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Abstract

A language L over an alphabet Σ is a right (left) ideal if it satisfies L = LΣ∗

(L = Σ∗L). It is a two-sided ideal if L = Σ∗LΣ∗, and an all-sided ideal if L = Σ∗ L,
the shuffle of Σ∗ with L. Ideal languages are not only of interest from the theoretical
point of view, but also have applications to pattern matching. We study the state
complexity of common operations in the class of regular ideal languages, but prefer
to use the equivalent term “quotient complexity”, which is the number of distinct
left quotients of a language. We find tight upper bounds on the complexity of each
type of ideal language in terms of the complexity of an arbitrary generator and of
the minimal generator, and also on the complexity of the minimal generator in terms
of the complexity of the language. Moreover, tight upper bounds on the complexity
of union, intersection, set difference, symmetric difference, concatenation, star, and
reversal of ideal languages are derived.
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1 Introduction

A language is a right ideal if it is closed under concatenation on the right with
an arbitrary word. Left ideals and two-sided ideals are defined in a similar
way. A language is an all-sided ideal if it is closed under the insertion of an
arbitrary word in any position in any word of the language. Ideal languages
need not be regular, but our interest is in regular ideals only.

Ideals are studied for several reasons. They are fundamental objects in semi-
group theory [26,37]. They appear in the theoretical computer science litera-
ture as early as 1965 [32] and continue to be of interest in the present [2,3,12,13].
Ideal languages are complements of prefix-, suffix-, factor-, and subword-closed
languages, and closed languages constitute another interesting class [2,10].
Ideal languages are closed with respect to the “has a word as a prefix”
(respectively, suffix, factor, subword) relation [2]. They are special cases of
convex languages [2,38], which form a much larger class. Finally, besides be-
ing of theoretical interest, ideals also play a role in algorithms for pattern
matching.

Left and right ideals were studied by Paz and Peleg [32] in 1965 under the
names “ultimate definite” and “reverse ultimate definite events”; their re-
sults include closure properties, decision procedures, and canonical represen-
tations for these languages. All-sided ideals were used by Haines [18] (not un-
der that name) in 1969 in connection with subword-free and subword-closed
languages, and by Thierrin [38] in 1973 in connection with subword-convex
languages. De Luca and Varricchio [27] showed in 1990 that a language is
factor-closed (or “factorial”) if and only if it is the complement of a two-
sided ideal. The 1994 work of Yu, Zhuang and Salomaa in [42] contains two
results about left and right ideals. In 2001 Shyr [37] studied right, left, and two-
sided ideals and their generators in connection with codes. In 2007 Okhotin [31]
presented a result concerning all-sided ideals. Complexity issues of conversion
of nondeterministic finite automata (nfa’s) to deterministic finite automata
(dfa’s), where these automata recognize right, left, and two-sided ideals were
studied in 2009 by Bordihn, Holzer, and Kutrib [3], who used the names “ul-
timate definite”, “reverse ultimate definite”, and “central definite” languages,
respectively. The sizes of all-sided ideals were studied in 2009 by Gruber,
Holzer and Kutrib [17]. In 2009 all four types of ideals and their closure
properties were considered by Ang and Brzozowski [2] in the framework of
languages convex with respect to arbitrary binary relations. Decision prob-
lems for various classes of convex languages, including ideals, were addressed
in 2011 by Brzozowski, Shallit and Xu [12]. The sizes of the syntactic semi-
groups of right, left, and two-sided ideals were studied in 2011 by Brzozowski
and Ye [13].
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As mentioned above, ideals also appear in the important area of pattern
matching. For this application, a text is represented by a word w over some
alphabet Σ. A pattern can be as simple as a word or a finite set of words, or
it can be an arbitrary language L over Σ described by a regular expression.
An occurrence of a pattern represented by L in text w is a triple (u, x, v) such
that w = uxv and x is in L. Searching text w for words in L is equivalent to
looking for prefixes of w that belong to the language Σ∗L, which is the left
ideal generated by L [15].

Algorithms such as that of Aho and Corasick [1] can be used to determine
all possible occurrences of words from a finite set L in a given input w.
For example, in a Unix-style editor, such as sed, if L is just a single word x,
then /.*x$/, /^x.*/, and /.*x.*/, or their simplified versions /x$/, /^x/,
and /x/, find all the words ending in x (that is, all the words of the left ideal
Σ∗x) that occur in w; all the words beginning with x (that is, all the words
of the right ideal xΣ∗) that occur in w; and all the words that have x as a
factor (that is, all the words of the two-sided ideal Σ∗xΣ∗) that occur in w,
respectively. The language Σ∗ x can be used to find subsequences occurring
in the given text, for example, to determine whether a report has all the re-
quired sections and that they are in the correct order. For more details we
refer the reader to [1,15,16].

For another example of applications of pattern matching with regular lan-
guages see the recent work of Yu, Chen, Diao, Lakshman and Katz [39]. They
consider the problem of scanning at high speed the content of packets, which
are units of binary data routed through a computer communication network;
this is crucial for network monitoring and security applications. In such cases
nfa’s are often used, because the exponential size of the naive dfa’s requires
excessive memory. Rewriting techniques on regular expressions are used to
make fast dfa-based pattern matching feasible. Ideals, though not so named,
appear often is this work.

In this paper we study ideal languages from the descriptional complexity point
of view. The fact that the four classes of ideals are related to each other permits
us to obtain many complexity results using similar methods.

1.1 State Complexity versus Quotient Complexity

The study of state complexity of operations on regular languages is a well-
established area of research in theoretical computer science. The state com-
plexity of a regular language L is the number of states in the (complete)
minimal dfa recognizing L.

For subclasses C and C′ of regular languages, the state complexity of an op-
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eration f : C × C → C′ is a function of the state complexities of languages
K and L from C that returns the maximal state complexity of the language
f(K, L). If f is an operation f : C → C′, then the state complexity of f
returns the maximal state complexity of f(L), for L in C, as a function of the
state complexity of L.

A notion equivalent to state complexity is that of the quotient complexity of
a language. For a language L over a finite alphabet Σ and a word w ∈ Σ∗, the
(left) quotient of L by w is the language Lw = {x | wx ∈ L}. The quotient
complexity of a language L is the number of distinct quotients of L. A language
L is regular if and only if it has a finite number of quotients, and this number
is precisely the state complexity of L. The quotient complexity of an operation
is a function, similar to the state complexity function defined above, but here
it returns the maximal number of quotients of f(K, L) or of f(L), which, of
course, is the same as the state complexity of f(K, L) or of f(L).

Although the two concepts—of state and quotient complexity—are equivalent
in the numerical sense, they provide different points of view for the same ba-
sic idea. The state complexity approach is automaton-oriented and leads to
constructions of automata recognizing the language resulting from an opera-
tion. The quotient approach is language-oriented and leads to operations on
languages. In particular applications one approach may be more convenient
than the other. For example, it is often easy to derive an upper bound on
the state/quotient complexity of an operation using quotients. On the other
hand, to show that the state/quotient complexity of an operation meets an
upper bound it is often more appropriate to use automata. These techniques
are illustrated several times in the present paper.

In this paper we use either one approach or the other, as is convenient. The
terminology is a question of personal preference, and we prefer to use “quo-
tient complexity”, since it is a language property defined in language-theoretic
terms. However, since we do not discuss any other type of complexity in this
work, we will simply use the term complexity.

1.2 Previous Work on Complexity

The bound mn on the complexity of intersection was noted in 1959 by Rabin
and Scott [36]. In 1963 Lupanov [28] proved that the bound 2n for the conver-
sion of nfa’s to dfa’s is tight. In 1966 Mirkin [30] showed that the 2n bound for
the reversal of a dfa is attainable. The state complexities of union, product,
and star were first studied in 1970 by Maslov [29]. He stated upper bounds on
the complexity of these operations and gave examples of languages meeting
these bounds, but provided no proofs.
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In 1994 Yu, Zhuang, and Salomaa [42] examined in detail the complexities of
concatenation, star, left and right quotients, reversal, intersection, and union
in the class of regular languages. Since then, there have been many papers on
this subject; see, for example, the 2001 survey by Yu [41] and the reference lists
in that work. Quotient complexity was introduced in 2010 by Brzozowski [6];
that paper also contains a short updated survey.

There has also been a considerable amount of work done on the complexity of
operations in proper subclasses of regular languages: in unary languages in 1994
by Yu, Zhuang and Salomaa [42] and in 2002 by Pighizzini and Shallit [34];
in finite languages in 2001 by Yu [41] and Câmpeanu, Culik, Salomaa and
Yu [14]; in prefix-free languages in 2009 by Han, Salomaa and Wood [20]; in
suffix-free languages in 2009 by Han and Salomaa [19]; in closed languages in
2010 by Brzozowski, Jirásková and Zou [10]; in union-free languages in 2010
by Jirásková and Masopust [23]; in bifix-, factor- and subword-free languages
in 2011 by Brzozowski, Jirásková, Li and Smith [9]; and in star-free languages
in 2011 by Brzozowski and Liu [11]. In general, these studies of subclasses
show that the complexity can be significantly lower in a subclass than in the
general case. There are, however, some surprises: Brzozowski and Liu [11]
showed that all the bounds on operations on regular languages, with some
small exceptions, are also met by star-free languages—a very restricted class
of regular languages. Analogous results were proved by Holzer, Kutrib and
Meckel [21] who showed that, in most cases, exactly the same tight state-
complexity bounds are reached by operations on nfa’s recognizing star-free
languages as on general nfa’s. This motivates us to study subclasses of regular
languages to determine their complexity characteristics. Here we continue this
study in four related classes of regular languages: right, left, two-sided, and
all-sided ideals.

1.3 Outline

In Section 2 we define our terminology and notation. The complexities of
ideal languages in terms of their generators and minimal generators, and the
complexities of generators in terms of ideals are studied in Section 3. The
complexities of basic operations on ideals are then examined in Section 4. The
special case of unary languages is treated in Section 5, and Section 6 concludes
the paper.

An earlier version of this work appeared at arXiv [7], and a much shorter
version was published in the LATIN 2010 conference proceedings [8].
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2 Preliminaries

We assume that the reader is familiar with basic concepts of regular languages
and finite automata, as described in [33,40], for example, or in many textbooks.
For general properties of ideal languages we refer the reader to [26,37].

If Σ is a non-empty finite alphabet, then Σ∗ is the free monoid generated by Σ.
A word is any element of Σ∗, and the empty word is ε. The length of a word
w ∈ Σ∗ is |w|. A language over Σ is any subset of Σ∗.

The following set operations are defined on languages: complement
(L = Σ∗ \ L), union (K ∪ L), intersection (K ∩ L), difference (K \ L), and
symmetric difference (K ⊕ L). To indicate any one of these four boolean op-
erations with two arguments we use K ◦L. We also define the product, usually
called concatenation or catenation, K · L = {w ∈ Σ∗ | w = uv, u ∈ K, v ∈ L},
positive closure L+ =

⋃

i≥1 Li, and star L∗ =
⋃

i≥0 Li. The reverse wR of a
word w in Σ∗ is defined as follows: εR = ε, and (wa)R = awR for a letter a
and a word w. The reverse of a language L is defined as LR = {wR | w ∈ L}.

Regular languages over an alphabet Σ are languages that can be obtained
from the basic languages ∅, {ε}, and {a}, a ∈ Σ, using a finite number of
operations of union, product, and star. Such languages are usually denoted by
regular expressions. For example, E = (ε ∪ a)∗b denotes L = ({ε} ∪ {a})∗{b}.
We use the symbols ∪, · (usually omitted), and ∗ for union, product, and star
of both regular expressions and languages, rather than using + in expressions
and ∪ for languages.

A deterministic finite automaton (dfa) is a quintuple D = (Q, Σ, δ, q0, F ),
where Q is a finite, non-empty set of states, Σ is a finite, non-empty alphabet,
δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states. The transition function is naturally extended
to the domain Q × Σ∗. The language accepted by dfa D is L(D) = {w ∈ Σ∗ |
δ(q0, w) ∈ F}. The language accepted from a state q of a dfa is the language
accepted by the dfa Dq = (Q, Σ, δ, q, F ). Two states of a dfa are distinguishable
if there exists a word w which is accepted from one of the states and rejected
from the other. Otherwise, the two states are equivalent. A dfa is minimal
if all of its states are reachable from the initial state and no two states are
equivalent.

A nondeterministic finite automaton (nfa) is a quintuple N = (Q, Σ, δ, S, F ),
where Q, Σ, and F are defined the same way as in a dfa, S is the set of initial
states 2 , and δ is the nondeterministic transition function that maps Q×Σ to

2 In contrast to some authors, we use a set of initial states, since we require the
reverse of an nfa to be an nfa.
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2Q. The transition function is extended to 2Q ×Σ∗. The language accepted by
nfa N is L(N ) = {w ∈ Σ∗ | δ(S, w) ∩ F 6= ∅}. The language accepted from a
state q of an nfa is the language accepted by the nfa (Q, Σ, δ, {q}, F ).

Every nfa (Q, Σ, δ, S, F ) can be converted to an equivalent dfa (2Q, Σ, δ′, S, F ′)
by the well-known subset construction [36]: The transition function δ′ is de-
fined by δ′(R, a) =

⋃

r∈R δ(r, a), and a state R in 2Q is in F ′ if R ∩ F 6= ∅.
We call the resulting dfa the subset automaton corresponding to the given
nfa. This automaton need not be minimal, since some of its states may be
unreachable or equivalent.

The following two lemmata are used often to show reachability and distin-
guishability of states of a subset automaton.

Lemma 1 (Reachability) Consider an nfa with initial state q0, in which
there are transitions on inputs a and b in states q0, q1, . . . , qn−2 as shown in
Fig. 1. Then each subset of {q0, q1, . . . , qn−1} containing q0 is reachable in the
corresponding subset automaton.

qn−2q0 q1
a, ba, ba, ba

a, b

· · · qn−1

Fig. 1. Reachability of all the subsets of {q0, q1, . . . , qn−1} containing state q0.

PROOF. The proof is by induction on the size of subsets. Subset {q0} is the
initial state of the subset automaton. Every subset {q0, qi2, qi3 . . . , qik} of size
k, where 2 ≤ k ≤ n and 1 ≤ i2 < i3 < · · · < ik ≤ n − 1, is reached from the
subset {q0, qi3−i2 , . . . , qik−i2} of size k − 1 by abi2−1. 2

Lemma 2 (Distinguishability) If for every state q of an nfa there exists a
word wq that is accepted by the nfa from state q and rejected from any other
state, then all the states of the corresponding subset automaton are pairwise
distinguishable.

PROOF. Two distinct subsets of the subset automaton must differ in some
state q of the given nfa. These two subsets are distinguished by word wq, which
is accepted by the nfa only from state q. 2

Next, we recall some properties of quotients. The quotient complexity of L is
the number of distinct quotients of L, and is denoted by κ(L).
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The quotients of a regular language can be computed as follows. First, the
ε-function Lε of a regular language L is defined by Lε = ∅ if ε /∈ L and Lε = ε
if ε ∈ L. The quotient by a letter a in Σ is computed by induction:

ba =











∅, if b ∈ {∅, ε}, or b ∈ Σ and b 6= a,

ε, if b = a;

(L)a = La;

(K ◦ L)a = Ka ◦ La;

(KL)a = KaL ∪ KεLa;

(K∗)a = KaK
∗.

The quotient by a word w ∈ Σ∗ is computed by induction on the length of w:

Lε = L; Lwa = (Lw)a.

Quotients computed this way are indeed the left quotients of a regular lan-
guage [5,6]. A quotient Lw is final if ε ∈ Lw; otherwise it is non-final.

We use the following formulas [5,6] for quotients of regular languages to es-
tablish upper bounds on quotient complexity:

Proposition 3 If K and L are regular languages, and u and v are in Σ+,
then

(L)w = Lw; (K ◦ L)w = Kw ◦ Lw; (1)

(KL)w = KwL ∪ KεLw ∪

(

⋃

w=uv

Kε
uLv

)

. (2)

The formulas for boolean operations are obvious. The quotient of a product
KL by w consists of the quotient of K by w concatenated with L, of the
quotient of L by w if the empty word is in K, and of the quotients of L by
non-empty suffixes v of w, where the quotients of K by the corresponding
prefixes u of w contain the empty word.

The quotient dfa of a regular language L is D = (Q, Σ, δ, q0, F ), where Q =
{Lw | w ∈ Σ∗}, δ(Lw, a) = Lwa, q0 = Lε = L, and F = {Lw | ε ∈ Lw}. So the
number of states in the quotient automaton of L is the quotient complexity
of L. The quotient dfa of L is isomorphic to the complete minimal dfa of L,
and these terms are used here synonymously.

8



If u, v, w ∈ Σ∗ and w = uxv, then u is a prefix of w, v is a suffix of w, and x
is a factor of w. If w = u1v1u2v2 · · ·ukvkuk+1, where the ui and vi are in Σ∗,
then v1v2 · · · vk is a subword of w. A prefix (suffix, factor, subword) of w is
proper if it not equal to w.

A language L is prefix-free (prefix-closed) if w ∈ L implies that no proper prefix
of w is in L (that every prefix of w is in L). In the same way, we define suffix-
free, factor-free, and subword-free languages, and the corresponding closed
versions.

The shuffle u v of two words u, v ∈ Σ∗ is defined as follows:

u v = {u1v1 · · ·ukvk | u = u1 · · ·uk, v = v1 · · · vk, u1, . . . , uk, v1, . . . , vk ∈ Σ∗}.

The shuffle of two languages K and L is defined by

K L =
⋃

u∈K,v∈L

u v.

Note that these operations are commutative.

3 Ideals, Generators, and Minimal Generators

A language L ⊆ Σ∗ is a right ideal (left ideal, two-sided ideal, all-sided ideal)
if it is non-empty and satisfies L = LΣ∗ (L = Σ∗L, L = Σ∗LΣ∗, L = Σ∗ L,
respectively). We refer to all four types as ideal languages or simply ideals.

If L is a right (respectively, left, two-sided, all-sided) ideal, any language G ⊆
Σ∗ such that L = GΣ∗ (respectively, L = Σ∗G, L = Σ∗GΣ∗, L = Σ∗ G) is
a generator of L. The quotients of ideals GΣ∗, Σ∗G, and Σ∗GΣ∗ are derived
from Equation (2) and given below, where words u, v, x, and y are in Σ+:

(GΣ∗)w = (Gw ∪ Gε ∪
⋃

w=uv

Gε
u)Σ

∗; (3)

(Σ∗G)w = Σ∗G ∪ Gw ∪
⋃

w=uv

Gv; (4)

(Σ∗GΣ∗)w = Σ∗(GΣ∗) ∪ (GΣ∗)w ∪
⋃

w=uv

(GΣ∗)v =

[Σ∗G ∪ (Gw ∪
⋃

w=uv

Gv) ∪
⋃

w=uv

[Gε
u ∪ (

⋃

v=xy

Gε
x)]]Σ

∗. (5)

We use these formulas to establish upper bounds on the complexity of the
ideals G Σ∗, Σ∗G, and Σ∗G Σ∗ generated by G.
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Theorem 4 (Complexity of Ideals in Terms of Generators) Let G be
any generator of the right ideal GΣ∗ (left ideal Σ∗G, two-sided ideal Σ∗GΣ∗,
or all-sided ideal Σ∗ G) with κ(G) = n. Then

(1) For n ≥ 1, κ(GΣ∗) ≤ n, and the bound is tight if |Σ| ≥ 1;
(2) κ(Σ∗G) ≤ 2n−1, and the bound is tight if |Σ| = 1 for n = 1, and |Σ| ≥ 2,

otherwise;
(3) For n = 1, κ(Σ∗GΣ∗) = 1, and for n ≥ 2, κ(Σ∗GΣ∗) ≤ 2n−2 + 1 and the

bound is tight if |Σ| ≥ 2;
(4) For n = 1, κ(Σ∗ G) = 1, and for n ≥ 2, κ(Σ∗ G) ≤ 2n−2 + 1 and

the bound is tight if |Σ| ≥ n − 2, and cannot be met using any smaller
alphabet.

PROOF. The first two items follow from the results in [42]. We give short
proofs using quotients.

1. If n = 1, then G = Σ∗ and κ(GΣ∗) = 1. If n ≥ 2, then G is non-empty. From
Equation (3), if w has no prefix in G, then (GΣ∗)w = GwΣ∗. As κ(G) = n,
there can be at most n − 1 such quotients, for there must be at least one
quotient Gw with w ∈ G. However, for every word w with a prefix x in G, we
have (GΣ∗)w = (GΣ∗)x = Σ∗. Hence there are at most n different quotients.

The unary language G = an−1a∗ meets the bound.

2. One of the n quotients of G, namely Gε = G, always appears on the right-
hand side of Equation (4). Thus there are at most 2n−1 subsets of quotients
of G to be added to Σ∗G, and so Σ∗G has at most 2n−1 distinct quotients.

For tightness, if n = 1, then G = Σ∗ meets the bound. For n ≥ 2, let G
be the language accepted by the dfa in Fig. 2. To get an nfa for Σ∗G, add a
loop on a in the initial state 0. By Lemma 1, every subset of {0, 1, . . . , n− 1}
containing state 0 is reachable in the corresponding subset automaton. Since
for each state i, the word an−1−i is accepted by the nfa only from state i,
distinguishability follows by Lemma 2.

a, b

a, ba, b

b

a a, b
n − 20 1 · · ·

n − 1

Fig. 2. The dfa of G with κ(G) = n and κ(Σ∗G) = 2n−1.

3. Since quotient G is always present in the expression in Equation (5), there
are at most 2n−1 distinct unions of quotients of language G. Since G is non-
empty, it has at least one final quotient. If the final quotient is G, then the
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resulting language is Σ∗. Otherwise, at least 2n−2 unions contain a final quo-
tient of G, and the corresponding quotients of two-sided ideal Σ∗GΣ∗ are Σ∗.
Thus 2n−2 + 1 is an upper bound.

To prove the tightness of the bounds, for n = 1 use Σ∗ and for n = 2 use
the language a∗b(a ∪ b)∗. For n ≥ 3 consider the language G defined by the
dfa in Fig. 3. To get an nfa for Σ∗GΣ∗, add a loop on a in the initial state 0.
By Lemma 1, every subset of {0, 1, . . . , n − 2} containing state 0 is reachable
in the corresponding subset automaton. For each state i in {0, 1, . . . , n − 2},
the word an−2−ib is accepted by the nfa only from states i and n−1. It follows
that the subsets of {0, 1, . . . , n − 2} are pairwise distinguishable. All of them
are non-final states of the subset automaton. Also, the final state {0, n− 1} is
reached from {0, n − 2} by b. The lower bound 2n−2 + 1 follows.

n − 1
a, ba, ba

b

0 1
a, b b

a, b

a

· · · n − 3 n − 2

Fig. 3. The dfa of G with κ(G) = n and κ(Σ∗GΣ∗) = 2n−2 + 1.

4. If n = 1, then G = Σ∗ and κ(Σ∗ G) = 1. For n ≥ 2, since an all-
sided ideal is a two-sided ideal, the upper bound 2n−2 + 1 applies. For n = 2,
the language aa∗ meets the bound. For n ≥ 3, Okhotin [31] used the alphabet
Σ = {a1, . . . , an−2} and the language G =

⋃n−2
i=1 aiΣ

∗aiΣ
∗ to prove the tightness

of the bound. He also showed that the bound cannot be met if n − 3 letters
are used. 2

In Theorem 4, notice the lack of symmetry in the complexities of right and left
ideals, and the equality of complexities of two-sides and all-sided ideals. Note
also that a provably growing alphabet is required for all-sided ideals [31]. As
an anonymous referee correctly points out, in such a situation it is no longer
clear whether state complexity is an appropriate measure of complexity. This
result should perhaps be restated as follows.

Let G be any generator of the all-sided ideal Σ∗ G with κ(G) = n ≥ 2, and
|Σ| ≥ n − 2. Then κ(Σ∗ G) ≤ 2n−2 + 1, and this bound is tight.

Here the measure of complexity of G should be some function of both the state
complexity and the alphabet size—perhaps their product—because the bound
cannot be reached if the alphabet size is bounded by a constant. Conversely,
if the size of the alphabet is fixed, then the bound for that alphabet—though
it may be hard to find—surely exists, and is guaranteed to be smaller than
2n−2 + 1 [31].
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Next, we consider the complexities of ideals in terms of their minimal gener-
ators. The following are well-known properties of ideals [26].

(1) If L is a right ideal, the minimal generator of L is M = L \ (LΣ+), and
M is prefix-free. If M is prefix-free, then it is the minimal generator of
MΣ∗.

(2) If L is a left ideal, the minimal generator of L is M = L \ (Σ+L), and M
is suffix-free. If M is suffix-free, then it is the minimal generator of Σ∗M .

(3) If L is a two-sided ideal, the minimal generator of L is M = L\(Σ+LΣ∗∪
Σ∗LΣ+), and M is factor-free. If M is factor-free, then it is the minimal
generator of Σ∗MΣ∗.

(4) If L is an all-sided ideal, the minimal generator of L is the set M of all
words of L that have no proper subwords in L, and thus M is subword-
free. If M is subword-free, then it is the minimal generator of Σ∗ M .

Theorem 5 (Complexity of Ideals in Terms of Minimal Generators)
Let M be the minimal generator of the right ideal MΣ∗, (left ideal Σ∗M , two-
sided ideal Σ∗MΣ∗, or all-sided ideal Σ∗ M) with κ(M) = n ≥ 3. Then

(1) κ(MΣ∗) ≤ n and the bound is tight if |Σ| ≥ 2;
(2) κ(Σ∗M) ≤ 2n−2 and the bound is tight if |Σ| ≥ 2;
(3) κ(Σ∗MΣ∗) ≤ 2n−3 + 1 and the bound is tight if |Σ| ≥ 2;
(4) κ(Σ∗ M) ≤ 2n−3 + 1, and the bound is tight if |Σ| ≥ n − 3.

PROOF. 1. The upper bound n follows from Theorem 4. Let Σ = {a, b}, and
let M = aΣn−3. The dfa for M is shown in Fig. 4. Then M has n quotients
and generates the right ideal L = aΣn−3Σ∗, which also has n quotients. Since
M is prefix-free, it is the minimal generator.

a a, ba, b
0 1

a, b

a, b

· · · n − 3 n − 2 n − 1

b

a, b

Fig. 4. The dfa of a minimal generator M with κ(MΣ∗) = n and κ(Σ∗M) = 2n−2.

2. Replace G by M in Equation (4). One of the n quotients of M , namely
Mε = M , always appears in the union. Thus there are at most 2n−1 subsets
of quotients of M to be added to Σ∗M . Moreover, since M is suffix-free, M
has the empty quotient [19]. Consider the n − 1 quotients other than M .
Each union of a subset of such quotients that contains the empty quotient is
equivalent to a union without the empty quotient; hence there are at most
2n−2 quotients of Σ∗M .

For tightness, let Σ = {a, b}, and consider the suffix-free language M = aΣn−3

12



accepted by the dfa in Fig. 4. To get an nfa for the generated left ideal Σ∗M ,
omit the dead state n − 1 and all transitions incident to it, and add a loop
in state 0 on letters a, b. By Lemma 1, all the subsets of {0, 1, . . . , n − 2}
containing state 0 are reachable in the corresponding subset automaton. These
reachable states are pairwise distinguishable since for each state i, the word
an−2−i is accepted by the nfa only from state i. This gives 2n−2 reachable and
pairwise distinguishable states, and proves the lower bound.

3. Replace G by M in Equation (5). Since Mε = M is always present, there
are at most 2n−1 subsets of quotients of M to add to Mε. Since M is the
minimal generator of L, it is factor-free, and hence prefix-free. Thus it has
only one final quotient, ε, and also has the empty quotient, and so we have at
most 2n−2 subsets. Finally, half of those 2n−2 subsets contain Σ∗, and hence
are equivalent to Σ∗. This leaves 2n−3 + 1 subsets, and so κ(L) ≤ 2n−3 + 1.

For n = 3, let Σ = {a} and M = a; then M is the minimal generator of
a∗aa∗ and meets the bound. For n ≥ 4, consider the factor-free language
M = aΣn−4a given by the dfa of Fig. 5. To get an nfa for the generated
two-sided ideal Σ∗MΣ∗, omit the dead state n − 1 and add loops on letters
a, b in states 0 and n − 2. By Lemma 1, all the subsets of {0, 1, . . . , n − 3}
containing state 0 are reachable in the corresponding subset automaton. For
states 0, 1, . . . , n−3, the word an−2−i is accepted by the nfa only from state i.
Therefore, the non-final subsets of {0, 1, . . . , n−3} are pairwise distinguishable.
The final subset {0, 1, n − 2} is reached from {0, n − 3} by a, and the lower
bound 2n−3 + 1 follows.

b

a, ba, b
0 1

a, b

· · · n − 3 n − 2 n − 1

b

a, ba a

Fig. 5. The dfa of a minimal generator M with κ(Σ∗MΣ∗) = 2n−3 + 1.

4. Since an all-sided ideal is a two-sided ideal, the bound of 2n−3 + 1 applies.
If n = 3, then M = a meets the bound. For n ≥ 4, consider the subword-free
language M = a1a1∪· · ·∪an−3an−3 over the alphabet {a1, . . . , an−3}. Figure 6
shows the dfa for M ; all the undefined transitions go to the dead state n − 1
(not shown in the figure).

To get an nfa for Σ∗ M , add loops on every ai in every state. In the corre-
sponding subset automaton, each subset {0, i1, . . . , ik} of {0, 1, . . . , n − 3} is
reached from the initial state {0} by ai1 · · ·aik . Since ai with 1 ≤ i ≤ n − 3
is accepted by the nfa only from states i and n − 2, the non-final subsets
of {0, 1, . . . , n − 3} are pairwise distinguishable. One of the final subsets,
{0, 1, n − 2}, is reached from {0, 1} by a1a1. This proves the reachability and
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an−3

n − 20 i

1

n − 3

a1 a1

ai ai

an−3

Fig. 6. The dfa of minimal generator M of all-sided ideal N with κ(N) = 2n−3 + 1.

distinguishability of 2n−3 + 1 subsets, and concludes the proof. 2

Theorem 5 shows that using the minimal generator does not affect the com-
plexity of the resulting right ideal, but reduces the complexity of the other
ideals roughly by a factor of 2 for large n. There is still lack of left-right
symmetry, and the bounds for two-sided and all-sided ideals are again equal.

We now consider the converse problem: Given an ideal L of quotient complex-
ity n, what is the quotient complexity of its minimal generator? We will need
the next observation about left ideals which follows from the fact that vw ∈ L
implies uvw ∈ L if L is a left ideal.

Remark 1 If L is a left ideal and u, v ∈ Σ∗, then Lv ⊆ Luv.

Theorem 6 (Complexity of Minimal Generators) Let L be an ideal with
κ(L) = n, and let M be its minimal generator.

(1) If L is a right ideal, then κ(M) ≤ n+1, and the bound is tight if |Σ| ≥ 1.
(2) If L is a left ideal, then κ(M) ≤ n(n− 1)/2 + 2, and the bound is tight if

|Σ| ≥ 2.
(3) If L is a two-sided ideal and n = 1, then κ(M) = 2. Otherwise 3 κ(M) ≤

3 + (n − 1)(n − 2)/2; the bound is tight if |Σ| ≥ 1 when n ∈ {2, 3}, and
if |Σ| ≥ 3 when n ≥ 4.

PROOF. If n = 1, then L = Σ∗, M = ε, κ(M) = 2, and the bounds are
satisfied in all three cases. Assume from now on that n > 1, which implies
that ε 6∈ L.

1. Let L be a right ideal and M its minimal generator. Then M is prefix-free,
and therefore the minimal dfa for M has exactly one final state, which goes

3 We are grateful to Marcus Holzer and Sebastian Jakobi for pointing out two errors
in an earlier version of our paper and for providing the witness that satisfies the
bound stated here.
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to the dead state under each letter. To get a dfa for L = MΣ∗, we remove
all the transitions going from the final state to the dead state, and add a
loop on each letter in the final state. In the resulting dfa, the dead state may
be unreachable; however, all the remaining states are reachable and pairwise
distinguishable. It follows that κ(M) ≤ n + 1. The bound is met by the right
ideal L = an−1a∗ with κ(L) = n. The minimal generator is M = an−1 and
κ(M) = n + 1.

2. If L is a left ideal and u, v ∈ Σ∗, then Lv ⊆ Luv by Remark 1. Since
L = Σ∗L, we have ΣL = Σ+L, showing that M = L\ΣL. Let L have quotients
L1, L2, . . . , Ln. If w = av is a nonempty word, then Mw = Lav \Lv, which is a
difference of two quotients of L. Next, we have Lv ⊆ Lav. This means, that if
i 6= j, then at most one of Li \Lj and Lj \Li may be a non-empty quotient of
M . Also, Li \Li = ∅ for all i. Hence there are at most n(n−1)/2+2 quotients
of M : Mε, at most one quotient for each i 6= j, and ∅.

If n = 2, the unary language a∗a meets the bound. For Σ = {a, b}, n ≥ 3,
let L = (b ∪ ab)∗a(ab∗)n−3aΣ∗. The dfa for L is shown in Fig. 7(a). Note that
w ∈ L if and only if w = xa(ab∗)n−3ay for some words x and y, because every
quotient of L contains a(ab∗)n−3a, or, equivalently, the language a(ab∗)n−3a is
accepted from every state of the dfa. Thus L is a left ideal with κ(L) = n.

b

2
a a a

1 3
a

a

b a, b

nn − 1

2
a, b a a a

0 1 3
a

a

b a, b

nn − 1

· · ·

· · ·

L

ΣL

(b)

(a)
b

b

b

b b

Fig. 7. The dfa’s of a left ideal L and of the language ΣL.

The dfa of ΣL is shown in Fig. 7(b). Let M = L \ ΣL, and construct the
cross-product automaton for M ; see Fig. 8 for n = 5. The initial state (1, 0)
goes by b to state (1, 1), which turns out to be a dead state, and by a to state
(2, 1). Every state (i, 1) with i ≥ 3 in column 1 is reached from state (2, 1)
by (ab)i−2. Then every state (i, j) with i > j ≥ 2 is reached from a state in
column 1 by a word in a∗, and there are n(n − 1)/2 such states. Adding the
initial state and the dead state we get n(n − 1)/2 + 2 reachable states.

Now consider only the above mentioned reachable states. Two states (i, j) and
(k, ℓ) with i < k, that is, states in different rows, are distinguished by an−k,
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b

2, 0 2, 1 2, 2 2, 3 2, 4 2, 5

3, 0 3, 1 3, 2 3, 3 3, 4 3, 5

4, 0 4, 1 4, 2 4, 3 4, 4 4, 5

5, 0 5, 1 5, 2 5, 3 5, 4 5, 5

1, 0 1, 1 1, 2 1, 3 1, 4 1, 5

a, b

b

b

b

b

b b

b

b

a

a

a

a

b

b

a

a

aa

a

b

b

a

a a a

a

a

b

b

Fig. 8. The dfa’s of a left ideal L and of the language ΣL.

which is accepted from (k, ℓ) and rejected from (i, j). Two states (i, j) and (i, ℓ)
with j < ℓ, that is, two distinct states in the same row, go to two states (n, j ′)
and (n, ℓ′) with j′ < ℓ′ in row n by an−i. The latter states are distinguished
by an−ℓ′ , which is rejected from (n, ℓ′) and accepted from (n, j′). Thus the
reachable states are pairwise distinguishable, and our proof is complete.

3. Since M = L \ (Σ+LΣ∗ ∪ Σ∗LΣ+) and L = Σ∗LΣ∗, the minimal generator

is M = L \ (ΣL ∪ LΣ), and Mw = Lw \
(

(ΣL)w ∪ (LΣ)w

)

for every w in Σ∗.
If w = ε, then Mw = M ; otherwise, w = av = ub for some words u, v in Σ∗

and letters a, b in Σ. We have

(ΣL)w = (ΣL)av = {x | avx ∈ ΣL} = {x | vx ∈ L} = Lv. (6)

Next,
(LΣ)w = (LΣ)ub = {x | ubx ∈ LΣ}. (7)

There are now two cases:

(1) If u ∈ L, then (LΣ)ub = Σ∗ since L is a two-sided ideal and therefore
u ∈ L implies uz ∈ L for every word z.

(2) If u 6∈ L, then (LΣ)ub = {x = x′c | ubx′ ∈ L and c ∈ Σ} = LwΣ.

Let us now return to Mw. If u ∈ L, then (LΣ)w = Σ∗ and Mw = Lw \Σ∗ = ∅.
If u 6∈ L, then Mw = Lw \ (Lv ∪ LwΣ). Since L is also a left-ideal, we have
Lv ⊆ Lav = Lw. Suppose the quotients of L are L1, . . . , Ln, where Ln = Σ∗.
Then for any pair (i, j), i 6= j, at most one of Li\(Lj∪LiΣ) and Lj \(Li∪LjΣ)
may be nonempty. In particular, for any j 6= n, since Lj 6= Σ∗, we must have
ε 6∈ Lj ; so Ln\(Lj∪LnΣ) = Σ∗\(Lj∪Σ+) = ε. We also have Lj\(Ln∪LjΣ) = ∅.
Therefore, there are at most 3+ (n− 1)(n− 2)/2 distinct quotients of M : Mε,
ε, ∅, and at most one quotient for each pair (i, j), with i 6= j and i, j 6= n.
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If n = 2 (n = 3), the unary ideal L = a∗aa∗ (L = a∗aaa∗) has minimal
generator M = a (M = aa), which meets the bound 3 (4). It was conjectured
by Marcus Holzer and Sebastian Jakobi 4 that the language L accepted by the
dfa in Fig. 9 might have the highest complexity; we now prove this conjecture.

· · ·1 2 3

b, c

a

b b a, b a, b, c

a a aa c
n − 1n − 2 n

c

b, c

c

Fig. 9. The dfa of two-sided ideal L meeting the bound for minimal generator.

Construct the dfas for the languages ΣL and LΣ as shown in Fig. 10. The
minimal generator of L is M = L \ (ΣL ∪ LΣ) = ΣL ∩ L ∩ LΣ.

a, b, c

1 2 3

b, c

a

b b a, b a, b, c

a a aa c

c

b, c

c

· · ·

1 2 3

b, c

a

b b a, b

a a aa c
n

c

b, c

c

· · ·

a, b, c
0 n − 2 n − 1 n

n − 2 n − 1 n + 1

a, b, c

Fig. 10. The dfa’s for ΣL and LΣ.

Construct the direct product of ΣL, L, and LΣ with initial state (0, 1, 1); this
is the only state with first component 0. From state (0, 1, 1) we reach state
(1, 2, 2) by a. By applying (ab)j−2, we reach (1, j, j) for j = 3, . . . , n− 1. Thus
we can reach n − 2 states of the form (1, j, j). From (1, 2, 2) we reach (2, 3, 3)
by a, and then (2, j, j) by (ba)j−3, for j = 4, . . . , n−1. Thus we can reach n−3
states of the form (2, j, j). Having reached (i, j, j), we reach (i+1, j +1, j +1)
by a for i = 2, . . . , n − 3 and j = 3, . . . , n − 2.

So far, we have reached state (0, 1, 1) and (n − 1)(n − 2)/2 states of the form
(i, j, j) with i = 1, . . . , n − 2 and j = i + 1, . . . , n − 1. All these states are
non-final, because the second component is less than n, which is the only final
state of the dfa for L. From (n − 2, n − 1, n − 1), we reach (1, n, n), which is
final, because state 1 is non-final in the dfa for L, state n is final in in the dfa
for ΣL, and non-final in the dfa for LΣ.

From the initial state, we reach (1, 1, 1) by b. From any state of the form
(i, i, i), we can only reach another state with all three components equal or
the state (n, n, n + 1). All these states are non-final, and hence empty.

4 personal communication
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In summary, we have shown that the following 3 + (n − 1)(n − 2) states are
reachable: the initial state (0, 1, 1), the final state (1, n, n), the (n−1)(n−2)/2
states given above, and an empty state.

We now prove that all these states are distinguishable. The initial state (0, 1, 1)
is the only state accepting a(ab)n−3c, (1, 1, 1) is empty, and (1, n, n) is the only
final state. Thus we are left with the remaining (n − 1)(n − 2)/2 states.

For any two different states (i, j, j) and (i′, j′, j′), where 1 ≤ i < j ≤ n − 1
and 1 ≤ i′ < j′ ≤ n − 1, we have two cases:

(1) j 6= j′: Assume that j < j′ without loss of generality. Then state (i′, j′, j′)
accepts w = an−1−j′c, but state (i, j, j) rejects w.

(2) j = j′ and i 6= i′: Assume that i < i′. Then state (i′, j′, j′) accepts
w = an−2−i′c, but state (i, j, j) rejects w.

Thus (i, j, j) and (i′, j′, j′) are distinguishable in both cases.

Therefore the quotient complexity of Mn is (n − 1)(n − 2)/2 + 3. 2

The construction of the minimal generator of L can be viewed as an opera-
tion on L, as has been done by Pribavkina and Rodaro [35]. They define the
following operators on an arbitrary regular language L ⊆ Σ+ and derive their
complexities:

(1) The prefix operator Lp = L \ LΣ+; complexity n + 1.
(2) The suffix operator Ls = L \ Σ+L; complexity (n − 1)2n−2 + 2.
(3) The infix operator Li = L\(Σ+LΣ∗∪Σ∗LΣ+); complexity (n−2)2n−2+3.
(4) The hypercode operator Lh = L \

⋃

a1a2···an∈L Σ∗a1Σ
∗a2 · · ·Σ∗anΣ∗; com-

plexity (n − 2)2n−2 + 3.

Our results show that the complexity is also n+1 if L is a right ideal. However,
the results differ considerably for left and two-sided ideals, since the complexity
of the suffix operation is only n(n − 1)/2 + 2 for left ideals, and that of the
infix is only 3 + (n − 1)(n − 2)/2 for two-sided ideals. We do not know the
complexity of the hypercode operator for all-sided ideals.

4 Basic Operations on Ideals

We now examine the complexity of common operations on ideal languages.
For regular languages, the bounds are known, and they are tight in the binary
case; references will be given for each operation later. In this section, we show
that the bounds for ideals are generally lower, and tight for languages over
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small fixed alphabets, except for reversal of all-sided ideals, which requires a
growing alphabet.

4.1 Boolean Operations

For the boolean operations of union [29,42], intersection [36,42], difference [6]
and symmetric difference [6], the bound for regular languages is mn, and it is
tight for all four operations for binary alphabets.

We show first that the bounds for right, two-sided, and all-sided ideals are still
mn for intersection and symmetric difference. However, the bound for union
is decreased by (m + n − 2), and that for difference, by m − 1. To prove the
tightness of these bounds, the same two languages can be used for all four
operations, as is shown in the next theorem.

Theorem 7 (Boolean Operations: Right, 2-Sided, All-Sided Ideals)
Let K and L be right ideals (respectively, two-sided ideals, or all-sided ideals)
over an alphabet Σ with κ(K) = m ≥ 1 and κ(L) = n ≥ 1. Then

(1) κ(K ∩ L), κ(K ⊕ L) ≤ mn,
(2) κ(K ∪ L) ≤ mn − (m + n − 2),
(3) κ(K \ L) ≤ mn − (m − 1),

and all the bounds are tight if |Σ| ≥ 2.

PROOF. The upper bound mn for intersection and symmetric difference
holds since it holds for regular languages. Since K and L both have Σ∗ as a
quotient, κ(K ∪ L) ≤ mn − (m + n − 2) and κ(K \ L) ≤ mn − (m − 1) by
Theorem 6 (iv) of [6].

For tightness of all four bounds, consider the all-sided ideals K and L accepted
by dfa’s in Fig. 11. Construct the corresponding cross-product automaton with
state set {0, . . . , m − 1} × {0, . . . , n − 1}, with (0, 0) as the initial state. By
a, each state (i, j) goes to (i + 1, j), except for states (m − 1, j) that go to
themselves. By b, each state (i, j) goes to (i, j + 1), except for states (i, n− 1)
that go to themselves. In this cross-product automaton, each state (i, j) is
reached from the initial state (0, 0) by aibj . The cross-product automaton for
the symmetric difference of K and L is shown in Fig. 12 for m = 4 and n = 5.
For the other operations only the final states change.

In the case of intersection, the sole final state is (m − 1, n − 1). Consider two
states in different rows, that is states (i, j) and (k, l) with i < k. By word bn,
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· · ·

b

a

b b b
0

a

b

a a a
0 1 m − 1m − 2

b

a

b

a

a, b

a, b

n − 21 n − 1

K

L

· · ·

Fig. 11. The all-sided ideals meeting the upper bounds for boolean operations.

a

1, 0 1, 1 1, 2 1, 3 1, 4

2, 0 2, 1 2, 2 2, 3 2, 4

3, 0 3, 1 3, 2 3, 3 3, 4

0, 0 0, 1 0, 2 0, 3 0, 4

b

b

b

b

b

b

b

b

b

b b

b

bb

b b

b

b

b

b

a a a a a

a a a a a

aaa aa

a a a a

Fig. 12. Cross-product automaton for symmetric difference; m = 4, n = 5.

they go to distinct states (i, n−1) and (k, n−1) in the column n−1. The latter
states are distinguished by word am−1−k, since it is accepted from (k, n − 1)
but rejected from (i, n−1). Symmetrically, two states in different columns are
distinguished by a word in amb∗.

In the case of symmetric difference, all the states in row m − 1 and column
n− 1, except for state (m− 1, n− 1) are final. Consider two states in different
rows, that is states (i, j) and (k, l) with i < k. Then the word bnam−1−k

is rejected from (k, ℓ) and accepted from (i, j). Symmetrically, two states in
different columns are distinguished by a word in amb∗.

In the case of union, all the states in row m − 1 and in column n − 1 are
final. All of them accept Σ∗. Therefore, these final states are equivalent. The
non-final states are distinguished by a word in a∗ ∪ b∗.

In the case of difference, all the states in row m−1, except for state (m− 1, n− 1)
are final. All the states in column n − 1 are equivalent to the dead state
(m − 1, n − 1). Consider the remaining states. The states in different rows
are distinguished by a word in a∗. States (i, j) and (i, ℓ) with j < ℓ are distin-
guished by ambn−1−ℓ since it is rejected from (i, ℓ) but accepted from (i, j). 2

20



Now we turn to left ideals. The next theorem shows that the complexity of
all four operations is the same as for regular languages, and binary alphabets
suffice for tightness for intersection and symmetric difference. However, an
alphabet of four letters is needed for union and three, for difference.

Theorem 8 (Boolean Operations: Left Ideals) Let K and L be left ide-
als over an alphabet Σ with κ(K) = m ≥ 1, κ(L) = n ≥ 1, Then

(1) κ(K ∩ L), κ(K ⊕ L) ≤ mn, and the bound is tight if |Σ| ≥ 2;
(2) κ(K ∪ L) ≤ mn, and the bound is tight if |Σ| ≥ 4;
(3) κ(K \ L) ≤ mn, and the bound is tight if |Σ| ≥ 3.

PROOF. All the upper bounds hold since they hold for regular languages.
Let us prove the lower bounds.

1. Since languages K and L accepted by dfa’s in Fig. 11 are all-sided ideals, the
lower bounds for intersection and symmetric difference follow by Theorem 7.

2. Consider left ideals K and L accepted by the dfa’s in Fig. 13. In the corre-
sponding cross-product automaton for union, each state (i, j) is reached from
the initial state (0, 0) by aibj . Notice that each state (i, j) goes to state (i, 0)
by c, and to state (0, j) by d. All the states in row m− 1 and in column n− 1
are final. Two distinct states in different rows are distinguished by a word in
ca∗, and two distinct states in different columns are distinguished by a word
in db∗.

m − 1

b b b b
0 1 · · ·

c
c

c

a, c, d a, d a, d a, b, d

L n − 1n − 2

a a a a
0 1 · · · m − 2

d
d

d

b, c, d b, c b, c a, b, c

K

Fig. 13. The left ideals meeting the bound mn for union.

3. Consider left ideals K and L accepted by dfa’s in Fig. 13, but restricted
to letters a, b, c. In the corresponding cross-product automaton for difference,
each state (i, j) is reached from the initial state (0, 0) by aibj . All the states
in row m− 1, except for state (m− 1, n− 1), are final. Two distinct states in
different rows are distinguished by a word in ca∗. Two states (i, j) and (i, ℓ)
with j < ℓ are distinguished by bn−1−ℓam−1−i since state (i, ℓ) goes to non-final
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state (m− 1, n− 1) by this word, while state (i, j) goes to a final state in row
m − 1. 2

4.2 Product

The bound for product (catenation, concatenation) of regular languages is
(m − 1)2n + 2n−1, and it is tight in the binary case [22,29,42]. We show that
the bound for right ideals is still exponential in n, and can be met by binary
languages. In contrast to this, the bound for the other three ideals is only
m + n − 1 and it is met by unary languages.

Theorem 9 (Product) Let K and L be ideals of the same type with κ(K) =
m ≥ 1 and κ(L) = n ≥ 1. Then

(1) If K and L are left, two-sided, or all-sided ideals, then κ(KL) ≤ m+n−1;
(2) If K and L are right ideals and n ≥ 2, then κ(KL) ≤ m + 2n−2.

The first bound is tight if |Σ| ≥ 1, and the second, if |Σ| ≥ 2.

PROOF. 1. If m = 1, then K = Σ∗, and κ(KL) = κ(Σ∗L) = n = m + n− 1.
Hence suppose that m ≥ 2, K and L are left ideals, and A and B are the dfa’s
for K and L, respectively. Construct a dfa C from dfa’s A and B by omitting
all the final states of A and all the transitions going from the final states, and
by redirecting all the transitions that go from a non-final state to a final state
of A to the initial state of B.

Let us show that dfa C accepts KL. If a word w is accepted by C, then it is in
KL. Now let w be a word in KL. Then w = uv for some words u and v such
that dfa A accepts u and dfa B accepts v. Let u′ be the shortest prefix of u
such that dfa A is in a final state after reading u′. Then u = u′u′′ for some
word u′′. Since L is a left ideal and v is in L, the word u′′v is in L as well, and
therefore B accepts u′′v. It follows that dfa C accepts u′u′′v since the accepting
computation of C on u′u′′v consists of the computation of A on u′, in which
the last transitions is redirected to the initial state of B, and of the accepting
computation of B on u′′v. Hence C accepts KL and has at most m + n − 1
states.

Since every all-sided or two-sided ideal is also a left ideal, the upper bound
applies in these cases as well. The bound is met by unary all-sided ideals
am−1a∗ and an−1a∗.

2. If K and L are right ideals, then KL = KΣ∗LΣ∗ = K ·Σ∗LΣ∗, where Σ∗LΣ∗

is a left ideal. The quotient complexity of this left ideal is at most 2n−2 +1 by
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Theorem 4. In the same way as above, we can construct a dfa for K · Σ∗LΣ∗

of at most m + 2n−2 states.

For tightness, consider the right ideals K and L given by dfa’s in Fig. 14; if
m = 1, then K = (a ∪ b)∗ and if n = 2, then L = b∗a(a ∪ b)∗. To get an nfa
for KL, add a loop on a in state p0, and redirect transitions on a, b from state
m − 2 to state p0.

a, b

0 1 m − 1m − 2

b

p1

K

L

· · ·

· · ·

a, b

a, b a, ba, ba, b

a a, b a, b

a

pn−1pn−2p0

b

Fig. 14. The right ideals meeting the bound m + 2n−2 for product.

In the corresponding subset automaton, all the subsets of {p0, p1, . . . , pn−2}
containing state p0 are reachable by Lemma 1, and two such distinct subsets
are distinguished by a word in a∗b. The singleton sets {0}, {1}, . . . , {m − 2}
are reachable as well, and are distinguished by a word in a∗b. The singleton
set {i} with 0 ≤ i ≤ n − 2 and a subset of {p0, p1, ..., pn−2} containing state
p0 are distinguished by the word an−2b that is rejected from {i} but accepted
from any such subset, since state p0 goes to the accepting state pn−1 by an−2b.
All these subsets are non-final states of the subset automaton. The final state
{p0, pn−1} is reached from {p0, pn−2} by b. This gives m + 2n−2 reachable and
pairwise distinguishable states. 2

4.3 Star

For the star operation, the bound for regular languages [29,42] is 2n−1 + 2n−2,
and it is met by a binary language. In sharp contrast to this, the corresponding
bound for ideals is only n + 1, and it is also met by a binary language.

Theorem 10 (Star) Let L be an ideal language with κ(L) = n ≥ 2. Then
κ(L∗) ≤ n + 1, and the bound is tight if |Σ| ≥ 2.

PROOF. If L is an ideal and i ≥ 1, then Li ⊆ L. It follows that L∗ = {ε}∪L.
To get a dfa for L∗ from the quotient automaton for L, we only need to add
a new initial and final state going by every letter a to state La corresponding
to the quotient of L by a. Therefore, κ(L∗) ≤ n + 1.
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For tightness, consider the binary all-sided ideal accepted by the dfa of Fig. 15.
Construct a dfa for L∗ by adding a new initial and final state going to state 1
by a and to state 0 by b. The resulting (n + 1)-state dfa is minimal since the
new initial and final state is distinguished from final state n − 1 by b, while
two distinct non-final states are distinguished by a word in a∗. 2

n − 1
a

· · ·

a a a

a, bbbb

n − 2L 0 1

Fig. 15. The all-sided ideal meeting the bound n + 1 for star.

4.4 Reversal

To deal with reversal, we start with the quotient dfa of L and reverse it by
making all the final states initial, making the initial state into a final state, and
reversing all the transitions. We then use the subset construction to obtain a
dfa for LR with at most 2n states.

By a theorem of Brzozowski [4], if a dfa has no unreachable states then the
subset construction applied to its reverse and restricted to the reachable states
always yields a minimal dfa. Therefore, the complexity of the reverse of a
regular language is the same as the number of reachable states in the subset
construction for its reverse, and distinguishability need not be verified.

In the case of regular languages, the bound for reversal [25,30] is 2n, and it is
met by a binary language. The bounds for ideals are still exponential, but with
somewhat reduced exponents. The witness is binary for right ideals, ternary
for left and two-sided ideals, and requires a growing alphabet of 2n− 4 letters
for all-sided ideals. Since the reverse of any language recognized by a 1-state
dfa is the same language, we assume that n ≥ 2 in the next theorem.

Theorem 11 (Reversal) Let L be a language with κ(L) = n ≥ 2.

(1) If L is a right ideal, then κ(LR) ≤ 2n−1.
(2) If L is a left ideal, then κ(LR) ≤ 2n−1 + 1.
(3) If L is a two-sided ideal, then κ(LR) ≤ 2n−2 + 1.
(4) If L is an all-sided ideal, then κ(LR) ≤ 2n−2 + 1.

The bound is tight for right ideals if |Σ| = 1 for n = 2 and if |Σ| ≥ 2 otherwise,
for left and two-sided ideals if |Σ| ≥ 3, and for all-sided ideals if |Σ| ≥ 2n− 4.
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PROOF. 1. Since L is a right ideal, it has only one final quotient Σ∗. This
quotient becomes the initial state of the nfa for LR. Since this initial state
goes to itself by every letter, it appears in every reachable subset of the cor-
responding subset automaton. Hence there are at most 2n−1 reachable states
in the corresponding subset automaton.

For tightness, if n = 2, then L = aa∗ meets the bound. For n ≥ 3, consider
the binary right ideal accepted by the dfa in Fig. 16. In the subset automaton
corresponding to the reverse of this dfa, every subset of {0, 1, . . . , n − 1} con-
taining state n−1 is reachable by Lemma 1. This gives 2n−1 reachable subsets
and proves the lower bound.

aa, ba, b
0 1

a, b

a, b

· · · n − 3 n − 2 n − 1
a, b

b

Fig. 16. The right ideal meeting the bound 2n−1 for reversal.

2. The initial state of the quotient automaton of a left ideal L is the only
final state in the nfa for LR. In the corresponding subset automaton, this
state appears in 2n−1 subsets. All these subsets are final states of the subset
automaton and all accept Σ∗, since LR is a right ideal. Hence κ(LR) ≤ 2n−1+1.

Let us prove the tightness of the bound. If n = 2, then the bound is met by the
language (a∪b)∗a. If n ≥ 5, consider the ternary left ideal accepted by the dfa
shown in Fig. 17, where all the transitions under c from states 1, 2, . . . , n − 1
go to state 1. Notice that the automaton restricted to states 1, 2, . . . , n − 1
and inputs a and b is Šebej’s (n − 1)-state automaton [24] meeting the upper
bound for reversal. Therefore, every subset of {1, 2, . . . , n− 1} is reachable in
the subset automaton corresponding to the reverse of the dfa in Fig 17. Next,
state {0, 1, . . . , n − 1} is reached from state {1} by c.

For n = 4, input b maps state 3 to itself in the dfa of Fig. 17 and the remaining
transitions are not changed. For n = 3, input a maps 0 to itself and transposes
1 and 2, and input b is unchanged.

a, b

1 2

b

aaa

b

3 4

b

b
a

a
5 · · ·

a a

a

b bb

n − 1n − 2
c

0

Fig. 17. The left ideal meeting the bound 2n−1 +1 for reversal. States 1, 2, . . . , n−1
go to state 1 under c.
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3. Since L is a right ideal, its quotient automaton has exactly one final state,
which accepts Σ∗. Therefore the subset automaton for LR has at most 2n−1

reachable states. Since L is also a left ideal, all final states of the subset
automaton for LR accept Σ∗. Hence κ(LR) ≤ 2n−2 + 1.

If n = 2, the bound is met by unary two-sided ideal a∗aa∗. For n ≥ 3, consider
the ternary two-sided ideal accepted by the dfa in Fig. 18. By Lemma 1,
every subset of {1, 2, . . . , n − 1} containing state n − 1 is reachable in the
subset automaton corresponding to the reverse of the dfa. Moreover, state
{0, 1, . . . , n − 1} is reached from state {1, n − 1} by c. This gives 2n−2 + 1
reachable subsets and proves the lower bound.

b

0 1 2 3
c

a, b c

a, b
n − 1n − 2

a, b, c

aa, b a, b a, b
· · ·

c
c

c

Fig. 18. The two-sided ideal meeting the bound 2n−2 + 1 for reversal.

4. Since an all-sided ideal is a two-sided ideal, the bound 2n−2 + 1 applies.

If n = 2, then the bound is 2, and it is met by the unary all-sided ideal a∗aa∗.
If n ≥ 3, consider the language L over the alphabet {a1, . . . , an−2, b1, . . . , bn−2}
accepted by the dfa in Fig. 19. Here the initial state 0 goes to state i by ai

and to itself by all bj ’s. Every state i goes to state n− 1 by bi and by all aj ’s,
and to itself by every other letter. The sole final state n − 1 goes to itself by
every letter. After adding loops on every letter in every state of the dfa, and
applying the subset construction and minimization to the resulting nfa, we
get a dfa isomorphic to the original one. It follows that L is an all-sided ideal.

In the subset automaton corresponding to the reverse of the dfa for L, {n−1}
is the initial state, every one of the 2n−2−1 subsets {n−1, i1, i2, . . . , ik}, where
1 ≤ k ≤ n − 2 and 1 ≤ i1 < i2 < · · · < ik ≤ n − 2, is reached from the initial
state {n − 1} by word bi1bi2 · · · bik . The set {0, 1, . . . , n − 1} is reached from
{n − 1} by a1a1. This completes the proof. 2

5 Unary Languages

Unary languages have special properties because the product of unary lan-
guages is commutative. Let Σ = {a}. If L is a unary right ideal, let ai be its
shortest word. Then L ⊇ aia∗, and so L = aia∗, and every unary right ideal is
principal (generated by a single element). In fact, L = aia∗ = a∗ai = a∗aia∗ =
a∗ ai; hence left, right, two-sided and all-sided ideals coincide.
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n − 1

.

.

.

.

.

a2

a1

b2, a1, . . . , an−2

b1, a1, . . . , an−2

b1, . . . , bn−3

b1, b3, . . . , bn−2

a1, . . . , an−2

b1, . . . , bn−2

b2, . . . , bn−2

b1, . . . , bn−2

bi+1, . . . , bn−2

b1, . . . , bi−1

bi, a1, . . . , an−2

bn−2, a1, . . . , an−2

i

2

1

0

ai

an−2

n − 2

.

Fig. 19. The dfa of the all-sided ideal meeting the bound 2n−2 + 1 for reversal.

Proposition 12 Let K and L be unary ideals of any type, with κ(K) =
m ≥ 1, κ(L) = n ≥ 1. Let M be the minimal generator of L. Then

κ(M) = n + 1;

κ(L) = κ(M) − 1;

κ(K ∪ L) = min(m, n);

κ(K ∩ L) = max(m, n);

κ(K \ L) =











n, if m < n,

1, otherwise;

κ(K ⊕ L) =











max(m, n), if m 6= n,

1, otherwise;

κ(KL) = m + n − 1;

κ(L∗)=











1, if n ∈ {1, 2},

n, otherwise;

κ(LR)= n.

PROOF. If L is a unary ideal, then L = an−1a∗ for some n ≥ 1, and its
minimal generator is an−1.
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We prove the result for L∗. If n = 1 or n = 2, then L∗ = a∗, and so κ(L∗) = 1.
If n ≥ 3, then L∗ = ε ∪ an−1a∗, and κ(L∗) = n. 2

6 Conclusions

We have presented a rather complete picture of the state/quotient complexity
of operations on regular ideal languages. Tables 1–3 summarize our results.
The complexities for regular languages are from [6,29,42]. The minimal alpha-
bet sizes required to meet the bounds are shown in parentheses. As can be
seen from the tables, binary alphabets cannot be replaced by unary alphabets.
Also, the alphabet of n−2 letters for the ideal generated by a language cannot
be decreased. We do not know whether the other alphabets can be decreased.

Table 1
Bounds on quotient complexity of generation and of generators.

f(G) f(M) κ(M)

unary ideals n n − 1 n + 1

right n (1) n (2) n + 1 (1)

left 2n−1 (2) 2n−2 (2) n(n + 1)/2 + 2 (2)

2-sided 2n−2 + 1 (2) 2n−3 + 1 (2) 3 + (n − 1)(n − 2)/2 (3)

all-sided 2n−2 + 1 (n − 2) 2n−3 + 1 (n − 3) open

Table 2
Bounds on quotient complexity of boolean operations.

K ∪ L K ∩ L K \ L K ⊕ L

unary ideals min(m,n) max(m,n) n max(m,n)

right, 2-, all-sided mn − (m + n − 2) (2) mn (2) mn − (m − 1) (2) mn (2)

left ideals mn (4) mn (2) mn (3) mn (2)

regular languages mn (2) mn (2) mn (2) mn (2)
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Table 3
Bounds on quotient complexity of product, star and reversal.

KL L∗ LR

unary ideals m + n − 1 n n

right m + 2n−2 (2) n + 1 (2) 2n−1 (2)

left m + n − 1 (1) n + 1 (2) 2n−1 + 1 (3)

2-sided m + n − 1 (1) n + 1 (2) 2n−2 + 1 (3)

all-sided m + n − 1 (1) n + 1 (2) 2n−2 + 1 (2n − 4)

regular m2n − 2n−1 (2) 2n−1 + 2n−2 (2) 2n (2)
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(eds.), Proceedings of the 13th International Conference on Automata and
Formal Languages, (AFL), Institute of Mathematics and Informatics, College
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