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Abstract

Characterisation of long-term adherence to EPA and DHA intakes through biomarkers and dietary assessments has implications for

interpreting the findings of long-term intervention studies. Adherence to dietary advice targeting an EPA þ DHA intake of 1 g/d was exam-

ined over 1 year. Men and women (n 45) received dietary advice to increase EPA and DHA intakes from seafood, nutraceutical (fish oil)

or functional food sources, while a fourth group received combined advice. Blood biomarkers and dietary intakes of EPA and DHA were

evaluated at baseline and post-intervention at weeks 4, 8, 12, 24 and 52. Assessment by 3 d diet records indicated that EPA þ DHA intakes

increased relative to baseline in weeks 4–52 following the seafood, nutraceutical and combined advice (advice group £ time effect,

P¼0·03). The percentage of DHA in plasma and whole blood and the percentage of EPA in erythrocytes, plasma and whole blood

were higher in weeks 4–52 when compared with the corresponding baseline measurement. In contrast, the percentage of DHA in eryth-

rocytes increased to a maximum at week 12 and returned to baseline levels in weeks 24 and 52 (time effect, P,0·01). Measurement of

the percentage of DHA in erythrocytes indicates that adherence was sustained during the first 12 weeks following the dietary advice,

while other blood measurements of the percentage of EPA and DHA and dietary assessment suggest short-term increases in

EPA þ DHA intakes immediately before weeks 24 and 52. The percentage of DHA in erythrocytes characterises adherence to EPA and

DHA intakes in long-term interventions.
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The n-3 highly unsaturated fatty acids (HUFA; $20 carbons,

$3 double bonds) EPA and DHA exert cardio-protective

effects through several physiological and molecular mechan-

isms(1,2). Current EPA þ DHA intake recommendations range

from 0·25 to 4 g/d with guidelines ,1 g/d aimed at healthy

individuals and those $1 g/d advised for secondary CVD

prevention and TAG lowering(3–7). In contrast, median North

American intakes of EPA and DHA of 0·11 g/d by women

and 0·16 g/d by men fall below existing guidelines(8).

Recent trials(9–11) and meta-analyses(12,13) have found no

reduction in CHD risk with EPA and DHA intakes. However,

the intention-to-treat approach used in these trials may fail

to account for a lack of long-term adherence with study diet-

ary protocols. Adherence up to but not beyond 3 months has

been observed by diet history interviews following the advice

to increase EPA and DHA intakes from oily fish(14). Blood fatty

acid composition offers an objective strategy to measure

intake, as this tissue is responsive to dietary EPA and

DHA(15–17). In blood, there are numerous blood fractions

(plasma, erythrocytes, platelets and leucocytes) and lipid

classes (phospholipids, TAG and cholesteryl esters) that can

be analysed. Plasma and erythrocytes tend to be routinely

collected in clinical studies, with fingertip blood sampling

methods resulting in increasing reports of whole-blood fatty

acids. While it is possible to isolate specific lipid classes

before fatty acid analyses, the examination of total lipid fatty

acids greatly enables cost-efficient, high-throughput analyses

required for clinical screening and monitoring(18). Erythrocyte

fatty acid composition is often cited as a preferred blood

marker of long-term intakes as the cell lifespan is 120 d(19),

although some exchange with plasma fatty acids(20) and mem-

brane bilayer remodelling is possible(21,22). When compared

with erythrocytes, plasma responds more rapidly to increases

and decreases in EPA þ DHA intakes(17,20). Whole blood will

respond to changes in EPA þ DHA intakes in a manner inter-

mediate between plasma and erythrocytes(17). Furthermore,

when compared with DHA, levels of EPA in whole blood

will increase and decrease more rapidly in response to the
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start and termination of fish oil supplementation(17). Charac-

terising the ability of different blood fatty acid biomarkers

to capture long-term adherence to EPA and DHA intakes

could assist in the design and interpretation of long-term trials.

Dietary advice to increase EPA and DHA intakes can vary.

The majority of clinical intervention studies use a nutraceutical

approach by supplementing with fish oil. Conventional

dietetic practice advises a whole-food approach based on

fish intake to reach the level recommended for EPA and

DHA intake guidelines(6,7). Novel functional foods may pro-

vide additional options to cost-effectively increase EPA and

DHA intakes(23). Fish(24), nutraceutical(9,11,25) and functional

food(10) sources have been used to examine the relationship

between EPA and DHA intakes and CHD risk. Long-term

adherence by men and women to dietary advice based on sea-

food, functional foods and nutraceuticals in a self-selected

manner has not been evaluated through comprehensive

blood fatty acid analyses.

The purpose of the present study was to examine, through

dietary assessment and blood biomarkers, adherence over

1 year to dietary advice to increase EPA and DHA intakes.

Adherence to dietary advice strategies based on seafood,

nutraceuticals and/or functional foods was examined.

Subjects and methods

Study population

Participants aged 35–50 years were sought from the

Kitchener–Waterloo, Ontario area using local newspaper

advertisements and flyers posted at local community centres,

grocery stores and on the University of Waterloo campus.

At a screening visit, individuals provided a fasting fingertip

prick blood sample, completed a semi-quantitative FFQ

specific for EPA and DHA intakes(26) and were given instruc-

tions for completing a 3 d diet record. Individuals with .4 %

EPA þ DHA levels in total fatty acids from fingertip prick

blood samples, existing CVD or diabetes mellitus and those

consuming nutraceuticals containing EPA and DHA were

excluded from the study. The present study was conducted

according to the guidelines laid down in the Declaration of

Helsinki, and all procedures involving human participants

were approved by the University of Waterloo Human Ethics

Committee. Written informed consent was obtained from

all participants.

Study design

Participants attended a baseline visit approximately 2 weeks

after screening where dietary advice was provided as a struc-

tured interview and handout. Participants were asked to

follow the advice for the subsequent 52 weeks. A fasting

venous blood sample, a 3 d diet record and anthropometric

measurements were collected at baseline and at follow-up

visits in weeks 4, 8, 12, 24 and 52. Participants were instructed

to collect duplicates of all foods, beverages and nutraceuticals

consumed on the 3 d corresponding with the 3 d diet record

returned at the week 4 visit.

Dietary advice

Participants were stratified by sex and allocated in the order

in which they were admitted to the trial to one of the four diet-

ary advice groups consisting of seafood, functional food,

nutraceutical or combined advice. Participants were not

provided food products or nutraceuticals as the study was

designed to examine the response to dietary advice. The

study was not blinded due to the nature of the intervention.

At the baseline visit, participants received the same infor-

mation regarding the health benefits associated with EPA

and DHA intakes and were advised to target the dietary

intake of 1 g EPA þ DHA/d. The Seafood advice group was

asked to substitute seafood in place of other meat and meat

alternatives in their regular diets. Information on local seafood

retailers, safe seafood preparation and cooking techniques,

recipes, sample daily menus and recommendations for avoid-

ing frequent intake of fish with high mercury content was

provided. Differences in the EPA þ DHA content of oily and

lean fish were discussed and the amount of EPA þ DHA of

all seafood itemised in the Canadian Nutrient File 2007b(27)

was provided to help participants estimate the EPA þ DHA

intake. The Functional Food advice group was asked to substi-

tute EPA- and/or DHA-containing functional foods in place of

similar foods in their regular diets (e.g. n-3 eggs in place of

regular eggs). Information on how to identify functional

foods containing EPA and/or DHA from product labels,

recipes, sample daily menus and the amount of EPA þ DHA

per serving of available functional foods along with cost com-

parisons at local retail outlets was provided to the Functional

Food advice group. The Nutraceutical advice group was

advised to supplement their regular diet with a nutraceutical

product. Information on the different types of nutraceutical

products available (e.g. capsules, liquid, soft chews, etc.),

the interpretation of product labels and the cost associated

with consuming 1 g EPA þ DHA/d from various nutraceutical

products from local retail outlets was provided. The Combined

advice group was given the seafood, functional food and

nutraceutical advice and advised on how to simultaneously

substitute/supplement their diet with all the three sources

by providing sample daily menus.

Outside of recommendations to increase EPA þ DHA

intakes through substitution/supplementation, all groups

were otherwise requested to maintain their usual diets. Partici-

pants were responsible for purchasing their own food and/or

nutraceutical products, but remuneration for participation

in the study was designed to compensate for these expenses.

At follow-up visits in weeks 4–52, the 3 d diet records detailing

the intakeof recommended foods/nutraceuticalswere reviewed

in-person, challenges associated with following the dietary

advice were discussed and continued adherence was encour-

aged. The baseline (dietary advice) visit took up to 1 h and

visits in weeks 4–52 took up to 30 min, including blood

sample and anthropometric measurement collection. Research-

ers were available to answer questions from the participants

between the study visits by phone or email. The assumption

was made that seafood, functional foods and nutraceuticals

supply EPA and DHA in an equally bioavailable manner(28–31).
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Blood sampling

All blood sampling was performed following an 8–12 h

overnight fast. Screening fingertip prick blood samples were

collected by puncturing the skin with a disposable lancing

device (Capiject; Terumo or Unistik 2; Lifescan) and absorbing

blood onto a 1 cm2 area of chromatography paper (Whatman)

pre-washed in 4:1 chloroform–methanol(32,33). Venous blood

samples were collected by venepuncture into evacuated

tubes (Vacutainer; Becton Dickinson). The anti-coagulant

EDTA (Sigma-Aldrich) was added to venous blood samples

in preparation for fatty acid determination of whole blood,

plasma and erythrocyte aliquots. Erythrocytes were washed

twice with saline before collection. All venous blood samples

were stored at 2808C until analysis.

Dietary assessment and food duplicate collections

The 3 d diet records included two weekdays and one

weekend day. Completed dietary surveys, including the

screening FFQ and 3 d diet records, were checked by a

single researcher for clarification and completeness. Dietary

surveys were analysed using the Food Processor SQL Edition

dietary analysis software (version 10.6.0; ESHA Research).

The software food composition database was also updated

with the Canadian Nutrient File 2007b database(27) and fatty

acid compositions of select functional food and nutraceutical

products directly assayed by GC in the laboratory. Food

duplicate collections were weighed, blended to homogeneity

in a 4-litre blender (Waring Laboratory & Science) and stored

at 2808C until fatty acid analysis.

Fatty acid composition analyses

The fatty acid compositions of venous blood fractions,

fingertip prick blood samples, food duplicate collections,

and nutraceuticals and functional foods identified on dietary

surveys were assessed. All lipids were extracted in the pre-

sence of butylated hydroxytoluene (Sigma-Aldrich) to prevent

lipid oxidation. An internal standard (22 : 3n-3 ethyl ester;

Nu-Check Prep) was added during venous blood and food

duplicate analyses to allow for quantitative determinations.

Qualitative fatty acid determinations for screening pur-

poses were rapidly determined from fingertip prick blood

samples(32,33). Briefly, fingertip prick samples were directly

transesterified without prior lipid extraction by placing

chromatography paper saturated with blood in 14 % boron

trifluoride in methanol (Thermo Scientific) with hexane on a

908C heat block for 1 h. Venous whole blood and plasma

lipids were extracted using a Folch-based method(34), while

erythrocyte lipids were extracted by a Bligh and Dyer-based

method(35) with steps to ensure erythrocyte cell membrane

lysis(36). Fatty acid methyl esters were then prepared from

the isolated lipid extracts by transesterification with 14 %

boron trifluoride in methanol (Thermo Scientific) with

hexane on a 908C heat block for 1 h(37). Oils isolated from

nutraceuticals were prepared by lipid extraction and sub-

sequent transesterification as described above for whole

blood and plasma. The fatty acid composition of nutraceutical

and functional food products, and food duplicate collections

were determined in triplicate. Briefly, AOAC International

method 996.06, with solvent volume adjustment for samples

containing 6·25–12·5 mg of total fat(38), was modified

with initial acid hydrolysis treatment for complete lipid

extraction from microencapsulated fish oil(39) and fatty acid

methyl esters prepared as described above. The fatty acid

methyl esters in hexane were collected and analysed on a

Varian 3900 gas chromatograph (Varian) with settings as

described previously(40). Both identified(32) and unidentified

peaks were included in the total fatty acid summation when

individual fatty acids were expressed as a percentage of the

total fatty acid pool.

Statistical and data analyses

Blood EPA and DHA measurements expressed as individual

fatty acids and composite fatty acid biomarkers, in addition

to dietary intake of EPA þ DHA from 3 d diet records, were

evaluated as the primary study outcomes. Blood measure-

ments of n-3 docosapentaenoic acid (DPAn-3, 22 : 5n-3)

were also examined, as this fatty acid may exert cardio-

protective effects(2). Individual fatty acids were expressed

as a percentage of total fatty acids (blood) or as mass per d

(dietary intake). The sum of the percentage of EPA þ DHA

and EPA þ DPAn-3 þ DHA and the percentage of n-3 HUFA

in total HUFA were also examined, as they are the proposed

biomarkers of n-3 status(41–44). The percentage of n-3 HUFA

in total HUFA was calculated using the following formula:

(20 : 5n-3 þ 22 : 5n-3 þ 22 : 6n-3)/(20 : 5n-3 þ 22 : 5n-3 þ 22 :

6n-3 þ 20 : 3n-6 þ 20 : 4n-6 þ 22 : 4n-6 þ 22 : 5n-6) £ 100(18).

Measurements of HUFA intakes from 3 d diet records were

loge transformed to permit parametric statistical analyses.

All statistical analyses were performed using SPSS

(release 18.0.0; IBM). Significance was set at P,0·05 and sig-

nificance levels quoted are two-sided. The linear mixed

model procedure was used for ANOVA. Following the determi-

nation of a significant F-value, individual means were exam-

ined with Bonferroni’s post hoc analyses. All blood and diet

record measurements of EPA and DHA were evaluated using

a three-factor (advice group, sex and time) repeated-measures

linear mixed model procedure. Measurements of EPA and

DHA intakes by 3 d diet records and 3 d food duplicate collec-

tions in week 4 were compared by paired t tests.

Results

Participant flow and characteristics

Study recruitment was initiated in January 2008 and contin-

ued for 8 months. A total of fifty-nine individuals responded

to advertisements and were screened for study participation

(see CONSORT flow diagram in the supplementary material).

Of these individuals, nine did not meet eligibility require-

ments and were not admitted. Following the baseline dietary

advice intervention, five individuals initially recruited left

the study: one was diagnosed with gallstones; one became
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pregnant; one was attempting to become pregnant; one was

unable to attend the study visits; one could not be contacted.

As blood fatty acid composition would change with gall-

stonec treatment and pregnancy, these two participants

were excluded from all analyses. The remaining three indi-

viduals not completing the study had been allocated to the

Seafood advice group (one female and one male) and the

Functional Food advice group (one female). Intention-to-

treat analysis using the baseline values from the three drop-

outs for all time points did not alter the findings presented

herein. As a result, measurements from the forty-five individ-

uals who participated in the year-long study are reported. Of

these forty-five individuals, eleven (six females and five

males) were assigned to each of the Seafood, Functional

Food and Combined advice groups and twelve (six females

and six males) were assigned to the Nutraceutical advice

group. Participants were mainly Caucasian, educated

beyond high school and not regular smokers. The dietary

advice groups were similar in BMI (baseline 27·3 (SD

5·3) kg/m2) and age (baseline 43·7 (SD 4·4) years). No adverse

events were reported following the dietary advice.

Dietary intake of EPA þ DHA

By the 3 d diet records, intake of EPA þ DHA was found to

be 0·12 (95 % CI 0·07, 0·21) g/d at baseline. In the Seafood,

Nutraceutical and Combined advice groups, EPA þ DHA

intake increased at each post-intervention time point from

each advice group’s own baseline measurement (effect of

the advice group £ time interaction, P¼0·03; Fig. 1). In the

Functional Food group, EPA þ DHA intake did not increase

significantly post-intervention. At each time point, no significant

differences in EPA þ DHA intake were detected between the

advice groups. In the Seafood advice group, the measurement

of EPA intake in week 4 was lower when assessed by food dupli-

cates when compared with diet records (P¼0·04; Table 1).

Otherwise, EPA and/or DHA estimates were similar when

assessed by the 3 d diet record and food duplicate collection.

Blood fatty acids and fatty acid biomarkers

A three-way interaction was observed for the percentage of

EPA þ DHA in total fatty acids in whole blood (P¼0·01; Fig. 2,
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Fig. 1. Intake of the sum of EPA and DHA from 3 d diet records in (a) the Seafood, (b) Nutraceutical, (c) Functional Food and (d) Combined advice groups by

completers. Values are back-transformed loge means (geometric means, n 45), with standard deviations represented by vertical bars. * Mean value was signifi-

cantly different from that of the week 0 measurement (P,0·05; Bonferroni’s post hoc test following a significant F-value by the repeated-measures linear mixed

model procedure).
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meaningful comparisons shown). This biomarker was 2·87

(SD 0·95) % at baseline. In the Seafood advice group, the percen-

tage of EPA þ DHA in the whole blood biomarker increased

from baseline in weeks 4, 12, 24 and 52 for men and in weeks

4 and 12 for women. For men and women in the Functional

Food advice group, the biomarker did not increase significantly

from baseline. In the Nutraceutical advice group, the biomarker

increased from baseline in weeks 12 and 52 for men and in

weeks 4–52 for women. The biomarker increased from baseline

in weeks 24 and 52 for men in the Combined advice group.

For women in the Combined advice group, the biomarker

increased at all time points after baseline. A three-way inter-

action was similarly observed for the percentage of EPA þ

DPAn-3 þ DHA in whole blood (P¼0·01) and the percentage

of n-3 HUFA in the total HUFA biomarker in whole blood

(P,0·01).

Overall, the percentage of DHA in erythrocytes increased

from baseline (4·0 (SD 1·0) %) in weeks 4 and 8, reached a

maximum in week 12 (4·9 (SD 0·8) %) and subsequently

returned to baseline levels in weeks 24 and 52 (effect of

time, P,0·01) (Fig. 3). The percentage of DHA in erythrocytes

was higher overall in the Seafood advice group (4·7 (SD 1·0) %)

when compared with the Functional Food (4·0 (SD 0·8) %)

and Nutraceutical (4·0 (SD 0·9) %) advice groups (effect of

advice group, P,0·01). In contrast to the percentage of

DHA in erythrocytes, the percentage of DHA in plasma and

whole blood, the percentage of EPA in all the three blood frac-

tions and the percentage of DPAn-3 in plasma and whole

blood were higher in weeks 4–52 when compared with

the corresponding baseline measurement (Fig. 3). In erythro-

cytes, the percentage of DPAn-3 was higher in weeks 12–52

when compared with the week 0 measurement. The percen-

tage of the EPA þ DHA biomarker in erythrocytes increased

relative to the baseline measurement in weeks 4–24, and

returned to baseline levels in week 52. The percentage of

Table 1. EPA and DHA estimates by 3 d diet records and 3 d food
duplicate collections in week 4

(Geometric means (loge transformed) and 95 % confidence intervals)

3 d diet records (g/d)
3 d food duplicates

(g/d)

Mean 95 % CI Mean 95 % CI

EPA
All (n 45) 0·37 0·27, 0·51 0·30 0·21, 0·41
Seafood 0·48 0·30, 0·75 0·31* 0·22, 0·44
Functional Food 0·15 0·05, 0·48 0·12 0·05, 0·29
Nutraceutical 0·60 0·51, 0·71 0·62 0·32, 1·19
Combined 0·40 0·29, 0·55 0·32 0·20, 0·53

DHA
All (n 45) 0·46 0·35, 0·59 0·38 0·30, 0·49
Seafood 0·82 0·53, 1·27 0·57 0·39, 0·82
Functional Food 0·30 0·12, 0·79 0·22 0·11, 0·44
Nutraceutical 0·39 0·32, 0·47 0·46 0·28, 0·76
Combined 0·44 0·29, 0·65 0·37 0·25, 0·55

* Mean value was significantly different from that of the dietary record measure-
ments (P,0·05; paired t test).
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Fig. 2. Percentage of EPA þ DHA in total fatty acids in the whole blood of (a) men and (b) women in each dietary advice group ( , Seafood; , Functional

Food; , Nutraceutical; , Combined). Values are means (n 45), with standard deviations represented by vertical bars. * Mean value was significantly different

from that of the corresponding baseline measurement (P,0·05; Bonferroni’s post hoc test following a significant F-value by the linear mixed model procedure).
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EPA þ DPAn-3 þ DHA and the percentage of n-3 HUFA in the

total HUFA biomarker in erythrocytes increased in weeks 4–52

relative to the baseline measurement.

Discussion

The present investigation uses a combination of multiple

assessment tools to characterise EPA þ DHA intake and

blood status over a 52-week period. By considering the

changes in the percentage of DHA in erythrocytes in contrast

to all the other measurements of the percentage of DHA

and/or the percentage of EPA in blood fractions assayed, as

well as diet assessments, it appears that adherence in the

present study was inconsistent through weeks 24 and 52.

A pattern of poor adherence after the week 12 visit, followed

by ‘compensatory’ EPA þ DHA intake shortly before the

visits in weeks 24 and 52, would potentially result in a low

percentage of DHA in erythrocytes and values above baseline

for all the other EPA and DHA blood measurements. A hypo-

thesised pattern of actual dietary EPA þ DHA intake over the

52-week period is depicted in Fig. 3.

DHA in erythrocytes appears to be a more accurate reflec-

tion of adherence to the n-3 HUFA intervention, as it takes

much longer to incorporate when compared with EPA in

general and DHA in plasma phospholipids(45). In erythrocytes,

DHA preferentially incorporates into phosphatidylethano-

lamine of the inner leaflet of lipid membrane bilayers, while

EPA incorporates into phosphatidylcholine of the outer

leaflet(46). Fatty acid remodelling of inner cell membranes is

relatively slow(22), therefore EPA can increase and decrease

rapidly in erythrocytes, while DHA turnover is slower(17).

DHA and DPAn-3 appear to compete for incorporation into

phospholipids(47,48) and DPAn-3 may have replaced DHA in

erythrocyte membranes in weeks 24 and 52, supporting our

hypothesis that EPA þ DHA intake was low for most of this

period. In contrast, plasma EPA, DPAn-3 and DHA respond

relatively quickly to dietary intake changes(17) as plasma

phospholipids are predominantly phosphatidylcholine of the

outer monolayer of lipoproteins. Plasma also contains cho-

lesteryl esters and TAG that can incorporate fatty acids(49),

but n-3 HUFA accumulation in these lipids is typically

low(18,45). Biomarkers of n-3 HUFA, such as the percentage

of EPA þ DHA, the percentage of EPA þ DPAn-3 þ DHA

and the percentage of n-3 HUFA in total HUFA, appear to be

most appropriate for characterising short-term changes in EPA

and DHA intakes and probably reflect usual EPA and DHA
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Fig. 3. Percentage of (a) DHA, (b) n-3 docosapentaenoic acid (DPAn-3) and (c) EPA in erythrocyte ( ), plasma ( ) and whole-blood ( ) total fatty acids and

(d) measured (3 d diet record ( ) and hypothesised EPA þ DHA intake ( )). Values are means (n 45), with standard deviations represented by vertical bars

(3 d diet records are back-transformed loge means and standard deviations). * Mean value was significantly different from that of the corresponding baseline

measurement (P,0·05; Bonferroni’s post hoc test following a significant F-value by the linear mixed model procedure).
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intakes for individuals in observational studies. However,

the present findings suggest that DHA in erythrocytes

reflects adherence to n-3 HUFA intake over longer periods.

Determining the fatty acid composition of specific lipid classes

or erythrocytes such as phosphatidylethanolamine or phos-

phatidylserine could prove to be even more sensitive blood

biomarkers for adherence to the n-3 HUFA intervention, but

would greatly increase the analytical burden. Plasma and

whole blood levels may still be informative in observational

studies intended to examine ‘usual’ behaviour, but may be

problematic when used to assess dietary change.

The findings of non-adherence to the advice to increase

EPA and DHA intakes have an impact on the interpretation

of intervention studies. While recent meta-analyses(12,13)

have documented dose levels for intervention studies, the

issue of adherence to intake is not addressed. This is in part

because most n-3 HUFA intervention studies have reported

high adherence, but often this is determined by self-report

and dietary intake assessments(11,50), although some studies

have started to report plasma blood levels(9,10,51). The present

results suggest that reliance on dietary intake assessments

and plasma blood levels of n-3 HUFA in intervention studies

could result in an overestimation of adherence.

Adherence to dietary advice up to, but not beyond, the

initial 12 weeks of the study may be related to follow-up

frequency and/or participant fatigue. Study visits occurred

monthly from baseline to week 12, and subsequently follow-

ing 3- and 6-month intervals at weeks 24 and 52, respectively.

Adherence up to 12 weeks, but not 52 weeks, has been

observed previously following dietary advice to consume

fatty fish(14). In this previous fish advice study, dietary counsel-

ling was provided at the same time points as the present

study, plus an additional visit at week 36. The findings from

the present study suggest that dietary advice for free-living

individuals to increase the intake of EPA and DHA from

traditional sources, such as seafood, and novel sources,

including nutraceuticals, can be effective, but regular follow-

up and motivation may be needed to maintain long-term

adherence. The possibility of non-adherence in intervention

trials examining fish oil supplementation needs to be

considered.

Sex and advice group differences were not observed in

the percentage of DHA in erythrocytes but were detected

in the percentage of EPA þ DHA, EPA þ DPAn-3 þ DHA

and n-3 HUFA in total HUFA in whole blood. In the long

term, functional food advice was not successful in raising

the percentage of EPA þ DHA in whole blood, in both men

and women. This is probably due to the low amount of

EPA þ DHA per serving of functional food products that are

due to regulations(52) and/or potential changes in sensory

properties of the functional foods(53). As a result, several

functional foods must be consumed to achieve EPA þ DHA

intakes of 1 g/d. In contrast, the percentage of EPA þ DHA

in whole blood increased the most for men following the

seafood advice and for women following the nutraceutical

and combined advice.

Dietary assessments performed by both sexes can be

subject to response bias as women are influenced by social

desirability, a tendency to avoid criticism, and men are influ-

enced by social approval, a tendency to seek praise(54). Know-

ing that blood samples would be measured for n-3 HUFA

status at each study visit could have lead to compensatory

adherence immediately before study visits. EPA þ DHA

compensatory intakes before study visits could be accom-

plished with intake of oily fish or a few fish oil capsules.

Men may have been capable of achieving higher intakes of

EPA þ DHA after seafood advice or engaging in compensatory

EPA þ DHA consumption with seafood when compared with

women. As men typically consume larger portions of meat

when compared with women, it is plausible that their intake

of EPA þ DHA from seafood substitution could be greater(55),

and compensatory EPA þ DHA intake would be higher. Fish

oil nutraceutical users tend to be female(56), and it is possible

that women had higher compensatory EPA þ DHA intakes

from nutraceuticals when compared with men.

The n-3 HUFA intakes and adherence to dietary advice over

time attained herein may be different from what is achievable

by different populations. For ethical reasons, the study was

advertised as an n-3 fatty acid intervention and may have

attracted individuals with an interest in consuming n-3 fatty

acids. Clinical populations with existing health conditions

may be more motivated to adhere to dietary advice and

comply with fish oil supplementation. Study conclusions

herein were the same following the intention-to-treat and

completer analysis; however, loss to follow-up in the Seafood

and Functional Food advice groups may indicate difficulty

adhering to dietary strategies involving food substitution

instead of nutraceutical addition. Estimated intakes of EPA

by the Seafood advice group in weeks 4–52 may be an over-

estimation if the discrepancy between the diet record and

duplicate food measurements is due to the food compo-

sition database rather than to participant recording/food

collection error.

In conclusion, dietary advice to consume EPA þ DHA from

seafood or nutraceutical sources alone, or in combination with

functional foods, can increase EPA þ DHA intakes and levels

in blood in the short term. There may, however, be sex differ-

ences in the effectiveness of types of dietary advice. Dietary

intake assessments and other blood measurements of EPA or

DHA suggest long-term adherence to dietary advice, but

levels of DHA in erythrocytes indicate non-adherence. Rapid

incorporation of EPA into plasma and erythrocyte lipids, and

DHA into plasma lipids makes measures of EPA þ DHA sus-

ceptible to acute compensatory EPA þ DHA intake just

before clinical blood sampling visits during long-term inter-

vention studies. The percentage of DHA in erythrocytes

appears to capture long-term adherence to n-3 HUFA intakes

and could be an appropriate and much-needed marker of

adherence in long-term n-3 intervention trials. Disease end-

points could also be evaluated based on the percentage of

DHA in erythrocytes in studies where adherence to supplemen-

tation protocols cannot be assumed. Sex differences in blood

n-3 HUFA biomarker responses to different types of advice

indicate that tailoring dietary advice about EPA and DHA

to traits of individuals could increase adherence. Strategies to

improve adherence to dietary advice beyond 12 weeks are
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needed and the effect of increased follow-up frequency over

the long-term warrants investigation in the future.
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