analyses of laboratory sandbox data collected by Illman et al. (2010). Since the 

investigation is performed in a controlled sandbox with perfect knowledge of geological 

structures, this study will be helpful in identifying conditions in which geological models can be 

useful for future field HT studies. 
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2. EXPERIMENTAL SETUP 

2.1 Sandbox Description and Collected Data 

 A two-dimensional synthetic heterogeneous aquifer constructed in a laboratory sandbox 

is characterized using inverse models of various parameterization and zonations. The length, 

height, and width of the sandbox are 192.0 cm, 82.6 cm, and 10.2 cm, respectively. The sandbox 

is capable of maintaining three constant head boundaries simultaneously by setting two constant 

head reservoirs at each end and ponding water at the top. The remaining three boundaries (front, 

back, and bottom) are no-flow boundaries. 

 To create a realistic heterogeneity pattern, Illman et al. (2010) built this synthetic aquifer 

through the cyclic deposition of sediments under varying water flow and sediment feed rates, 

mimicking an interfingering natural fluvial deposit. In particular, a uniform flow rate and a 

specific sand type were chosen for a given layer deposition, producing small-scale 

heterogeneities within each layer and larger-scale heterogeneities for different layers. Through a 

sediment transport process, 18 layers of varying size sands were deposited, as shown in Fig. 1. 

Such a synthetic heterogeneous aquifer with exactly known stratigraphy is necessary to 

investigate the effect of geological information on groundwater flow modeling. Upon completing 

the deposition of the layers, 48 ports were constructed throughout the aquifer along six columns 

with eight ports each (see Fig. 1). Each port has a diameter of 1.3 cm and fully penetrates the 

aquifer width. These ports can be utilized for pumping and injection of water, as well as 

monitoring head levels with a pressure transducer instrumented at each port. 

 The synthetic aquifer was then characterized with different techniques. Core samples 

extracted from these ports were subjected to grain size analyses and permeameter tests to 
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estimate local K values. In addition, single-hole pumping tests were performed at each port to 

obtain small-scale estimates of K and Ss. The median value of the particle size distribution (d50), 

as well as K and Ss estimates of the different layers are summarized in Table 1. When multiple 

ports are available in a given layer, the geometric mean of their estimates are provided. 

Twenty-four cross-hole pumping tests were also conducted in the synthetic aquifer with 

constant pumping rates ranging from 2.50 to 3.17 mL/s. These tests were conducted at 16 ports 

along columns 2 (ports 2, 8, 14, 20, 26, 32, 38, and 44) and 5 (ports 5, 11, 17, 23, 29, 35, 41, and 

47), as well as at eight additional ports (ports 13, 15, 16, 18, 37, 39, 40, and 42). Prior to each 

pumping test, all pressure transducers were calibrated to ensure accurate data collection and head 

levels in all ports were monitored over several minutes to establish a static, initial condition. 

During each pumping test, hydraulic head responses in all 48 ports were recorded until the 

aquifer reached a steady state condition which was determined by observing the stabilization of 

all pressure head measurements within the aquifer. The pump was then turned off to allow for 

the full recovery of hydraulic heads. 

2.2 Data Used for Modeling 

 In this study, transient head data obtained from eight cross-hole pumping tests are utilized 

for inverse modeling and the remaining 16 tests are reserved for validation purposes. Prior to 

extracting data points from the drawdown records, the presence of drift in transducers is 

accounted for using the scheme discussed by Illman et al. (2007). Furthermore, head records 

from pumped ports are excluded from the analysis because these data are found to be excessively 

noisy due to the use of a peristaltic pump and skin effects. Previous research (Illman et al., 2007; 

Xiang et al., 2009) has shown that inclusion of data from the pumped port would lead to biased 
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results and poor hydraulic parameter estimates. In order to smooth the data, pressure head data 

from observation ports are then fit with a fifth- or sixth-order polynomial curve (Liu et al., 2007), 

and five data points that represent the early, intermediate, and late times of aquifer responses are 

extracted from each curve. For ports where the pressure head curve could not be properly fit with 

a polynomial, five data points are extracted manually to represent the overall behavior of 

pressure heads. In total, 235 data points are extracted from each pumping test. 

 Two cases, depending on the number of pumping tests and the density of observation 

ports, are chosen for this study to assess the performance of different models. For Case 1, eight 

pumping tests (ports 2, 5, 14, 17, 32, 35, 44, and 47) and data points from 47 observation ports 

are utilized for model calibration, while the remaining 16 independent pumping tests (ports 8, 11, 

13, 15, 16, 18, 20, 23, 26, 29, 37, 38, 39, 40, 41, and 42) are utilized for model validation. For 

Case 2, only four pumping tests (ports 26, 29, 44, and 47) and 15 observation ports along the 

second and the fifth well columns from the left boundary of the sandbox are utilized for model 

calibration. We select 16 ports for Case 2 to represent the presence of only two wells with 

multiple screens at various depths, and this case mimics an actual field scenario where wells are 

sparse and the amount of pumping test data is limited for site investigation. To be consistent with 

Case 1, 16 independent pumping tests are utilized for model validation in Case 2. 

3. GROUNDWATER FLOW MODELING APPROACHES 

3.1 Model Setup 

 The synthetic aquifer is discretized into 741 elements and 1,600 nodes with element 

dimensions of 4.1 cm × 4.1 cm × 10.2 cm for all forward and inverse groundwater flow models 

considered. A finer mesh was also tested in a previous study (Illman et al., 2012), but the results 
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did not show significant changes in comparison to the coarser one. Therefore, for consistency 

with previous studies (Illman et al., 2010; Berg and Illman, 2011a; Zhao et al., 2016) who used 

this discretization, this coarse grid is utilized here. 

 Transient groundwater flow can be described by the following equation: 

�	 · 	 ������ℎ
 + �
��� = �����
�ℎ
�� 																															�1� 

subject to initial and boundary conditions: 

ℎ|��� = 	ℎ�, ℎ|�� =	ℎ�, �� 	������ℎ
	 · !|�" = #																												�2� 

where, in equation (1), � is the gradient operator, ���� is hydraulic conductivity (L/T), h is 

hydraulic head (L), �
��� is the pumping rate (L
3
/T) at location ��, and Ss(x) is specific storage 

(1/T). In equation (2), h0 represents the initial hydraulic head, h1 is a constant head (L) at 

boundary %�, q is the specific discharge (L/T) at Neumann boundary %&, and n is a unit vector 

normal to %&. In this study, the transient flow equation is solved by a 3-D finite element model 

MMOC3 (Yeh et al., 1993) for all cases described next. 

3.2 Effective Parameter Model 

 The synthetic aquifer is first characterized as a homogeneous, isotropic medium to 

estimate the effective K and Ss values by coupling the groundwater flow model MMOC3 (Yeh et 

al., 1993) with the parameter estimation code PEST (Doherty, 2005). We did not consider the 

case in which the hydraulic parameters are treated to be anisotropic because previous research by 

Illman et al. (2015) showed little difference in the isotopic and anisotropic results. 
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 The effective parameter model provides zero-resolution on aquifer heterogeneity. 

However, it may still be able to describe the overall behavior of the aquifer, particularly when 

multiple pumping tests are included for the calibration effort. Furthermore, the estimated 

effective K and Ss values can be used as the initial guesses of hydraulic parameters to guide the 

calibration of more sophisticated (i.e., highly parameterized) groundwater flow models. 

 For each case, all pumping test data are included for the estimation of effective 

parameters. In total, 1,880 data points are used for Case 1, while 300 data points are utilized for 

Case 2. The forward model is then automatically calibrated to obtain an optimal set of K and Ss 

by simultaneously matching all data points. The initial values of K and Ss input into PEST are 

0.06 cm/s and 6.1 × 10
-4

 /cm, respectively, which are the geometric means from the kriged K and 

Ss fields based on the estimates from single-hole pumping tests (Berg and Illman, 2011a). In 

PEST, the minimum and maximum bounds are set as 1 × 10
-4 

and 10 cm/s for K, and 1 × 10
-8

 and 

1.0 /cm for Ss. 

3.3 Geology-based Zonation Modeling Approach 

 The synthetic aquifer is then characterized using various geology-based zonation models. 

In this approach, the synthetic aquifer is divided into different zones based on available 

geological information. In each zone, the porous medium is treated to be homogeneous as well as 

isotropic, and a uniform set of K and Ss is estimated and assigned to describe its hydraulic 

properties. To assess the impact of accuracy of geological information on groundwater flow 

modeling, four geology-based zonation models with various accuracy and resolution (GOOD, 

POOR1, POOR2, and POOR3, as shown in Fig. 2) are considered, following the work of Zhao et 

al. (2016). 
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 These geological models are constructed using Leapfrog Hydro (ARANZ Geo Ltd.) 

through the inclusion of borehole information obtained along the six columns of ports. In 

comparison to directly mapping the stratification through the sandbox glass (e.g., the “perfect” 

geological model utilized in Berg and Illman (2011a) and Illman et al. (2015)), interpolation of 

borehole logs is more consistent in constructing geological models from field data. By 

interpolating incorrect stratigraphy information and/or introducing random errors to the layer 

thickness records, poor geological models (Figs. 2b and 2d for POOR1 and POOR3, respectively) 

are constructed to mimic cases of inaccurate identification of borehole information from the field. 

Detailed description of these geological models can be found in Zhao et al. (2016).  

Different from Zhao et al. (2016), the geological model POOR2 (Fig. 2c) used in this 

study is constructed based on the GOOD model (Fig. 2a) by merging some layers with similar 

material types. This simplified geological model with only five zones is constructed to represent 

the scenario with a simplified description of the stratigraphy, but with well identified layer 

boundaries. 

 The four geological models are then discretized using the grid described above to 

construct geology-based zonation models for aquifer characterization. In a similar fashion to the 

effective parameter model, all geology-based zonation models are calibrated using PEST coupled 

with MMOC3 by simultaneously matching all data points. For each case study, the K and Ss 

values obtained from the effective model are used as the initial guesses of hydraulic parameters 

for model calibration, while the bounds of K and Ss are set to be the same as those in the effective 

parameter model. In total, 36 parameters are estimated for geology-based zonation models 

GOOD, POOR1, and POOR3, while only 10 parameters are estimated for the POOR2 model. 

3.4 Geostatistical Inverse Modeling Approach 
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 All geostatistical inversions are conducted using the Simultaneous Successive Linear 

Estimator (SimSLE), developed by Xiang et al. (2009). This inversion approach provides an 

efficient way to include all data points from multiple pumping tests simultaneously for hydraulic 

parameter estimation. In comparison to the Sequential Successive Linear Estimator (SSLE) 

developed for THT analysis (Yeh and Liu, 2000), SimSLE provides more constraints to the 

inverse problem, resulting in faster convergence (Xiang et al., 2009). Additionally, SimSLE 

avoids the computation of varying final estimates when HT data are analyzed in different 

sequences with SSLE (Illman et al., 2008). 

 Geostatistical inversion using SimSLE assumes a transient groundwater flow field, and 

the natural logarithm of K and Ss are both treated as multi-Gaussian, second-order stationary, 

stochastic processes. With given unconditional means, variances, and correlation scales of 

hydraulic parameters, the Successive Linear Estimator (SLE) implemented in SimSLE first 

creates ln K and ln Ss fields by cokriging their initial estimates and head data from all pumping 

tests. These parameter fields are then used to solve the governing flow equation to obtain 

simulated head data. Based on the differences between observed and simulated head data, SLE 

improves the estimates of K and Ss. The iteration process continues until convergence is achieved 

by: (1) the stabilization of the spatial variances of estimated hydraulic parameters; and/or (2) the 

difference of simulated heads between successive iterations being smaller than a prescribed 

tolerance. 

 Based on the differences in initial K and Ss fields for geostatistical inversions, two cases 

are investigated. First, homogeneous initial K and Ss fields are used for model calibration, which 

is consistent with previous HT studies (e.g., Liu et al., 2002; Illman et al., 2008; Berg and Illman, 

2011a). In this case, the effective K and Ss obtained from the homogeneous model provided in 
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the next section are used as initial guesses and assigned to the entire simulation domain. Second, 

the initial K and Ss fields used for geostatistical inversions of HT data are treated to be 

heterogeneous and obtained from the calibrated geology-based zonation models. 

For all cases, the variances of K and Ss (σ
2

lnK, σ
2

lnSs) are initially set as 3.0, while the 

correlation scales are set as λx = 30.0 cm, λy = 10.2 cm, and λz = 10.0 cm for both K and Ss based 

on the statistical properties of kriged K and Ss fields from single-hole estimates (see Tables 3 and 

4 in Berg and Illman, (2011a)). These values have been found to have negligible effects on the 

results due to the availability of large number of head measurements during a HT survey (Yeh 

and Liu, 2000). 

4. RESULTS AND DISCUSSION 

4.1 Effective Parameter Model 

 Treating the entire synthetic aquifer as a homogeneous/isotropic medium, two sets of 

effective K and Ss are estimated through the inclusion of a different number of head data for 

inversions. For Case 1, in which data from eight pumping tests and 47 observation ports are 

utilized for calibration, the effective K and Ss as well as their 95% confidence intervals are 

estimated as K = 9.57 × 10
-2

 ± 2.15 × 10
-3 

cm/s and Ss = 6.32 × 10
-5

 ± 4.30 × 10
-6 

/cm. For Case 2, 

the effective K and Ss with 95% confidence intervals are K = 9.58 × 10
-2

 ± 4.81 × 10
-3

 cm/s and 

Ss = 7.25 × 10
-5

 ± 1.11× 10
-5

 /cm. The 95% confidence intervals are calculated with PEST based 

on the implied linearity assumption used to derive the equation for parameter improvement. 

 The estimated effective K and Ss from the two cases are close to each other, while the 95% 

confidence intervals for both K and Ss increase after reducing the number of data points used for 
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inverse modeling. This result implies that more pumping tests with dense observation locations 

may still be required to obtain reliable estimates of effective parameters. 

 Previously, Berg and Illman (2011a) determined the effective parameters of the synthetic 

aquifer by taking the geometric means of 48 single-hole K and Ss estimates (K = 6.0 × 10
-2

 cm/s 

and Ss = 6.1 × 10
-4

 /cm). These values, however, were found to be poor in predicting drawdowns 

from independent pumping tests, suggesting that the effective parameters obtained from local 

estimates may not be representative of the aquifer. Illman et al. (2015) reached the same 

conclusion based on the effective K that they estimated for the same synthetic aquifer. In 

particular, they found that the effective K estimated by simultaneously analyzing eight pumping 

tests provided improved results in terms of model calibration and validation in comparison to the 

work of (Illman et al., 2010) in which local estimates (e.g., core and single-hole test results) were 

utilized to generate the effective K value of the aquifer. 

 Consequently, the effective K and Ss estimates obtained in this study by simultaneously 

analyzing multiple pumping tests are considered to be more representative of the aquifer in 

comparison to those from Berg and Illman (2011a). These values are then utilized as initial 

guesses of hydraulic parameters for geology-based zonation and geostatistical models, as 

discussed below. 

4.2 Geology-Based Zonation Models 

 Four different geology-based zonation models are calibrated for each dataset case. Figs. 3 

and 4 show the estimated K and Ss tomograms from different zonation models for Cases 1 and 2, 

respectively. Examination of Figs. 3 and 4 reveals that the estimated locations of high and low K 

zones vary from one zonation model to another, when the same number of head data are included 
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for model calibration. This is because these models are calibrated with fixed zones of parameters. 

With a fixed geological model, PEST focuses on the estimation of parameter values of each zone 

to fit the simulated to observed data as close as possible. These results imply that attention 

should be paid when constructing zonation models for aquifer heterogeneity characterization, 

since the inaccurate identification of structural features could lead to unrealistic parameter 

estimates. In addition, the comparison of results from Cases 1 and 2 (Figs. 3 and 4) when the 

same zonation model is calibrated reveals that the identification of high and low K zones varies 

when different numbers of head data are included for model calibration. 

The estimated Ss tomograms do not show distinct structural features, except for the 

simplified zonation model POOR2 (Figs. 3f and 4f), revealing that the heterogeneity of Ss in this 

synthetic aquifer is milder in comparison to that of the K. Moreover, the estimated Ss values 

decrease from the top to the bottom for most zonation models. Such a decreasing trend of Ss was 

explained by Berg and Illman (2011a) that the upper sands were less compressed compared to 

the deeper sand bodies. Although the spatial variance of Ss is estimated to be relatively small, 

differences in estimated Ss tomograms can still be observed. 

 Within each zone, a uniform set of K and Ss is estimated to describe its hydraulic 

properties. Fig. 5 shows the estimated K values as well as their corresponding 95% confidence 

intervals from all zonation models for both cases, while Fig. 6 shows the same, but for Ss 

estimates. The estimated K and Ss values as well as their 95% confidence intervals are provided 

in the Supplementary Material section as Tables S1 to S4 for the GOOD, POOR1, POOR2, and 

POOR3 models. Fig. 5 reveals that when calibrating geology-based zonation models with eight 

pumping tests (Case 1), all K estimates have narrow confidence intervals, suggesting the high 

confidence of these estimates. However, when the number of head data is reduced, noticeable 
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increases in the confidence intervals of K estimates are observed in some zones; in particular, 

Zone 6 for the POOR1 model and Zones 8, 13, and 18 for the POOR3 model. The main reason 

for this is that no observation data are available in these zones when observation ports are 

reduced from 47 (Case 1) to 15 (Case 2).  

It is interesting to note that all Ss estimates from the calibrated geology-based zonation 

models result in narrow confidence intervals (Fig. 6), except for the case in which the simplified 

geology-based zonation model (POOR2) is calibrated using fewer data (as shown in green areas 

of Fig. 6c). With given structural features, the obtained Ss estimates for different zones are close 

to each other. This is also the case when comparing Ss estimates from different zonation models. 

These results suggest that the estimation of Ss for this synthetic aquifer is less likely to be 

affected by structural errors. 

4.3 Geostatistical Inverse Model with Homogeneous Initial K and Ss Fields 

 Without providing additional prior information, the geostatistical inversion of THT data 

using SimSLE starts with homogeneous initial K and Ss fields. In SimSLE, the L2 norm between 

the simulated and observed head is computed for each iteration. Fig. S2 in the Supplementary 

Material section shows how the L2 norm evolves with the iteration number. As suggested by 

Xiang et al. (2009), we select the inversion results when the L2 norm stabilizes. Here, 

stabilization in the L2 norm is meant when the variation of L2 from one iteration to the next 

becomes smaller than 3 × 10
-4

 (see Fig. S2).  

 Fig. 7 shows the estimated K and Ss tomograms as well as the corresponding ln K and ln 

Ss variance maps for Case 1, while Fig. 8 shows the same, but for Case 2. Black lines in K 

tomograms indicate the exact layer boundaries of the synthetic aquifer, which are delineated 
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based on the photograph of the deposits (see Fig. 1). Such stratigraphic information is not 

included for the estimated Ss tomograms because the spatial variation of Ss of this synthetic 

aquifer does not reveal distinct structural features. Different from the zonation modeling 

approach, the geostatistical inversion of THT data estimates hydraulic parameters for each finite 

element, resulting in relatively smooth distribution of K and Ss estimates. Through the 

simultaneous inversion of transient head data from eight pumping tests with 47 observation ports 

(Case 1), the estimated K tomogram (Fig. 7a) reveals considerable details to aquifer 

heterogeneity. The estimated high and low K zones show significant agreement to most visible 

layers of the synthetic aquifer in terms of their positions. When fewer pumping tests with fewer 

observation ports are utilized for the geostatistical inversion (Case 2), the estimated K tomogram 

(Fig. 8a) shows a similar pattern of high and low K zones, but with great loss of detail in 

heterogeneity, particularly on both sides of the aquifer where observation data are removed. 

Although the estimated Ss of this synthetic aquifer is much less variable when compared to K, the 

loss of detail in heterogeneity can still be observed in the estimated Ss tomograms (Figs. 7c and 

8c for Cases 1 and 2, respectively). The comparison of Cases 1 and 2 reveals that a large number 

of pumping tests with dense observation intervals is required to capture most heterogeneity 

features, which is in line with the conclusion of previous studies (e.g., Cardiff et al., 2013; Illman 

et al., 2015). This study shows that the inclusion of additional hydraulic head data through 

transient analysis does not negate the necessity of a large number of monitoring points to 

accurately depict the structural features and their boundaries. 

 The corresponding ln K and ln Ss variances computed by SimSLE indicate the uncertainty 

of parameter estimates, with larger variance values indicating higher uncertainty. For each case, 

small ln K and ln Ss variances are obtained around pumping ports, while variances become larger 
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when moving away from the ports. In general, for both cases, the ln Ss variances are larger than 

those of ln K, revealing that it is more difficult to estimate Ss. Comparing variance maps from 

Cases 1 and 2, a significant increase in values are observed for both ln K and ln Ss variances 

when fewer head data are utilized for geostatistical inversions. These results indicate that more 

accurate K and Ss tomograms will be obtained in areas where there are available head data in 

comparison to areas where head data are lacking, which again emphasizes the importance of the 

availability of head data for aquifer heterogeneity characterization using geostatistical models. 

 The geostatistical inverse modeling of transient head data using SimSLE is demonstrated 

to reveal great details of aquifer heterogeneity; however, the estimated major zones fail to 

capture the precise shapes of stratigraphic features by using hydraulic head data only. Without 

providing the layer information prior to inverse modeling, the estimated K tomograms result in 

smooth transitions from one layer to the next, and the layer boundaries become ambiguous, 

especially when the amount of head data is limited for aquifer characterization. To improve the 

results in terms of preserving stratigraphic feature shapes and revealing layer boundaries, 

additional information is needed when conducting geostatistical inversions for aquifer 

heterogeneity characterization. We next utilize geological information as prior estimates for 

geostatistical inverse modeling. 

4.4 Geostatistical Inverse Models with Heterogeneous Initial K and Ss Fields 

 The incorporation of geological information into the geostatistical inversion approach is 

achieved by constructing geology-based heterogeneous initial parameter fields for model 

calibration. Zhao et al. (2016) applied this method for the SSHT analysis of head data. In their 

study, permeameter K values were assigned to geological models to construct the initial K fields. 
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 Different from Zhao et al. (2016), this study utilizes the estimated K and Ss tomograms 

from the calibrated geology-based zonation models as initial guesses. The utilization of 

calibrated geological information avoids the uncertainty associated with small scale estimates. 

To provide a detailed investigation of the effect of geological information on aquifer 

heterogeneity characterization, four types of geological information with varying accuracy and 

resolution (GOOD, POOR1, POOR2, and POOR3) are incorporated for both Cases 1 and 2. 

 Fig. 9 illustrates the estimated K and Ss tomograms for Case 1 (see Fig. S2a for L2 norms). 

In particular, Figs. 9a and 9b show the K and Ss tomograms, respectively, when the GOOD 

geological information is incorporated into the geostatistical inversion of THT data. Black lines 

that represent the accurate stratification of the synthetic aquifer are also included in the K 

tomogram. In comparison to the K tomogram estimated from the homogeneous initial field (Fig. 

7a), Fig. 9a preserves more stratigraphic features and layer boundaries. On the other hand, the 

estimated Ss tomogram (Fig. 9b) remains almost the same as the one estimated without providing 

geological information (Fig. 7c). 

 The estimated K and Ss tomograms when inaccurate geological information is included as 

initial guesses are shown as Figs. 9c-9h. The estimated K tomograms (Figs. 9a, 9c, 9e, and 9g for 

GOOD, POOR1, POOR2, and POOR3, respectively) are similar in terms of the patterns of 

estimated high and low K zones, while the shapes and the continuity of these zones are slightly 

different among each other. Differences can also be observed in the estimated Ss tomograms 

(Figs. 9b, 9d, 9f, and 9h for GOOD, POOR1, POOR2, and POOR3, respectively) when 

geological information of varying resolution and accuracies are incorporated into inverse 

modeling. In particular, when the simplified geological information (POOR2) is included as an 
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initial guess, unexpected low Ss zones are estimated across the middle of the simulation domain 

(Fig. 9f). 

 Fig. 10 shows the estimated K and Ss tomograms for Case 2 (see Fig. S2b for L2 norms) 

when four types of geological information are introduced separately during the calibration 

process. Through the incorporation of the GOOD geological model as prior information, the 

estimated K tomogram (Fig. 10a) reveals more details of heterogeneity in comparison to the one 

obtained with homogeneous initial parameter fields using the same dataset (Fig. 8a), particularly 

at the fringes of the aquifer where observation ports are lacking. Even with limited head data, the 

estimated high and low K zones still show significant agreement with most layers. However, the 

estimated Ss tomogram does not show significant change in comparison to the one without 

providing geological information (Fig. 8c). 

 In contrast to Case 1 results, the estimated K tomograms in Case 2 are quite different 

among each other when various geological information are incorporated. Similar differences in 

estimated Ss tomograms are also visible in terms of the pattern of high and low Ss zones as well 

as their shapes. This suggests that when pumping and observation densities are high, hydraulic 

head data will dominate the inversion process and lead to similar K and Ss tomograms rather than 

reflect the prior geological information. However, the effects of prior geological information on 

inverse modeling become more significant when fewer pumping test data are available for 

calibration. The accuracy of these K and Ss tomograms are examined in later sections through the 

investigation of their abilities in predicting drawdowns from independent pumping tests. 
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4.5 Model Calibration and Validation 

 The calibration and validation results associated with different models are first assessed 

qualitatively by plotting the scatterplots of simulated versus observed drawdowns, which 

provides visual information of the spatial distribution of errors in terms of scatter and bias. Then, 

quantitative evaluation of model error is performed by computing the mean absolute errors (L1) 

and mean square errors (L2) between simulated and observed drawdown values using: 
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where n is the total number of drawdown data, i indicates the data number, +* and +-* represent i-

th simulated and observed drawdown values, respectively. The L1 norm is calculated to analyze 

the discrepancy between simulated and observed drawdowns, while the L2 norm tends to 

magnify large discrepancies and allow one to better assess the performance of different models. 

 The calibration scatterplots of all investigated models are provided in the Supplementary 

Material section and illustrated as Figs. S3 - S4 for Case 1, and as Figs. S5 - S6 for Case 2. A 

linear model is fit to each scatterplot and the corresponding coefficient of determination (R
2
) 

values are provided. These scatterplots reveal that the calibration result improves when a larger 

number of estimated parameters are considered in the inverse model, and the geostatistical model 

yields the best result. This makes sense since the highly parameterized geostatistical model 

allows for the adjustment of K and Ss estimates in each element to fit the observation data. 
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 For Case 1, the validation scatterplots that compare the simulated drawdown values from 

different models against the observed drawdowns from 16 independent pumping tests are 

illustrated in Figs. 11 and 12. In each scatterplot, the linear model of the fit, as well as the 

coefficient of determination (R
2
) are provided at the bottom. Comparing the three different 

modeling approaches (Fig. 11), the geostatistical model (Fig. 11f) performs the best in predicting 

drawdowns for the entire domain, closely followed by the GOOD geology-based zonation model 

(Fig. 11b), while the utilization of effective homogeneous model (Fig. 11a) yields biased 

predictions of drawdowns with relatively larger scatter. This is consistent with the SSHT results 

of Illman et al. (2015). On the other hand, it is interesting to note that the zonation models based 

on inaccurate geological information (Figs. 11c - 11e) yield slightly better prediction results in 

comparison to the effective homogeneous model. The main reason for this is that more parameter 

sets are estimated for zonation models (18 for POOR1 and POOR3, and 5 for POOR3), which in 

turn emphasizes the importance of parameterization for groundwater flow modeling. 

Examination of Fig. 12 reveals that the estimated K and Ss tomograms from the geostatistical 

inverse model with GOOD geological information (Fig. 12a) as initial parameter fields yield 

minor improvements in predicting drawdown values for the entire domain compared to the case 

with homogeneous initial parameter fields (Fig. 11f). On the other hand, the incorporation of 

inaccurate geological information does not significant impact the prediction results. This makes 

sense because the inversion results reflect more about hydraulic head information rather than 

prior geological information when abundant head data are available for inverse modeling, and 

the resulting K and Ss tomograms perform similarly in predicting independent pumping test data. 

 For Case 2, the validation scatterplots are illustrated in Figs. 13 and 14. The effective 

homogeneous model (Fig. 13a) still performs the worst in predicting drawdowns from 
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independent pumping tests. However, it is surprising to find that the GOOD geology-based 

zonation model (Fig. 13b) provides prediction results that are indistinguishable to the 

geostatistical inverse model with homogeneous initial K and Ss fields (Fig. 13f). This finding 

suggests that when the number of head data is limited, the utilization of geological model with 

good knowledge of stratification yields results that are comparable to those obtained by the 

geostatistical model, which is in line with the conclusion provided by Illman et al. (2015), who 

only analyzed steady state head data. However, it should be noted that the GOOD geology-based 

zonation model utilized in this study is constructed based on a large amount of borehole data 

with accurate identification of stratifications, which is difficult to obtain in the field.  On the 

other hand, the validation results associated with other geology-based zonation models (Figs. 13c, 

13d, and 13e for POOR1, POOR2, and POOR3, respectively) are not as good as the result 

provided by the geostatistical inverse model.  

For Case 2, some differences in validation scatterplots are evident for geostatistical 

inverse models with different heterogeneous initial parameter fields, as shown in Fig. 14. 

Through the incorporation of GOOD geological information, the estimated K and Ss tomograms 

provide improved prediction results (Fig. 14a) for the entire domain with higher correlation 

between simulated and observed drawdowns in comparison to the case with homogeneous initial 

parameter fields (Fig. 13f). Slight improvements in terms of bias and scatter are also observed in 

Fig. 14c, in which simplified geological information (POOR2) is incorporated. On the other hand, 

when inaccurate stratigraphy and layer thickness information are introduced during model 

calibration, the estimated K and Ss tomograms provide worse prediction results (Figs. 14b and 

14d for POOR1 and POOR3, respectively) in comparison to the case with homogeneous initial 

parameter fields. 
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 The L1 and L2 norms of calibration and validation results are summarized in Tables 2 for 

Cases 1 and 2. These values are obtained by averaging the results from different pumping tests 

for each model calibration and validation, while the norms associated with individual pumping 

tests are presented in the Supplementary Material section as Tables S5 - S8 for Case 1, while as 

Tables S9 - S12 for Case 2. For both cases, the highly parameterized geostatistical model 

performs consistently across the different pumping tests (shown as Tables S5 - S12), suggesting 

that the approach is more consistently reliable in characterizing aquifer heterogeneity and 

predicting drawdowns in comparison to the effective homogeneous and geology-based zonation 

modeling approaches. However, the highly parameterized geostatistical model may suffer from 

the issue of over-parameterization and lead to ill-posed inversion problems. In this case, a large 

number of dataset (e.g., transient head responses obtained from HT) is required for the 

geostatistical inversion model to estimate reliable spatial distributions of hydraulic parameters 

(Schöniger et al., 2015). After incorporating geological information into geostatistical model 

calibration, L1 and L2 norms are found to be comparable for Case 1, while significant differences 

are observed for Case 2, especially when the estimated K and Ss tomograms are used in 

predicting drawdowns form independent pumping tests. 

 Comparison of results from Cases 1 and 2 reveals that geological information becomes 

increasingly important for aquifer heterogeneity characterization, when fewer pumping tests and 

observation data are available. However, close attention should be paid in obtaining accurate 

geological data, since the incorporation of inaccurate geological information adversely impacts 

the accuracy of parameter estimates, which in turn leads to poor predictions of independent 

pumping tests. 
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4.6 Predictability of Transient Drawdown Curves 

 To further investigate the performance of different models in predicting independent 

pumping tests, simulated drawdown curves at 16 selected ports are plotted against actual data. 

Figs. 15 and 16 illustrate the simulated drawdown curves using K and Ss tomograms from 

different models when conducting a pumping test at port 40 for Case 1, while Figs. 17 and 18 

illustrate the same, but for Case 2. Results for all other pumping tests used for model validation 

are provided in the Supplementary Material section as Figs. S7 - S66. In each subplot, the 

observation data are expressed as green dots, while the simulated drawdown curves from the 

various models are plotted with different colors and types. 

 Fig. 15 shows that when a large number of head data is used for inverse modeling, the 

utilization of K and Ss tomograms from the geostatistical model with homogeneous initial 

parameter fields is able to predict drawdowns at most of the ports, followed by the zonation 

model with GOOD geological information. The performance of the effective model, as well as 

other geology-based zonation models in predicting drawdowns, in general, are poorer and vary 

from one port to another. Upon incorporating geological information as initial guesses into 

geostatistical models, Fig. 16 illustrates that the estimated K and Ss tomograms perform similarly 

among each other and the predictions are excellent for most ports. 

 When both pumping tests and observation ports are reduced, Fig. 17 shows that the 

geostatistical model with homogeneous initial K and Ss fields fails to capture drawdowns at some 

ports, particularly for the ports located at the fringes of the aquifer (e.g., ports 13, 18, 25, 30, 37, 

and 42). The main reason for this is that observation data at these ports are removed for inverse 

modeling, and the estimated K and Ss tomograms fail to reveal the details of heterogeneity in 

these areas, as shown in Figs. 7a and 7c. In contrast, by providing accurate stratifications, the K 
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and Ss tomograms associated with geostatistical model provides better predictions of drawdown 

curves at these ports (Fig. 18). This result again suggests that when the number of head data is 

limited for aquifer characterization, a good knowledge of stratification is quite important, and it 

can be incorporated into geostatistical models to reveal more details in heterogeneity and provide 

more accurate prediction results. Overall, integration of geological information into hydraulic 

tomography is a good practice and should result in better results when accurate geological data 

are available. 

5. ON THE VALUE OF TRANSIENT ANALYSIS OF HYDRAULIC 

TOMOGRAPHY DATA 

 One remaining question is whether one should preferentially conduct transient inversions 

instead of steady state inversions for HT analysis. While steady state HT analyses under 

laboratory conditions are fast and have been shown to produce reliable K tomograms (Illman et 

al., 2007, 2008, 2010, 2015), reaching steady state conditions in the field requires long pumping 

tests, assuming it is possible to reach steady state, and the effects of the boundary conditions may 

affect the K estimates. Transient inversions, on the other hand, can be conducted with pumping 

tests of shorter durations and the effects of boundary conditions may be mitigated. Moreover, 

Castagna et al. (2011) has shown that to obtain more reliable K estimates, the simultaneous 

inversion of both K and Ss are necessary. 

 To investigate this issue, two additional cases are run by conducting SSHT, using the 

same pumping and observation densities (Cases 1 and 2) utilized for THT analyses. Results from 

the SSHT are then compared to those from THT presented earlier. In particular, K tomograms 
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from SSHT with a geometric mean of 48 Ss values (Ss = 6.1 × 10
-4

 /cm) from single-hole tests are 

used to conduct forward simulations of 16 independent pumping tests. 

 Results (Fig. 19) reveal that the drawdown predictions are significantly biased for both 

Cases 1 (Fig. 19a) and 2 (Fig. 19b) suggesting that in order to achieve accurate predictions of 

transient drawdowns, transient inversions are necessary. 



  

 30 

6. SUMMARY AND CONCLUSIONS 

 In this study, a synthetic heterogeneous aquifer constructed in a laboratory sandbox 

(Illman et al., 2010) is characterized with transient hydraulic tomography (THT) using various 

parameterization and zonation models through the simultaneous inversion of transient head data 

from multiple pumping tests. The main objectives of this THT study are: (1) to evaluate the 

performances of differently parameterized models in aquifer characterization and (2) to 

investigate the impact of geological information for inverse modeling by directly calibrating 

geology-based zonation models and incorporating them as prior information for geostatistical 

inverse models. Two cases of different pumping and observation densities are selected to 

accomplish this study. For Case 1, transient head data from eight pumping tests with 47 

observation ports are simultaneously included for model calibration. For Case 2, the number of 

pumping tests is reduced to four, and head data from 15 observation ports are utilized. 

 The aquifer is first characterized as a homogeneous medium to estimate the effective K 

and Ss. Then, four geology-based zonation models of varying accuracy and resolution are 

constructed to characterize the aquifer with fixed zones of parameters. After that, geostatistical 

inverse models are utilized to map the heterogeneity in K and Ss. In addition to the case with 

homogeneous initial parameter fields, the estimated K and Ss tomograms from the calibrated 

geology-based zonation models are utilized as heterogeneous initial parameter fields for 

geostatistical inversions. These models are then validated through the prediction of drawdowns 

from 16 independent pumping tests. This study leads to the following findings and conclusions: 

1. Treating the synthetic aquifer as a homogeneous medium, the simultaneous inversion of 

multiple pumping tests yields effective K and Ss estimates that are more representative of 
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the aquifer in comparison to those generated from small scale estimates. These effective 

values, however, are still less reliable in predicting independent pumping tests, 

suggesting that the accurate mapping of aquifer heterogeneity is necessary in building 

more robust groundwater flow models. 

2. For each dataset case, all geology-based zonation models are well calibrated. This is 

because the calibration process related to the zonation modeling approach forces the 

estimation of parameters in each zone to fit the simulated data as close as possible to 

observed ones, which in turn results in different patterns of estimated high and low value 

zones of K and Ss among different geology-based zonation models. However, only the 

zonation model with good geological information is found to be adequate in predicting 

independent pumping tests. These results indicate that when constructing zonation 

models for aquifer characterization, accurate information will be required to construct 

zones for parameter estimations to achieve robust groundwater modeling results. 

3. By comparing differently parameterized models, we find that the effective homogeneous 

model performs the worst in terms of model calibration and validation. The geology-

based zonation models provide slightly improved calibration and validation results, even 

when inaccurate geological information is introduced. Geostatistical inverse models with 

spatially variable parameter fields yield the best results in terms of model calibration and 

validation. The comparison result emphasizes the importance of parameterization for 

aquifer characterization. For a HT survey when a large number of head data are available, 

highly parameterized models yield more accurate representations of aquifer heterogeneity 

as shown conclusively through our model validation results. On the other hand, with a 
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given amount of head data, the discretization of models used for inversion should be 

considered carefully in order to avoid the issue of over-parameterization. 

4. In Case 2, the calibrated geology-based zonation model (with accurate geological data) 

provides slightly improved prediction results in comparison to the geostatistical model 

with homogeneous initial parameter fields, in terms of quantitative metrics (L1, L2, and 

R
2
). This result suggests that when the number of pumping tests and observation ports are 

small, the inversion of zonation model with accurate geological information is able to 

yield comparable results to the geostatistical inverse modeling approach. In contrast, the 

inversion of zonation models based on inaccurate geological information provides worse 

prediction results when compared to the geostatistical inverse modeling case. 

5. The impact of geological information on THT analysis of transient head data is further 

investigated by incorporating geological information of varying resolution and quality as 

prior information. When accurate geological information is incorporated, more structural 

features consistent with the known geology are revealed through the estimated K 

tomograms for both cases. Through the incorporation of inaccurate geological 

information, similar performance of models in terms of calibration and validation results 

is obtained for Case 1, which reveals that the impact of geological information for HT is 

slight when there are a large number of pumping tests and a dense network of observation 

intervals. For Case 2, the validation results are improved after incorporating GOOD and 

POOR2 geological information, while worse validation results are obtained when 

incorporating inaccurate geological information (POOR1 and POOR3). These results 

reveal that, when the number of pumping tests and observation intervals is limited, the 

incorporation of accurate or simplified geological information will help to reveal more 
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accurate heterogeneity, which in turn results in improved prediction results. The sandbox 

results provide important insights into field HT surveys and their interpretation. However, 

careful attention should be paid in obtaining more accurate geological data for including 

as prior information into inverse models, since inaccurate geological models will lead to 

adverse impacts on THT results, which will lead to poor groundwater flow models and 

prediction of heads. 

6. We also compared the results from steady state and transient inversions of the same 

pumping test data. Forward simulations of 16 pumping tests conducted with the K 

tomogram obtained from the steady state inversion together with an estimate of Ss 

obtained from single-hole tests yielded significantly biased transient drawdown 

predictions. Therefore, our results suggest that in order to obtain accurate predictions of 

transient drawdowns from independent tests, K and Ss tomograms from THT analyses are 

necessary. 

7. While the sandbox THT study is encouraging, the sandbox consists of sands of various 

sizes resulting in a low degree of Ss heterogeneity. Since the sandbox does not contain 

very low K materials (i.e., clays) representative of aquitards, we are not certain whether 

HT can reliably map such zones with pumping test data alone. We are currently 

conducting the THT analyses of multiple pumping tests at a highly heterogeneous site 

and examining the importance of utilizing long term pumping tests and geological data 

on such inversions. Results from this field-based study should yield important insights on 

the abilities for THT to map both aquifers and aquitards. 
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Figure Captions 

Fig. 1: Photograph of synthetic heterogeneous aquifer showing the layer (black) and port (blue) 

numbers (modified after Illman et al., 2010). Red circles indicate the 48 ports installed in the 

aquifer. 

Fig. 2: Geological models with various accuracy and resolution: (a) GOOD; (b) POOR1; (c) 

POOR2; (d) POOR3. 

Fig. 3: K and Ss tomograms estimated from geology-based zonation models for Case 1. K 

tomograms: (a) GOOD; (c) POOR1; (e) POOR2; (g) POOR3. Ss tomograms: (b) GOOD; (d) 

POOR1; (f) POOR2; (h) POOR3. 

Fig. 4: K and Ss tomograms estimated from geology-based zonation models for Case 2. K 

tomograms: (a) GOOD; (c) POOR1; (e) POOR2; (g) POOR3. Ss tomograms: (b) GOOD; (d) 

POOR1; (f) POOR2; (h) POOR3. 

Fig. 5: Estimated K values and corresponding 95% confidence intervals of Cases 1 and 2 for four 

different geology-based zonation models: a) GOOD; b) POOR1; c) POOR2; d) POOR3. 

Fig. 6: Estimated Ss values and corresponding 95% confidence intervals of Cases 1 and 2 for four 

different geology-based zonation models: a) GOOD; b) POOR1; c) POOR2; d) POOR3. 

Fig. 7: K and Ss tomograms and their corresponding variances for Case 1 with homogeneous 

initial K and Ss fields. (a) K tomogram, (b) the corresponding ln K variance, (c) Ss tomogram, (d) 

the corresponding ln Ss variance. Black lines in the K tomogram represent the accurate 

stratification of the synthetic aquifer. 
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Fig. 8: K and Ss tomograms and their corresponding variances for Case 2 with homogeneous 

initial K and Ss fields. (a) K tomogram, (b) the corresponding ln K variance, (c) Ss tomogram, (d) 

the corresponding ln Ss variance. Black lines in the K tomogram represent the accurate 

stratification of the synthetic aquifer. 

Fig. 9: K and Ss tomograms from geostatistical models with heterogeneous initial K and Ss fields 

for Case 1. K tomograms: (a) GOOD; (c) POOR1; (e) POOR2; (g) POOR3. Ss tomograms: (b) 

GOOD; (d) POOR1; (f) POOR2; (h) POOR3. Black lines in (a) represent the accurate 

stratification of the synthetic aquifer. 

Fig. 10: K and Ss tomograms from geostatistical models with heterogeneous initial K and Ss 

fields for Case 2. K tomograms: (a) GOOD; (c) POOR1; (e) POOR2; (g) POOR3. Ss tomograms: 

(b) GOOD; (d) POOR1; (f) POOR2; (h) POOR3. Black lines in (a) represent the accurate 

stratification of the synthetic aquifer. 

Fig. 11: Validation scatterplots (Case 1) of simulated versus observed drawdowns for different 

modeling approaches. (a) effective model, (b)-(e) four geology-based zonation models: (b) 

GOOD, (c) POOR1, (d) POOR2, (e) POOR3; and (f) geostatistical model with homogeneous 

initial parameter fields. 

Fig. 12: Validation scatterplots (Case 1) of simulated versus observed drawdowns for 

geostatistical models incorporated with four different types of geological information. (a) GOOD, 

(b) POOR1, (c) POOR2, and (d) POOR3. 

Fig. 13: Validation scatterplots (Case 2) of simulated versus observed drawdowns for different 

modeling approaches. (a) effective model, (b)-(e) four geology-based zonation models: (b) 



  

 42 

GOOD, (c) POOR1, (d) POOR2, (e) POOR3; and (f) geostatistical model with homogeneous 

initial parameter fields. 

Fig. 14: Validation scatterplots (Case 2) of simulated versus observed drawdowns for 

geostatistical models incorporated with four different types of geological information. (a) GOOD, 

(b) POOR1, (c) POOR2, and (d) POOR3. 

Fig. 15: Prediction of drawdown curves at 16 selected ports when conducting pumping test at 

port 40. K and Ss tomograms are obtained from different modeling approaches with 8 pumping 

tests and 47 observation ports (Case 1). 

Fig. 16: Prediction of drawdown curves at 16 selected ports when conducting pumping test at 

port 40. K and Ss tomograms are obtained from geostatistical models with different initial 

parameter fields through the simultaneous inversion of transient head data from eight pumping 

tests and 47 observation ports (Case 1). 

Fig. 17: Prediction of drawdown curves at 16 selected ports when conducting pumping test at 

port 40. K and Ss tomograms are obtained from different modeling approaches with four 

pumping tests and 15 observation ports (Case 2). 

Fig. 18: Prediction of drawdown curves at 16 selected ports when conducting pumping test at 

port 40. K and Ss tomograms are obtained from geostatistical models with different initial 

parameter fields through the simultaneous inversion of transient head data from four pumping 

tests and 15 observation ports (Case 2). 
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Fig. 19: Validation scatterplots of simulated versus observed transient drawdowns utilizing K 

tomograms obtained from SSHT coupled with the geometric mean of 48 Ss values (Ss = 6.1 × 10
-

4
 /cm) obtained from single-hole tests. (a) Case 1, (b) Case 2. 
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Table 1 - Marked: Sand type, d50, K and Ss estimates for each deposited layer in the synthetic 

heterogeneous aquifer
a
. 

Layer Sand 
d50 

(mm) 

K (cm/s) 

Shepherd 

Core Permeameter 

K
b
 (cm/s) 

Single-Hole 

K
b
 (cm/s) 

Single-Hole 

Ss
b
 (/s) 

1 20/30 0.75 1.03 × 10
-1 

3.20 × 10
-2
 5.32 × 10

-2
 2.12 × 10

-4
 

2 4030 0.35 2.99 × 10
-2
 5.29 × 10

-2
 5.67 × 10

-2
 2.60 × 10

-4
 

3 F-85 0.15 7.28 × 10
-3
 7.14 × 10

-2
 5.70 × 10

-2
 5.00 × 10

-4
 

4 20/40 0.58 6.68 × 10
-2
 5.68 × 10

-2
 5.10 × 10

-2
 2.22 × 10

-4
 

5 mix 0.46 N/A N/A N/A N/A 

6 mix 0.46 N/A 8.16 × 10
-2
 5.00 × 10

-2
 4.00 × 10

-4
 

7 #12 0.52 5.70 × 10
-2
 1.27 × 10

-1
 7.35 × 10

-2
 4.20 × 10

-4
 

8 F32 0.5 5.33 × 10
-2
 1.34 × 10

-1
 4.50 × 10

-2
 1.75 × 10

-4
 

9 20/40 0.58 6.68 × 10
-2
 8.69 × 10

-2
 4.60 × 10

-2
 2.15 × 10

-4
 

10 F-65 0.2 1.20 × 10
-2
 1.13 × 10

-1
 8.25 × 10

-2
 1.14 × 10

-3
 

11 #12 0.52 5.70 × 10
-2
 1.37 × 10

-1
 2.05 × 10

-1
 2.15 × 10

-4
 

12 16/30 0.87 1.32 × 10
-1
 3.40 × 10

-2
 4.95 × 10

-2
 6.32 × 10

-4
 

13 20/30 0.75 1.03 × 10
-1
 2.60 × 10

-1
 1.05 × 10

-1
 9.80 × 10

-4
 

14 f-75 0.17 9.22 × 10
-3
 9.79 × 10

-2
 5.70 × 10

-2
 9.80 × 10

-4
 

15 20/40 0.58 6.68 × 10
-2
 8.58 × 10

-2
 7.50 × 10

-2
 2.00 × 10

-3
 

16 mix 0.46 N/A 4.16 × 10
-2
 2.68 × 10

-2
 7.11 × 10

-4
 

17 F-85 0.15 7.29 × 10
-3
 4.51 × 10

-2
 4.47 × 10

-2
 1.14 × 10

-3
 

18 20/30 0.75 1.03 × 10
-1
 1.45 × 10

-1
 1.16 × 10

-1
 3.38 × 10

-3
 

a
 Data from Illman et al. (2010). 

b
 If multiple ports are in the same layer then the geometric mean is presented. 
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Table 2 - Marked: Summary of L1 and L2 norms of calibration and validation results for Cases 1 

and 2. 

 

Case 1 Case 2 

Calibration Validation Calibration Validation 

L1 L2 L1 L2 L1 L2 L1 L2 

Effective Parameter Model 0.250 0.124 0.223 0.096 0.317 0.167 0.220 0.095 

Geology-based 

Zonation Model 

GOOD 0.102 0.027 0.118 0.038 0.079 0.016 0.139 0.059 

POOR1 0.112 0.029 0.152 0.061 0.096 0.020 0.168 0.077 

POOR2 0.130 0.052 0.151 0.064 0.179 0.090 0.156 0.077 

POOR3 0.135 0.046 0.159 0.061 0.159 0.043 0.175 0.067 

Geostatistical Model with 

Homogeneous Initial Fields 
0.046 0.005 0.091 0.026 0.042 0.004 0.149 0.061 

Geostatistical 

Model with 

Heterogeneous  

Initial Fields 

GOOD 0.050 0.006 0.087 0.023 0.048 0.006 0.128 0.057 

POOR1 0.051 0.005 0.096 0.030 0.050 0.006 0.159 0.080 

POOR2 0.050 0.005 0.090 0.024 0.048 0.005 0.129 0.060 

POOR3 0.050 0.005 0.091 0.025 0.047 0.005 0.149 0.067 
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Highlights: 

1. THT is necessary in accurate estimating both K and Ss heterogeneities. 

2. Geostatistics-based inverse models performs the best when there are abundant data. 

3. With limited data, zonation-based models perform close to geostatistics-based ones. 

4. Incorporation of accurate geological information improves THT results. 

 




