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Abstract

Lithium-ion batteries are used to store energy in electric vehicles. Physical

models based on electro-chemistry accurately predict the cell dynamics, in par-

ticular the state of charge. However, these models are nonlinear partial differ-

ential equations coupled to algebraic equations, and they are computationally

intensive. Furthermore, a variable solid-state diffusivity model is recommended

for cells with a lithium ion phosphate positive electrode to provide more accu-

racy. This variable structure adds more complexities to the model. However, a

low-order model is required to represent the lithium-ion cells’ dynamics for real-

time applications. In this paper, a simplification of the electrochemical equa-

tions with variable solid-state diffusivity that preserves the key cells’ dynamics

is derived. The simplified model is transformed into a numerically efficient fully

dynamical form. It is proved that the simplified model is well-posed and can

be approximated by a low-order finite-dimensional model. Simulations are very

quick and show good agreement with experimental data.
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1. Introduction and literature review

Among different chemical compositions, a lithium-ion chemistry is one of

the most promising options for the batteries used for hybrid electric vehicles.

High power and energy density, lack of memory effect, low self discharge, and

high life cycle are some advantages of lithium-ion chemistry in comparison to

other cell chemistries [1, 2, 3]. In particular, Lithium iron phosphate, LiFePO4

(LFP), offers the advantage of better lithium insertion over other alternatives.

Its numerous features have drawn considerable interest. Some of these features

are listed in [4]. Estimating state of charge (SOC), which determines the amount

of deliverable energy, is critical for effective use of each cell and for balancing

the cells’ state in a battery pack [5]. An accurate estimator that captures the

cells’ dynamics yet is simple enough for a real-time application is a important

component of a battery management system.

Equivalent circuit models are frequently employed. Simplicity and a rela-

tively low number of parameters are the main advantages of these models [6].

Normally, the circuit includes a large capacitor or a voltage source to repre-

sent the open circuit potential (OCP) effect, and the rest of the circuit defines

the cell’s internal resistance and the effect of the cell’s dynamics [7]. Different

equivalent circuit models are introduced in [8] and [6].

Electrochemical models, although more complex than the equivalent cir-

cuit models, have some advantages over other models in describing the cells’

physical behavior. Including the effect of temperature and modeling the ag-

ing phenomenon, as well as other inherent features of the lithium-ion batteries,

is more feasible. The electrochemical equations are nonlinear coupled partial

differential equations. These equations must be simplified without sacrificing

their accuracy in order to obtain a model suitable for real-time applications.

Simplified and low-order models have been considered by many researchers. A

review of most simplified electrochemical models is given in [9] and [10].

A common simplification of the electrochemical equations is to assume that

there are only a finite number of particles along the electrodes. In a single
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particle model each electrode is composed of a single spherical particle. In

many cases this single-particle model provides good accuracy; see [11, 12, 13,

14, 15, 16, 1, 17] and [18]. In other situations a multiple particle model with

concentration-dependent solid diffusion coefficients that considers the distribu-

tion of the particles in the electrodes provides better accuracy; see [19].

Several techniques have been developed to approximate the partial differ-

ential equations representing any simplified electrochemical model by ordinary

differential equations. Laplace transforms and Padé approximation are used

in [20, 5, 21], and [22]. This approximation is also achieved via projection

based techniques such as proper orthogonal decomposition [23], eigenfunctions

of the solid diffusion equation [24, 25], and orthogonal collocation [26]. The ap-

proximation is derived using a polynomial approximation of the active material

concentration in the solid phase in [27, 28], and [29] and using Chebyshev poly-

nomials in [30]. A review of some approximation technique can be also found

in [31] and [32]. These low-order models are introduced for a class of simplified

models where the solid diffusion coefficient is often assumed to be constant.

In practice, the solid phase diffusion coefficient is often a nonlinear function

of active material concentration. A computationally efficient method, a control

volume method, is developed in [33] for solving the diffusion equation with

the variable diffusion equation. The approximation of the solid phase diffusion

model with the variable diffusion coefficient is also considered in [34] based

on Lobatto IIIA quadrature to approximate the solid concentration. In this

paper, eigenfunction based Galerkin collocation technique, which has shown an

adequate result for constant diffusivity ([31]) and keeps key dynamical behaviour

of the system, is extended to approximate the solid diffusion equation in which

the diffusion coefficient is not constant.

Furthermore, the effect of porous electrode is often ignored in the electro-

chemical equations. Including the porous electrode model into the equations

implies solving for a set of constraint equations simultaneously with the diffu-

sion equations for the active material concentration. These constraint equations

are coupled and nonlinear. A reduced order model is introduced in [35] in which
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a multi-scale model is developed to incorporate the pore level dynamics. In most

simplified models, the constraint equations are simplified by approximating the

exchange current density with an average value; see [36], [37], [38, 39, 40, 41, 21],

and [21]. Linearizing the exchange current density term around some operating

points is another method for approximation of the constraint equations ([42]

and [22]). However, in many applications of LiFePO4 (LFP) cells, these ap-

proximations are not accurate; see, for instance, [43]. An efficient method for

solving the constraint equations is considered here.

The main focus of this paper is developing a reduced order model for a full

pseudo-two-dimensional electrochemical model with multiple variable solid-state

diffusivity equations. A minimum number of approximations are introduced to

facilitate the nonlinear analysis of the equations. These approximations are

based on the physical properties of the system and have little effect on the

results. First, it is proved that the solid and electrolyte potentials can be repre-

sented as differentiable functions of the solid and electrolyte concentrations as

well as the input current. This representation is used to introduce a fully dy-

namical representation for the cell’s dynamics. This simplified and transformed

model were described in [44], where some simulation results were also provided.

The cell’s equations are also transformed into a state space form, which is

proved to be well-posed. The state space representation is used to develop a

low-order model using the eigenfunction based Galerkin method that is shown

to be efficient for real-time applications ([31]). It is proven that by adjusting

the model order, an accuracy arbitrarily close to that of the original nonlinear

partial differential equation model can be obtained.

Finally, a fully dynamical low-order model is developed which is used in

simulations. The simulation results show a good match to experimental data

for different charging/discharging rates and profiles. It is also shown that the

approximate solution converges as the order of approximation increases. Fur-

thermore, the computation time on a desktop computer is faster than the real

time experimental time and comparable to the reported time for solving systems

with constant diffusivity in the literature. Finally, it is described that the simu-
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lations match to the experimental data can be improved using a rate dependent

diffusivity model.

2. Electrochemical model

In this research, a lithium-ion cell with a positive electrode made of LFP

material is considered. In LFP electrodes, the lithium insertion/deinsertion

mechanism is a two phase process taking place between the lithium poor phase,

LiεFePO4, and the lithium rich phase, Li1−εFePO4. The negative electrode is

assumed to be a lithium foil.

A variable solid-state diffusivity model with a multiple particle size bins is

used here. Details on this model can be found in [43], and [19]. The battery

cell’s equations for the cell will be transformed to a state space representation.

Let the number of particle size bins be K = 3. Define

X1 = {z ∈ L2([L1, L]× [0, R1]) : r2
1z ∈ L2([L1, L]× [0, R1])}

X2 = {z ∈ L2([L1, L]× [0, R2]) : r2
2z ∈ L2([L1, L]× [0, R2])}

X3 = {z ∈ L2([L1, L]× [0, R3]) : r2
3z ∈ L2([L1, L]× [0, R3])}

X = L2(0, L)×X1 ×X2 ×X3

Y = L2(0, L)× L2(L1, L)

where L1 = lsep, L = lsep + lcat. The variable ce represents the electrolyte

concentration, cs,k represent the solid concentration in each particle bin for

k = 1, . . . , 3, and ϕe and ϕs represent respectively the electrolyte and solid

potential. Let

c = [c1, c2, c3, c4]T = [ce, cs,1, cs,2, cs,3]T ⊆ X

be the state vector and ϕ = [ϕ1, ϕ2]T = [ϕe, ϕs]
T ⊆ Y be the potential vector.

Define

yk = saty

(
ck+1|rk=Rk

cmax

)
(1)

where

saty(s) =
1

1 + exp(−a0s)
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for a0 ∈ R+ (see Table 2), The electrochemical reaction rate is defined as

ik(c,ϕ) =

 2i0 sinh
(
Fηk
2RT

)
if x ∈ [0, L1]

0 if x ∈ [L1, L]
(2)

where

ηk = ϕ2 − ϕ1 − U(yk)

and U(·) is the OCP term. Here

U(yk) = 3.4510− 0.009yk + 0.6687 exp(−35yk)− 0.5 exp(−210(1− yk))

for the charging cycle, and

U(yk) = 3.4077− 0.020269yk + 0.5 exp(−200yk)− 0.9 exp(−30(1− yk))

for the discharging cycle. The OCP profile has an important effect on the simu-

lations and must be identified carefully. The OCP identification is based on the

static performance and cannot be measured during the battery operation. In-

stead, an empirically derived relation are used. This empirical model is obtained

through a curve fitting (the experimental data for OCP is shown in Figure 1;

the source of the experimental data is quoted in the Simulation section).

The thermodynamic term or the activity correction factor αk(·) is defined in

[19] and was modified to be a Fréchet differentiable function and fit experimental

data as follows.

αk(ck+1) = 6 exp(−25yk) + 15 exp(−35(1− yk)) + 0.3/(1 + (yk − 0.5)2). (3)

Note that

δ1 ≤ |αk(ck+1)| ≤ δ2 (4)

for k = 1, . . . , 3 and δ1, δ2 ∈ R+.
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The cell governing equations are

∂

∂t


c1

c2

c3

c4

 =


∂
∂x

(
Deff
e

∂c1
∂x

)
+

1−t0+
Fε

∑
akik(c,ϕ)

1
r21

∂
∂r1

(
r2
1α1(c2)D ∂c2

∂r1

)
1
r22

∂
∂r2

(
r2
2α2(c3)D ∂c3

∂r2

)
1
r23

∂
∂r3

(
r2
3α3(c4)D ∂c4

∂r3

)

 (5)

0 =

 ∂
∂x

(
keff ∂ϕ1

∂x

)
+ keff ∂

∂x

( 2RT (1−t0+)

Fc1
∂c1
∂x

)
+
∑
akik(c,ϕ)

∂
∂x

(
σeff ∂ϕ2

∂x

)
−
∑
akik(c,ϕ)

 (6)

The boundary conditions are

∂c1
∂x

∣∣∣∣
x=L

= 0 (7)

∂ck+1

∂rk

∣∣∣∣
rk=0

= 0, k = 1 . . . 3 (8)

ϕ1

∣∣∣∣
x=0

= 0 (9)

∂ϕ1

∂x

∣∣∣∣
x=L

= 0 (10)

∂ϕ2

∂x

∣∣∣∣
x=L1

= 0. (11)

The controlled input is current I(t),

εsepD
eff
e,sep

∂c1
∂x

∣∣∣∣
x=0

= −
(1− t0+)I(t)

F
(12)

−σeff ∂ϕ2

∂x

∣∣∣∣
x=L

= I(t). (13)

Also

αk(ck+1)D∂ck+1

∂rk

∣∣∣∣
rk=Rk

=
ik
F

(c,ϕ), k = 1 . . . 3. (14)

Finally, the solid potential in the negative electrode ϕf satisfies

I(t) = if
( c1
cini

)1−βf ( exp
( (1− βf )Fϕf

RT

)
− exp

(βfFϕf
RT

))
where cini is the initial value of the state variable c1.

Some approximations are introduced to the model to facilitate nonlinear

analysis of the equations including their well-posedness. First, the reaction rate
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is approximated; the variable yk defined in (1) is substituted by an average

value. Define

c̄k+1(x) =

∫ Rk

0

δ(rk −Rk)ck+1(x, rk)drk

and

ȳk = saty
( c̄k+1

cmax

)
where

δ(x− x0) =

 1
ε0x0

if x ∈ [x0 − ε0x0, x0]

0 if x ∈ [0, x0 − ε0x0]
(15)

for some small ε0 > 0 (see Table 2). For parameters b0, a0 (see Table 2), define

sat(s) =
2b0

1 + exp(−a0s)
− b0

and also define

η̄k = ϕ2 − ϕ1 − U(ȳk).

The exchange current density is approximated by

īk(c,ϕ) =

 2i0 sinh
(
sat
(
F η̄k
2RT

))
if x ∈ [0, L1]

0 if x ∈ [L1, L]
. (16)

The argument of sinh(·) is saturated in (16) to keep the electrochemical solution

bounded. This constraint aligns with the physics of the system.

A second approximation is partially linearizing the constraint equations

around the initial value of the electrolyte concentration cini. The constraint

equations become

0 =

 ∂
∂x

(
keff ∂ϕ1

∂x

)
+ keff ∂

∂x

( 2RT (1−t0+)

Fcini
∂c1
∂x

)
+
∑
ak īk(c,ϕ)

∂
∂x

(
σeff ∂ϕ2

∂x

)
−
∑
ak īk(c,ϕ)

 (17)

This approximation facilitates computation and also guarantees that the system

of constraint equation (6) have a unique solution ϕ for every given state vector

c.
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Theorem 2.1. Define the operator DO(·) : X × Y × R3 → Y3×3 as

DO(c,ϕ, I(t), c1(0), ϕ2(L1)) =
keff +

∑3
k=1 ak

∫ x
0

∫ y
0
∂īk(c(s,rk),ϕ(s))

∂ϕ1
dsdy

−x
∫ L

0

∑3
k=1 ak

∂īk(c(s,rk),ϕ(s))
∂ϕ1

ds

∑3
k=1 ak

∫ x
0

∫ y
0
∂īk(c(s,rk),ϕ(s))

∂ϕ2
dsdy

−x
∫ L

0

∑3
k=1 ak

∂īk(c(s,rk),ϕ(s))
∂ϕ2

ds
0

−
∑3
k=1 ak

∫ x
0

∫ y
0
∂īk(c(s,rk),ϕ(s))

∂ϕ1
dsdy σeff −

∑3
k=1 ak

∫ x
0

∫ y
0
∂īk(c(s,rk),ϕ(s))

∂ϕ2
dsdy σeff∫ L

0

∑3
k=1 ak

∂īk(c(s,rk),ϕ(s))
∂ϕ1

ds
∫ L

0

∑3
k=1 ak

∂īk(c(s,rk),ϕ(s))
∂ϕ2

ds 0.


(18)

If DO(·) is nonsingular at [c∗,ϕ∗, I∗, c∗0, ϕ
∗
0]T ∈ X × Y × R3, the constraint

equations (17) have a unique solution such that the potential vector ϕ can be

written as a Fréchet differentiable function of the state vector c and the input

I(t) in a neighborhood of this point. In other words, in some neighborhood of

[c∗,ϕ∗, I∗, c∗0, ϕ
∗
0],

ϕ = Rϕ(c, c1(0), I(t)) (19)

where Rϕ(·) : X × R2 → Y is a Fréchet differentiable function.

Proof: In this proof, it is shown that ϕ is defined implicitly through the solution

to an implicit equation O(c,ϕ, I(t), c1(0), ϕ2(L1)) = 0. It is proved that O(·)

is Fréchet differentiable with derivative (18). The proof is next a consequence

of the Implicit Function Theorem [45, Theorem 1.1.23].

In the first step, define

O1(·),O2(·),O3(·) : X × Y × R3 → Y

as

O1(c,ϕ, I(t), c1(0), ϕ2(L1)) =
x

keff

∫ L

0

3∑
k=1

ak īk(c(s, rk),ϕ(s))ds

−
2RT (1− t0+)

Fcini
(c1 − c1(0))− 1

keff

∫ x

0

∫ y

0

3∑
k=1

ak īk(c(s, rk),ϕ(s))dsdy,

O2(c,ϕ, I(t), c1(0), ϕ2(L1)) = ϕ2(L1) +
1

σeff

∫ x

0

∫ y

0

3∑
k=1

ak īk(c(s, rk),ϕ(s))dsdy,

O3(c,ϕ, I(t), c1(0), ϕ2(L1)) = I(t) +

∫ L

0

3∑
k=1

ak īk(c(s, rk),ϕ(s))ds.
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Combined with the boundary conditions in (7), (9), (10), (11), (12), and (13),

the algebraic equation (17) can be rewritten as

ϕ1 = O1(c,ϕ, I(t), c1(0), ϕ2(L1))

ϕ2 = O2(c,ϕ, I(t), c1(0), ϕ2(L1))

0 = O3(c,ϕ, I(t), c1(0), ϕ2(L1))

(20)

Note that the functions īk(·) for k = 1, . . . , 3 are Fréchet differentiable with

respect to their arguments. This is due to the fact that sat(·), saty(·), and

the empirical function chosen for OCP U(·), as well as the function sinh(·)

are Fréchet differentiable with respect to their arguments. Therefore, from the

definition of īk(·) given by (16) and the chain rule, it can be concluded that

īk(·) are Fréchet differentiable functions.

Since integration is a linear operation, the fact that the functions īk(·) are

Fréchet differentiable leads to the Fréchet differentiability of the functions O1(·),

O2(·), and O3(·) with respect to [c2, . . . , c4]T and ϕ; these functions are linear

and thus differentiable with respect to (c1 − c1(0)), ϕ2(L1), and I(t). Define

O(c,ϕ, I(t), c1(0), ϕ2(L1)) =
keff (ϕ1 −O1(c,ϕ, I(t), c1(0), ϕ2(L1)))

σeff (ϕ2 −O2(c,ϕ, I(t), c1(0), ϕ2(L1)))

O3(c,ϕ, I(t), c1(0), ϕ2(L1))

 . (21)

The Fréchet derivative of the nonlinear operator O(·) (21) with respect to the

vector [ϕ, ϕ2(L1)]T is (18). In addition, (20) can be written as

O(c,ϕ, I(t), c1(0), ϕ2(L1)) = 0.

Now, by the Implicit Function Theorem and the assumption of DO(·) being

nonsingular in some neighborhood of [c∗,ϕ∗, I∗, c∗0, ϕ
∗
0]T , (19) follows. �

At this point, for the sake of simplicity and future use, Rϕ(·) in (19) is

approximated by

ϕ = R̄ϕ(c, I(t)) = Rϕ(c,

∫ L

0

δ(x)c1(x)dx, I(t)) (22)
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where

δ(x) =

 1
ε0L

if x ∈ [0, ε0L]

0 if x ∈ [ε0L,L]
(23)

for some small ε0 ∈ R+ given in Table 2. This approximation is feasible due to

the continuity of the electrolyte concentration.

Next, a new form of the constraint equations is achieved by taking the time

differentiation of both sides of (22). Along with (5), differentiating (22) results

in
∂ϕ

∂t
= DR̄ϕ(c, I(t))

(∂c
∂t

)
+
∂R̄ϕ(c, I(t))

∂I

dI(t)

dt
. (24)

The constraint equations (17) are equivalent to the differential equations (24).

Solving the differential equations (24) requires the time derivative of I(t).

This is accomplished by using a saturated high-speed observer introduced in

[46],
dx̂

dt
= M x̂+ LI(t) (25)

where x̂T = [Î , ˆdI/dt], and

M =

−gh1 1

−g2h0 0

 , L =

−gh1

−g2h0


in which g, h0, h1 ∈ R+ are tuning parameters.

A third approximation of the cell’s equations is made. Let both sides of (5)

followed by approximation (16) be multiplied by w = [w1, . . . , w4]T ∈ X in the

sense of the X -inner product as follows:∫ L

0

w1(x)
∂c1(x)

∂t
dx =∫ L

0

w1(x)
( ∂
∂x

(
Deff
e

∂c1(x)

∂x

)
+

1− t0+
Fε

∑
ak īk(c(x, rk),ϕ(x))

)
dx∫ L

L1

∫ Rk

0

r2
kwk+1(x, rk)

∂ck+1(x, rk)

∂t
drkdx =∫ L

L1

∫ Rk

0

r2
kwk+1(x, rk)

1

r2
k

∂

∂rk

(
r2
kαk(ck+1(x, rk))D∂ck+1(x, rk)

∂rk

)
drkdx

(26)

11



for k = 1, . . . , 3. Now, applying integration by parts to (26) and employing

boundary conditions (7), (8), (12), and (14) followed by approximation (16)

lead to∫ L

0

w1(x)
∂c1(x)

∂t
dx =

∫ L

0

(
− ∂w1(x)

∂x

(
Deff
e

∂c1(x)

∂x

)
+ w1(x)

1− t0+
Fε

∑
ak īk(c(x, rk),ϕ(x))

)
dx+

1− t0+
εF

w1(0)I(t)∫ L

L1

∫ Rk

0

r2
kwk+1(x, rk)

∂ck+1(x, rk)

∂t
drkdx = −

∫ L

L1

∫ Rk

0

∂wk+1(x, rk)

∂rk(
r2
kαk(ck+1(x, rk))D∂ck+1(x, rk)

∂rk

)
drkdx+

R2
k

F

∫ L

0

wk+1(Rk )̄ik(c(x, rk),ϕ(x))dx.

(27)

Next, (27) is approximated by∫ L

0

w1(x)
∂c1(x)

∂t
dx =

∫ L

0

(
− ∂w1(x)

∂x

(
Deff
e

∂c1(x)

∂x

)
+ w1(x)

1− t0+
Fε

∑
ak īk(c(x, rk),ϕ(x))

)
dx+

1− t0+
εF

∫ L

0

δ(x− L)w1(x)I(t)dx∫ L

L1

∫ Rk

0

r2
kwk+1(x, rk)

∂ck+1(x, rk)

∂t
drkdx =

−
∫ L

L1

∫ Rk

0

∂wk+1(x, rk)

∂rk

(
r2
kαk(ck+1(x, rk))D∂ck+1(x, rk)

∂rk

)
drkdx

+
R2
k

F

∫ L

0

∫ Rk

0

r2
k

δ(rk −Rk)

r2
k

wk+1(x, rk )̄ik(c(x, rk),ϕ(x))drkdx.

(28)

Using integration by parts in (28), the battery equations can be transformed

into
∂c

∂t
+ AN (c) = R(c, t) + Fu(t) (29)

where

A = +λI

−


∂
∂x

(
Deff
e

∂
∂x

)
0 0 0

0 D
r21

∂
∂r1

(r2
1
∂
∂r1

) 0 0

0 0 D
r22

∂
∂r2

(r2
2
∂
∂r2

) 0

0 0 0 D
r23

∂
∂r3

(r2
3
∂
∂r3

)


(30)
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with λ > 0 is set such that A is positive definite (this setting is required for

future proofs), and

D(A) = {c ∈ X , [∂c1
∂x

,
∂c2
∂r1

, . . . ,
∂c4
∂r3

]T ∈ X ,

[
∂2c1
∂x2

,
∂2c2
∂r2

1

, . . . ,
∂2c4
∂r2

3

]T ∈ X

∂c1
∂x

(0) =
∂c1
∂x

(L) = 0, and

∂ck+1

∂rk
(0) =

∂ck+1

∂rk
(Rk) = 0 for k = 1 . . . 3}.

(31)

N (c) =


c1∫ r1

0
α1(c2(s, t))∂c2∂r1

(s, t)ds∫ r2
0
α2(c3(s, t))∂c3∂r2

(s, t)ds∫ r3
0
α3(c4(s, t))∂c4∂r3

(s, t)ds

 (32)

E(c,ϕ) =



1−t0+
Fε

∑
ak īk(c,ϕ)

R2
1

F
δ(r1−R1)

r21
ī1(c,ϕ)

R2
2

F
δ(r2−R2)

r22
ī2(c,ϕ)

R2
3

F
δ(r3−R3)

r23
ī3(c,ϕ)

+ λN (c) (33)

B =



1−t0+
εF δ(x− L)

0

0

0

 (34)

Rc(c,ϕ) = E(c,ϕ)− E(0, R̄ϕ(0, I(t))) (35)

R(c, t) = Rc(c, R̄ϕ(c, I(t))), (36)

F = [B,I], u(t) = [I(t),E(0, R̄ϕ(0, I(t)))T ]T . (37)

Thus, letting Dc represent the Fréchet derivative with respect to c, a fully

dynamical representation equivalent to (29) is developed as

∂c

∂t
+ AN (c) = Rc(c,ϕ) + Fu(t)

∂ϕ

∂t
= DcR̄ϕ(c, I(t))

∂c

∂t
+
∂R̄ϕ(c, I(t))

∂I

dI(t)

dt

(38)

The proof of the following lemma is a straightforward calculation.
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Lemma 2.2. The linear operator A : D(A) ∈ X → X defined by (30) is

self-adjoint.

Furthermore, it can be easily checked that the inverse of the linear operator

A defined by (30) is a double integral form with a bounded kernel; thus, it is

a compact operator. This property along with the self-adjointness leads to the

fact that the linear operator A has eigenfunctions which are an orthogonal basis

for the Hilbert space X [47, theorem VIII.6].

3. Finite-dimensional approximation and well-posedness

The electrochemical equations (29) is a special case of a general form

∂z

∂t
+ AN (z) = R(z, t) + Fu(t) (39)

where z ∈ H is the state vector, H is a Hilbert space and the state space,

R(·) : H → H is a Fréchet differentiable nonlinear operator with respect to

z and strongly continuous with respect to t that satisfies R(0, t) = 0, and

N : H → H is a Fréchet differentiable nonlinear operator that satisfies N (0).

The operator F is a bounded linear operator.

The following assumptions are made for the general representation (39).

Assumption 3.1. The control input u(t) is continuous in time and of bounded

variation. In addition, there exist some Mu ∈ R+ such that ‖u(t)‖ ≤Mu.

Assumption 3.2. The operator A is assumed to be a self-adjoint closed op-

erator with a compact inverse A−1. It has also dense domain in Hilbert space

D(A) = H and is such that for some κ > 0, (Aw,w)H ≥ κ‖w‖2 for every

w ∈ D(A).

Assumption 3.3. The nonlinear operator R(·) is Lipschitz continuous on the

Hilbert space H. In other words, for every w1,w2 ∈ H, there exist a positive

constant LR ∈ R+ such that

‖R(w1, t)−R(w2, t)‖H ≤ LR‖w1 −w2‖H.

14



Assumption 3.4. The nonlinear operator N (·) is Fréchet differentiable and

satisfies

ε1 ≤‖DN (w2)‖ ≤ ε2

ε1‖w1‖2H ≤(w1, DN (w2)w1)H = (DN (w2)w1,w1)H ≤ ε2‖w1‖2H

for every w1,w2 ∈ H and some ε1, ε2 > 0.

Assumption 3.5. The linear operator A and the nonlinear operator N (·) sat-

isfy

(w,AN (w))H = (AN (w),w)H ≥ ε3‖w‖2

for every w ∈ D(A1/2) such tat N (w) ∈ D(A) and some ε3 > 0.

The linear operator A can also be used to define a new Hilbert space with

more smoothness properties. Before the normed space of interest can be de-

fined, the concept of evolution triple and duality pairing are introduced first.

This definition will be used in next section to prove the well-posedness of the

equations.

Definition 3.6. (Duality Pairing, [48, Definition 3.4.3])

Let V ⊆ H be a linear space whose dual space is denoted by V ′. The triple

(V,H,V ′) is called an evolution triple if it satisfies the following conditions:

• the linear space V is a separable and reflexive Banach space.

• the linear space H is a separable Hilbert space.

• for V ⊆ H ⊆ V ′, V is dense and continuously embedded in H.

The duality pairing between V and V ′ is denoted by 〈., .〉V′,V and defined as a

continuous extension of the inner product on the Hilbert space H, denoted by

(·, ·)H.

From Assumption 3.2, A1/2 is a well-defined positive definite operator; thus

it is possible to define a Hilbert space V = D(A1/2) with norm ‖A1/2 ·‖H. With

this setting, V is dense in the Hilbert space H and A1/2 defines an isomorphism
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between V andH since it is a bounded linear operator from V toH with bounded

linear inverse from H to V. Therefore, (V,H,V ′) is a evolution triple and a

duality pairing can be defined as in Definition 3.6.

Furthermore, for every w ∈ V,

(A1/2·, w)H : V → C

is a linear functional with domain V dense in H; thus, it can be extended

uniquely to the Hilbert space H by Hahn-Banach theorem. This extension is

the dual pairing between V and V ′. Respectively, from the definition of duality

pairing, Definition 3.6, for w1 ∈ H and w2,w3 ∈ V,

(w1,w2)H = 〈w1,w2〉V′,V ,

(A1/2w2,A1/2w3)H = 〈Aw2,w3〉V′ ,V .
(40)

Definition 3.7. (Strong solution, [49])

A strong solution to (39) is an element z ∈ H which

• is strongly continuous and differentiable in time for almost every t ∈ [0, tf ]

with respect to H-norm topology,

• satisfies z(0) = z0 for the initial condition z0 ∈ H,

• and satisfies equation (39) for almost every t ∈ [0, tf ].

Given assumption 3.2, the eigenfunctions of the linear operator A provide

an orthogonal basis for the Hilbert space H [47, theorem VIII.6]. The eigen-

functions vi of the linear operator A and the Galerkin method are used to

define a finite-dimensional Hilbert space HN . An orthonormal projection onto

the finite-dimensional Hilbert space HN is defined by

PNz =

N∑
i=1

zivi.

Let the system’s state be approximated by zN = PNz. The reduced order

system is defined as

∂zN
∂t

= ANN (zN ) + RN (zN , t) + FNu(t) (41)
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where

NN (·) = PNN (·)

AN = PNA

RN (·) = PNR(·)

FN = PNF .

The following Lemma shows the boundedness of the solution to (41).

Lemma 3.8. Let the system (39) satisfy Assumption 3.1-3.3, 3.4, and 3.5.

Suppose that N (z(x, 0)) ∈ V. The solution to (41) on every bounded time

interval [0, tf ] is bounded;

‖zN (t)‖H ≤Mc,0 (42)

‖A1/2NN (zN (t))‖H ≤Mc,1 (43)∫ tf

0

‖ANN (zN (t))‖2Hdt ≤Mc,2 (44)

(45)

for Mc,0,Mc,1,Mc,2 ∈ R+ independent of N .

Proof: First, from Assumption 3.4 and Mean Value Theorem [50][Theorem

7.6-1], it is concluded that N (·) is Lipschitz continuous. In other words, for

every w1,w2 ∈ H and some LN > 0,

‖N (w2)−N (w1)‖H ≤LN ‖w2 −w1‖H (46)

Note that

R(0, t) = 0, N (0) = 0. (47)

Furthermore, by Assumption 3.5,

(zN ,ANN (zN ))H = (AN (zN ), zN )H ≥ 0. (48)

Let both sides of (41) be multiplied by w ∈ H;(
w,

∂zN
∂t

)
H + (w,ANN (zN ))H = (w,RN (zN , t) + FNu(t))H. (49)
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Similarly,

(∂zN
∂t

,w
)
H + (ANN (zN ),w)H = (RN (zN , t) + FNu(t),w)H. (50)

Next, replacing w by zN in (49) and (50) and adding the resulting equations

yield

d‖zN‖2H
dt

+ 2(ANN (zN ), zN )H = 2Re(RN (zN , t) + FNu(t), zN )H. (51)

Employing (48), the Lipschitz continuity (46), and (47) as well as using Cauchy

Schwarz and Young’s inequality in (51) leads to

d‖zN (t)‖2H
dt

≤ L1‖zN (t)‖2H + L2 (52)

where

L1 = 2LR + 1, L2 = ‖F‖Mu

and Mu is the upper bound of u(t). Integrating inequality (52) results in

‖zN (t)‖2H ≤ ‖zN (0)‖2H exp(L1t) +
L2(exp(L1t)− 1)

L1
≤Mc,0 (53)

for some Mc,0 > 0.

Now, let both sides of (41) be first operated by DNN (zN ), the Fréchet

derivative of NN (·), and then multiplied by ANN (zN ) in the sense of the

Hilbert space inner product; it is derived from following the same procedure as

before that(
ANN (zN ), DNN (zN )

∂zN
∂t

)
H +

(
DNN (zN )

∂zN
∂t

,ANN (zN )
)
H =

− 2(ANN (zN ), DNN (zN )ANN (zN ))H+

2Re(ANN (zN ), DNN (zN )(RN (zN , t) + FNu(t)))H.

(54)

Note that from Fréchet differentiability of N (·), for h ∈ H,

‖PN (N (zN + h)−N (zN )−DN (zN )h)‖H
‖h‖H

→ 0

when ‖h‖H → 0; therefore,

DNN (zN ) = PNDN (zN ). (55)
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From (55) and the fact that ANN (zN ) ∈ HN , it is concluded that

(ANN (zN ), DNN (zN )ANN (zN ))H = (ANN (zN ), DN (zN )ANN (zN ))H,

and, from Assumption 3.4

−(ANN (zN ), DNN (zN )ANN (zN ))H ≤ −ε1‖ANN (zN )‖2H. (56)

Similarly,

−(DNN (zN )ANN (zN ),ANN (zN ))H ≤ −ε1‖ANN (zN )‖2H. (57)

Substituting (56) and (57) into (54) and employing Cauchy Schwarz inequality;

Young’s inequality; and Assumption 3.1, 3.3, and 3.4 in (54) lead to

d‖A1/2NN (zN (t))‖2H
dt

≤ −L3‖ANN (zN (t))‖2H + L4
(58)

where

L3 = 2ε1 − β5, L4 =
1

β5
(β3LRMc,0 + ‖F‖Mu)2

and β5, which comes from Young’s inequality, is set such that L3 > 0. Since

−L3‖ANN (zN )‖2H < 0,

by integrating (58) and employing (53) on the bounded time interval [0, tf ] the

second boundedness result is achieved as

‖A1/2NN (zN (t))‖2H ≤ ‖A
1/2NN (zN (0))‖2H + L4tf ≤Mc,1 (59)

for Mc,1 ∈ R+.

Integrating (58) and considering the boundedness given by (59) lead to∫ tf

0

‖ANN (zN (t))‖2Hdt ≤
L4

L3
tf

+
1

L3
(‖A1/2NN (zN (0))‖2H − ‖A

1/2NN (zN (tf ))‖2H)

≤Mc,2

(60)

for some Mc,2 ∈ R+. �
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Theorem 3.9. Let the assumptions of Lemma 3.8 be satisfied. The system (39)

has at least one strong solution z ∈ L2([0, tf ];V)∩L∞([0, tf ];H). Furthermore,

the approximation error eN = z − zN is bounded, and the sequence eN admits

a subsequence converging to zero in L2([0, tf ];H) as N goes to infinity.

Proof: It can be concluded from Lemma 3.8 that the sequence zN stays in a

bounded set in L∞([0, tf ];V) and thus in L2([0, tf ];V)∩L∞([0, tf ];H). It is also

concluded that NN (zN ) stays in a bounded set in L2([0, tf ];V). By Banach-

Alaoglu theorem [51], there exists a subsequence zM and NM (zM ) such that

zM (t)→ z∗(t) weakly in L2([0, tf ];V)

zM (t)→ z∗(t) in weak-star topology in L∞([0, tf ];H),
(61)

and

NM (zM (t))→ w∗(t) weakly in L2([0, tf ];V) (62)

for z∗(t) ∈ L2([0, tf ];V)∩L∞([0, tf ];H) and w∗(t) ∈ L2([0, tf ];V) since L2([0, tf ];V)

and L2([0, tf ];H) are complete with respect to weak topology. From (41), Lips-

chitz continuity (46), boundedness of u(t), and Lemma 3.8, it is concluded that

the sequence dzM (t)/dt stays in a bounded set in L2([0, tf ];H). Therefore, by

[52, Theorem III.2.1],

zM (t)→ z∗(t) strongly in L2([0, tf ];H). (63)

Note that from (62), it can be concluded that for w(t) ∈ L2([0, tf ];D(A)),∫ tf

0

(A
1
2NM (zM (t)),A

1
2w(t))Hdt→

∫ tf

0

(A
1
2w∗(t),A

1
2w(t))Hdt;

thus, ∫ tf

0

(NM (zM (t)),Aw(t))Hdt→
∫ tf

0

(w∗(t),Aw(t))Hdt. (64)

In addition, by (63),∫ tf

0

(NM (zM (t)),Aw(t))Hdt→
∫ tf

0

(N (z∗(t)),Aw(t))Hdt. (65)

Since A has a bounded linear inverse by Assumption 3.2, it is ontoH. Therefore,

the convergence results (64) and (65) are satisfied for every w̄(t) = Aw(t) ∈
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L∞([0, tf ];H). Therefore, by uniqueness of the limit in weak topology, w∗(t) =

N (z∗(t)), and

NM (zM (t))→N (z∗(t)) weakly in L2([0, tf ];V). (66)

Now, multiplying both sides of (50) by a smooth function φ(t) with φ(tf ) = 0,

employing (40), and integrating by part the resulting equation with respect to

time yield

−
∫ tf

0

(
(zM (t),w)H

dφ(t)

dt
+ (A

1
2NM (zM (t)),A

1
2w)Hφ(t)

)
dt

=

∫ tf

0

(RM (zM (t), t) + FMu(t),w)Hφ(t)dt

+ (zM (0),w)Hφ(0).

(67)

For w ∈ D(A1/2), passing the limits (61), (63), (66), and the limit

zM (0)→ z(0) strongly in H

to (67) and using Assumption 3.3 lead to

−
∫ tf

0

(
(z∗(t),w)H

dφ(t)

dt
+ (A

1
2N (z∗(t)),A

1
2w)Hφ(t)

)
dt

=

∫ tf

0

(R(z∗(t), t) + Fu(t),w)Hφ(t)dt+ (z(0),w)Hφ(0).

(68)

Finally, integrating (68) by parts results in∫ tf

0

d

dt
(z∗(t),w)Hφ(t)dt =−

∫ tf

0

(A
1
2N (z∗(t)),A

1
2w)Hφ(t)dt

+

∫ tf

0

(R(z∗(t), t) + Fu(t),w)Hφ(t)dt.

(69)

Using (40) in (69) yields to

d

dt
〈z∗,w〉V′,V = 〈−AN (z∗) + R(z∗, t) + Fu(t),w〉V′,V (70)

which is valid in distribution sense on [0, tf ]. Since

z∗(t) ∈ L2([0, tf ];H),

−AN (z∗(t)) + R(z∗(t), t) + Fu(t) ∈ L2([0, tf ];H),
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by [49, Lemma II.3.1] and from (70)

∂z∗(t)

∂t
∈ L2([0, tf ];H)

and z∗(t) satisfies (39) almost every where. Furthermore, by [49, Lemma II.3.1],

z∗ equals almost every where to a continuous function from [0, tf ] to H; thus,

it is a strong solution to (39) by Definition 3.7. �

Now, the electrochemical equations are shown to satisfy Assumptions 3.2-

3.5.

Corollary 3.10. In the system (29), let the input signal u satisfies Assump-

tion 3.1, and N (c(0)) ∈ D(A1/2) holds for the initial condition where A and

N (·) are defined respectively by (30) and (32). Then, the system (29) has a

strong solution c. Furthermore, for the state vector z = c, the system can be

approximated by finite-dimensional equations with the same form as (41) whose

solutions cN admit a convergent subsequence in L2([0, tf ];X ) where [0, tf ] is a

finite time interval.

Proof: First, by Lemma 2.2, A defined by (30) is self-adjoint. Furthermore, as

mentioned before, it can be easily checked that the inverse of the linear operator

A is a double integral form with a bounded kernel; thus, it is a compact operator.

This property along with the self-adjointness leads to the fact that the linear

operator A satisfies Assumption 3.2 [47, theorem VIII.6].

Next, it is proved that the nonlinear operators N (·) and R(·) satisfy As-

sumptions 3.3,3.4, and 3.5. First, it can be concluded from the definition of

N (·) and chain rule theorem [53, Theorem 3.2.1] that

DN (c) =


I 0 0 0

0 α1(c2) 0 0

0 0 α2(c3) 0

0 0 0 α3(c4)

 . (71)

Define

δ3 = min(1, δ1), δ4 = max(1, δ2).
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From (71) and the boundedness given by (4), it is observed that

δ3 ≤‖DN (w2)‖ ≤ δ4

δ3‖w1‖2X ≤(w1, DN (w2)w1)X ≤ δ4‖w1‖2X
(72)

for every w1,w2 ∈ X , and thus Assumption 3.4 is satisfied. Furthermore, from

definition of A and N (·),

(w,AN (w))X ≥ λ‖w‖2X (73)

for w ∈ D(A1/2) such that N (w) ∈ D(A); thus, Assumption 3.5 is satisfied.

Finally, the nonlinear operator R(·, t) is a composition of smooth functions of

the potential vector ϕ and the vector [saty(c2), . . . , saty(c4)]T . Furthermore, ϕ

is a Fréchet differentible function of [c1, c2, . . . , c4]T . It is also observed that the

variation of ϕ and c are bounded by the implication of the saturation functions

sat(·) and saty(·) in (29); thus, R(·, t) is Lipschitz continuous with respect to c;

in other words, the nonlinearity of the system satisfies Assumption 3.3. Finally,

the input vector u(t) is assumed to satisfy Assumption 3.1. The proof is then

completed by Theorem 3.9. �

From Corollary 3.10, eigenfunctions of A can be used to approximate the

system such that a subsequence of the approximate solutions converges to a

solution of (29). For the sake of simplicity, since the electrolyte concentration

does not experience much change along the cell in time, it is set to be constant

as in [19] to find the eigenfunctions. For the solid concentration, c2-c4, the

eigenfunctions are derived from the following eigenvalue problems: for k =

1, . . . , 3,

1

r2
k

∂

∂rk
(r2
k

∂zk+1

∂rk
) = λkvk+1 (74)

in which the linear operator’s domain is defined in (31). Solving (74) leads to

finding the eigenfunctions as

vk+1 =

 1 if j = 0

sin
(
γj
Rk

rk

)
rk

otherwise
(75)
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where γj satisfies

γj = tan(γj).

Note that, in the original electrochemical equations the derivatives of the

solid concentrations (c2, c3, c4) with respect to the spatial variable x are not

involved. In order to add more accuracy to the system’s solution, in the next

step, the electrolyte concentration, c1, is approximated by a piece-wise linear

function instead of a constant and included in the system’s dynamics.

Linear spline functions are appropriate choices for approximating the po-

tential vector ϕ since (6) includes second order differentiation. The Galerkin

method is then used to find finite-dimensional nonlinear approximate algebraic

equations.

4. Simulations and comparison to experimental data

The finite-dimensional approximation of the original electrochemical equa-

tions is a system differential algebraic equations (DAEs). However, using the

fully dynamical form (38) leads to a system of ordinary differential equations

(ODEs). Using time differentiation to convert DAEs into ODEs can introduce

inaccuracy in the form of an accumulation error. The accuracy of this approach

was improved by periodically solving the constraint equations for the potential

vector. The solutions for different sample periods Dt are compared in Figure 2

and Figure 4 by showing their difference from a solution obtained for Dt = 0.5 s.

It is observed that the difference between solutions approaches zero.

The convergence of solid and electrolyte concentrations as the order of ap-

proximation increases is shown by comparing the difference between the approx-

imate solutions and a reference solution obtained by setting N3 = 30, a large

order of approximation. The root means square errors (RMSEs) between the

solutions for solid and electrolyte concentration at different orders of approxima-

tion and the reference solution are shown in Figures 8 and 9. The approximate

solutions converge fast especially at low current rates.
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The number of elements along the electrode and separator are denoted re-

spectively by N1 and N2. The number of eigenfunctions along every particle is

denoted by N3. The simulations were run in MATLAB R2017 on a PC with

Intel(R) CPU 2.3GHz processor and 32.0 GB RAM.

The experimental data used in this paper was generated in Laboratoire De

Réactivité Et Chimie Des Solides (LRCS) in Amiens, France. In this experiment,

the LFP electrode was recovered from a commercial graphite/LFP cell, LiFeBatt

X2E (2.31 mAh, 40166, cell A) which is employed for hybrid electric applications

[19]. The cell underwent discharge to 2 V at C/10 followed by a decrease of

the current below C/50 while the potential was held to 2 V. Next, it was

disassembled. Finally, the electrode whose area is 1.202 cm2 was punched with a

lithium metal foil for the counter electrode and a Whattman GF/D borosilicate

glass fiber sheet for the separator to assemble a coin cell. For more details,

please refer to [19].

Simulation results of solving the system equations (24), (29) for different

charging and discharging current rates are shown in Figure 5 for N1 = 4,

N2 = 4, and N3 = 6 with correcting sampling time Dt = 3 s. Similarly, the

simulation results for an impulsive current (Figure 3) are shown in Figure 6.

As observed from these figures the results have a good agreement with exper-

imental data for constant current rates and most of the operation region with

charging/discharging current profile presented in Figure 3.

The comparison of the computation time to the experimental charging/discharging

time is shown in Table 3. The simulation time is much faster than the actual

time of the charging/discharging cycle. The computation can be compared with

the reported time in [26] for the current rate 1 C. The reported MAPLE com-

putation time in [26] is using a 3.33 GHz Intel processor with 24 GB RAM for

the degrees of freedom 136 and 72 are respectively 28.361 s and 9.812 s which

is comparable with 36 s obtained in this paper for a degree of freedom 88. The

computational time is also less than the one introduced in [34]; the reported

MAPLE computation time in [34] is 174.71 s. It should be noted that the non-

linearity of the equations in this paper is more than the nonlinearity in either
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[26] or [34].

A likely cause of the discrepancy between the simulation results and exper-

imental data is errors in the modeling parameters. A more accurate model was

obtained by including rate dependency in the diffusivity. This is done by chang-

ing the activity correction factor (3) to be rate dependent. For the discharging

process, the activity correction factor becomes

αk(yk) = 9 exp(−25yk) + 15ω0 exp(−30(1− yk))

+ 3ω1 exp(−15(1− yk)) + 0.2ω2/(1 + (yk − 0.5)2)

where ω0, ω1, and ω2 are rate dependent correcting coefficients. Similarly, for

charging process, the activity correction factor becomes

αk(yk) = 9ω3 exp(−25yk) + 15 exp(−30(1− yk)) + 0.2ω4/(1 + (yk − 0.5)2)

where ω3 and ω4 are rate dependent correcting coefficients (See Table 4 for the

values of these coefficients at different current rates). The correcting coeffi-

cients are calculated to minimize the difference between the model output and

the experimental data. The simulations with the modified activity correcting

factor are shown in Figure 10. It is observed that the rate dependent diffusion

coefficient improves the match to the experimental data.

5. Conclusions

In this paper, a model for lithium-ion cells that is accurate but also appropri-

ate for real-time applications in hybrid vehicles was introduced. A challenging

part of the real-time applications is obtaining a model that is precise and yet

fast to be implemented online. As discussed before, in the case of LFP cells,

the electrochemical models are accurate; however, they are composed of both

constraint equations and dynamical equations. Many simplified models, such

as equivalent circuits, are accurate for specified parameter values but exten-

sions are difficult. The proposed model is computationally simple, but by being

physics-based, it can be easily adjusted to different working conditions.

26



Next, the approximation of the electrochemical equations of an LFP cell with

a well-posed state space representation was considered. Unlike many simplified

models introduced in the literature, the state space representation preserves

most of the cell’s dynamics. It was shown that the constrained equations are

well-posed, and the solid and electrolyte potential were restated as functions of

the state vector c. In the next step, a nonlinear low-order approximation was

developed based on the modes of the linear part of the model, which is known

to preserve the key dynamical behaviour.

Simulation results showed a good agreement with experimental data even

for low-order of approximations. It was also observed from the simulations that

the approximate solutions converge as the order of approximation increases.

Furthermore, the simulation time was much faster than the time elapsed for the

experiment. The computation time is also comparable with the one reported in

the literature for solving the electrochemical equations with constant diffusion

coefficient.

The introduced reduced order model in this paper has the same accuracy

as the ones introduced in literature including [17] for the dynamics with a con-

stant diffusion coefficient. The model was further improved by including a rate

dependent solid diffusion coefficient; the accuracy of the model was increased

as a result of the rate-dependent variable diffusion coefficient. In order to add

more accuracy to the system modeling, the OCV term could be modeled by a

dynamical model. In this way, the effect of hysteresis can be included in the

modeling.

Observer design for SOC estimation using the fully dynamical model de-

scribed in this paper is the object of current research.
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Table 1: Lithium-ion cell parameters.

parameter definition value (separator) value (LFP electrode)

lcat thickness of the negative electrode (m) 72× 10−6

lsep thickness of the separator (m) 675× 10−6

Rk radius of the spherical solid particles (m) 1.44× 10−7, 2.70× 10−7, 5.42× 10−7

R gas constant (J/(mol.K)) 8.3145

F Faraday’s constant (A.s/mol) 96485

t0+ transference number 0.363 0.363

εe volume fraction of the electrolyte phase 0.6 0.5

keff effective conductivity in the electrolyte phase (s/m) 0.6042 0.4596

keffD

keff2RT (1−t0+)

F

σeff effective conductivity in the solid phase (s/m) 6.75

Deff
e effective diffusivity in the electrolyte phase (m2/s) 4.028× 10−10 3.677× 10−10

D Diffusion coefficient of the spherical particle (m2/s) 4.21× 10−18

cs,max maximum solid state concentration (mol/m3) 22.860× 103

i0 exchange current density (A/m2) 0 3.25× 10−2

Table 2: Filtering and Saturation functions parameters

g h0 h1 a0 b0 ε0

1 2 3 1 2.0251 .0001

Table 3: Simulation and experiment charging/discharging process time.

Input current 0.1C 0.2C 0.5C 1C Impulsive

Computation time for charging cycle (s)

experiment 35859 17135 6330 2892 13447

simulation 479 251 76 33 361

Computation time for discharging cycle (s)

experiment 35785 17448 6620 3071 13407

simulation 453 212 98 36 356
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Table 4: Diffusion coefficient correction factors.

Current rate 2C 1C 0.5C 0.2C 0.1C

ω0 1.1 0.9 1 1.2 1.3

ω1 1.2 0.96 0.6 0.4 0.3

ω2 1 0.8 0.5 0.3 0.3

ω3 1.5 1 0.75 0.85 1

ω4 1.95 1.3 0.75 0.35 0.4

Figure 1: OCP profile in a charging and discharging cycle (Laboratoire De Réactivité Et

Chimie Des Solides (LRCS) in Amiens, France).
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(a) Charging (b) Discharging

Figure 2: Residual voltage for different correction sampling time Dt compared to a reference

voltage with the correction sampling time Dt = 0.5 s at the charging/discharging current rate

1C; the simulations used N1 = 4 in the separator domain, N2 = 4 along the positive electrode,

and N3 = 6 for every particle. It is observable that Dt = 3 s provides a small residual voltage.

Figure 3: Current profile in a charging and discharging cycle.
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(a) Charging (b) Discharging

Figure 4: Residual voltage for different correction sampling time Dt compared to a reference

voltage with the correction sampling time Dt = 0.5 s at the charging/discharging impulsive

current; the simulations used N1 = 4 in the separator domain, N2 = 4 along the positive

electrode, and N3 = 6 for every particle. It is observable that Dt = 3 s provides a small

residual voltage.
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(b) Discharging

Figure 5: Comparison of the simulation results of the fully dynamical representation with the

experimental data for different current rates; the simulations used N1 = 4 in the separator

domain, N2 = 4 along the positive electrode, N3 = 6 for every particle, and the correction

sampling time Dt = 3 s. A good agreement with the experimental data is observed. In these

plots, the dashed and solid line respectively represent the simulation result and experimental

data.
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Figure 6: Comparison of the simulation results of the fully dynamical representation with

experimental data for the impulsive current; the simulations used N1 = 4 in the separator

domain, N2 = 4 along the positive electrode, N3 = 6 along every particle, and the correction

sampling time Dt = 3 s. Agreement with the experimental data is observed. In these plots,

the dashed and solid line respectively represents the simulation result and experimental data.
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(a) Charging current rate=0.2C
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(b) Charging current rate=0.5C
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(c) Charging current rate=1C
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(d) Discharging current rate=0.2C
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(e) Discharging current rate=0.5C
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(f) Discharging current rate=1C

Figure 7: Approximate output solution to the electrochemical equations at different charg-

ing/discharging current rates with the correction sampling time Dt = 3 s. The solutions

converge for a low-order of approximation: N ≤ 8 for the current rate 1C and N ≤ 6 for the

current rates less than 1C.
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(a) Charging current rate=0.2C (b) Charging current rate=0.5C

(c) Charging current rate=1C (d) Discharging current rate=0.2C

(e) Discharging current rate=0.5C (f) Discharging current rate=1C

Figure 8: RMSE between the solid concentration vector, at different orders of approximation,

and the one with a large order of approximation N3 = 30. The correction sampling time is

Dt = 3 s. The approximate solutions converge fast especially at low current rates.
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(a) Charging current rate=0.2C (b) Charging current rate=0.5C

(c) Charging current rate=1C (d) Discharging current rate=0.2C

(e) Discharging current rate=0.5C (f) Discharging current rate=1C

Figure 9: RMSE between the electrolyte concentration vector, at different orders of approxi-

mation, and the one with a large order of approximation N3 = 30. The correction sampling

time is Dt = 3 s. The approximate solutions converge fast especially at low current rates.
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(b) Discharging

Figure 10: Comparison of the simulations for equations with a rate dependent diffusion co-

efficient to the experimental data; the simulations used N1 = 4 in the separator domain,

N2 = 4 along the positive electrode, N3 = 6 along every particle, and correction sampling

time Dt = 3 s. Agreement with the experimental data is improved compared to the stan-

dard variable solid-diffusivity model. In these plots, the dashed and solid line indicate the

simulation result and experimental data respectively.
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