
Trust Region Methods for Training

Neural Networks

by

Colleen Kinross

A thesis
presented to the University of Waterloo

in ful�llment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2017

c
 Colleen Kinross 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Arti�cial feed-forward neural networks (�-ANNs) serve as powerful machine learning
models for supervised classi�cation problems. They have been used to solve problems
stretching from natural language processing to computer vision. �-ANNs are typically
trained using gradient based approaches, which only require the computation of �rst order
derivatives. In this thesis we explore the bene�ts and drawbacks of training an �-ANN
with a method which requires the computation of second order derivatives of the objective
function. We also explore whether stochastic approximations can be used to decrease the
computation time of such a method. A numerical investigation was performed into the
behaviour of trust region methods, a type of second order numerical optimization method,
when used to train �-ANNs on several datasets. Our study compares a classical trust region
approach and evaluates the e�ect of adapting this method using stochastic variations. The
exploration includes three approaches to reducing the computations required to perform
the classical method: stochastic subsampling of training examples, stochastic subsampling
of parameters and using a gradient based approach in combination with the classical trust
region method. We found that stochastic subsampling methods can, in some cases, reduce
the CPU time required to reach a reasonable solution when compared to the classical
trust region method but this was not consistent across all datasets. We also found that
using the classical trust region method in combination with mini-batch gradient descent
either successfully matched (within 0.1s) or decreased the CPU time required to reach a
reasonable solution for all datasets. This was achieved by only computing the trust region
step when training progress using the gradient approach had stalled.

iii

Acknowledgements

I would like to thank my supervisors, Professor Yuying Li and Professor Justin Wan,
for all of their help and guidance through this process. I learned a lot from both of you
and really appreciate all of the hard work you each put into helping me succeed. I would
also like to thank all of my labmates for their encouragement and support.

iv

Dedication

This is dedicated to my family.

v

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Summary of Contributions . 4

1.2 Outline . 4

2 Training Feed Forward Arti�cial Neural Networks 6

2.1 Feed Forward Arti�cial Neural Networks 6

2.1.1 Perceptron . 7

2.1.2 Multiple Layers for Complex Models 7

2.1.3 Training . 9

2.1.4 Over�tting . 10

2.2 Optimization Methods for Training �-ANNs 11

2.2.1 First Order Methods . 12

2.2.2 Second Order Methods . 13

2.3 Trust Region Methods . 15

2.3.1 Subproblem De�nition . 15

2.3.2 Step Calculation: Solving the Trust Region Subproblem 16

2.3.3 Acceptance of the trial point . 22

vi

2.3.4 Trust region radius update . 22

2.3.5 Method Summary . 23

3 Solving the Trust Region Subproblem for Feedforward Neural Networks 25

3.1 Computing the Solution to the TRS . 25

3.1.1 Computing Second Order Derivatives 26

3.1.2 Conjugate Gradient . 26

3.1.3 Implicitly Restarted Arnoldi Method 26

3.1.4 Computing Hk . 27

3.1.5 Computing The Boundary Solution, p1 28

3.1.6 Summary of TRS Solution Method 28

4 Modi�ed Trust Region Methods 30

4.0.1 Challenge: Stochastic Variations on the TRM 30

4.1 Stochastic Subsampling of Training Samples 31

4.2 Weight Subsampling . 34

4.3 Hybrid Approach . 35

4.4 Full Hessian vs Hessian Free . 35

4.5 Summary . 36

5 Numerical Results 38

5.1 Experimental Set-up . 38

5.1.1 Datasets . 38

5.1.2 Network Structure . 39

5.2 Methods for Comparison . 42

5.2.1 Time Required for a Reasonable Solution 42

5.3 CPU time of TRM vs SGD . 43

5.4 Using TRM and MBGD in Hybrid: TRMMBGD 44

vii

5.5 Stochastic TRMs . 47

5.5.1 Adaptive Trust Region Reduction Scheme 47

5.5.2 Traditional TRM
 Update Scheme 49

5.6 Reducing the Dimentionality of TRS . 53

5.7 CPU Time Analysis . 59

5.8 Robustness Test . 63

5.8.1 The XOR Problem . 63

5.8.2 XOR Training Results . 64

6 Conclusion 67

6.1 Future Work . 68

References 70

APPENDICES 74

A Pearlmutter Trick for Computing Second Order Information 75

A.0.1 Forward and Back Propagations . 76

A.1 Complexity Analysis . 82

A.1.1 Complexity Analysis of The Pearlmutter Trick for �-ANNs 82

B Hyperparameters 88

C Full Hessian vs Hessian Free 90

D Hyperparameter Test Results 92

viii

List of Tables

4.1 The approach used for computing Hessian information in each method. HF
refers to \Hessian Free" and FH refers to \Full Hessian". HF is in bold to
more easily distinguish between the two values. 36

4.2 Training algorithm de�nitions used for numerical exploration, and their la-
bels, which will be used to reference them. 37

5.1 Datasets used for experimentation. *Habe uses a single dependent variable
with two states, each to represent one of the classes. 39

5.2 Datasets used for experimentation. 39

5.3 Time taken to reach within 1% of minimum f(w) achieved by SGD for
both SGD and TRM. 44

5.4 TRRS results for � = 1% . 46

5.5 TRRS results for � = 5% . 46

5.6 TRRS results for � = 10% . 46

5.7 TRRS results for � = 1% . 49

5.8 TRRS results for � = 5% . 50

5.9 TRRS results for � = 10% . 50

5.10 TRRS results for � = 1% . 53

5.11 TRRS results for � = 5% . 54

5.12 TRRS results for � = 10% . 54

5.13 TRRS results for � = 1% . 58

5.14 TRRS results for � = 5% . 58

ix

5.15 TRRS results for � = 10% . 58

5.16 The 2-feature XOR problem. 63

5.17 First order critical point classi�cation for the XOR problem when trained
on a 2-layer �-ANN with two hidden nodes. 63

A.1 Values of parameters for Algorithm 11 based on propagation direction. . . 77

B.1 The Method is the algorithm used to test the hyperparameter in the
same row. This mapping is used in Algorithm 12, row 3. 89

C.1 Time taken to compute min(1000,max iterations) using the full H approach
and the HF approach. 90

C.2 Time taken to compute min(1000,max iterations) iterations using the full H
approach and the HF approach. 91

D.1 Final objective function achieved for training an �-ANN on the set of datasets
using SGD and using TRM. 92

x

List of Figures

2.1 Graphical representation of an example perceptron which predicts the out-
put for the kth sample, zk with xk 2 R3. The \1" is a constant multiplier
which di�erentiates regular weights values from the bias value b. 8

2.2 Visualization of the capacity increase from having multiple layers in a net-
work. Subplot a) shows the classi�cation potential for a single perceptron.
Subplots b) and c) show the potential classi�cation performed by 3 percep-
trons, 2 in the �rst layer and 1 in the second. 9

2.3 This is Figure 1 from [25] which shows an example of a valley characteristic.
On the left the arrows point towards the gradient direction and the red arrow
points towards the shortest path to the smallest value visible. On the right
are arrows pointing in the direction of a method considering curvature and
therefore avoiding the gradient direction which is, in this case, in a direction
of high positive curvature. 13

4.1 Training an �-ANN to predict MNIST using SGD, MBGD and GD for
comparison. 32

5.1 Visualization of Habe dataset where classes are represented by shape and
colour. This shows the di�culty in learning this dataset, there is no clear
separation between classes. 40

5.2 Structure of �-ANN for learning the Derm dataset. Used as visual example
to show resulting structure for a given n0 and n2 which are based on the
dataset. 41

5.3 Running TRMMBGD vs MBGD for training �-ANNs on �ve datasets. . . 45

xi

5.4 ComparingTRM with stochastic training example subsamplingTRMmeth-
ods (STRM and MBTRM), based on objective function, f(w), vs CPU
time. 48

5.5 ComparingTRM with stochastic training example subsamplingTRMmethod,
BTRM, based on objective function over CPU time. 52

5.6 Running TRM vs TRMWS for training �-ANNs on �ve datasets. 55

5.7 Running BTRM vs BTRMWS for training �-ANNs on �ve datasets. 56

5.8 Test results for using stochastic TRM methods. 57

5.9 Percentage of time taken up by solving the Generalized Eigenvalue Problem
(2.35) and computing p1 from the result at each step. 60

5.10 Percentage of time taken for computing the Hessian matrix at each change
in weight values w. Recall that only �ve of our methods include the com-
putation of the Hessian matrix. 60

5.11 Percentage of time taken to solve for the p0, which is solving the linear
equation (2.32a). Recall that those methods which use the ATRRS do not
compute p0 (see Algorithm 9). 61

5.12 Convergence of TRM with p0 and p1 using stopping criterion of residual
magnitude less than 10�3 (dashed line) and stopping criterion of reaching
the max iteration (submaxiter=1, 2, 3, 4, 5). (Upper Left) Convergence
in terms of CPU time. (Upper Right) Convergence in terms of Epoch.
(Bottom) Convergence in terms of CPU time with SGD for reference. . . . 62

5.13 Final points are recorded when the �nal objective function value is within
a tolerance of 10�3 from one of the known points. 65

5.14 Percentage of runs which successfully converge to the global minimum of
the XOR problem. The methods from our exploration are displayed as solid
black and methods from [30] are coloured with a diagonal pattern. 66

xii

Chapter 1

Introduction

Machine learning has become an increasingly popular subject in industry and academia
in recent years. Machine learning is an approach in which computers learn solutions from
data directly. In this thesis we will be considering arti�cial neural networks, often referred
to more simply as neural networks. Neural networks, particularly deep neural networks,
are of great value for use across many industries, such as self-driving cars [4], computer
vision [20], natural language processing [23] and even for mastering the game of Go [33].
In this thesis we study multi-layer feedforward neural networks which are neural networks
of more than one layer which only contain connections that are in the direction from input
to output. The power of a multi-layer feedforward neural network lies in its ability to learn
complex functions. In fact, the multi-layer feedforward neural network is referred to as a
universal approximator [18].

In this thesis, we are interested in supervised training methods for feedforward neural
networks. Supervised training refers to training a model based on data that has an `answer
key', meaning that there are dependent variables provided for their respective independent
variables in the data [17]. In other words, the network is learning how to make predictions
based on provided data, where the correct prediction is provided as well as the features
used to make that prediction. The typical training approach used for feedforward neu-
ral networks is what is sometimes called the `Backpropagation Training Procedure' [28].
Training involves the formulation of an objective function based on the discrepancy be-
tween expected prediction from the `answer key', and the actual prediction made by the
neural network based on its current parameters. Once the objective function has been
formulated it is minimized using a numerical optimization method. Backpropagation is
a method used to compute partial derivatives of the objective function in terms of each
parameter value, also known as a weight value. These partial derivatives are then used to

1

construct the gradient, the vector of partial derivatives of the objective function in terms
of weights of the network. Using the gradient or stochastic approximation to the gradient,
a numerical method can now be applied to reduce the value of the objective function.
Typically the objective function is the mean squared prediction error of all of the training
samples.

The standard method for minimizing the objective function of a neural network is
gradient descent [1][13]. More recently, there has been interest in deeper networks which
require solving very large optimization problems for which online learning methods such
as stochastic gradient descent or mini-batch gradient descent are typically used [14][34].
These methods are useful because each step calculation only requires computation of the
�rst derivatives for a subset of the training set and is therefore typically fast, which can be
a bene�t to some problems. However, the gradient direction is only the direction of fastest
decrease up to the �rst order. These methods have di�culty in valley type structures
where the direction of negative curvature is perpendicular to the gradient direction. In
order to improve reduction in the objective value at each step, some methods use �rst
derivatives to approximate second derivatives. These are known as quasi-Newton methods.
Examples of successful methods that approximate second order information include the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm which solves the secant equation
for the second derivative [30]. This increases the potential for reduction of the objective
function at each step compared to a step of the same magnitude in the gradient direction.
However, we can improve upon the accuracy of the step direction by computing second
derivatives of the objective function.

Second order numerical optimization methods, those which use second derivatives of
the objective function in terms of its parameters, take more time to compute but provide
more information and therefore can compute step directions that are closer to the optimal
reduction in objective function value over a step. The curvature information, given by sec-
ond derivatives, is helpful for descending valley type structures e�ectively and can be more
e�ective at passing through nearly
at areas in the objective function surface [30]. This
information can be signi�cantly slower to compute at each iteration, therefore the bene�t
of the method must be very large for the speed to be comparable to a �rst order method.
Their relative behaviours depend on the characteristics of the optimization problem being
considered.

Newton's method is a common second order method which solves for the �rst order
critical point of the second order approximation to the objective function at each iteration.
One issue with this algorithm is that the Hessian, the matrix containing the second order
derivatives of the objective function, can be inde�nite if it is not close to a minimum. When
the Hessian is not positive semi-de�nite, Newton's method would point towards a critical

2

point which is not a local minimizer. Because of this, Newton's method is only locally
convergent. There are many methods, such as BFGS mentioned earlier, that approximate
the second order information while keeping the approximate Hessian positive de�nite.
Other approaches include the Hessian free method which approximates the Hessian by
adding an extra value to each eigenvalue of the �nite di�erence approximation of the
Hessian matrix [25]. There are also trust region type methods during which the minimizer
of a bounded second order trust region subproblem is solved at each step where the bound
is adjusted based on the model's accuracy [40].

In this thesis we study the performance, in terms of CPU time and training error,
of the trust region method and variations of the method to train neural networks on
several datasets. The trust region method is chosen as the topic of study because it is
globally convergent under mild assumptions [32], compared to Newton's method which is
only locally convergent. The basic idea of the algorithm is that at each step we consider
a region around the current point where the model, constructed based on the �rst and
second order information, is trusted. At this point we solve a constrained minimization
problem for this model within the trusted bounds called the trust region subproblem. In
order to study whether the basic second order trust region method can be sped up in
terms of CPU time required for a reasonable solution, we study stochastic subsampling
e�ects on the method. This is a di�erent approach to second order approximation than
that taken by quasi-Newton methods. Rather than approximating second derivatives from
�rst derivatives we are approximating second derivatives of the objective function from
the true second order derivatives of randomly subsampled training examples. This is the
method used in stochastic gradient descent in order to speed up gradient descent. We wish
to determine whether the same approach bene�ts trust region methods. We also study the
e�ect of subsampling parameters or `weights', which is a method inspired by co-ordinate
descent type approaches, where we only consider a subset of the parameters at each step.
This reduces the dimensionality of the trust region subproblem.

Through this study we aim to shed light on the behaviour of trust region methods
and stochastic variants of trust region methods when used to train feedforward neural
networks. We are looking for promising directions of speed up to the trust region method
while maintaining the bene�t of using second order information, which is improved step
direction at each iteration. As feedforward neural networks are used to solve more diverse
problems we expect that a greater understanding of the behaviour of a wider range of
numerical optimization methods in the speci�c context of training neural networks will
become increasingly valuable.

3

1.1 Summary of Contributions

We compute second order information from feedforward neural networks using a back-
propagation technique proposed by Pearlmutter in 1993 [27]. We also implement the trust
region method using a recent approach that involves solving a single generalized eigen-
value problem to determine the trust region subproblem solution at each iteration, rather
than an iterative procedure [29]. With a complete trust region algorithm we then per-
form experiments that compare the trust region algorithm to those based on variations of
the complete trust region algorithm to collect empirical information of their behaviour as
well as seeking quantitative information to indicate which variations, if any, decrease the
computational time of the trust region method. More speci�cally, our contributions are as
follows:

1. A study of the bene�ts and drawbacks of using stochastic subsampling of training
examples upon which to solve the trust region subproblem at each iteration compared
to using the full training set which is the case for the full trust region algorithm. For
gradient methods, subsampling is a very e�ective speed up approach. This motivated
us to study this appraoch in the context of a second order method.

2. We compare the e�ect of the full trust region algorithm as well as its stochastic vari-
ations with and without parameter subsampling. This reduction in dimensionality of
the trust region subproblem can reduce the time complexity to compute the solution
of the trust region subproblem considerably. We run numerical experiments to see
if this change bene�ts any of the methods (trust region method and it's stochastic
subsampling variations) overall.

3. We study the e�ects of combining mini-batch gradient descent, a stochastic gradient
method, with the full trust region algorithm. We determine whether this is an e�ec-
tive way to improve the �nal objective function value of a stochastic gradient method
without the burden of CPU time required to compute second order information at
each iteration.

1.2 Outline

We begin by providing background in Chapter 2 where we de�ne the feedforward arti�cial
neural network (�-ANN) as well as the trust region method and the speci�c approach
we will be taking to compute the solution to the trust region subproblem from [29]. In

4

Chapter 3 we cover the full details of the trust region approach and implementation used
in our study. In Chapter 4 we de�ne the various algorithms that will be studied and which
variations are used to develop them based on the trust region method from Chapter 3.
Chapter 5 contains the main contributions of this thesis. Here we present the results and
analysis of the numerical exploration into trust region methods and its variations when
used to train neural networks on data from �ve di�erent datasets. Finally, in Chapter 6
we outline the conclusions from the thesis and highlight directions for future work.

5

Chapter 2

Training Feed Forward Arti�cial

Neural Networks

In this chapter we provide the necessary background information for our investigation. This
includes a de�nition and description of feedforward arti�cial neural networks (�-ANNs),
some numerical optimization methods used for training �-ANNs, as well as trust region
methods. In addition, we provide the details of the speci�c trust region method we will be
using in this thesis to train our networks.

2.1 Feed Forward Arti�cial Neural Networks

An arti�cial neural network is a set of arti�cial neurons attached to each other in a network
using weighted connections. This type of network can be used as a machine learning model
and trained to approximate vectors of dependent variables from their provided vectors
of independent variables. An �-ANN has only single direction connections going in the
direction from independent variables to prediction of dependent variables. Training is
performed on a set S that contains m instances of independent and dependent variable
vector pairs, represented in this thesis as:

(xk;yk) k = 1; 2; :::;m ; (2.1)

where m is the size of the training set S, xk 2 S is the kth vector of independent variables
and yk is the associated vector of dependent variables. In this section we brie
y de�ne the
perceptron then generalize and build on this concept to construct an �-ANN .

6

2.1.1 Perceptron

A perceptron is a speci�c �-ANN with only a single node and binary output. As an �-ANN,
a perceptron can be trained using supervised learning when given a training set S, as in
(2.1), where yk is a scalar value rather than a vector. Formally, the operation between
independent and dependent variables, (xk; yk), using a perceptron, is described as:

zk = �H(w
Txk + b); (2.2)

where zk is the network's prediction of yk based on xk, the vector, w, and scalar, b, are
parameters which are trained on the training set S, and �H is the Heaviside step function
de�ned as:

�H(x) =

(
1; if x > 0;

0; otherwise:
(2.3)

Perceptrons are often presented visually as a directed graph. Figure 2.1 is an visual
representation of a single perceptron where:

xk =

0@xk1xk2
xk3

1A ; w =

0@w1

w2

w3

1A ; (2.4)

and hk is used as an intermediate value de�ned as:

hk = wTxk + b: (2.5)

Perceptrons are linear classi�ers, as can be seen from (2.2). The perceptron's kth output,
zk, indicates whether xk is above or below the hyperplane de�ned by w and b. Therefore,
perceptrons cannot accurately classify data which cannot be separated by a hyperplane,
meaning such problems require a more complex model.

2.1.2 Multiple Layers for Complex Models

An �-ANN is a network of neurons. A perceptron is speci�c case of a single arti�cial neuron,
one which contains the Heaviside step function as it's activation function. In general,
neurons in �-ANNs can contain any monotonically increasing function as the activation
function. In our thesis all neurons use activation functions, �(:), which approximate the
Heaviside step function by meeting the criteria:

7

Figure 2.1: Graphical representation of an example perceptron which predicts the output
for the kth sample, zk with xk 2 R3. The \1" is a constant multiplier which di�erentiates
regular weights values from the bias value b.

�(x) 2

(
]0:5; 1]; if x > 0;

[0; 0:5]; otherwise:
(2.6)

Meeting this criteria for all activation functions, we can still use the concept of neurons
as hyperplanes as described in the previous section for perceptrons. The hyperplane de�ned
by a neuron with an activation function satisfying (2.6) separates the two value ranges in
(2.6) rather than determining a simple binary output.

An �-ANN can contain several layers of neurons stacked on top of each other as well as
several neurons per layer. By adding multiple layers, the network can learn more complex
functions. The output of the neurons at each layer, which is the more general version of
(2.2), becomes:

zkl = �l(Wlz
k
l�1 + bl); for l = 1; :::; L; (2.7)

where l represents the layer number, �l() is the activation function at layer l, L is the total
number of layers, Wl and bl contain the weights and biases for layer l where each row
contains the parameters for a single neuron, and:

zk0 = xk; for k = 1; 2; :::;m: (2.8)

The �nal classi�cation prediction is the output of the �nal layer, zkL, for the k
th training

example. The purpose of having multiple layers is to model more complex non-linear
functions. Considering the neurons as hyperplanes, by assuming the neurons' activation
functions meet (2.6), a neuron in the second layer then separates the results from the �rst

8

(a) (b) (c)

Figure 2.2: Visualization of the capacity increase from having multiple layers in a network.
Subplot a) shows the classi�cation potential for a single perceptron. Subplots b) and c)
show the potential classi�cation performed by 3 perceptrons, 2 in the �rst layer and 1 in
the second.

layer. See Figure 2.2 for an example of a dataset that can be separated using a two layer
network but not a single neuron, illustrated using hyperplane representations of neurons.
In this example we show that a single hyperplane cannot separate the given example data,
however two hyperplanes whose outputs are combined using a single hyperplane can be
used to perfectly separate the data.

2.1.3 Training

Now that we have provided intuition for why �-ANNs have the potential to model complex
functions, we focus this section on how the parameters of a network are tuned or \trained"
to meet potential. The goal of training is to �t the network to the training data by solving
an optimization problem. Typically the objective function, f(W1; :::;WL;b1; :::;bL), used
for this optimization problem is the mean squared error of the set of allm training examples,
which can be written as:

f(W1; :::;WL;b1; :::;bL) =
1

m

mX
k=1

(yk � zkL)
T (yk � zkL); (2.9)

9

where zkL is the network's prediction for yk which depends on weightsWl and biases bl for
all layers l, l = 1; :::; L. The optimization problem for training the network is therefore:

min
W1;:::;WL;b1;:::;bL

1

m

mX
k=1

(yk � zkL)
T (yk � zkL): (2.10)

The ultimate objective of training a �-ANN, and machine learning models in general, is
to maximize the accuracy of predicted dependent variable z for independent variable x
that is outside of the set S, in addition to maintaining model accuracy for the training
data in S. Accuracy of the model on the training set is attained through the use of a
numerical optimization method. Various methods are used, each with di�erent bene�ts
and drawbacks. This will be discussed in x2.2.

2.1.4 Over�tting

Over�tting describes �tting a model to a training set such that it performs poorly on
unseen data compared to on the training data. In other words, the trained model does
not generalize well. As previously discussed, �-ANNs can model very complex functions.
When there is a small training set, it may learn a function in
uenced by the noise of the
training set rather than purely the signal shared by unseen and training data alike, leading
to this lack of generalizability [35]. Since many problems are tackled using machine learning
where the underlying model dimensionality is not known prior to learning, we do not know
how large our �-ANN should be to prevent over�tting without over-simplifying the model.
There are many techniques to avoid over�tting without shrinking the network. In our
experiments we use a regularization term which penalizes large values of the parameters.
It is a way to reduce the capacity of the network and therefore helps prevent over�tting.
Speci�cally the �nal objective function with our added regularization term has the following
form:

f(x) = g(x) + �rkxk
2
2; (2.11)

where g(x) is the initial objective function, x is the parameters for the objective function
and f(x) is the resulting objective function when using regularization for the problem,
�r is what is known as the `regularization' parameter which tunes the level of impact of
the regularization term on the original objective function and kxk22 is the 2-norm of the
parameters, x.

10

2.2 Optimization Methods for Training �-ANNs

For simplicity of discussion, we consider a general unconstrained optimization problem:

min
w2Rn

f(w): (2.12)

Note that (2.10) can be transformed into the form of (2.12) by adding the regularization
component as in (2.11) and vectorizing parameters Wl, and bl for l = 1; :::; L into a single
vector w, which is discussed in Appendix A.0.1.

As described in x2.1.3, a numerical optimization method is required to solve (2.10). A
lot of work has been done in numerical optimization for �-ANNs that can be sorted into two
categories, those that use only �rst-order information and those that also use second-order
information of an �-ANN objective function, (2.9).

The particular challenges for solving large �-ANN training problems are:

1. Large number of training examples, m,

2. Large number of dimensions (weights, including biases), n.

For instance, a network with 7 layers and 100 hidden nodes per layer would have n = 70700
(1002 weights and 100 biases for each layer) and the value of m can be in the millions. The
following characteristics of a �-ANN objective function surface pose additional challenges
to solving (2.12) are [30]:

1. Large plateaus (
at or nearly
at areas),

2. Narrow valleys,

3. Many saddle points (exponentially increasing with number of parameters, n).

This means that numerical optimization methods need to perform well on a problem with
these characteristics to be considered suited for �-ANNs. Typically the de�nition of well
is based on a mixture of speed (training time), training error, prediction accuracy of test
set and the �nal objective function value. In this thesis we will mainly focus on training
time and training error.

11

2.2.1 First Order Methods

Here we will describe some common optimization methods used for training �-ANNs using
only �rst order information.

1. Gradient Descent is typically only used for small datasets which has the update
de�ned by

wk = wk�1 � �rf(wk�1); (2.13)

where � is the learning rate. When � is small enough and kept constant, with random
initialization, gradient descent does not converge to a saddle point almost surely [19].

2. Stochastic Gradient Descent is a commonly known and used method which ap-
proximates gradient descent using only a single example at each step. Each iteration
i has the update:

wk = wk�1 � � erf(wk�1); (2.14)

where � is the learning rate chosen by the user which is decreased in magnitude
throughout training using a prede�ned schedule, and erf(wk�1) refers to the approx-
imation of the gradient of the objective function at point wk�1 based on a single,
uniformly randomly selected, training example.

3. Mini-batch Gradient Descent is a method that uses the same update function as
shown in (2.14) but with erf(wk�1) computed as an approximation to the gradient
of the objective function at point wk�1 based on a subset of the set of training
examples S.

First order methods compute steps very quickly. However, they can experience di�cul-
ties in some regions, such as in valleys. A valley is an example of a characteristic often
seen in �-ANN problems [30] that slows down �rst order methods. First order methods
experience di�culties in this case because the gradient direction is almost perpendicular
to the direction of the local minimum. Figure 2.3, which is from [25], depicts this concept.
These gradient methods also have di�culties in small gradient areas such as large pseudo-
plateaus, since the length of the step taken at each iteration is proportionate to the size of
the gradient for a constant learning rate.

12

Figure 2.3: This is Figure 1 from [25] which shows an example of a valley characteristic. On
the left the arrows point towards the gradient direction and the red arrow points towards
the shortest path to the smallest value visible. On the right are arrows pointing in the
direction of a method considering curvature and therefore avoiding the gradient direction
which is, in this case, in a direction of high positive curvature.

2.2.2 Second Order Methods

The �rst group of methods presented below are approximate second order methods which
are faster to compute and do not contain exact second order information. Instead, they
estimate Hessian information using various approaches. Some examples are:

1. Quasi-Newton methods estimate the Hessian matrix (second order information)
using only �rst order derivatives. The full Newton's method updates the iterate as
follows:

wk = wk�1 � (r2f(wk�1))
�1rf(wk�1); (2.15)

where r2f(wk�1) is the Hessian matrix of f(wk�1). This step is the solution to
the �rst order critical point of the second order approximation of f(wk�1) using
the Taylor series expansion, (2.17). Quasi-Newton methods replace (r2f(wk�1))
with an approximation to the Hessian. A common quasi-Newton method is the
BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm which approximates
the Hessian using the secant equation [30].

2. Finite Di�erence Newton Methods are methods where (r2f(wk�1)) in (2.15)
is replaced by a �nite di�erence approximation to the Hessian which uses only �rst
order information [30].

13

3. Levenberg-Marquardt is an algorithm for non-linear least squares problems, which
has an update of the following form [30]:

wk = wk�1 + [JTk�1Jk�1 + �I]�1JTk�1rk�1: (2.16)

Here rk�1 is the residual vector which contains values (yk � zkL)i for all indices i =
1; :::; nL where yk 2 RnL , and all training examples k = 1; :::;m, identi�ed by the
superscript. The iteration index is k � 1, identi�ed by the subscript. The matrix
Jk�1 is the Jacobian of rk�1 in terms of each weight, and � is a damping factor which
is adapted based on descent speed [30].

These methods are quite e�ective at approximating curvature in many instances without
the computational time cost of actually computing it directly. BFGS in particular is a very
well known approach for incorporating second order information based on recent updates.
These, however, do not have the full second order information, e.g., the negative curvature
information may be absent in the Hessian update. There are also methods that use exact
second order information which we are interested in for this thesis.

1. Newton's Method is a classical second order optimization method which is only
locally convergent. The Newton's method update is de�ned by (2.15). This method
is the inspiration for some second order methods for neural network learning such as
the \Approximate saddle-free Newton" method proposed by [6].

2. Trust Region Methods are globally convergent methods. At each iteration a
solution to a subproblem which approximates the original problem, in a trusted
region, based on the �rst and second order information of the objective function, is
used to determine a step towards the solution for the original problem. This is the
approach we focus on for this thesis.

We speci�cally investigate a trust region method with exact Hessian information in this
thesis as well as modi�ed versions based on subsampling of parameters and training exam-
ples. Part of our motivation in looking at trust region methods is that they are well suited
to non-convex problems since a global minimizer to the subproblem is computed at each
iteration. This does not mean a global minimizer will be computed for the problem but
does lead to convergence to a local minimizer.

14

2.3 Trust Region Methods

The idea of a trust region method is to solve a subproblem at each iteration based on
a model that is trusted within a certain radius around the current point. Trust region
methods consist of the following steps [3]:

1. Subproblem de�nition.

2. Step calculation: solving the \Trust Region Subproblem".

3. Acceptance of the trial point.

4. Trust-region radius update.

In this section we will go through each step and specify the approach that will be used in our
numerical exploration. Initialization speci�es a guess for solution w. In our investigation,
the initial guess is uniformly pseudo-random values in the range of [-0.5,0.5]. The weight
matrices, Wl at each layer l, are then normalized by dividing each matrix by the sum of
the absolute value of all their matrix elements.

2.3.1 Subproblem De�nition

Trust region methods typically use a quadratic approximation as the model for the objective
function, f(w). At the current iterate, the second order approximation to the objective
function, f(w + p) is:

~f(w + p) =f(w) +rf(w)Tp+
1

2
pTr2f(w)p

=f(w) + gTp+
1

2
pTHp;

(2.17)

where p is the step (change in parameter values) we wish to �nd, w is the current parameter
vector of the function f , g = rf(w) is the gradient andH = r2f(w) is the Hessian matrix
at w.

In this thesis H denotes the exact Hessian rather than an approximation, which is
common among numerical methods for �-ANNs as discussed in x2.2.2.

15

2.3.2 Step Calculation: Solving the Trust Region Subproblem

The step calculation of a trust region method computes the minimizer of the quadratic
approximation within a trust region [3] formally written as:

min
p

gTp+
1

2
pTHp

s.t. pTp �
2;
(2.18)

where
 is the radius of the trusted region. Throughout this thesis, we will refer to the
objective function of the trust region subproblem as �(p), therefore:

�(p) = gTp+
1

2
pTHp: (2.19)

Traditionally, the trust region subproblem is solved using an iterative method involving
repeatedly computing solutions to linear equations or eigenvalue problems. It is demon-
strated in a recent paper, [29], that the trust region subproblem can be solved by a single
generalized eigenvalue problem and linear equation. This makes the trust region method
more appealing since it is simple to implement with the possibility of improved computa-
tional e�ciency. We provide the details of this computation.

Optimality Conditions

In this section we present and explain the optimality conditions for the solution to the
trust region subproblem (TRS), (2.18), for the simple case when the solution is unique.
The TRS is a special example of a non-convex problem with strong duality [5]. A solution
to the dual problem is the Lagrangian multiplier which can be used to compute the solution
to the primal problem. In the following section we will derive the optimality conditions
for the TRS using the strong duality property of the problem. Firstly, in order to satisfy
primal feasibility (2.18), we have:

pTp �
2: (2.20)

The Lagrangian function of (2.18) is:

L(p; �) =gTp+
1

2
pTHp+

1

2
�(pTp�
2);

=gTp+
1

2
pT (H+ �I)p�

1

2
�
2;

(2.21)

16

where � is the Lagrange multiplier. To satisfy complimentary slackness, � and p must
satisfy:

�(pTp�
2) = 0: (2.22)

The dual function becomes:

d(�) = inf
p
L(p; �)

= �
1

2
�
2 + inf

p
(gTp+

1

2
pT (H+ �I)p): (2.23)

The in�mum of the quadratic function in (2.23) is �1 when (H+ �I) is inde�nite. For a
value of � such that (H+ �I) is singular we refer the reader to the \hard case" described
in [29]. When (H+ �I) � 0 we can compute d(�) by computing the �rst order stationary
point of L(p; �) in terms of p, which, given positive de�niteness of (H + �I), means that
this is a global minima of (2.21) in terms of p. The �rst order condition gives us:

rpL(p; �) = g + (H+ �I)p = 0

! (H+ �I)p = �g:
(2.24)

We can now simplify the in�mum from (2.23) by using (2.24) and assuming (H+ �I) � 0:

inf
p
(gTp+

1

2
pT (H+ �I)p)

= �gT (H+ �I)�1g +
1

2
gT (H+ �I)�1(H+ �I)(H+ �I)�1g

= �gT (H+ �I)�1g +
1

2
gT (H+ �I)�1g

= �
1

2
gT (H+ �I)�1g:

(2.25)

Using (2.25) to simplify (2.23), the dual function, we get:

d(�) = �
1

2
�
2 �

1

2
gT (H+ �I)�1g; (2.26)

for values of � such that:
(H+ �I) � 0: (2.27)

17

The remaining discussion is on a technique by Adachi et al [29] to determine the value of
� which maximizes (2.26). A stationary point must satisfy:

d0(�)) =
1

2
(�
2 + gT (H+ �I)�2g)

= 0:
(2.28)

Using the eigenvalue decomposition for H,

H = VTDV; (2.29)

where D is the diagonal matrix such that �i = Dii is the i
th eigenvalue of H by decreasing

algebraic size (ie �1 is the largest eigenvalue of H), and V is the matrix of eigenvectors
where Vi, the i

th column vector of V, is the eigenvector corresponding to �i. We can now
write (2.28) as:

2d0(�) = �
2 + gT (VT (D+ �I)V)�2g

= �
2 + gT (VT (D+ �I)VVT (D+ �I)V)�1g

= �
2 + gT (VT (D+ �I)(D+ �I)V)�1g

= �
2 + gT (VT (D+ �I)2V)�1g

= �
2 + gTV(D+ �I)�2VTg

= �
2 +
nX
i=1

(gTVi)
2

(�i + �)2
= 0

!
nX
i=1

(gTVi)
2

(�i + �)2
=
2:

(2.30)

We de�ne �(�) as:

�(�) =
nX
i=1

(gTVi)
2

(�i + �)2
: (2.31)

Now, note that (�i+�) is the i
th eigenvalue of (H+�I) so in order to satisfy the requirement

in (2.27), �n + � > 0 where �n is the smallest eigenvalue of the Hessian matrix, H. The �
which ful�lls this constraint as well as (2.30), exists and is unique when gTVn 6= 0 since the
value of �(�) is 1 when �� = �n and then always decreasing for � > j�nj and approaches
zero. A visualization of �(�) can be seen in [3], Figure 7.3.2. There is a case where the
value of � which maximizes (2.26) makes (H+�I) semi-positive de�nite and singular which
is discussed in [29].

18

To summarize, in order for a solution p to be optimal in the case that (H + �I) � 0,
it must satisfy primal feasibility, (2.20), (2.27), and complementary slackness, (2.22). Now
that we have established optimality conditions for the TRS, we need to determine how to
compute a solution that satis�es these conditions. The dual problem (2.26) can be solved by
an iterative method to determine a solution to �(�) =
2 where H+ �I � 0. For example,
[3], �nds a model minimizer using a numerical approach of adjusting � and solving for
(2.24) and re-adjusting � until a suitable p is achieved. As previously mentioned, in this
thesis we follow a more recent approach by [29] which, for the boundary case, developed
a generalized eigenvalue problem with a solution from which a solution to the TRS can
be directly computed. It also takes advantage of complementary slackness to devise a two
step approach described in the following section.

Solving TRS via a Generalized Eigenvalue Problem

The method proposed by [29] uses a two pronged approach. They compute two steps, p1
and p0 where p1 is the optimal step for the trust region subproblem when (2.20) is an
active constraint, and p0 is a point such that r�(p0) = 0 where �(:) is de�ned by (2.19).
If p0 is a feasible solution, meaning (2.20) is satis�ed, then p is the step, out of p1 and p0,
which produces the lower objective function value of the TRS, �(w + p). This decision is
presented as Algorithm 1.

Here we describe the details of the two parts of the method proposed in [29] as well as
some explanation to show that this solution does, in fact, correspond to a solution to the
TRS, (2.18). For further details on the derivation of this approach we refer a reader to
[29].

Interior Case

If a solution to (2.18) is in the interior then the following must be satis�ed:

Hp =� g;

H � 0;

jjpjj <
;

(2.32a)

(2.32b)

(2.32c)

adapted from (2.24), (2.27) and (2.20) respectively for this case, since � = 0 in order to
satisfy complementary slackness, (2.22).

19

De�ne p0 to be a solution to (2.32a), which is unique when H is non-singular. If H is
singular any of the feasible solutions can be submitted as the p0 solution. In the case where
the hyperplane of optimal solutions intersects the trust region sphere, there will be at least
one boundary case solution. Otherwise none of the possible solutions to p0 would satisfy
(2.32c) and would therefore not be valid steps. Because of this, we can ensure that there
is always a boundary solution which is a global minimizer in the case that H is singular.
In our approach we do not check for singularity. Rather, we set a maximum number of
iterations on our linear equation solver, which is the conjugate gradient method as will be
discussed in the following chapter, and only consider solutions that satisfy the all of the
above equations.

Boundary Case via a Generalized Eigenvalue Problem

If a solution is on the boundary then it satis�es (2.27), (2.24), and:

pTp =
2: (2.33)

We de�ne p1 to be the vector that satis�es these conditions. In order to compute p1, [29]
formulated a generalized eigenvalue problem such that p1 can be computed based on the
eigenvalue, ��, and associated eigenvector:

v =

�
v1
v2

�
: (2.34)

where v1 2 R
n, v2 2 R

n, together with ��, satisfy:�
�I H
H �ggT=
2

� �
v1
v2

�
= ���

�
0 I
I 0

� �
v1
v2

�
; (2.35)

and �� is the largest eigenvalue satisfying this equation. We de�ne the lefthand side of
(2.35) to be matrix M for simplicity. That is:

M =

�
�I H
H �ggT=
2:

�
(2.36)

The paper by Adachi et al [29] states that the optimal boundary solution is:

p1 = �

2

gTv2
v1: (2.37)

20

We can verify this by checking that the optimality conditions are satis�ed. Firstly, we
re-write (2.35) as two equations:

�v1 +Hv2 = ���v2; (2.38)

and

Hv1 � gg
Tv2=

2 = ���v1: (2.39)

Rearranging (2.39) we get:

(H+ ��I)(�

2

gTv2
v1) = �g; (2.40)

which is equivalent to (2.24) with the RHS of (2.37) replaced by p1. Therefore the dual
feasibility, (2.24), is satis�ed. Rearranging (2.38) we get:

v1 = (H+ ��I)v2: (2.41)

Now we are able to show that p1 satis�es (2.33):

pT1 p1 =(�

2

gTv2
v1)

T (�

2

gTv2
v1) using (2.37);

=

4

(gTv2)2
vT1 v1;

=

4

(gTv2)2
vT2 (H+ ��I)

Tv1 using (2.41),

=

4

(gTv2)2
vT2 (g

gTv2

2

) using (2.40);

=

4

(gTv2)2
(gTv2)

2

2
;

=
2:

The condition (2.27) is satis�ed by taking the eigenvalue/eigenvector pair of (2.35) with
the eigenvalue of the largest algebraic value which is explained in [29]. In the case where
(H+ I��) is singular, we have what is considered the \hard case" which rarely occurs. See
[29] for an approach to dealing with this case.

Choosing the trial point

The trial point p is chosen based on the decision as described in Algorithm 1 which considers
both p0 and p1 to determine the global minimizer, p, to (2.18).

21

Algorithm 1 Selecting Global Minimizer, p, to (2.18)

1: �(:) from (2.19), w and
 are known
2: if jjp0jj �
 and �(p0) < �(p1) then
3: p p0
4: else
5: p p1

2.3.3 Acceptance of the trial point

In order to determine the acceptability of the step, as well as adjust the trust region size
adaptively, we use a ratio � de�ned as:

� =
f(w + p)� f(w)

�(p)
; (2.42)

which is the ratio of true change in objective function to the estimated objective function
value change based on our model, �(p), de�ned by (2.19).

We follow the method presented in Fletcher (1987) [10] where a parameter, we refer to
as lb, that satis�es 0 < lb < 1, is used as the threshold for whether or not the step leads to
a su�cient decrease in the objective function. This decision is presented as Algorithm 2.

Algorithm 2 Acceptance of the trial point [10]

1: lb 2 (0; 1)
2: compute � using (2.21)
3: if � � lb then
4: w w + p
5: else
6: w is unchanged

2.3.4 Trust region radius update

In this section we describe the method in [10] for adaptive adjustment of the trust region
radius,
. This update method is presented in Algorithm 3. In this method we use two
parameters ub and lb where lb is the same value as in Algorithm 2 and ub is used to
determine when the trusted region can be expanded. These parameters must satisfy:

0 < lb < ub < 1: (2.43)

22

Conceptually this algorithm increases the radius of the trusted area when the model at
the previous step is deemed very accurate, � > ub, shrink it if it was deemed insu�ciently
accurate, � < lb, and keep it constant otherwise. The shrinking is controlled by a param-
eter, �s where 0 < �s < 1, and the growth is controlled by a parameter �g > 1. When
w is kept constant, g and H remain unchanged and can be re-used for the next iteration,
reducing computation time.

Algorithm 3 Adaptive adjustment of trust region size

1: lb, ub, �g and �s are given where lb and ub satisfy (2.43), �g > 1 and 0 < �s < 1
2: compute � using (2.21)
3: if � < lb then
4:

�s
5: else if � > ub then
6:
 = max(
; �gjjpjj)

2.3.5 Method Summary

For clarity and the reader's reference, we present the full trust region algorithm used in
this thesis in Algorithm 4 which combines all steps described in this section and includes
the stopping criteria, e.g. stopping when jjgjj > 10�8.

23

Algorithm 4 Full Trust Region Algorithm to Solve (2.12)

1: lb, ub, �g and �s are given where lb and ub satisfy (2.43), �g > 1 and 0 < �s < 1
2: w initialized randomly
3:
 1
4: while jjgjj > 10�8 do
5: if w was updated on the previous iteration then
6: g, H computed based on w
7: compute p0 s.t. Hp0 = �g

8: compute p1 from (2.37)
9: if jjp0jj �
 and �(p0) < �(p1) then

10: p p0
11: else
12: p p1
13: compute f(w + p) and �(p)
14: compute � from (2.42)
15: if � < lb then
16:

�s
17: else
18: w w + p
19: if � > ub then
20:
 = max(
; �gjjpjj)

21: return w

24

Chapter 3

Solving the Trust Region Subproblem

for Feedforward Neural Networks

In the previous chapter we discussed trust region methods and an approach to solving the
trust region subproblem by using a generalized eigenvalue problem proposed by Adachi et
al. [29]. In this chapter we will propose a complete algorithm for using the trust region
algorithm to train an �-ANN. The algorithm follows the generalized eigenvalue framework
using methods that are suited to training feedforward neural networks (�-ANNs) to build
upon Algorithm 4. The following problems need to be addressed in order to solve the TRS:

1. Computing second order derivatives for the objective function of an �-ANN.

2. Computing the eigenvector associated with the largest eigenvalue for the generalized
eigenvalue problem (2.35).

3. Solve the system of linear equations de�ned by (2.32a) where H is symmetric, and
possibly inde�nite.

This chapter discusses known algorithms that will be used to address the three problems
in order to use the generalized eigenvalue framework.

3.1 Computing the Solution to the TRS

The trust region subproblem, (2.18), is solved using the approach described in Chapter
2. The approach is left where two solutions need to be computed: one to solve the linear

25

system of equations, (2.32a), and the other requires computing the largest eigenvalue and
it's associated eigenvector for the generalized eigenvalue problem (2.35). In this section we
�ll in these gaps to show how our solution was implemented.

3.1.1 Computing Second Order Derivatives

We compute second order information of the objective function, (2.9) with regularization,
by using the \Pearlmutter Trick". This method uses a second round of forward and back-
propagation after the �rst, which computes the gradient. Using this method, the product
Hkv can be computed for any vector v where Hk is the Hessian matrix of the objective
function for the �-ANN being trained, at the kth iteration. The details of the method as
it applies to �-ANNs, are described in Appendix A.

3.1.2 Conjugate Gradient

As mentioned, the solution to the system of linear equations (2.32a) must be computed in
order to compute the solution to the TRS. The conjugate gradient method is used as a fast
descent method for solving this system of linear equations. The particular implementation
used is that in the MATLAB pcg function. This method can be used either with a function
call to an implementation of the Pearlmutter Trick, de�ned in Appendix A, or by being
provided the computed Hessian.

The Hessian of the objective function at iteration k, Hk, is sometimes inde�nite. In
context of the TRS algorithm however, the p0 step is only considered when Hk happens
to be positive de�nite. If conjugate gradient does not converge to a minimizer because Hk

is inde�nite, we know that p1, the boundary solution, is the solution to the TRS.

3.1.3 Implicitly Restarted Arnoldi Method

The Implicitly Restarted Arnoldi Method (IRAM) is used to compute the eigenvalue/vector
pair corresponding to the smallest eigenvalue of (2.35). A de�nition of this approach is
presented in [41]. The particular implementation of this algorithm used is the MATLAB
eigs function.

26

Algorithm 5 Conjugate Gradient, Algorithm 6.11 from [7]

1: procedure cg(A,p)
2: Given �
3: x0 0
4: r0 b
5: p0 b
6: k 0
7: while krkk > � do
8: k = k + 1
9: �k = rTk�1rk�1=(p

T
k�1Apk�1)

10: xk = xk + �kpk�1
11: rk = rk + �kApk�1
12: �k = (rTk rk)=(r

T
k�1rk�1)

13: pk = rk + �kpk�1
return xk

3.1.4 Computing Hk

Using the \Pearlmutter Trick" proposed by [27] and it's speci�c application to �-ANNs,
we can now write a simple function to compute the Hessian matrix of the �-ANN at each
iteration k, Hk, as we show in Algorithm 6. We do not require computation of the full Hk

since the productHkv, for any vector v, is su�cient for the algorithm. However, computing
Hk is found to be bene�cial in some instances, which will be discussed in Chapter 4.

Algorithm 6 Compute Hk, using the Pearlmutter Trick [27]

1: procedure computeHk:
2: H initialize n� n matrix
3: n number of parameters
4: I identity matrix in Rn�n

5: for i = 1 to n do
6: Hi = Hv(Ii)

7: return H
8: procedure Hv(v):
9: [Four Pass Procedure in x3.1.1]

10: return Hkv

27

3.1.5 Computing The Boundary Solution, p1

As described in Chapter 2, we can compute the boundary case solution, p1, from the solu-
tion to the generalized eigenvalue problem, (2.35), which is computed using the MATLAB
eigs function. In Algorithm 7 we show our implementation of the getp1 method which re-
turns the boundary case solution. In this algorithm we call a method Mv() de�ned below
getp1 which, given a vector v 2 R2n , returns the product, Mv, where M is de�ned in
(2.36). This method calls Hv() which is presented as a subroutine of Algorithm 6.

Algorithm 7 Compute p1

1: procedure getp1
2: given
, g =vectorized(rf(w))
3: eigvec = eigs(Mv())
4: y1 eigvec[0 : n� 1]
5: y2 eigvec[n : 2n� 1]
6: p1 �sign(g

Ty2)

y1
jy1j

7: return p1
8: procedure Mv(v)
9: v1 v[1 : n]

10: v2 v[n+ 1 : 2n]
11: Mv[1 : n] �v1 +Hv(v1)
12: Mv[n+ 1 : 2n] Hv(v2)� gg

Tv2=

2

13: return Mv

3.1.6 Summary of TRS Solution Method

We now have all the pieces to put together a full algorithm. This algorithm is presented
as Algorithm 8 and can be fully implemented to solve the trust region subproblem [29]
which is a step or iteration of the trust region method. This is the implementation used
for experimentation in our numerical investigation, Chapter 5. Note that pcg refers to
the MATLAB function, getp1 is the procedure de�ned in Algorithm 7 and Hv() is from
Algorithm 6. The Mv() function is called from getp1 and is therefore still present in the
complete algorithm.

28

Algorithm 8 Solving the TRS

1: procedure Step k:
2: �s, �g as de�ned in Algorithm 4
3: gk is computed using the backpropagation, see Appendix A.0.1
4: p1 getp1
5: p0 pcg
6: �(p1) (p1)

Tg + 1
2
(p1)

THv(p1)
7: �(p0) (p0)

Tg + 1
2
(p0)

THv(p0)
8: if jjp0jj �
 and �(p1) > �(p0) then
9: p� p0

10: �(p�) �(p0)
11: else
12: p� p1
13: �(p�) �(p1)

14: �f f(w + p�)� f(w)
15: � �f

�(p�)

16: if � < lb then
17:

�s
18: else
19: w = w + p�

20: if � > ub then
21:

�g

29

Chapter 4

Modi�ed Trust Region Methods

This thesis seeks to study the behaviour of the trust region method, TRM, and variations
of this method for training �-ANNs. We take several di�erent approaches to variations of
TRM. Most of our modi�cations are meant to reduce the runtime of the method for each
step computation. This means that we can expect each iteration will contribute less to
the solving the overall problem, but it will be computed faster. Numerical investigation
into the speed of the objective function reduction in terms of CPU time for each method
will provide us with information as to which approaches are e�ective at speeding up the
TRM.

4.0.1 Challenge: Stochastic Variations on the TRM

The trust region radius update is one of the main components of the trust region method.
It is the mechanism that ensures the objective of the trust region subproblem is an accurate
approximation to the change of the true objective while keeping the trust region size as
large as possible to ensure fast progress. The idea being that when the quadratic model is
not accurate for the current point, we increase its accuracy by shrinking the trust region
size at that step. This relies on continuity between iterations, where we can predict how
accurate the approximation at a particular iteration will be, based on the previous iteration.
Unfortunately, this is not necessarily possible when we are subsampling training examples
to estimate the gradient and Hessian information. This leads to an interesting question
that motivates most of the investigation in this thesis: Is it possible to harness the bene�ts
of TRM while using a stochastic subsampling method at each iteration? This is a concern
for the TRM and is not for Newton's method which does not rely on information from

30

a previous iteration to determine step size, which means this problem is interesting but
challenging. We kept this in mind when developing the following approaches to stochastic
subsampling of training samples.

4.1 Stochastic Subsampling of Training Samples

In the context of this thesis, stochastic subsampling of training samples (SSTS) refers to
approximating the objective function, gradient, and Hessian using only a subset of training
samples at each iteration. We de�ne ck 2 R

bm to be an array that contains the parameter
indices randomly selected for the stochastic approximation at iteration k, where bm < m is
the batch size of training samples used each iteration. The approximated objective function
becomes:

fm(wk) =
1

2bm

bmX
r=1

(z
(ck)r
L � y(ck)r)T (z

(ck)r
L � y(ck)r) + �regwT

kwk; (4.1)

where fm refers to the approximation of the objective function based on training example
subsampling and �reg is the regularization constant. The approximate objective function
for the TRS is then:

�m(pk) = (gmk)
Tpk +

1

2
(pk)

THm
k pk; (4.2)

where pk 2 R
bm ,

gmk = rfm(wk); (4.3)

and
Hm
k = r2fm(wk): (4.4)

We want to determine whether SSTS can be used with a standard trust region size,
,
update approach, Algorithm 3. In order to determine the e�ectiveness of SSTS in the
context of the otherwise unchanged TRM we implement the Batch Trust Region Method
(BTRM). The value of bm for this method is given by a hyperparamter blargem which has a
value speci�cally chosen for the dataset. The approach for choosing the value is presented
in Appendix B.

For our second group of stochastic variations we note that this SSTS method for approx-
imating the gradient, gk, by g

m
k is the same method used for stochastic gradient methods

such as stochastic gradient descent (SGD) and mini-batch gradient descent (MBGD),
where the update is:

wk+1 = wk + �gmk ; (4.5)

31

where � is the learning rate and SGD refers to the special case of MBGD where bm = 1.
We want to study whether this approach, as used for stochastic gradient methods, is
also e�ective for TRM. Therefore, we use subsampling with a single training sample and
with a batch size to mirror SGD and MBGD respectively. We develop two methods
for numerical experimentation: stochastic trust region method (STRM) and mini-batch
trust region method (MBTRM). For STRM we have bm = 1 and for MBTRM we use
bm = bsmallm where bsmallm is a hyperparameter chosen based on the dataset. The hypothesis
is that we can gain some of the bene�t that is seen in SGD andMBGD compared to plain
gradient descent (GD). Both of these methods, in general, greatly decrease the CPU time
it takes to compute an approximate solution, an example of which that was performed on
the MNIST dataset [21] is shown in Figure 4.1. This example illustrates the improvements
stochastic subsampling methods make to the speed of gradient descent. Note that GD
does eventually reduce the objective function value in this example, Figure 4.1 is meant to
demonstrate timing di�erences only.

Figure 4.1: Training an �-ANN to predict MNIST using SGD, MBGD and GD for
comparison.

A learning rate schedule that is often used in practice for stochastic gradient methods
is to half the learning rate when progress slows averaging over an epoch [2]. We use a trust
region update schedule for our stochastic trust region methods inspired by this learning
rate schedule. This schedule is shown in Algorithm 9, where a is a block size, k is the

32

Algorithm 9 Adaptive Trust Region Reduction Schedule (ATRRS)

1: function
 = updateGamma(a, k, ec, ec�1 and
)
2: if k mod a == 0 then
3: if ec > ec�1 + tol then
4:

=2
5: else
6: do nothing

7: else
8: do nothing

number of steps taken so far and the value computed as:

ec =
1

a

acX
k=a(c�1)+1

fm(wk); (4.6)

where ec is the average gradient during c
th epoch and

c = bk=ac : (4.7)

Recall that
 is the trust region size, or \step size" in the context of adjusted trust region
methods. We refer to this schedule we use as the adaptive trust region reduction schedule
(ATRRS) and compute only the p1 step from (2.37). This schedule takes into account the
average approximated objective function over a set number of iterations, which we refer to
as a block, that has number of iterations a. For our experiments we de�ne a to be:

a = min(
m

bsmallm

; blargem); (4.8)

where bsmallm is the value of bm for MBTRM and blargem is approximately the number of
training samples that can adequately represent the dataset in order to run TRM which
is bm for BTRM. The parameters bsmallm and blargem , known as hyperparameters, are chosen
for our experiments using an hyperparameter protocol de�ned in Appendix B, which is run
previous to training. This choice of iteration span is to either wait until m training samples
have been considered (with possible overlap), or consider a block of blargem iterations which
is not dependent on the dataset size itself but rather the characteristics of the data. This
means that in cases where bm is small, blargem is used as an upper bound for how often to
check progress of the stochastic method. It can also be used for stochastic trust region
implementations in online learning contexts where the total training set size is not set.

33

Since these methods use a small value of bm the computation of p1 is faster using the
\Pearlmutter Trick" each time the product Hkv must be computed for some vector v it
will take O(bmn) computations rather than O(mn).

4.2 Weight Subsampling

The other dimension which we can reduce, in the hopes of reducing CPU time for training,
is the number of parameters n, which is the size of wk for any iteration k. In this thesis
we refer to weight subsampling as the random selection of indices of wk, which are the
variables of the TRS, at iteration k, over which to minimize. We de�ne ak 2 R

bw , where
bw < n is the number of weights in the subset, to be an array that contains the random
indices selected for the weight subset at iteration k. Considering only the parameters which
have indices contained in ak, the corresponding objective function for the approximate TRS
(trust region subproblem) is:

�w(pwk) = (gwk)
Tpwk +

1

2
(pwk)

THw
k p

w
k (4.9)

where pw 2 Rbw ,

(gwk)i = (gk)(ak)i ; (4.10)

and

(Hw
k)ij = (Hk)(ak)i(ak)j : (4.11)

In our investigation we want to see how weight subsampling a�ects the behaviour of the
TRM, therefore we implement an algorithm called the trust region method with weight
subsampling, TRMWS, which follows Algorithm 8 with the following changes. At the
beginning of each iteration a new set of weight indices, ak, are randomly chosen and
throughout the iteration, the weight subset version of the gradient, gwk and that of the
Hessian Hw

k is used in the place of the full gradient and Hessian at that iteration, gk and
Hk respectively. This means that the variables whose indices are not present in ak are not
updated in iteration k.

We also wish to study the e�ect of weight subsampling on stochastic variations of TRM
that already incorporate SSTS, therefore, we implemented three methods: stochastic trust
region method with weight subsampling, STRMWS, mini-batch trust region method with
weight subsampling, MBTRMWS, and batch trust region method with weight subsam-
pling, BTRMWS, which are all extensions of methods from the previous section with the
addition of weight subsampling.

34

4.3 Hybrid Approach

The �nal approach we consider is a hybrid method combining mini-batch gradient descent,
MBGD, and TRM in order to retain the speed bene�t generally seen withMBGD, a well
known approach to training �-ANNs, while decreasing the objective function value using a
TRM step occasionally. Note that for the experiments in this thesis the implementation of
MBGD and stochasti gradient descent, SGD, updates the learning rate using Algorithm
9 where trust region size,
, is replaced by learning rate, �, for the stochastic-type gradient
method 2.14.

Algorithm 10 MBGD � Update and TRM Step Incorporation

1: function � = checkProgress(a, k, ec, ec�1 and �)
2: if r mod a == 0 then
3: if ec > ec�1 + tol then
4: � �=2
5: [Take one TRM step with
 = �]
6: else
7: do nothing

8: else
9: do nothing

Our hybrid approach, which we refer to as TRMMBGD, is to follow MBGD but
each time the learning rate is halved due to a lack of progress between iteration blocks,
the learning algorithm solves the TRS for the next step rather than using the approximate
gradient step and then returns to MBGD on the following iteration. This is shown in
Algorithm 10. By using a TRS step only when we are not seeing progress in reducing the
objective function withMBGD, we hope to bene�t heavily from the fast �rst order decent
by MBGD and reserve solving the TRS for when it would be most bene�cial.

4.4 Full Hessian vs Hessian Free

Our methods can all be performed using either a function which computes the product
Hkv for any given vector v, or by using the full Hessian Hk which must be computed �rst.
When using a Hessian free approach, the \Pearlmutter Trick" (see Appendix A) must be
performed each time Hkv is computed for some vector v. This takes O(mn) computations
where m is the number of training samples and n is the number of parameters. Computing

35

Hkv when we compute Hk only takes O(n
2) and often n < m. This, however, requires the

added cost of computing Hk. We simpli�ed this discussion by using symbols n, m, and Hk

which are the symbols relevant to the TRM. This discussion is also true for bw, any value
of bm and the approximate or lower dimension Hessian matrix being used. It is therefore
relevant to all method variations presented in this chapter.

In order to decide for which methods we compute the full Hessian matrix and for which
we did not, we timed the �rst 1000 iterations (or fewer for those that converged prior to
1000 iterations) of all methods on all datasets using both approaches. These results are
presented in Appendix C. We chose to keep the Hessian computation approach for each
method consistent across datasets for our experimental results. If a method computed each
step taking on average less CPU time using the Hessian free approach for the majority
of datasets, the Hessian free approach was used for all datasets in experimentation and
otherwise the full Hessian approach was used. We show the resulting choice of Hessian
computation in Table 4.1.

Method Hessian Computation Approach
TRM FH

TRMWS FH
BTRM HF

BTRMWS FH
MBTRM HF

MBTRMWS FH
STRM HF

STRMWS FH
TRMMBGD HF

Table 4.1: The approach used for computing Hessian information in each method. HF
refers to \Hessian Free" and FH refers to \Full Hessian". HF is in bold to more easily
distinguish between the two values.

4.5 Summary

Descriptions of labels for the methods used in this investigation are presented in Table 4.2,
which use the de�nitions of weight subsampling and stochastic subsampling of training
samples (SSTS) from this chapter. These methods cover a broad range of approaches to

36

reduce the computations required for a step of the base method, TRM. The method of
choosing hyperparameters (bw, b

large
m , bsmallm etc) is de�ned in Appendix B.

Label Method de�nition / description
TRM standard trust region method, Algorithm 4.

TRMWS TRM with weight subsampling.
BTRM TRM with SSTS.

BTRMWS TRM with SSTS and weight subsampling.
MBTRM TRM with SSTS, using only the p1 step and

the adaptive trust region reduction schedule (ATRRS), Algorithm 9.
MBTRMWS MBTRM with weight subsampling as well.

STRM special case of MBTRM where bm = 1.
STRMWS special case of MBTRMWS where bm = 1.
MBGD Mini-batch gradient descent with learning rate updated using the

Algorithm 9 after replacing
 by the learning rate.
SGD MBGD with bm = 1.

TRMMBGD MBGD where TRM step is used when MBGD's progression slows.

Table 4.2: Training algorithm de�nitions used for numerical exploration, and their labels,
which will be used to reference them.

37

Chapter 5

Numerical Results

In this chapter we present the results from a large array of experiments. We compare
methods, de�ned in Table 4.2, performed on various datasets in order to gain insight into
their behaviour when used for training �-ANNs.

5.1 Experimental Set-up

The algorithms presented in Chapter 4 are implemented in MATLAB and available at
https://github.com/cwkinros/Stochastic TRM Exploration. Experiments were run on in-
dividual nodes of the University of Waterloo Chardonnay cluster consisting of 8 nodes.
Each of these nodes have 2x Intel E5-2671 (8C) CPUs, 128 GB of memory and 15T LSI
SAS2308 of disk space. The nodes run Linux and the speci�c experiments are run in the
64-bit R2013b version of MATLAB on these machines.

5.1.1 Datasets

Sizes of datasets are displayed in Table 5.1. The datasets were chosen to have a variety
of sizes in terms of the number of independent variables, n0, and the number of classes,
both which a�ect the number of parameters, n, in the resulting �-ANN. They also have
di�ering numbers of training examples, m. They cover a few application domains as shown
in Table 5.2, and are expected to have di�erent properties. For instance, most datasets
have separable classes, except Habe where the class label appears virtually unrelated to
the independent variables as can be seen in Figure 5.1.

38

label m n0 # classes n
MNIST 60000 100 10 1120
Derm 366 33 6 406
IRIS 150 4 3 83
Nurs 12960 8 5 145
Habe 306 3 2* 51

Table 5.1: Datasets used for experimentation. *Habe uses a single dependent variable with
two states, each to represent one of the classes.

label Description Source
MNIST handwritten digits [21]
Derm di�erential diagnosis of erythemato-squamous diseases [15]
IRIS predict class of iris plant [9]
Nurs rank applications to nursery schools [8]
Habe predict survival status for patients with breast cancer [16]

Table 5.2: Datasets used for experimentation.

5.1.2 Network Structure

The networks used for experimentation are two-layer, fully connected �-ANNs. The ac-
tivation function used is the sigmoid function, both at the hidden layer and at the �nal
layer:

�1(x) = �2(x) =
1

1� e�x
: (5.1)

An example of the network structure, applied to the Derm dataset, is shown in Figure
5.2. The value for n0 depends on the dataset, and can be seen in Table 5.1, and n2 is
the number of classes in the networks shown in Table 5.1 for our experiments, with the
exception of the Habe dataset where we use n2 = 1 for a two class problem. All networks
for the �ve datasets in Table 5.1 contain 10 hidden units.

39

Figure 5.1: Visualization of Habe dataset where classes are represented by shape and
colour. This shows the di�culty in learning this dataset, there is no clear separation
between classes.

40

Figure 5.2: Structure of �-ANN for learning the Derm dataset. Used as visual example to
show resulting structure for a given n0 and n2 which are based on the dataset.

41

5.2 Methods for Comparison

In this section we de�ne criteria we use for ranking optimization curves, the curve repre-
senting the objective function value over time, while undergoing an iterative optimization
method. It can be di�cult to make comparisons between two di�erent optimization curves
that display di�erent behaviours. In order to be speci�c in our analysis of optimization
algorithms we de�ne a ranking method. To begin, we �rst present the two possible com-
parison approaches include:

1. CPU time taken to reach a speci�c objective function value.

2. Objective function value achieved within a certain time.

Both of these metric comparisons involve choosing either a speci�c objective function
value or time to set as a �xed value and then compare using the other metric. The
�nal measurement can depend on this choice, making it critical that there is an objective
procedure used to make the choice. We will analyze the majority of the experimental
results using the metric de�ned in the following section, which uses the data to de�ne an
objective function value for CPU time measurements. Simpler comparison methods will
be explained when they are used.

5.2.1 Time Required for a Reasonable Solution

The main comparison method we use in our numerical investigation is what we refer to
as time required for a reasonable solution (TRRS). This follows the �rst metric concept
where we compare the CPU time taken to reach a speci�c objective function value. The
speci�c objective function value used is dependent on the methods being compared which
means that the TRRS can only be used to compare two methods, otherwise this objective
function may di�er and change the result.

Before we de�ne TRRS, we will �rst introduce a few notations. Suppose Ka and Kb

are the �nal iteration numbers for method a and b, respectively. Let cpu(Ka) (cpu(Kb)) be
the CPU time taken for performing Ka (Kb) iterations by method a (method b). For the
purpose of comparison, we will �x the time for both methods and the �xed time is chosen
to be the minimum of the two:

T = min(cpu(Ka); cpu(Kb)): (5.2)

42

Accordingly, let Ka
T (Kb

T) be the smallest iteration number for method a (method b)
such that cpu(Ka

T) >= T (cpu(Kb
T) >= T).

We then consider the values of the objective function for all iterates generated by the
two methods and �nd the minimum one. More precisely, we de�ne:

� = min(f(wa
ka
); f(wb

kb
)) ka = 0; 1; :::; Ka

T ; kb = 0; 1; :::; Kb
T (5.3)

where wa
ka

and wb
kb
are the approximate solutions generated by method a and method b,

respectively.

Now we call a solution, wk, a reasonable solution if f(wk) is close to k. Speci�cally,

f(wk) <= ; (5.4)

where
 = k +�jf(w0)� kj: (5.5)

Here w0 is the vector of initial parameters and � is given by the user.

Finally, TRRS for method a is de�ned to be cpu(K
a) where K

a is the �rst iteration

such that wa

K

a
is considered a reasonable solution. TRRS for method b is de�ned similarly.

5.3 CPU time of TRM vs SGD

The �rst question we wanted to answer in this investigation is simply: How much slower
is the TRM compared to SGD. We run SGD to train each dataset in Table 5.2. At this
point we search for the smallest objective function value achieved during SGD training
and de�ne our CPU time metric to be when the CPU time at the �rst iteration that a
method reaches within 1% (based on the initial objective function) of the smallest objective
function value achieved by SGD. The results are presented in Table 5.3.

These results show that it takes TRM much longer, in terms of CPU time, to reach
the goal objective function value computed using the SGD results, than SGD. The pro-
portional time discrepancy is particularly large for MNIST and Derm datasets which both
have a larger number of parameters. MNIST has by far the largest magnitude increase in
time, which makes sense since it has both the largest number of parameter and the largest
number of training samples.

43

Dataset CPU time (s) TRM CPU time (s) SGD
Derm 5.0535 0:23578
Habe 0.14527 0:092241
IRIS 0.46323 0:18152

MNIST 2607.145 4:2025
Nurs 39.7811 5:3361

Table 5.3: Time taken to reach within 1% of minimum f(w) achieved by SGD for both
SGD and TRM.

5.4 Using TRM and MBGD in Hybrid: TRMMBGD

In this section we explore whether we can make an improvement to traditional stochastic
gradient methods, speci�cally MBGD, using the TRM step when necessary. Recall the
mechanism for switching between the two described in x4.3, which combines them by
prioritizing MBGD and only using TRM when MBGD is not e�ectively reducing the
objective function.

The results of this experiment are found in Figure 5.3. The two methods, MBGD
and TRMMBGD perform very similarly at low CPU time with MBGD slightly outper-
forming TRMMBGD in terms of values of TRRS for � = 5% and 10%, shown in Tables
5.5 and 5.6 respectively. In all TRRS tables, the faster method based on the � used in
each set of results, is in bold. The dash represents when there is no TRRS for a method,
which means that the method did not achieve a reasonable solution based on the de�nition
of reasonable in x5.2.1. Looking at values of TRRS for � = 1%, shown in Table 5.4, we
see that either TRMMBGD performs as well as MBGD, where there is less than a 0.1
second discrepency for the TRRS, or in the case of Habe, IRIS and Nurs, TRMMBGD
achieves a better solution overall. The most extreme improvement in objective function
value is seen by IRIS in Figure 5.4, where TRMMBGD continues to make signi�cant
improvements to the objective function while the objective function being minimized by
MBGD has stopped decreasing in magnitude.

In conclusion, we �nd that TRMMBGD is an e�ective improvement over MBGD.
In some cases the two methods perform very similarly, whereas for some datasets the
optimization curve of TRMMBGD performs similarly early on but achieves a lower �nal
objective function eventually.

44

Figure 5.3: Running TRMMBGD vs MBGD for training �-ANNs on �ve datasets.

45

Dataset CPU time (s) MBGD CPU time (s) TRMMBGD
Derm 0:18436 0.23661
Habe - 1:8206
IRIS - 0:37217

MNIST 2.096 1:925
Nurs 1.9246 1:4415

Table 5.4: TRRS results for � = 1%

Dataset CPU time (s) MBGD CPU time (s) TRMMBGD
Derm 0:040571 0.044899
Habe 0:35471 0.45047
IRIS - 0:28553

MNIST 0.38535 0:35748
Nurs 0:40615 0.51935

Table 5.5: TRRS results for � = 5%

Dataset CPU time (s) MBGD CPU time (s) TRMMBGD
Derm 0.026375 0:025359
Habe 0.16741 0:15084
IRIS - 0:23544

MNIST 0.22061 0:19866
Nurs 0.23353 0:21426

Table 5.6: TRRS results for � = 10%

46

5.5 Stochastic TRMs

We devote this section to evaluating whether or not stochastic subsampling improves the
performance of TRM in terms of the TRRS measure, from x5.2.1, for either of the trust
region size update schemes discussed in Chapter 4. We also present �gures of the methods'
progress over time, as we have done in the previous section, to provide insight into their
behaviour.

5.5.1 Adaptive Trust Region Reduction Scheme

In this section we study the e�ectiveness of applying stochastic sampling methods, used
with the adaptive trust region reduction scheme (ATRRS) in Algorithm 9, to TRM.
We want to measure TRRS for TRM and its variatons based on stochastic sampling,
MBTRM and STRM, in order to determine if stochastic sampling variations are an
e�ective way to speed up the TRM method on �-ANN when paired with the adaptive
trust region reduction scheme.

We set up an experiment to determine whether or not stochastic subsampling of training
examples is an e�ective method for speeding up TRM. The experiment involves running
TRM, STRM and MBTRM on the �ve datasets listed in Table 5.1 and recording
CPU time and the true objective function, f(wk), at each iteration k. The results of
this experiment are displayed in Figure 5.4. Results in Figure 5.4 are cuto� on the x-
axis at the minimum total CPU time between all three methods, based on the protocol
for measuring TRRS. These graphs show signi�cant di�erences in the objective function
values at any time between MBTRM and STRM that are not seen between SGD and
MBGD. Speci�cally,MBTRM seems to reduce the objective function in all cases, despite
sometimes not doing as well as TRM. On the other hand, in the case of the Derm dataset,
STRM does not even decrease the objective function from the initial value.

We use TRRS to quantitatively evaluate MBTRM and STRM as potential faster
variations of TRM. We measure the time required to obtain a reasonable solution (TRRS)
where � = 1%, 5%, 10%. We compare both MBTRM and STRM against TRM, and
the results are displayed in Tables 5.7, 5.8, and 5.9 respectively. Recall that TRRS is a
measure between two methods only, therefore we compareMBTRM toTRM and STRM
to TRM separately. In each table (5.7, 5.8, 5.9) columns 2 and 3 contain the results from
measuring TRRS for TRM and MBTRM and columns 4 and 5 show the results from
measuring TRRS for TRM and STRM.

47

Figure 5.4: Comparing TRM with stochastic training example subsampling TRM meth-
ods (STRM and MBTRM), based on objective function, f(w), vs CPU time.

48

We �nd that TRM has a lower TRRS than STRM for all training runs, except for in
the case of MNIST where STRM gets to � = 10% faster than TRM. Once we decrease
� to 5% and 1%, TRM outperforms STRM. This indicates that generally, STRM as a
variation of TRM, is not an e�ective speed up approach compared to the performance of
the original TRM method.

Results were found to be more mixed when we compare TRRS betweenMBTRM and
TRM. We �nd that for � = 5% and 10% MBTRM actually achieves a faster TRRS
than TRM on MNIST and Derm datasets. This is somewhat unexpected since Nurs has
a larger number of training samples than Derm and therefore would appear to be a better
candidate for a mini-batch method.

Recall from x4.4 that the algorithmsMBTRM and STRM both use the Hessian Free
approach where the `Pearlmutter Trick' is called with O(nbm) time complexity each time
we compute the product Hkv for any v 2 Rn where Hk is the Hessian of the objective
function at iteration k. This is in contrast to the method in TRM where we compute the
Hessian matrix fully before solving for p1 and p0.

Finally, we note thatMBTRM has a lower TRRS when used to train using the MNIST
dataset, even for the case when � = 1%. In conclusion, for some datasets we �nd that
MBTRM can improve upon TRM however it is not a consistent trend across a diverse
range of datasets.

Dataset TRM MBTRM TRM STRM TRM BTRM

Derm 7:3726 14.8783 7:3726 - 7.3726 2:827
Habe 15:8215 - 11:8777 - 21:0525 -
IRIS 1:8912 - 1:8912 - 1:8912 -

MNIST - 83:7168 1574:484 - - 1799:908
Nurs 67:7825 - 67:7825 - 67:7825 -

Table 5.7: TRRS results for � = 1%

5.5.2 Traditional TRM
 Update Scheme

We train the same networks using BTRM and TRM in order to test whether using
stochastic sampling of training examples on the full TRM method, including the tradi-
tional TRM update scheme, is an e�ective method for improving TRM performance in
terms of TRRS. The batch size is chosen using the hyperparameter value search scheme

49

Dataset TRM MBTRM TRM STRM TRM BTRM

Derm 5.8078 1:455 5:8078 - 5.8078 1:383
Habe 2:652 - 2:3852 - 3:477 -
IRIS 0:84902 1.1691 1:0384 - 1:0384 1.8596

MNIST - 6:4677 1389:245 - - 146:8234
Nurs 41:1667 - 41:1667 - 41.1667 32:9154

Table 5.8: TRRS results for � = 5%

Dataset TRM MBTRM TRM STRM TRM BTRM

Derm 4.4035 1:2892 4:4035 20.9612 4.4035 1:024
Habe 1:3666 - 1:3274 - 1:4662 -
IRIS 0:71805 0.97309 0:71805 - 0:71805 1.3308

MNIST - 3:932 1111.175 605:5431 - 9:3117
Nurs 32:7128 37.7004 32:7128 - 32.7128 11:8563

Table 5.9: TRRS results for � = 10%

(see Appendix B). The hyperparameter which de�ned the batch size is blargem . The value of
blargem is greater than that of bsmallm for all datasets, which is why we use the label \large".
We expect that a greater batch size will mean that the approximation of the trust region
subproblem more closely resembles the actual subproblem. Therefore, we expect that the
use of the traditional trust region size update in Algorithm 3 will be e�ective at predicting
what size of region can be accurately modeled using the previous step accuracy.

The optimization curves produced by running this experiment on each dataset, are
presented in Figure 5.5. Visually, we can see that the BTRM curves start out faster than
TRM for training most datasets besides Iris, where the speed is similar, and Habe, where
BTRM is found to be essentially ine�ective at minimizing the objective function. This
result for Habe is expected for any stochastic method since subsets are not su�ciently
representative of the full set as we discovered in Figure 5.1. The low signal to noise ratio
means that it is possible that the noise of the stochastic approximation has more e�ect on
the step choice than the underlying signal we wish to learn.

We can see the quantitative TRRS measurements in Tables 5.7, 5.8 and 5.9 in columns
6 and 7. In the results for the MNIST and Derm datasets we see that for all values of
�, BTRM outperforms TRM in terms of TRRS. On the Nurs dataset we see that for
� = 5% and 10% BTRM reaches a reasonable solution faster than TRM but does not
reach within 1% of the �nal solution for the TRM. This means that BTRM successfully

50

speeds up TRM for training Nurs, but it is at the expense of the quality of �nal solution.
For IRIS the results are slightly worse when trained with BTRM compared to TRM, but
reasonably similar. Training using the Habe dataset resulted in no cases where BTRM
outperforms TRM which we have discussed during the discussion of Figure 5.5.

We conclude that BTRM can decrease the TRRS compared to TRM for training �-
ANNs on datasets where the signal to noise ratio is high. We hypothesize that stochastic
methods perform poorly since the poor signal to noise ratio means that the direction of
each stochastic step may be more in
uenced by the noise of the small subset of samples
rather than the underlying trend. To understand this more clearly, imagine performing a
linear regression problem on a dataset with a very small signal to noise ratio. With 1000
samples, the signal may be picked up but with only 2 the predicted linear relationship will
be heavily in
uenced by noise e�ecting the two points.

51

Figure 5.5: Comparing TRM with stochastic training example subsampling TRM
method, BTRM, based on objective function over CPU time.

52

5.6 Reducing the Dimentionality of TRS

We experiment with weight subsampling added to the TRM algorithm to train �-ANNs
using the �ve datasets with both TRMWS and TRM and comparing the results. The
results of these experiments are shown in Figure 5.6. Speci�cally, we plot the objective
function vs the CPU time as we have done for stochastic methods in the previous sections.
In terms of the qualitative behaviour we can see that for datasets Derm, IRIS and MNIST,
this method is bene�cial. For Habe, weight subsampling actually slows down the overall
progress initially but it eventually surpases TRM in objective function over CPU time.

In order to compare these methods quantitatively, we display the TRRS in Tables 5.10,
5.11 and 5.12 for the TRRS parameter � = 1%, 5% and 10% respectively. We observe
improvement in terms of TRRS for training �-ANNs on Derm, IRIS and MNIST for all
values of � when adding weight subsampling to TRM. For Nurs we see that TRM has a
shorter TRRS for all values of � displayed, however we note in Figure 5.6 that Nurs is faster
at getting a very approximate solution and is passed before the � = 10% mark. Finally,
we see that TRMWS outperforms TRM on the Habe dataset for only the lowest value
of �. These are mixed results, but we observe that TRMWS is faster at the beginning of
training for 80% of our datasets, and has a better TRRS for � = 1% on 80% datasets as
well. Therefore we can conclude that the variation, TRMWS, improves TRM in many
cases.

Dataset TRM TRMWS BTRM BTRMWS

Derm 7.3726 4:2109 2:827 -
Habe - 152:2109 - 19:1976
IRIS - 2:9561 32:9446 -

MNIST - 1218:143 1799:908 -
Nurs 67:7825 - 251.4025 226:7159

Table 5.10: TRRS results for � = 1%

We have evaluated the e�ect of adding weight subsampling to the basic TRM method,
now we wish to see if weight subsampling improves other methods such as methods that
already include stochastic subsampling of training samples, SSTS. Firstly, we test the e�ect
of weight subsampling on BTRM by comparing the behaviour and TRRS of the method
with it's weight subset variation, BTRMWS. The results of these experiments are shown
in Figure 5.7 and the TRRS values are shown in columns 4 and 5 of Tables 5.10, 5.11
and 5.12. Qualitatively and quantitatively we observe a much smaller e�ect of weight

53

Dataset TRM TRMWS BTRM BTRMWS

Derm 5.8078 1:7998 1:383 2.1279
Habe 4:4892 53.3771 - 0:64488
IRIS 1.1462 0:77798 2.4622 1:6066

MNIST - 564:9604 146:8234 -
Nurs 41:1667 - 23.1261 20:7021

Table 5.11: TRRS results for � = 5%

Dataset TRM TRMWS BTRM BTRMWS

Derm 4.4035 1:1238 3.6755 1:1415
Habe 1:6481 5.6479 1.1263 0:41935
IRIS 0.71805 0:60017 0:70417 0.85703

MNIST - 176:2933 57.9639 13:7871
Nurs 32:7128 42.1636 10.9396 4:7036

Table 5.12: TRRS results for � = 10%

subsampling when it is applied to BTRM vs TRM, though in all cases except for IRIS,
the TRRS for � = 10% is lower for BTRMWS than for BTRM. These �ndings suggest
that weight subsampling has a smaller and more consistent e�ect, across di�erent datasets,
when applied to BTRM than when applied to TRM.

Next, we test weight subsampling applied to stochastic trust region methods,MBTRM
and STRM, to see if we get the same results as for BTRM. These results can be
seen in Figure 5.8. We �nd that applying weight subsampling to these methods does not
follow the consistent and slight improvement seen when applying weight subsampling to
BTRM to get BTRMWS. Rather, we �nd that for � = 1% and 5%, both STRM and
MBTRM do better than their weight subset equivalents, STRMWS andMBTRMWS.
For training on Derm, Habe and IRIS we do see an improvement in TRRS for � = 10%
for MBTRMWS compared to MBTRM.

By looking at all of our results from applying weight subsampling together, the trend
appears to be that the smaller the stochastic subset of training samples chosen at each
iteration, the less e�ective adding weight subsampling will be to reduce TRRS. This result,
though not entirely expected, is not surprising as every time a variation is made using a
stochastic approach, the steps become less likely to lead to the solution of the overall
problem. Once the sum of all approximated steps is no longer leading towards a minima
for the full objective function, f(w), they are no longer useful.

54

Figure 5.6: Running TRM vs TRMWS for training �-ANNs on �ve datasets.

55

Figure 5.7: Running BTRM vs BTRMWS for training �-ANNs on �ve datasets.

56

Figure 5.8: Test results for using stochastic TRM methods.

57

Dataset MBTRM MBTRMWS STRM STRMWS

Derm 14:8783 17.1257 22:0584 -
Habe 8:1992 - 0:097114 0.15717
IRIS 1:4322 - 14:1681 -

MNIST 83:2774 - 17:2798 46.9834
Nurs 55:4531 - 27:9826 -

Table 5.13: TRRS results for � = 1%

Dataset MBTRM MBTRMWS STRM STRMWS

Derm 1:455 2.0583 10:3782 -
Habe 2:0487 4.4119 0:079468 0.13661
IRIS 0:98844 - 2:4714 3.2203

MNIST 6:4677 31.6931 9:7466 35.0008
Nurs 26:2484 - 9:0291 -

Table 5.14: TRRS results for � = 5%

Dataset MBTRM MBTRMWS STRM STRMWS

Derm 1.2892 1:168 7:9418 -
Habe 0.96801 0:65215 0:061815 0.11599
IRIS 0.90709 0:54737 0 0

MNIST 3:932 7.9736 7:3748 28.1962
Nurs 19:4037 - 0:50192 0.9181

Table 5.15: TRRS results for � = 10%

58

5.7 CPU Time Analysis

We study the pro�le of the CPU time expenditure for each Trust region derived method
applied to each dataset. We exclude TRMMBGD which computes mainly stochastic
mini-batch gradient steps and therefore cannot be compared directly. In order to make
the comparison between remaining methods, we timed each component of an algorithm to
determine if there are any outliers. It turns out that computing Hk for each iteration k,
and p1 take the most time for all methods. This can be seen in Figures 5.9 and 5.10. For
methods that require the computation of both p1 and p0, p0 always takes less than 12%
of the CPU time for an average step computation. If we sum together the time taken to
compute Hk, p1 and p0 (if p0 is applicable for that method) we �nd that these components
contribute over 98% of the CPU time. This gives us an explanation for why the second
order methods, despite progressing more at each step, still produce longer TRRS values
when compared to the gradient methods. It does show how Newton's method, equivalent
to the instances where p = p0 for TRM, is e�ective at computing a solution e�ciently
compared to computing the boundary step since the p0 computation takes much less time
than the p1 computation as we can gather by comparing Figures 5.9 and 5.11.

The p1 and p0 steps both involve iterative methods to determine their solution, namely
\eigs" in MATLAB and conjugate gradient, respectively. The algorithm is stopped when
the relative residual is less than 10�3 for both \eigs" and the conjugate gradient computa-
tion. Since convergence times depend on properties of the optimization problem that are
out of our control, we decided to reduce these times by setting a very small limit on the
number of iterations for each of the methods and accepting steps where the methods did
not converge. We are changing the stopping criteria reaching a residual of 10�3 to reaching
a max iteration number we refer to as submaxiter. In other words, the tests so far have
been performed where convergence is achieved in order to solve the TRS at each step of the
original problem. For the following methods, rather than waiting for convergence, we use
the result achieved after submaxiter iterations regardless of it's accuracy to see how this
performs. We compare these results to those where the method must converge to see if it
speeds up the method. For most datasets the resulting behaviour is not notably di�erent,
this is likely because the datasets have a low number of parameters, n, and therefore may
not need as many iterations to converge. On the other hand, we found a big di�erence in
performance on the MNIST dataset, which is trained on the �-ANN with the most param-
eters (1120), more than double the number of the next largest network. These results are
displayed in Figure 5.12. When TRM with p1 and p0 convergence is compared with TRM
run with a very low max iteration number for these two computations, and no convergence
requirement, we see that TRM with convergence is more productive per epoch but much

59

Figure 5.9: Percentage of time taken up by solving the Generalized Eigenvalue Problem
(2.35) and computing p1 from the result at each step.

Figure 5.10: Percentage of time taken for computing the Hessian matrix at each change
in weight values w. Recall that only �ve of our methods include the computation of the
Hessian matrix.

60

Figure 5.11: Percentage of time taken to solve for the p0, which is solving the linear
equation (2.32a). Recall that those methods which use the ATRRS do not compute p0
(see Algorithm 9).

slower in terms of CPU time. Early stopping of p0 and p1 computations is shown here to
produce less precise results in terms of step direction, but is signi�cantly faster on problems
with a large (in our case > 1000) number of parameters. We compare with SGD to put
the speed of the submaxiter TRM method in perspective. This comparison is shown
in the bottom sub�gure of Figure 5.12. We observe that despite seeing a speed up with
TRM, the speed of objective function reduction still is much slower than that of SGD.

61

Figure 5.12: Convergence of TRM with p0 and p1 using stopping criterion of residual
magnitude less than 10�3 (dashed line) and stopping criterion of reaching the max iteration
(submaxiter=1, 2, 3, 4, 5). (Upper Left) Convergence in terms of CPU time. (Upper
Right) Convergence in terms of Epoch. (Bottom) Convergence in terms of CPU time with
SGD for reference.

62

5.8 Robustness Test

It is important to have some measure of robustness for an algorithm which is non-deterministic
since outcomes may di�er between experiment runs. We performed a robustness test on
our algorithms by running them many times on the same small network and checking the
accuracy of the solution. In order to perform this experiment we used a small network
to compute the XOR output for two inputs on a two layer. This network can be trained
quickly and also has a known saddle point, making it well suited to measure robustness.

5.8.1 The XOR Problem

The XOR problem that we use is speci�cally the two feature case of the XOR function.
The total number of distinct values that a training sample can take is four, all of which
are displayed in Table 5.16. In this test problem we use four training samples, one of each
distinct value.

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

Table 5.16: The 2-feature XOR problem.

This is a very simple problem that contains classes which are not linearly separable.
When trained on a two-layer network with two hidden nodes, the problem has a known
saddle point, two local minima and a global mininum which are displayed in the Table
5.17.

f(w) Point Type
0.125 saddle point
0.0625 local minimum
0.0833 local minimum

0 global minimum

Table 5.17: First order critical point classi�cation for the XOR problem when trained on
a 2-layer �-ANN with two hidden nodes.

63

Because of these known values, small size for fast training, and the known results of
training a network on the XOR problem using various methods this is a well suited problem
to test our methods for robustness by running each method many times and grouping the
results.

5.8.2 XOR Training Results

In order to see quantitatively how well all of these methods perform, we train a two layer
�-ANN to learn the XOR solution, and run it 1000 times on 100 initial weight settings
in order to test robustness. We analyze our results by categorizing the �nal value of the
objective function for each trial for each of our methods. We say a method has reached one
of the four known points, x, if the �nal objective function value achieved by the method
is within 10�3 of f(x). The value of these known points are displayed in Table 5.17. The
results of this experiment are displayed in Figure 5.13.

The hyperparameter procedure resulted in values for training example sampling: bsmallm =
blargem = m, therefore TRM is equivalent to BTRM for this experiment so we do not show
BTRM results. The mini-batch trust region methods, MBTRM and MBTRMWS,
are still distinct from TRM and TRMWS respectively because of di�erence in
 update
method.

The results of the experiment are shown in Figure 5.13. The �rst, most striking result,
is the stochastic gradient descent, SGD, converges to the saddle point 100% of the time.
Its important to point out that this result could be dependent on the initial learning rate
and learning rate schedule. It is still an interesting result and shows that with certain
parameter choices, SGD may have di�culty converging to a minimizer. The promising
takeaway for our methods is that TRM, MBTRM, MBTRMWS, and TRMWS all
converge to a local minima for all 1000 trials. This shows that in this context, weight
subsampling does not seem to a�ect the global convergence property of TRM, that is the
method still converges to minima in all cases.

Another interesting result from this experiment is the improvement in performance
between MBGD and TRMMBGD. We see that TRMMBGD increases the chances
of at least resulting in a saddle point solution, compared to reaching no critical point
forMBGD, and in some cases reaching the global minimum, compared toMBGD which
most of the time does not reach a saddle point and never reaches a local or global minimum.
When we look at all the results together that the percentage of times that a local minimum
is reached can be predicted by the number of steps calculated using all 4 training examples
of the XOR problem. That is, all methods that used bm = m at each step reached a local

64

minimum 100% of the time. TRMMBGD, which uses bm = 2 most of the time and
bm = m occasionally, reaches a local minimum occasionally. Finally those methods that
never consider all training samples at the same step, bm < m, never reach a local minimum.
This is to be expected that stochastic subsampling of training samples is ine�ective for the
XOR problem since the classes for any set of three or fewer samples is linearly separable,
therefore all four samples are required to represent the more complex XOR problem.

Figure 5.13: Final points are recorded when the �nal objective function value is within a
tolerance of 10�3 from one of the known points.

Finally, we compare these results with those from other methods used to train the same
two layer �-ANN from [30]. This comparison is shown in Figure 5.14. Methods with the
su�x �tr are methods that use the trust region model approach, those with �B uses line
minimization and those ending in �qn are quasi-Newton methods. The full list of methods
and their de�nitions are available on p. 134 of [30].

In Figure 5.14 we see that TRM manages to outperform all methods studied in [30],
with the exception of BD-tr which is the trust region model method with the bold driver
method for adjusting the step size. The bold driver method simply increases the trust
region radius when the previous step reduces the objective function, and decreases it oth-
erwise. This is di�erent from TRM which updates the trust region size based on the
reliability of the second order model used within the bounds. This method therefore does
not determine \trust" of the second order model based on model accuracy but rather on
reduction of the objective function, f(w), a measure which does not take the model into
consideration. In this thesis we decided to focus on methods derived from the more classical
measure �, from (2.42), which is based on model accuracy.

65

Figure 5.14: Percentage of runs which successfully converge to the global minimum of the
XOR problem. The methods from our exploration are displayed as solid black and methods
from [30] are coloured with a diagonal pattern.

All of the methods from this thesis that use bm = m perform similarly to the trust region
approaches tested in [30], in terms of percentage of trials that reach the global minimum
on the XOR problem. This simple problem does not show a very detailed comparison for
training �-ANNs in general but provides some context to show how these methods compare
to a wide array of methods that have been studied in the context of training �-ANNs.

66

Chapter 6

Conclusion

In this thesis, we studied a trust region approach, that uses the recent generalized eigen-
value method to solve the trust region subproblem (TRS), on training feedforward neural
networks (�-ANNs) by using the `Pearlmutter Trick' to compute the second order informa-
tion. From this full method, we developed several variations of this learning algorithm that
either estimate the TRS at an iteration, reduce the dimension of the TRS, or combine the
trust region method with a stochastic gradient method. We used each of these methods
to train networks on �ve datasets of di�erent sizes and application domains. We analyzed
these results to provide some insight as to the behaviour of these methods as well as a
measure of CPU time taken to reach a reasonable solution, which provides an indicator of
speed.

Our results suggest that combining the trust region method presented in this the-
sis, along with mini-batch gradient descent, we can match or improve upon the speed of
mini-batch gradient descent for all datasets tested. In terms of stochastic approximation
approaches, we �nd that second order approximations using stochastic sampling were not
bene�cial for all datasets. However, results for using a large batch trust region method with
the trust region size update showed that for most datasets a speed up in training results
from large batch size sampling. We also �nd that with the largest dataset, MNIST, which
requires the most parameters in a two-layer network, smaller batch stochastic sampling
can be e�ective at speeding up the method. These results show promise for use on larger
datasets.

We �nd that weight subsampling at each iteration, which reduces the dimension of the
TRS, can speed up the trust region method in some cases. It was particularly e�ective for
the largest dataset tested, MNIST, on the largest network. This bene�t however, was not

67

seen, in a signi�cant way, when used in combination with a stochastic sampling methods.
Therefore, our results suggest that weight sampling can bene�t trust region methods for
problems with a larger number of test samples, m, and a larger number of parameters n.
It should be considered, however, as an alternative to stochastic subsampling rather than
a complementary method since we do not see the same bene�ts when used in tandem with
a stochastic sampling method.

The most useful result found in this investigation was the improvement or matching
of solution and the time required for a reasonable solution (TRRS) for trust region used
in tandem with mini-batch gradient descent as compared to mini-batch gradient descent
on its own. This is a very promising result and indicates that other tandem methods may
also be successful.

Despite some reduction of time required for a reasonable solution using stochastic sub-
sampling and weight subsampling, these time reductions are still not large enough to
improve upon the TRRS of a stochastic gradient descent method. Therefore, the bene�t
of a trust region method, without used in combination with a �rst order method, still lies
purely in its ability to produce precise results and not in its speed.

Overall, we have shed some light into the behaviour and performance changes of a
speci�c approach to approximation of the trust region method used to train feedforward
neural networks. We have also identi�ed one method, the hybrid of the trust region method
with mini-batch gradient descent, which does provide some improvements in speed and
precision to mini-batch gradient descent.

6.1 Future Work

The most promising method that was tested in our numerical investigation was a hybrid
method combining the complete trust region method with mini-batch gradient descent as
was mentioned previously. We leave it as future work to determine what other methods
can be improved for training neural networks when used in combination with the trust
region method, or even a locally convergent method such as Newton's method.

Another avenue of future work is to expand this survey to deeper networks and larger
scale datasets. Since the trust region method has scaling di�culties, it is likely that the
bene�ts of using approximate information become more obvious with larger datasets and
a higher number of parameters in the network. This is something we see already with
training on the MNIST dataset compared to the smaller datasets tested.

68

The �nal interesting area that is left open for future exploration, is how to choose
hyperparameters more e�ectively. This has been considered for training neural networks
using more common approaches, but could be investigated further speci�cally for variations
on trust region methods.

69

References

[1] Herve Abdi, Dominique Valentin, and Betty Edelman. Neural networks (quantitative
applications in the social sciences). Sage University paper, Series, (5):10, 1999.

[2] Chuan Yu Foo Yifan Mai Caroline Suen Adam Coates Andrew Maas Awni Hannun
Brody Huval Tao Wang Sameep Tandon Andrew Ng, Jiquan Ngiam. U
dl tutorial.
http://ufldl.stanford.edu/tutorial/.

[3] Nicholas I. M. Gould Andrew R. Conn and Philippe L.Toint. Trust-Region Methods.
MPS and SIAM, Philadelphia, PA, 2000. Series on Optimization.

[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang,
et al. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[5] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[6] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli,
and Yoshua Bengio. Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization. In Advances in neural information processing
systems, pages 2933{2941, 2014.

[7] James W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

[8] Vladislav Rajkovic et al. Nursery database, 1989.

[9] R.A. Fisher. Iris plants database, 1936.

[10] R. Fletcher. Practical Methods of Optimization. John Wiley Sons, New York, 2nd
edition, 1987.

70

http://ufldl.stanford.edu/tutorial/

[11] Gene H Golub and Charles F Van Loan. Matrix computations, volume 2. JHU Press,
1989.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[13] Daniel Graupe. Principles of arti�cial neural networks, volume 7. World Scienti�c,
2013.

[14] Caglar Gulcehre, Jose Sotelo, Marcin Moczulski, and Yoshua Bengio. A robust adap-
tive stochastic gradient method for deep learning. arXiv preprint arXiv:1703.00788,
2017.

[15] Nilsel Ilter H. Altay Gubenir, Gulsen Demiroz. Dermatology database, 1998.

[16] S.J. Haberman. Haberman's survival data, 1976.

[17] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Overview of supervised
learning. In The elements of statistical learning, pages 9{41. Springer, 2009.

[18] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural networks, 2(5):359{366, 1989.

[19] Michael I. Jordan Benjamin Recht Jason D. Lee, Max Simchowitz. Gradient descent
only converges to minimizers. JMLR: Workshop and Conference Proceedings vol 49,
pages 1{12, 2016.

[20] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. Imagenet classi�cation with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097{1105, 2012.

[21] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[22] M. Lichman. UCI machine learning repository, 2013.

[23] Qing Ma. Natural language processing with neural networks. In Language Engineering
Conference, 2002. Proceedings, pages 45{56. IEEE, 2002.

[24] Maren Mahsereci, Lukas Balles, Christoph Lassner, and Philipp Hennig. Early stop-
ping without a validation set. arXiv preprint arXiv:1703.09580, 2017.

[25] James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10), pages 735{742, 2010.

71

http://www.deeplearningbook.org

[26] Marvin Minsky and Seymour Papert. Perceptrons. M.I.T Press, Oxford, England,
1969.

[27] B. A. Pearlmutter. Fast exact multiplication by the hessian. Neural Computation 6.1,
pages 147{160, 1994.

[28] Kevin L Priddy and Paul E Keller. Arti�cial neural networks: an introduction, vol-
ume 68. SPIE press, 2005.

[29] Yuji Nakatsukasa Satoru Adachi, Satoru Iwata and Akiko Takeda. Solving the trust
region subproblem by a generalized eigenvalue problem. Technical report, The Uni-
versity of Tokyo, Tokyo, Japan, 2015.

[30] Adrian J. Shepherd. Second-Order Methods for Neural Networks: Fast and Reliable
Training Methods for Multi-Layer Perceptrons. Springer, 1997.

[31] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method
without the agonizing pain, 1994.

[32] Gerald A Shultz, Robert B Schnabel, and Richard H Byrd. A family of trust-region-
based algorithms for unconstrained minimization with strong global convergence prop-
erties. SIAM Journal on Numerical Analysis, 22(1):47{67, 1985.

[33] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484{489, 2016.

[34] Andrew JR Simpson. " oddball sgd": Novelty driven stochastic gradient descent for
training deep neural networks. arXiv preprint arXiv:1509.05765, 2015.

[35] Nitish Srivastava, Geo�rey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from over�tting.
Journal of machine learning research, 15(1):1929{1958, 2014.

[36] Z Strako�s. On the real convergence rate of the conjugate gradient method. Linear
algebra and its applications, 154:535{549, 1991.

[37] Igor V Tetko, David J Livingstone, and Alexander I Luik. Neural network studies.
1. comparison of over�tting and overtraining. Journal of chemical information and
computer sciences, 35(5):826{833, 1995.

72

[38] Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on
neural networks, 10(5):988{999, 1999.

[39] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. In Measures of Complexity, pages 11{30.
Springer, 2015.

[40] Stephen J Wright and Jorge Nocedal. Numerical optimization. Springer Science,
35(67-68):7, 1999.

[41] Chao Yang. The implicitly restarted arnoldi method.
http://www.caam.rice.edu/software/ARPACK/UG/node45.html, 1997.

73

APPENDICES

74

Appendix A

Pearlmutter Trick for Computing

Second Order Information

In this section we discuss the use of the \Pearlmutter Trick" which can be used to exactly
compute the matrix vector product of the Hessian, H 2 R

n�n, of an �-ANN and any
vector v 2 Rn [27]. In order to quickly compute the product Hv, Pearlmutter developed
a method based upon the \R" operator which is a di�erential operator [27] de�ned as:

Rvff(w)g =
@

@r
f(w + rv) jr=0; (A.1)

where f(w) is the objective function we are looking to minimize, w is a vector of the
parameters of the objective function (in the case of an �-ANN these are the weights), and
v can be interpreted as a direction vector to indicate in which direction to measure the
derivative. For simplicity we will refer to Rvf:g simply as Rf:g Using this operator we are
able to compute the Hv more easily since:

Hv =
@

@r
rf(w + rv) jr=0= Rfrf(w)g: (A.2)

Our goal is therefore to compute the result of using the R operator on the gradient of
our objective function. Reaching this result requires a four pass method. The �rst two
are the well known forward and back propagation passes for computing the gradient where
we compute f(w) using forward propagation, and rf(w) using back propagation. At this
point we do a second forward/back propagation method at the end of which we are able
to compute elements of Hv. The speci�c computations that make up these passes are
described in x3:1:1 and are referred to collectively as the \Pearlmutter Trick".

75

A.0.1 Forward and Back Propagations

In this section we describe the forward and back propagation passes required to compute
Rfrf(w)g for an �-ANN. Forward and back propagation methods are a way to refor-
mat approaches to problems so that we can modularize layers in the �-ANN setting and
therefore implement general solutions that apply to all �-ANNs rather than only a spe-
ci�c network. This is the concept for the use of forward and backpropagation to compute
rf(w) and will be used as well to compute Rfrf(w)g.

In this section there are some variables such as our weight variable w that are repre-
sented di�erently in the optimization setting than they are in the �-ANN setting for ease
of computations. Here is a list of equivalent values where on the left we have the repre-
sentation used in optimization settings and on the right we have the representation most
useful for training �-ANNs:

n =
LX
l=1

nl(nl�1 + 1);

w$ f(W1;b1) (W2;b2); :::; (WL;bL)g;

v$ f(V1;b
v
1) (V2;b

v
2); :::; (VL;b

v
L)g;

(A.3)

where nl represents the number of nodes computed at layer l, meaning that each layer
computes a vector of size nl from a vector of size nl�1. In the implementation of the
TRM, w and v are concatenated vectorized matrices of their set on the right. The set on
the right is the form of these weights for computations involved in the four passes of the
\Pearlmutter trick". A reverse mapping is also implemented. Let index q be de�ned as:

q =
l�1X
c=1

nc(nc�1 + 1) + (i� 1)(nl�1 + 1) + j; (A.4)

where i and j are the row and column indices respectively, for the matrix at layer l. The
mapping by index is de�ned as:

vq = (Vl;b
v
l)ij =

(
(bvl)i if j = (nl�1 + 1);

(Vl)ij otherwise:

(A.5a)

(A.5b)

We note that we set j = nl�1 + 1 for bias values. Since we are computing Hv using
backpropagation, the same mapping will apply here. That is to say, we want to compute

76

forward back
start 0 L
end L 0
incr +1 -1

Table A.1: Values of parameters for Algorithm 11 based on propagation direction.

all elements:

(Hv)q = Rf(rf(w))qg = R
n@f(w)
@wq

o
= R

n @f(w)

@(Wl)ij

o
; (A.6)

where q corresponds to a weight value, otherwise (Hv)q = R
n
@f(w)
@(bv

l
)i

o
. In this section we

show that in four passes, Rf @f(w)
@(Wl)ij

g and R
n
@f(w)
@(bv

l
)i

o
can be computed exactly for all l and

all possible associated values of i and j.

The four propagation steps, or passes, that make up the \Pearlmutter Trick" will be
presented by what will be referred to as a respective propagation equation for each pass.
How the propagation equation of an arbitrary pass is used to propagate throughout the
layers of a network is shown in Algorithm 11. The values of some of the parameters used in
Algorithm 11 are dependent on whether the pass involves forward or backward propagation.
Their values based on direction of propagation are presented in Table A.1.

Algorithm 11 Pseudocode of a Single Pass

1: procedure Propagate example k
2: initialize akstart
3: l start+ incr
4: while l 6= end do
5: akl [propagation equation: unique for each pass](akl�incr)
6: l l + incr

In this Algorithm 11, al is the propagating vector for the pass at layer l and the
variables are based on the direction of the pass, de�ned in Table A.1. Note: This section
assumes that all non-linear functions, �l(:) map a single dependent variable from one
independent variable for all layers l. This is not the case for all activation functions
including the popular Softmax function for multi-class classi�cation problems in machine
learning and the di�erence in the form that the a�ected partial derivatives take is outlined
at the end of x3:6:1.

77

Forward Propagation I

In the �rst forward pass akl = zkl , which is the propagating vector for step 5 of Algorithm
11. zk0 is initialized as the vector input for the training example k, xk, which is set prior
to training. The propagation equation for this pass is given by:

(zkl)i = �l((Wl)iz
k
l�1 + (bl)i); (A.7)

where �l(:) is the non-linear function at layer l, and (Wl)i is the i
th row vector of the

weight matrix at layer l. This allows us to compute the output of our �nal layer, zkL, where
L is the number of layers. This forward propagation step is performed for each training
example k in our set of m training examples. With this set of m vectors zkl , which depend
on w, the objective function is now computed as:

f(w) =
1

2m

mX
k=1

(zkL � y
k)T (zkL � y

k); (A.8)

where yk represents the vector of dependent variables of the kth training example, where
training examples are presented as in (2.1), which is set at the time of training along with
it's paired independent variable vector xk = zk0.

Back Propagation I

In this pass the propagation vector, akl from Algorithm 11, for each training example is

the vector where the element at index i is de�ned as @f(w)

@(zk
l
)i
and the vector is of length nl.

Initializing in this case involves de�ning this propagation vector at layer L following our
propagation procedure. Based on the objective function, the elements of this initial vector
are:

@f(w)

@(zkL)i
=

1

m
((zkL)i � y

k
i): (A.9)

This pass begins at the �nal layer, therefore l = L for which @f(w)

@(zk
L
)i

has already been

computed using equation (A.9) for i = 1; :::; nL. The value of
@f(w)

@(zk
L
)i
are then each computed

based on the previous layer. The propagation begins with the propagation equation used
in Algorithm 11 de�ned as:

78

@f(w)

@(zkl�1)i
=

nlX
j=0

@f(w)

@(zkl)j
�0l((Wl)jz

k
l�1 + (bl)i)(Wl)ij: (A.10)

From this propagation procedure there is now su�cient information to compute the gra-
dient de�ned as rf(w) where each element indexed by q is de�ned as @f(w)

@(Wl)ij
using the

index mapping from (A.4). Each of these components is computed using:

@f(w)

@(Wl)ij
=

mX
k=1

@f(w)

@(zkl)i
�0l((Wl)iz

k
l�1 + (bl)i)(z

k
l�1)j; (A.11)

and
@f(w)

@(bl)i
=

mX
k=1

@f(w)

@(zkl)i
�0l((Wl)iz

k
l�1 + (bl)i); (A.12)

where

�0l(x) =
d�l(x)

dx
8x 2 R: (A.13)

For gradient methods this would be the propagation stopping point. The next two passes
are required to compute Hessian related information and use values computed during these
�rst two passes.

Forward Propagation II

In the second forward pass akl = Rfzkl g for Algorithm 11. Since this is a forward pass,
the vector that needs to be initialized is Rfz0

kg. Because the R operator is a di�erential
operator and zk0 is the k

th provided independent variable, xk, which is set prior to training
and therefore treated as a constant:

Rfz0
kg = 0: (A.14)

The propagation equation for Algorithm 11 is determined by applying the \R" operator
to (A.7). The \R" operator follows all the rules of a di�erential operator so this is results
in the following propagation equation:

Rf(zkl)ig = Rf�l((Wl)iz
k
l�1 + (bl)i)g

= �0l((Wl)iz
k
l�1 + (bl)i)Rf(Wl)iz

k
l�1 + (bl)ig

= �0l((Wl)iz
k
l�1 + (bl)i)((Wl)iRfz

k
l�1g+ (Vl)iz

k
l�1 + (bvl)i);

(A.15)

79

since

Rfwg =
@

@r
(w + rv) jr=0= v; (A.16)

and

Rfwgq = vq; (A.17)

which, when converted to matrix form using the mapping in (A.4), is equivalent to:

Rf(Wl)ijg = (Vl)ij; (A.18)

and
Rf(bl)ig = (bvl)i: (A.19)

Back Propagation II

In this �nal pass the propagation vector, akl , is set as the vector of size nl such that each

element i is de�ned by Rf@f(w)
@(zk

l
)i
g. The \R" operator is applied to (A.9) for computing

initial values Rf @f(w)
@(zk

L
)i
g which results in:

Rf
@f(w)

@(zkL)i
g =

1

m
Rf(zkL)i � y

k
i g =

1

m
Rf(zkL)ig; (A.20)

where yk is the dependent variable vector for the kth training example which is set before
optimization begins and therefore Rfykg = 0.

For the propagation equation we can apply the \R" operator on (A.10). To simplify
our �nal equation we can use this de�nition of an intermediate vector hkl where:

hkl =Wlz
k
l�1 + bl; (A.21)

zkl = �l(h
k
l): (A.22)

Using (A.18) and (A.19) we can compute the result of using the \R" operator on hkl as:

Rfhkl g = RfWlgz
k
l�1 +WlRfz

k
l�1g+Rfblg

= Vlz
k
l�1 +WlRfz

k
l�1g+ bvl :

(A.23)

To further simplify our equation we de�ne a second intermediate vector made up of the
partial derivatives of hkl which are computed as:

80

@f(w)

@(hkl)i
=
@f(w)

@(zkl)i

@(zkl)i
@(hkl)i

=
@f(w)

@(zkl)i
�0l((h

k
l)i); (A.24)

and applying the \R" operator we get:

Rf
@f(w)

@(hkl)i
g = Rf

@f(w)

@(zkl)i
g�0l((h

k
l)i) +

@f(w)

@(zkl)i
Rf�0l((h

k
l)i)g

= Rf
@f(w)

@(zkl)i
g�0l((h

k
l)i) +

@f(w)

@(zkl)i
�00l ((h

k
l)i)Rf(h

k
l)ig:

(A.25)

With the above de�nitions to simplify the result, we apply \R" to (A.10) which results in
the propagation equation:

Rf
@f(w)

@(zkl�1)i
g =Rf

nlX
j=1

@f(w)

@(hkl)j
(Wl)ijg

=

nlX
j=1

(Rf
@f(w)

@(hkl)j
g(Wl)ij +

@f(w)

@(hkl)j
Rf(Wl)ijg)

=

nlX
j=1

(Rf
@f(w)

@(hkl)j
g(Wl)ij +

@f(w)

@(hkl)j
(Vl)ij):

(A.26)

This is all the information necessary to compute all values of Rf @f(w)
@(Wl)ij

g de�ned as:

Rf
@f(w)

@(Wl)ij
g =

mX
k=1

Rf
@f(w)

@(hkl)i
(zkl�1)jg

=
mX
k=1

Rf
@f(w)

@(hkl)i
g(zkl�1)j +

@f(w)

@(hkl)i
Rf(zkl�1)jg;

(A.27)

and the equivalent for the bias values (bl)i:

Rf
@f(w)

@(bl)i
g =

mX
k=1

Rf
@f(w)

@(hkl)i
g: (A.28)

Since Hv = Rfrf(w)g and we have computed every element of Rfrf(w)g where

Hvq = Rfrf(wq)g =

8>>><>>>:
Rf

@f(w)

@(bl)i
g if j = (nl�1 + 1);

Rf
@f(w)

@(Wl)ij
g otherwise;

(A.29a)

(A.29b)

81

where the index mapping between wq and (Wl;bl)ij is de�ned by (A.4).

A.1 Complexity Analysis

In order to study speed up methods and to compare the TRM with gradient based methods
we take this section to analyze the complexity of a single step of the TRM.

A.1.1 Complexity Analysis of The Pearlmutter Trick for �-ANNs

This section presents the complexity analysis of this method in order to quantify the
scalability of the method and to take a step towards computing the complexity of the full
TRS algorithm. Through the analysis of each of the four passes this method is shown to
be bound by O(mn) computations where m is the number of training examples and n is
the number of parameters (weights).

Forward Propagation I

During this �rst pass, the algorithm computes zkl using equation (A.7) for every layer,
l = 1; :::; L, and training example k = 1; :::;m. This requires computingWlz

k
l�1+bl which

takes nl(nl�1 + 1) computations and then computing the non-linear function �l(:) for all
nl values of Wlz

k
l�1 + bl, each of which takes constant time. Therefore the number of

computations for the forward pass is:

T (n;m) =
mX
k=1

LX
l=1

nl(nl�1 + 1) + cnl

=m
LX
l=1

nl(nl�1 + 1) + cnl;

(A.30)

using (A.3) we can simplify this to:

T (n;m) = m(n+ c
LX
l=1

nl)

� mn(c+ 1)

= O(mn)

(A.31)

82

Back Propagation I

During the second pass, the propagation equation (A.10) computes �0l((Wl)jz
k
l�1 + (bl)i)

which takes constant time determined by the non-linear function since the product (Wl)jz
k
l�1+

(bl)i has already been computed in the �rst forward pass. Finally we need then two
constant time multiplications. This must happen for all j 2 nl for a single derivative
computation of which there are nl�1 per layer. By this logic, we have:

T (n;m) =
mX
k=1

LX
l=1

nl�1X
i=1

nlX
j=1

(c+ 2)

= m
LX
l=1

(c+ 2)nlnl�1

= (c+ 2)mn

= O(mn):

(A.32)

The second set of values that need to be computed are the values of the gradient, @f(w)
@(Wl)ij

and
@f(w)
@(bl)i

, which is done using (A.11) and (A.12) respectively. In this case �0l((Wl)jz
k
l�1+(bl)i)

has already been computed for (A.10) so we have m products of three scalars computed
for each element value of Wl 2 R

nlnl�1 at each layer and m products of two scalars com-
puted for each element value of bl 2 R

nl for each layer l = 1; :::; nL. Therefore we count
computations contributed from (3.11) to be:

T (n;m) =
LX
l=1

nlX
i=1

mX
k=1

(

nl�1X
j=1

2 + 1)

<2m
LX
l=1

nl(nl�1 + 1)

=2mn

=O(mn);

(A.33)

therefore, the number of operations required for this pass is bounded by O(mn).

Forward Propagation II

During the third pass, which uses the propagation equation (A.15), we note that the vector
�0l((Wl)jz

k
l�1+ (bl)i) has already been computed during the previous pass for (A.10). The

83

two products (Wl)iRfz
k
l�1g and (Vl)iz

k
l�1 require nl�1 computations each and then are

added together so we can say that there are cnl�1 computations total for a constant value
c. The propagation equation, (A.15), is computed for i = 1; :::; nl, for l = 1; :::; L for all m
training examples k. Therefore the runtime is:

T (m;n) =
mX
k=1

LX
l=1

nlX
i=1

c(nl�1)

=cm
LX
l=1

nlnl�1

=cmn

=O(mn)

(A.34)

Back Propagation II

In (A.23), there are cnl(nl�1 + 1) computations to compute Rfhkl g. Looking at (A.25),
there are constant time operations for computing each value (hkl)i, call this c1. Therefore
the total computations is:

T (m;n) =
mX
k=1

LX
l=1

(

nl�1X
i=1

nlX
j=1

c2 + cnl(nl�1 + 1) +

nlX
i=1

c1)

=
mX
k=1

LX
l=1

((c+ c2)nlnl�1 + c1nl)

�m
LX
l=1

((c+ c1 + c2)nlnl�1)

=(c+ c1 + c2)mn

=O(mn);

(A.35)

where c2 is the amount of time to compute the right side of (3.21) within the sum.

Softmax vs Sigmoid

All analysis was done for non-linear functions, �l(:), that produce a single dependent
variable for a single independent varaible. That is, �l(x) = y where x; y 2 R. Using

84

a function such as softmax �l(x) = y where x 2 Rw and y 2 R requires an extra bit of
analysis. Recall that the number of output values in a layer computation is nl when we are
iterating through multiple layers l. Here we look at what that di�erence is for completion
of the algorithm.

Sigmoid (or any other function of one-to-one):
The sigmoid function refers to:

zi = �(hi) =
1

(1 + e�hi)
; (A.36)

where zi;hi 2 R and the operation takes constant time. The �rst derivative of this function
comes out to be:

�0(hi) = �(hi)(1� �(hi)); (A.37)

which also takes constant time and maps a single input to a single output. Finally, the
second derivative is de�ned as:

�00(hi) = �0(hi)(1� 2�(hi)); (A.38)

which can be computed in constant time as well. Therefore derivatives in terms of the
objective function for our problem in terms of the inputs to the non-linear function are:

@f(w)

@hi
=
@f(w)

@zi

@zi
@hi

=
@f(w)

@zi
�0(hi); (A.39)

and:

@2f(w)

@h2i
=
@2f(w)

@z2i
(
@zi
@hi

)2 +
@f(w)

@zi

@2zi
@h2i

=
@2f(w)

@z2i
�0(hi) +

@f(w)

@zi
�00(hi): (A.40)

This con�rms that applying the sigmoid function element-wise to the output vector of a
layer takes O(nl) complexity which is what we assumed in our analysis.

Softmax: The softmax function is de�ned as:

�(h)i =
ehiPnL
j=1 e

hj
; (A.41)

where the output, �(h)i is a scalar and it requires all elements of the vector h to be
computed. The runtime for computing a single output value appears to be O(nL) based
on the sum in the denominator, but can be made faster by computing the denominator

85

once and then used for all values of i = 1; :::; nL, therefore the runtime complexity bound
for a single training example remains unchanged from sigmoid for forward propagation at
O(nl) where l = L in the case of the �nal layer.

The partial derivatives
@zj
@hi

for all j = 1; :::; nl are de�ned as follows:

@zj
@hi

= �zizj 8i 6= j; (A.42)

and
@zi
@hi

= zi(1� zi): (A.43)

Finally, @f(w)
@hi

can be computed using the sum:

@f(w)

@hi
=

n�1X
j=0

@f(w)

@zj

@zj
@hi

=
@f(w)

@zi
zi � (zT

@f(w)

@z
)zi; (A.44)

which we computed using (A.42) as well as (A.43), and @f(w)
@z

, is the vector such that:

(
@f(w)

@z
)i =

@f(w)

@zi
(A.45)

which contains some nl computations where h 2 R
nl . However, the inner product (zT @f(w)

@z
)

can be computed once in O(nl) time and used to compute the output values for all i 2 nl.
Therefore, the runtime complexity remains unchanged once again for back propagation I.

Finally we look at the second order derivative of the objective function in terms of the
input to the non-linear function, h. Firstly, the second derivatives of the softmax function
are:

@2zi

@hi
2 = zi(1� 2zi) + z2i (2zi � 1); (A.46)

@2zj

@hi
2 = zjzi(2zi � 1) 8j 6= i: (A.47)

Using these results the second derivative, @
2f(w)
@h2i

, is de�ned as:

86

@2f(w)

@h2i
=

nlX
j=1

(
@2f(w)

@zj2
(
@zj
@hi

)2 +
@f(w)

@zj

@2zj

@hi
2)

=
@f(w)

@zi
zi(1� 2zi) +

@2f(w)

@zi2
z2i (1� 2zi)

+

nlX
j=1

@2f(w)

@zj2
(zizj)

2 +
@f(w)

@zj
zjzi(2zi � 1):

(A.48)

The summation in this equation takes O(nl) to compute, but is the same for every value

of @2f(w)
@h2i

. Therefore, as before, the same runtime complexity can be achieved for both

softmax and sigmoid non-linear functions. This shows that despite assuming there is a
1-to-1 mapping for the non-linear function used, the complexity analysis still applies to
Softmax as the activation function used in the network.

87

Appendix B

Hyperparameters

As mentioned in Chapter 4, there are parameters that need to be chosen prior to training,
we refer to these as hyperparameters to di�erentiate them from parameters or weights,
which are tuned during training. The hyperparameters we consider before training are the
weight subset size, bw, the mini-batch size for trust region steps, bsmallm , the mini-batch size
for gradient steps, bGDm , the large batch size blargem , the initial learning rate for stochastic
gradient descent,
SGD0 , the initial learning rate for mini-batch gradient descent,
MBGD

0 ,
the initial learning rate, or step size, for STRM,
STRM0 and �nally the initial learning
rate, or step size, for MBTRM,
MBTRM

0 . These hyperparameters are chosen using a line
search type test protocol shown in Algorithm 12, where f(wit) is the objective function
achieved at iteration it where iteration it is the smallest iteration count where the CPU
time taken thus far is larger than t. Values of incr and p0 for each hyperparameter and
dataset can be found in Appendix D, and the Method is chosen based on the parameter
being tested using the mapping in Table B.1.

88

Algorithm 12 Hyperparameter Protocol

1: procedure Find Suitable Hyperparameter
2: Given: Dataset, p0, incr, Hyperparameter
3: Method from Hyperparameter, see Table B.1
4: t CPU time for 10 iterations of TRM
5: p p0
6: error0 f(wit) running Method on Dataset given p
7: i 0
8: error�1 =1
9: while errori < errori�1 do

10: p p+ incr
11: i = i+ 1
12: errori f(wit) running Method on Dataset given p

return p� incr

Hyperparameter Method
bw TRMWS
bGDm MBGD
bsmallm MBTRM
blargem BTRM

SGD0 SGD

MBGD
0 MBGD

STRM0 STRM

MBTRM
0 MBTRM

Table B.1: The Method is the algorithm used to test the hyperparameter in the same
row. This mapping is used in Algorithm 12, row 3.

89

Appendix C

Full Hessian vs Hessian Free

Dataset IRIS FH IRIS HF Nurs FH Nurs HF Habe FH Habe HF
TRM 6:5095 15.526 103:2252 1393.098 562:1648 1799.944
BTRM 25.7475 22:2905 254:3873 331.7311 21.0777 20:9922
MBTRM 1.6608 1:2765 47.2323 24:9619 17:3623 17.4178
STRM 5.1491 3:7489 35.5067 17:8883 18.5672 17:6631

TRMMBGD 0.62793 0:50674 0.58953 0:51024 0.31192 0:2718
TRMWS 6:539 14.1964 67:2935 306.8893 18:3271 269.4662
BTRMWS 5:701 11.1422 17:5241 51.3723 11:4665 21.4033
MBTRMWS 1:9442 3.4353 7:2354 13.1268 9:8883 16.7996
STRMWS 4:6339 8.0689 6:4347 10.7207 10:3431 18.0074

Table C.1: Time taken to compute min(1000,max iterations) using the full H approach
and the HF approach.

90

Dataset MNIST FH MNIST HF Derm FH Derm HF
TRM 3569.335 1731:513 21.7445 14:5365
BTRM 1798.383 235:8341 151.3577 45:5098
MBTRM 645.3847 46:7114 109.1076 22:4816
STRM 398.102 27:7807 36.0154 8:4558

TRMMBGD 1.224 1:1368 0:31795 0.34063
TRMWS 203:0851 1114.619 9:7145 28.1894
BTRMWS 84:9487 168.2657 13:1542 25.5094
MBTRMWS 31:547 32.5771 10:7201 18.7424
STRMWS 20:5796 21.3626 9:7782 16.4827

Table C.2: Time taken to compute min(1000,max iterations) iterations using the full H
approach and the HF approach.

91

Appendix D

Hyperparameter Test Results

0
0
0
0
Dataset SGD MBGD STRM MBTRM bw bsmallm blargem bMBGD

m

MNIST 10 10 1.000000e-02 1 40 100 1000 100
Derm 1 10 1 1 15 20 75 10
IRIS 1 1 0.01 1 5 15 50 5
Nurs 1 10 0.1 0.1 5 60 1500 40
Habe 0.01 0.1 0.1 0.1 15 10 75 5
XOR 0.1 0.1 0.001 1 4 4 4 2

Table D.1: Final objective function achieved for training an �-ANN on the set of datasets
using SGD and using TRM.

92

	List of Tables
	List of Figures
	Introduction
	Summary of Contributions
	Outline

	Training Feed Forward Artificial Neural Networks
	Feed Forward Artificial Neural Networks
	Perceptron
	Multiple Layers for Complex Models
	Training
	Overfitting

	Optimization Methods for Training ff-ANNs
	First Order Methods
	Second Order Methods

	Trust Region Methods
	Subproblem Definition
	Step Calculation: Solving the Trust Region Subproblem
	Acceptance of the trial point
	Trust region radius update
	Method Summary

	Solving the Trust Region Subproblem for Feedforward Neural Networks
	Computing the Solution to the TRS
	Computing Second Order Derivatives
	Conjugate Gradient
	Implicitly Restarted Arnoldi Method
	Computing Hk
	Computing The Boundary Solution, p1
	Summary of TRS Solution Method

	Modified Trust Region Methods
	Challenge: Stochastic Variations on the TRM
	Stochastic Subsampling of Training Samples
	Weight Subsampling
	Hybrid Approach
	Full Hessian vs Hessian Free
	Summary

	Numerical Results
	Experimental Set-up
	Datasets
	Network Structure

	Methods for Comparison
	Time Required for a Reasonable Solution

	CPU time of TRM vs SGD
	Using TRM and MBGD in Hybrid: TRMMBGD
	Stochastic TRMs
	Adaptive Trust Region Reduction Scheme
	Traditional TRM Update Scheme

	Reducing the Dimentionality of TRS
	CPU Time Analysis
	Robustness Test
	The XOR Problem
	XOR Training Results

	Conclusion
	Future Work

	References
	APPENDICES
	Pearlmutter Trick for Computing Second Order Information
	Forward and Back Propagations
	Complexity Analysis
	Complexity Analysis of The Pearlmutter Trick for ff-ANNs

	Hyperparameters
	Full Hessian vs Hessian Free
	Hyperparameter Test Results

