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How are molecular crowding and the spatial organiza-
tion of a biopolymer interrelated†

Chanil Jeon,a Changbong Hyeon,∗b Youngkyun Jung,∗c and Bae-Yeun Ha∗ab

In a crowded cellular interior, dissolved biomolecules or crowders exert excluded volume effects
on other biomolecules, which in turn control various processes including protein aggregation and
chromosome organization. As a result of these effects, a long chain molecule can be phase-
separated into a condensed state, redistributing the surrounding crowders. Using computer simu-
lations and a theoretical approach, we study the interrelationship between molecular crowding and
chain organization. In a parameter space of biological relevance, the distributions of monomers
and crowders follow a simple relationship: the sum of their volume fractions rescaled by their size
remains constant. Beyond a physical picture of molecular crowding it offers, this finding explains
a few key features of what has been known about chromosome organization in an E. coli cell.

1 Introduction
Cell’s interiors are crowded with dissolved biomolecules such
as proteins and RNA, which are abundantly present – to the
extent that the typical distance between neighboring proteins
is comparable to their size1–4, as well perceived artistically2,5.
They compete for space and thus exert excluded volume ef-
fects on other molecules. The resulting crowding effects, lead-
ing to non-ideal solution behavior6, control various processes
including protein folding/aggregation and chromosome orga-
nization/compaction7–11 as well as gene regulation and cell
growth1–3,10. A key concept is the entropic (depletion) force
between monomeric units, oligomers, or biomolecular com-
plexes12,13. Indeed, it has been shown to be a major determinant
of chromosome organization in a bacterial cell7,14–16. If this en-
tropic effect is modest for protein folding17,18, it becomes increas-
ingly important for the association of larger protein aggregates or
biomolecular complexes8.

Of particular interest is how molecular crowding controls the
global vs. local organization of bacterial chromosomes in such a
way to benefit other processes, especially transcription and cell
growth10,11 (see also Refs.19–22). While the chromosome is over-
all compacted by molecular crowding, transcription-active sites
will experience stronger crowding effects as schematically shown
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Fig. 1 Schematics of the E. coli chromosome. Ribosomal RNA (rRNA)
operons (big spheres in cyan) are mostly concentrated near oriC. Molec-
ular crowding can influence both the global and local organization of a
heterogeneous polymer such as the E. coli chromosome. For simplicity,
possible topological complexities (e.g., multi-fork or “branched-donut” 28)
are not shown. Overlapping of depletion layers (dashed spheres) leads
to an entropic gain of crowders.

in Fig. 1 (see also Ref.12 for a physical basis); during fast growth,
this is responsible for the clustering of these sites into the so-
called ‘transcription foci’10,11.

The key to understanding molecular crowding as for chromo-
some organization is a systematic treatment of both monomers
and crowders. Indeed, both species exert volume-exclusion ef-
fects on each other; what is important is the interplay between
their spatial distributions. How are then monomers and crowders
distributed or how are their distributions interrelated? Does there
exist a general relation for the spatial distributions of monomers
and crowders? Despite much renewed interest and despite its
relevance for bacterial chromosome organization17,23–27, these
basic questions have remained to be answered.

Journal Name, [year], [vol.],1–12 | 1



Using molecular dynamics (MD) simulations and theoretical
arguments, we offer a coherent view of molecular crowding
and its impact on a long chain molecule formed by subunits or
monomers. To this end, we establish a general relationship for
the spatial distribution of monomers and crowders, referred to as
a “density sum rule,” which states that the sum of their volume
fractions rescaled by their size remains constant. Even though it
is primarily for a homogeneous polymer, it has nontrivial impli-
cations for the local and global organization of a heterogeneous
polymer (e.g., clustering of large monomers), as illustrated in
Fig. 1 (for simplicity, such topological complexities as multi-fork
or “branched-donut”28 are left out).

The bacterial chromosome is decorated with other molecules
(e.g., RNA polymerases) and is heterogeneous in struc-
ture9,19–22,29,30. A simple but conceptually-meaningful model is
a heterogeneous polymer consisting of big and small monomers
confined in a crowded space, as illustrated in Fig. 1 (see Sec. 3
for details). Under the right conditions, the big monomers or
transcription-active sites can cluster, as expected for the forma-
tion of transcription foci10,11 (see Refs.11,31 for similar entropic
chromosome organization in eukaryotic cells). Molecular crowd-
ing has been considered to be responsible for this10,11. Using the
density sum rule, we map out possible scenarios for the spatial or-
ganization of bacterial chromosomes. For instance, we clarify the
condition under which big monomers can cluster by molecular
crowding.

It is worth clarifying the scope of this work. We primarily focus
our effort on characterizing a homogeneous polymer in a crowded
space, especially in a parameter space of biological relevance. The
so-called colloid limit, in which crowders are bigger than chain
molecules, belongs to a distinct class of problems13, and will not
be considered here. Also we model both monomers and crowders
as simple (structureless) hard spheres. For generality, we consider
the two cases: a > ac and a < ac, where a and ac are the size or
diameter of monomers and crowders, respectively ∗. The large-
a case can be considered as a coarse-grained model of bacterial
chromosomes, in which each monomer represents approximately
a structural unit or topological domain7,15,16,27, organized by
various proteins7,16. Since each monomer contains many persis-
tence lengths of DNA (∼ 100kb long7), the notion of chain stiff-
ness becomes much less relevant for the chromosome than for the
DNA. The applicability of such a model can be tested in terms of
the extent to which it serves its purpose. Indeed, similar coarse-
grained models have been useful for gaining quantitative insights
into a large-scale behavior of biomolecular systems (e.g., chromo-
some organization and segregation)17,23–25,30,32. On the other
hand, the small-a case is relevant for protein or RNA folding2–4,8.

On physics grounds, one may argue that the aforementioned
heterogeneous model will likely combine both features of the

∗Here the distinction between these two cases is based on our model: crowders and
monomers as structureless hard spheres. The resulting size comparison scheme is
not so conclusive for more realistic crowders and monomers. For instance, PEG
(polyethylene glycol), often used in experiments as substitutes for the cytoplasmic
crowders is a polymeric crowder 7. In this case, the a-dependence of molecular
crowding effects can be different 34.

large- and small-a cases (see Fig. 1). Thus, a homogeneous poly-
mer not only merits much consideration on its own right but also
offers guiding principles for understanding such a heterogeneous
polymer.

Along this line, it is useful to note that in a biologically-relevant
parameter space the way a flexible polymer responds to crowding
is intrinsically generic and largely insensitive to confinement18,
in contrast to what was seen with DNA molecules26. As a result,
the effects of crowding can be correctly mimicked by adjusting
the excluded volume of monomers υ , which is the second virial
coefficient of monomer interaction (see for instance Ref.33). In-
deed, there exists a general relationship between υ and crowder’s
volume fraction φc, independently of confinement, as assumed in
an effective-solvent picture. Confinement effects will not be re-
flected in local properties such as the density-sum rule derived in
this paper. This may justify the neglect of confinement. Indeed it
is shown in the Appendix that it remains applicable under slit-like
confinement.

This paper is organized as follows. The simulation procedure is
outlined in Sec. 2. Sec. 3 is devoted to the spatial organization of
monomers and crowders; in particular, a density-sum rule is de-
rived primarily based on simulation data and supplemented with
theoretical arguments. It is then extrapolated to heterogeneous
polymers for biophysical modelling of bacterial chromosomes.

2 Simulations
In our simulations, all particles (monomers and crowders) are
assumed to be spherical, interacting with each other through the
fully-repulsive Weeks-Chandler-Anderson (WCA) potential35:

UWCA(r) =

 4ε

[(
σi j
r

)12
−
(

σi j
r

)6
+ 1

4

]
for r < 21/6σi j

0 otherwise
. (1)

Here, r is the center-to-center distance between particles; ε and
σi j (i = 1,2) describe the strength and range of UWCA(r); the sub-
scripts i and j are used to distinguish between monomers and
crowders: σ11 = a (monomer size), σ22 = ac (crowder size), and
σ12 = (a + ac)/2 (ı.e., the closest center-to-center distance be-
tween a monomer and a crowder.

Two adjacent monomers are held together via the finite exten-
sible nonlinear elastic (FENE) potential36,37:

VFENE(r) =−
1
2

k0r2
0 ln
[

1−
(

r
r0

)2
]
. (2)

The spring constant is set to k0 = 30ε/a2 and the range of the
potential to r0 = 1.5a. This is to ensure that the bond length is
comparable to a with minimal bond-length fluctuations.

The velocity Verlet method is used to integrate the Newton’s
equation of motion38. The mass of the monomers and crowders
is chosen as the mass unit. The units of length, energy, and time
of our simulation are a, ε, and τ0 = a

√
m/ε, respectively. The

simulation time step δτ is set to 0.002τ0 for a > ac or 0.005τ0

otherwise. The Langevin thermostat is employed with a damping
constant 0.1τ−1 to keep the temperature at T = 1.0ε/kB, where
kB is Boltzmann constant37. (The choices of m and the damping
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constant are not important in our work because they do not affect
equilibrium quantities.)

The entire system is enclosed in a cubic box of some large vol-
ume, typically as large as three times the chain size; periodic
boundary conditions are imposed at the box surface in all direc-
tions (or in the directions parallel to the confining plates in the
case of slit confinement).

Initially, the polymer is organized in a helical shape but crow-
ders are distributed randomly. After chain equilibration, we run
our simulation for 5×107 time steps and obtain data every 1,000
steps. We repeat the entire simulation eight times with different
random number seeds for Langevin thermostat as well as for ini-
tial crowder distributions. This is equivalent to preparing eight
thermodynamically equivalent systems that evolve along distinct
paths in the phase space. Ensemble averages are obtained as a
time average within each run, which is then averaged over differ-
ent simulations.

3 Spatial organization of monomers and
crowders

3.1 Simulation results
We have calculated a number of quantities describing a polymer
in a crowded space. Fig. 2 displays our results for the normalized
chain size R/R0 as well as the spatial distributions of monomers
and crowders for the two cases: a > ac (A) and a < ac (B). (In the
former case, each monomer may represent the structural unit of
bacterial chromosomes7,15,16,27, as illustrated on the top.) Here,
a is the monomer size, ac the crowder size, φc the volume fraction
of crowders, R the chain size, and R0 = R(φc = 0). † Also, φc

is defined as the volume fraction of crowders at “infinity”, ı.e.,
somewhere inside the crowder-only region, where φc is constant.
Let r be the distance from the center of mass of the polymer (not
to be confused with r in UWCA(r)), then φc = φc(r = ∞). ‡

For a > ac (A), we have chosen the number of monomers N =

50. If the radius of gyration is Rg ≈ 5a, the Flory radius is RF ≈
1.1N3/5 ≈ 12a (see for instance Ref.39). For a < ac ≤ 20a (B), a
much lager N = 2,000 was used for an obvious reason: RF has to
be appreciably larger than ac (RF ≈ 105a for N = 2,000).

The R/R0 graphs on the left in Fig. 2(A) and (B) show how
molecular crowding collapses chain molecules, consistent with
earlier results17,18,23,24. § These graphs also suggest that molecu-
lar crowding works differently between a > ac and a < ac. It is the
ratio aφc/ac for a > ac but the single parameter φc for a < ac that
controls R/R0

18. This has an interesting consequence on the abil-
ity of crowding to bring together two monomers. If a > ac, the
attraction between two monomers is stronger if they are larger

† For R, one can choose the Flory radius RF or the radius of gyration Rg. If rn is the
position vector of monomer n (n = 1,2, ...,N) and RCM = 1

N ∑n rn is the position of its
center of mass, R2

g = 1
N ∑n (rn−RCM)2. However, the ratio R/R0 is the same for RF

and Rg.
‡ For a practical purpose, φc defined this way is essentially identical to the average

volume fraction of crowders, as long as the simulation box is large enough.
§ The origin of the slight non-monotonic dependence of R/R0 on φc in Fig. 2(A) is not

entirely clear 17,18,23,24. Recently, it has been attributed to kinetic effects 23,24 (see
Ref. 18 and references therein for alternative views).

(Fig. 3(A)). Otherwise, a distinct conclusion can be reached: their
attraction is insensitive to a but is set by φc only (Fig. 3(B)), if
ac > a. The graph on the left in Fig. 2(B) suggests that the curve
for ac = 20a is somewhat exceptional in that it appears to devi-
ate from other curves for smaller ac. For a large ac value, the
correlation between crowders are stronger. This may explain the
deviation (see Refs.17,18 and references therein for details).

Indeed, the observation above can be understood in terms of
the (maximum) depletion-free energy gain10,12:

∆Fdep

kBT
≈ φc

(
1+

3a
2ac

)
+O(φ 2

c )≈

{
3
2

aφc
ac

, a > ac

φc, a < ac
. (3)

This is well aligned with the view of crowding effects as reducing
the solvent quality, thus diminishing the excluded volume of each
monomer18: υ ≈ υ0 (1−αφc), where α = 3a/ac for a> ac or α = 1
otherwise, where υ0 is the excluded volume when φc = 0: υ0 ≈ a3

for WCA monomers. The scaling form of Fdep is consistent with
the trend shown by the graphs of R/R0 in Fig. 2.

A general picture emerging from our discussion above is that
smaller crowders are “better” if a > ac, confirming earlier re-
sults4,10,12,18,23–25, or all are “equal” if a< ac, for a given φc value
(see Fig. 3(A) & (B))18. As a result, the degree of crowdedness
is controlled by aφc/ac for a > ac or φc for a < ac. If applied to
a heterogeneous polymer consisting of big and small monomers,
the clustering tendency of big ones will be sensitive to ac, ı.e.,
smaller is better.

To further exploit crowding effects, possibly for a heteroge-
neous polymer, note that the depletion interaction between small
and big monomers is also known10:

∆Fdep(am,aM)

kBT
≈ φc

(
1+

3amaM

ac(am +aM)

)

≈ φc

(
1+

3am

ac

)

≈

{
3 amφc

ac
, am > ac

φc, am < ac
. (4)

The second equality follows from the inequality aM� am.

It is worth noting the parallelism between Eq. 4 and Eq. 3. The
depletion interaction between small monomers or between small
and large ones relies on φc, as long as am < ac; it is controlled by
the ratio amφc/ac if am > ac (see Fig. 3(C) & (D)). The big size
of big monomers is irrelevant for the interaction between big and
small monomers. This implies that the interaction between big
monomers can be much stronger than other interactions. It also
allows us to extract useful information about a heterogeneous
polymer from our understanding of corresponding homogeneous
cases. This non-uniformity in depletion forces can govern the lo-
cal organization of a heterogeneous polymer and induce cluster-
ing of big monomers under the right conditions, as schematically
shown in Fig. 1.

The results in Fig. 2(B) suggest that for ac > a crowding has
modest effects on chain size in the physiological range of φc ≈ 0.3
(see Ref.18 for details). This holds for heterogeneous polymers as
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Fig. 2 Compaction of a polymer by molecular crowding (left column) and spatial distribution of monomers and crowders (middle and right columns). If
the graphs in (A) represents the small-crowder case (a > ac), those in (B) describe the large-crowder case (ac > a). The simulation parameters used
are N = 50 in (A) and N = 2,000 in (B); the sizes of crowders are ac = 0.3,0.4,0.5a (A) to 4,6, ...,20a (B). In the left graphs, the normalized chain size
R/R0 is plotted against the ratio aφc/ac (A) or φc (B). Here R0 is the equilibrium chain size in the absence of crowders and φc = φc(r = ∞). For a > ac,
R/R0 is a function of aφc/ac, whereas for ac > a, it is controlled by φc alone. Also superimposed is the corresponding effective-solvent result (dashed
line in magenta) originally reported in Ref. 18, in which a relationship between φc and the effective excluded volume υ was obtained by mapping the
explicit-crowder case onto one in which the effects of crowders are mimicked by reducing υ . The varying degrees of compaction is represented by the
color bar on the x axis: weak (i), moderate (ii), and strong (iii); the color bar matches the color scheme used in all other graphs in (A) and (B). The
middle graph in both (A) and (B) shows the volume fraction φi (r) of monomers and crowders with i = ‘m’ (monomer) or ‘c’ (crowder), plotted on the left
axis, as well as ∑i φi (r)/ai on the right axis, for ac = 0.4a (A) and ac = 4.0a (B); also note that r is the longitudinal distance from the center of mass
of the polymer. For visual clarity, φc (r) is normalized as φc (r)/φc(r = ∞) and φm (r) as φm (r)/φm (r = 0); ∑i φi (r)/ai is rescaled by ∑i φi (r = ∞)/ai. The
results in this graph suggest coexistence of monomer-rich and crowder-rich phases. When the polymer is moderately compacted (ii), ∑i φi (r)/ai tends
to a constant through the entire range of r shown and converges onto φc(r = ∞)/ac. The graph on the right in both (A) and (B) summarizes the results
for ∑i φi (r)/ai for various choices of ac. In regime (ii), ∑i φi (r)/ai ≈ φc(r = ∞)/ac is satisfied for all ac values used, possibly except for ac = 20a in (B);
the more pronounced deviation for ac = 20a can be attributed to stronger positional correlations among crowders. Possibly except for this case, outside
regime (ii), ∑i φ (r)/ai deviates from ∑i φi (r = ∞)/ai by about 15% at most (at r ' 0). (Error bars are shown for a few representative curves.)
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well, as long as the “big monomers” are smaller than crowders,
as suggested by Eq. 4. A good example is intrinsically disordered
proteins (IDPs) (see Ref.17 and relevant references therein). The
complexity of IDPs would not necessarily invalidate our finding
based on a polymer model; their internal structure will make the
proteins more heterogeneous but they still belong to the case ac >

a. However, crowding effects become more important between
protein oligomers and aggregates8,18, as indicated by Eq. 3 for
the case a > ac.

Earlier, we have shown that the scaling behavior of R as a
function of φc depends on how crowders are assumed to be dis-
tributed18. For instance, the simulation results for R are consis-
tent with the picture that the chain-occupying region is perme-
able to crowders. How are monomers and crowders actually dis-
tributed in the presence or absence of confinement? In a homoge-
neous system consisting of crowders only, the density of crowders
tends to be uniform. In a mixture of small and large particles,
however, large particles tend to get phase-separated from small
ones13. Monomers on a chain molecule can be similarly orga-
nized in a crowded medium. In both cases, the uniform density
picture does not hold any longer. What kind of rule governs their
distribution?

Fig. 2 also shows how chain compaction is related to the spa-
tial organization of monomers and crowders (middle and right
graphs). In the graph of R/R0 on the left in Fig. 2, we depict
a varying degree of compaction: weak (i), moderate (ii), and
strong (iii). The distinction between the regimes is inspired by
the graphs in the middle column in Fig. 2, as evidenced below.
Furthermore, the color bar on the x-axis matches the color scheme
used in the other two graphs.

The graph in the middle in Fig. 2(A) shows the volume
fraction φi (r) of monomers and crowders (left axis) as well
as ∑i φi (r)/ai (right axis) for ac = 0.4a, where with i =

‘m’ (monomers) or ‘c’ (crowders); recall r is the radial distance
from the center of mass of the polymer. Obviously, am = a and
φm is the volume fraction of monomers. In this expression and
related ones below, a is shown explicitly. For visual clarity, φc (r)
is normalized as φc (r)/φc (r = ∞) and φm (r) as φm (r)/φm (r = 0);
∑i φi (r)/ai is rescaled by ∑i φi (r = ∞)/ai. The results in this graph
suggest coexistence of monomer-rich and crowder-rich phases
separated by a rather smooth boundary.

When the polymer is moderately (ii) or strongly compacted
(iii), ∑i φi (r)/ai tends to a constant through the entire range of
r shown and converges onto φc/ac; recall that φc = φc(r = ∞) is
the value of φc(r) somewhere deep inside the crowder-only re-
gion. This can be summarized as

∑
i

φi (r)
ai
≈ φc

ac
(5)

or

∑
i

a2
i ρi (r)≈ a2

cρc, (6)

where ρi ≈ φi/a3
i is the density of monomers (i = m) or crowders

(i = c). Hereafter, Eq. 5 is referred to as the “sum rule” for φi and
Eq. 6 as the “density-sum rule” or “density-sum equality”; since
Eqs. 5 and 6 are equivalent, they will be called the density-sum

rule for simplicity. ¶

We have also used a few choices of ac and plotted our results for
∑i φi (r)/ai in Fig. 2(A) (right). When the polymer is moderately
compacted, the equality in Eq. 5 is satisfied for all ac values used
((ii) is a regime of biological relevance, where the equality holds
well); ∑i φi/ai is nearly constant for the entire range of r. When
it is strongly compacted, ∑i φi/ai deviates from a constant a bit
more appreciably for ac = 0.3a, but the deviation is insignificant,
ı.e., about 15% at most at r = 0.

An earlier study shows that in a poly(bi)-disperse crowded
medium R/R0 is a function of ∑c aφc/ac only for a given N value,
if a > ac is assumed, where the sum is over all crowder types:
small and large. This suggests that the relation in Eq. 5 can be
extrapolated to the poly-disperse case as

φm (r)
a

+∑
c

φc (r)
ac
≈∑

c

φc

ac
. (7)

In Fig. 2(B) (middle and right graphs), we have extended the
sum rule in Eq. 5, ı.e., ∑i φi (r)/ai ≈ φc/ac, established for a >

ac, to the case a < ac. First note that it is the ratio φi/ai (i =
c or m) that enters into this relation. As a result, the left hand
side remains invariant under the exchange in role between ‘c’ and
‘m.’ This suggests that this relation may as well hold for a < ac,
as long as ac is not too large. For the highly asymmetric case
ac� a, however, our polymer-crowder system appears to belong
to a distinct class of problems, as also suggested by the results
for R/R0 in Fig. 2(B) (see Ref.18 for additional details). In this
case, the spatial ordering among crowders becomes important at
a high-φc range (see Ref.17 and references therein). As a result,
the aforementioned invariance will not have to be preserved.

The middle and right graphs in Fig. 2(B) display our results for
φi as well as ∑i φi/ai for the case ac > a, obtained for N = 2,000 and
for several values of φc, including a physiologically relevant range.
(Middle) For ac = 4a, the sum rule in Eq. 5 (ı.e., ∑i φi (r)/ai ≈
φc/ac) holds well, almost perfectly for φc≈ 0.3. (Right) This graph
compares various choices of ac: ac = 4, ...,20a. The sum rule holds
better for ac = 4a,6a than for ac = 20a. Especially for φc = 0.3, it
works nearly perfectly for ac = 4a,6a, similarly to the case a < ac

in Fig. 2(A).
The density-sum rule can be used for different purposes. First,

it gives a physical sense of full compaction that occurs at aφc/ac ≈
1. Under this condition, Eq. 5 becomes φm(r)+aφc(r)/ac ≈ 1. Un-
less the chain is maximally or closely compacted, ı.e., φm ≈ 1,
φc 6= 0. This means that the chain-occupying region is still perme-
able to crowders.

Indeed, the main advantage of our analysis based on the sum
rule in Eqs. 5-7 is that it is a thermodynamic relation, in which
the entropy of crowders and monomers is captured simultane-
ously at least approximately in a biologically-relevant parameter
space. This picture is thermodynamically more meaningful than
a two-body picture, in which the depletion force between two

¶ Since ρm = ρm(r = ∞) = 0, Eq. 6, for instance, can be rewritten in a more symmet-
ric form ∑i a2

i ρi (r) ≈ ∑i a2
i ρi. This can be correctly called a (rescaled) density-sum

equality.
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Fig. 3 Analysis of the “quality” of crowders for a homogeneous ((A) & (B)) or heterogeneous polymer ((C) & (D)). Recall that a is the monomer size
and ac the crowder size. In all cases, crowders exert excluded-volume effects against each other and on the polymer they surround, inducing depletion
forces between monomers. (A) For a > ac, the depletion force is obviously stronger if a is larger, because of a larger overlapped (shaded) region. This
is equivalent to saying that smaller crowders are better for a given φc value. (B) When ac > a, the depletion force is independent of a for a fixed φc value.
In this case, the volume of the depletion layer is mainly determined by ac, independently of a, and all crowders are equal. (C) & (D) Depletion forces in
a heterogeneous chain. Two cases are contrasted: aM > am > ac (C) and aM > ac > am (D). In both cases, the depletion force between big and small
monomers is set by the size of the small one. If it depends on aφc/ac in (C), it is controlled by φc alone in (D). If smaller crowders are better in (C),
all are equal in (D); the effect of crowding is modest in (D), similar to what is shown in (B). This implies that the depletion forces between monomers
in a heterogeneous polymer can be reduced to those in the corresponding homogeneous polymers as shown in (A) & (B); the former combines both
features of (A) & (B).

monomers is focused on (see Eq. 3). Furthermore, Eq. 7 or its
variation can find relevance for chromosome organization as dis-
cussed below.

3.2 Free energy analysis

Considering its simplicity, the sum rule in Eq. 5 merits theoretical
consideration. A binary mixture of hard spheres (whether strung
or unstrung) is only deceptively simple but offers a rich source
of problems for statistical physics13,41. Here we present a simple
but physics-oriented approach, focusing on regime (ii) beyond
the onset of chain compaction. In regime (ii), chain connectivity
may not play an important role. Here crowders will be treated as
reducing the solvent quality, diminishing υ from υ0 ≈ a3 to a neg-
ative value18. This enables us to adopt a free-energy approach de-
veloped for a mono-disperse hard sphere system in solution42,43.
Using this, we derive the spatial distribution of monomers and
crowers across the phase boundary. To this end, we implement
the conventional picture, in which a sharp phase boundary is as-
sumed42,43.

Here, we use a standard lattice model of a symmetric solu-
tion, in which each site is occupied by either solute or solvent
molecule42,43. Our intention is to present Eq. 5 in a thermo-
dynamic context. Let a be the lattice constant, ∆ε the effective
interaction between solute molecules, φ the volume fraction of
solute molecules, and χ the usual parameter describing the de-
gree of miscibility, which scales as χ ∼ −∆ε/kBT ; by convention,

∆ε < 0 if monomers attract each other. If a sharp phase boundary
is assumed, one arrives at the coexistence-curve equation42,43:

χ =
1

1−2φ
ln
(

1−φ

φ

)
. (8)

As it is, this relation does not give useful information about the
“shape” of the phase boundary. To exploit it beyond its original
scope, let us picture the boundary as consisting of multiple layers;
inside each layer located at r (the center of a solute-rich phase is
at r = 0), φ is constant. Let δφ be the variation of φ between
the two consecutive layers and δ χ the corresponding χ change:
δ χ ∼ δ∆ε/kBT ∼ −aδφc/ac for the case a > ac. The sign change
in the first equality is to reflect the fact that χ decreases as r
increases. Well above the phase separation point, one can show
from Eq. 8 that δ χ ∼ δφ or −aδφc/ac ∼ δφ . By integrating this
from infinity to a target position r, we arrive at

−a
∫ r

∞

δφc

ac
∼
∫ r

∞

δφ → −φc(r)
ac

+
φc(r = ∞)

ac
=

φ(r)
a

. (9)

In the last equality, we assumed that φ(∞) = 0, as expected for a
single chain molecule of finite N. The relation in Eq. 9 is equiv-
alent to Eq. 5, which holds well if the chain is moderately com-
pressed (see Fig. 2).

In the analysis above, the size of monomers coincides with the
lattice constant but the size of crowders is implicitly taken into
account via χ. In this regard, it is better suited for the case a > ac.
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For the other case ac > a, we content ourselves by recalling the
symmetry argument described below Eq. 7.

What is the role of chain connectivity, which was left out in our
consideration, in addition to ensuring that φ(r = ∞) = 0? This
effect is expected to be marginal well above the onset of a phase
separation. Indeed, it has been shown numerically that a binary
mixture of hard spheres satisfies a similar density sum rule44.

3.3 Applications to a heterogeneous polymer

Our analysis in Fig. 3(C) & (D) suggests that a simple physical pic-
ture may be mapped out for a heterogeneous polymer, as is most
obvious if (D) is assumed. The clustering of big monomers is then
reduced to a multi-loop problem, in which the intervening sec-
tions are assumed to be uninfluenced appreciably by crowding10.
In this picture, the depletion interactions between big monomers
compete with the entropic penalty of looping.

As noted at the end of subsect. 3, the sum rule in Eq. 5 or
its variation can offer a thermodynamically-consistent picture.
In this subsection, we map out possible scenarios for clustering
based on the sum rule.

If chain connectivity were ignored, it would be tempting to ex-
trapolate Eq. 7 to a heterogeneous polymer, consisting of big and
small monomers, as

φM (r)
aM

+
φm (r)

am
+∑

c

φc (r)
ac
≈∑

c

φc

ac
, (10)

where the subscript ‘M’ refers to large monomers and ‘m’ to small
ones. Here, monomers (both big and small) and crowders are
treated on an equal footing in this expression, similarly to what
Eq. 5 or Eq. 7 indicates. In other words, the terms on the left hand
side of Eq. 10 are symmetrical between monomers and crowders.
However, there is a subtle difference between homogeneous and
heterogeneous chains.

Association of two big monomers in the heterogeneous case oc-
curs at the expense of chain entropy, similarly to what we would
expect from polymer looping10,45. As a result, the spatial dis-
tribution of a heterogeneous polymer depends on the contour
position of big monomers. In other words, such a polymer will
not necessarily satisfy a general rule for monomer/crowder dis-
tributions. A related point is that confinement will influence the
spatial positioning of big monomers and looping as well. Consid-
ering this complexity, simplification is not only inevitable but also
helps us develop guiding principles for understanding a more re-
alistic case. Indeed, if used with caution, Eq. 10 provides useful
insights into the spatial organization of a heterogeneous chain.
For instance, it will offer a lower bound for aM required for the
clustering of big monomers. Also it clarifies the biological picture
of clustering, as evidenced below.

For any cluster of big monomers, φM ≈ 1. If combined with
Eq. 10, this leads to

φM

aM
≈ 1

aM
≈ φm(r)

am
+

φc(r)
ac
≈ φc

ac
. (11)

The size requirement for the clustering of large monomers reads

aM ≥ ac/φc. (12)

Note that this condition is essentially identical to the full-
compaction condition for a homogeneous polymer consisting of
big monomers of size aM only. Obviously, small monomers will
experience weaker depletion forces, as illustrated in Fig. 3(C) &
(D). For the case depicted in Fig. 3(C) & (D), depletion forces
are weak between small monomers or between big and small
monomers. Accordingly, there should exist a range of φc over
which only big ones can cluster.

The heterogeneous polymer discussed above can be viewed as
a simple but conceptually-meaningful model of the E. coli chro-
mosome as a representative bacterial chromosome, as schemat-
ically shown in Fig. 1. A key determinant of chain heterogene-
ity is the binding of RNA polymerases (RNAPs) onto ribosomal
RNA (rRNA) operons10,21,22,46,47. At slow growth rates, each
rRNA operon is decorated with four 10nm RNA polymerases. In
contrast, in a fast-growing E. coli cell, each rRNA operon carries
about seventy 10nm RNA polymerases closely packed along the
chromosome, making about one rRNA/85bp46,47. ‖ A somewhat
larger value of a RNAP (≈ 15 nm) was also used in the litera-
ture48. This difference, however, will not change our picture of
clustering, as evidenced below. The big monomers can thus be
viewed as representing ribosomal RNA (rRNA) operons or sec-
tions of the chromosome covered with RNAPs. Indeed, molecular
crowding has emerged as a main driving force for the clustering
of big monomers into transcription foci, in which transcription
machineries are concentrated10.

For a typical E. coli cell, ac ≈ 5-7nm and φc ≈ 0.32,49,50. Eq. 12
then reads aM ≥ 5-7nm/0.3 ≈ 20nm (corresponding to Fdep ≈
2kBT ). Monomers smaller than this will not cluster. This implies
that clustering in an E. coli cell needs to be considered “collec-
tively.” To see this, consider a hypothetical chain of thickness
aM, chosen to be comparable to the size of RNA polymerase:
aM ≈ 10nm (or aM ≈ 15nm). This does not satisfy the size re-
quirement for clustering. If taken literally, our homogeneous
chain analysis implies that transcription-active sites will not clus-
ter. This appears to contradict the evidence of clustering under
fast (but not slow) growth conditions10,46,47.

We believe that this seeming contradiction can be resolved by
clarifying the biological picture of clustering. Even though clus-
tering will not occur at the level of individual RNAPs, clusters
of RNAPs collectively can cluster into a bigger one; each clus-
ter corresponds to an operon. In our model, these clusters can be
coarse-grained into big monomers. The free energy gain of clus-
tering between big monomers will depend on coarse-graining de-
tails10. At fast growth rates, in each operon, seventy 10nm RNAPs
are tightly packed: about one RNAP/85 base pairs10 (also see

‖ In our consideration here, other details such as Christmas-tree-like structures formed
by RNA molecules being made are ignored 46,47. It is not entirely clear if these struc-
tures induce steric repulsions or enhance depletion forces by effectively increasing
aM. An explicit consideration of their role is computationally demanding and will be
left for future work.
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Refs.46,47). This cluster can be coarse-grained into a big sphere
of diameter 2× 701/3× 5nm ≈ 41nm. ∗∗ This value is above the
required value for clustering, more so if RNAPs are assumed to
be bigger. Literally speaking, a homogeneous chain consisting of
monomers larger than this value will be fully compacted. This
hard-sphere picture, however, tends to underestimate the deple-
tion free energy gain ∆Fdep. If RNAP exchange/rearrangement be-
tween operons in close proximity is allowed, big monomers can
be considered as “soft" in the sense that two can merge into one
with a larger size anew

M = 21/3aM
10. In our notation, the ‘soft’ de-

pletion free energy becomes10

∆Fdep

kBT
≈ φc

2(aM +ac)
3−
(

21/3aM +ac

)3

a3
c

 . (13)

If we use φc = 0.3 and ac = 7nm together with aM = 41nm, we
arrive at ∆Fdep ≈ 17kBT ; using ac = 5nm will lead to a larger free
energy ≈ 31kBT . These values are much larger than what one
would expect from the hard-sphere picture, which results in sev-
eral kBT ’s. While the former values are comparable to or larger
than the estimated free-energy cost for looping ≈ 17kBT 10 ††,
the latter is much smaller than the looping free energy10. This
suggests that clustering should be understood as a collective phe-
nomenon.

The soft-sphere picture is not applicable to chromosomes in
a slowly-growing cell, since RNAPs are much more sparsely dis-
tributed: four RNAPs per operon10. As noted above, even a chain
uniformly decorated with RNAPs does not satisfy the clustering
condition. Neither does the inhomogeneous chain mimicking the
E. coli chromosome.

In summary, at fast-growth rates, transcription-active sites
along the E. coli chromosome can occur ‘collectively,’ not at the
individual RNAP level. This finding complements the earlier
analysis of clustering10, which clarifies the competition between
crowding and looping. In contrast, at slow growth rates, their de-
pletion attraction will not overcome the chain-entropy penalty for
clustering. In this case, we have shown that the chromosome does
not even satisfy the necessary condition for clustering in Eq. 12.

As a closing remark, we wish to mention that confinement will
not easily modify our conclusion on clustering. In the Appendix,
we have shown that the sum rule in Eq. 5 is satisfied in a confined
space: (quasi) two-dimensional slit-like. In this sense, the sum-
rule is a universal relation, which holds for both a> ac and ac > a,
independently of confinement.

∗∗Here, we assume that RNAPs are closely packed. More realistically, one can in-
clude DNA segments that intervene the two adjacent RNPAs as well as rRNAs, and
view each cluster as loosely packed RNAPs together with the intervening DNA and
rRNAs 48. This will change the depletion free energy gain for clustering Fdep. In this
case, Fdep cannot be determined uniquely but will depend on whether the cluster is
assumed to be permeable to crowders. In our consideration, we focus on the simpler
view: each cluster is closely packed.

††This represents looping in an unconfined space. Confinement can influence looping.
In particular, cylindrical confinement reorganizes a chain molecule and thus modifies
looping tendency.

4 conclusions
In conclusion, we have presented a unified picture of biomolecu-
lar crowding, in which chain/monomer sizes and the spatial dis-
tributions of monomers and crowders are interrelated. In partic-
ular, the interrelationship between the distributions of monomers
and crowders is expressed in a simple form, referred to as the
density-sum rule: φ(r)/a+ φc(r)/ac ≈ φ ∞

c /ac. According to this,
the sum of the volume fractions of monomers and crowders
rescaled by their size is constant. For the biologically-relevant
φc range, this is accurate and holds generally, ı.e., independently
of other details (e.g., crowder sizes or confinement). Because of
its simplicity and generality, this relationship will be useful for
interpreting crowding effects in a cell-like crowded medium.

As a first step toward understanding a heterogeneous poly-
mer, consisting of small and big monomers, we have analyzed
the ‘quality’ of crowders. If monomers are larger than crowders,
smaller crowders are better, for a given φc value. For the case of a
heterogeneous polymer, the size dependence is more intriguing.
The depletion force between big and small monomers is set by the
small one in the sense that it is identical to the depletion force be-
tween small ones, irrespective of ac, as illustrated in Fig. 3(C)
and (D). As a result, if the smaller monomer is larger than crow-
ders, smaller crowders are better; in contrast, if the smaller one is
smaller than crowders, all crowders are equal. In the latter case,
the depletion force is relatively weak for a biologically-relevant φc

range18.

According to the crowder-size analysis above (see Eq. 5
and Fig. 5), crowding has modest effects on the structure of
intrinsically-disordered (coil-like) proteins17. Their molecular
complexities such as secondary structures will not invalidate this
prediction, since they still fall in the small-a case. Crowding ef-
fects become increasingly important for protein-protein interac-
tions and association of protein aggregates8.

A general picture emerging from this consideration is that the
degree of compaction by molecular crowding is nonuniform for a
heterogeneous polymer, more so if the degree of heterogeneity is
larger. This is well aligned with the observation that the local vs.
global compaction of bacterial chromosomes can be controlled by
molecular crowding in concert with other processes such as tran-
scription by ribosomal RNA polymerases10,46,47. This is responsi-
ble for the clustering of big monomers under the right conditions.
Finally, the physical picture in Fig. 3(C) and (D), as also sum-
marized above, implies that depletion forces in a heterogeneous
polymer can reduce to those in the corresponding homogeneous
cases. This may justify our clustering considerations, primarily
based on a homogeneous polymer model.

Indeed, a heterogeneous polymer can be considered as a
coarse-grained model of bacterial chromosomes organized with
various proteins. A dominant source for chain heterogeneity is
rRNA polymerases concentrated in several designated sites along
the chromosome, ı.e., rRNA operons10,19–22,46,47. At the crudest
but non-trivial level, chain heterogeneity can be mimicked by in-
troducing small and big monomers with the latter representing
transcription-active sites (see Fig. 1)10.

The density-sum rule in Eq. 10, in particular, has been useful
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for understanding the local vs. global organization of such a het-
erogeneous polymer. For instance, it not only offered a necessary
condition for the clustering of big monomers but also refined the
biological picture of clustering. With typical parameters relevant
for an E. coli cell, the necessary condition or the size requirement
for clustering reads aM ≈ ac/φ ∞

c ≈ 20nm (recall that the subscript
‘M’ refers to big monomers). Indeed, our analysis based on this
is consistent with what has been known about the E. coli chro-
mosome, which is organized differently under different growth
rates10,19–22,46,47. It suggests that clustering can occur between
‘clusters’ of RNA polymerases (ı.e., those in each operon), not
between individual polymerases, since they individually do not
satisfy the size requirement for clustering. As a result, clustering
will not be induced by molecular crowding in E. coli chromosomes
at slow-growth rates. In contrast, at fast-growth rates, the cluster
of RNA polymerases (in each operon) satisfies the size require-
ment. Furthermore, theoretical arguments showed that the de-
pletion force between the ‘soft’ clusters is strong enough for their
clustering into transcription foci10. For a better understanding of
clustering, an explicit consideration of a heterogeneous polymer
in a confined space, crowded with poly-disperse crowders, will be
desirable.
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φc = φc(r = ∞). The ratio R/R0 is a function of φc/ac for a > ac. The dashed line in magenta is the result obtained by mapping the explicit-crowder
case onto an effective-solvent picture, in which the effects of crowders are mimicked by reducing the excluded volume of monomers υ 18. The varying
degrees of compaction is represented by the color bar on the x axis: weak (i), moderate (ii), and strong (iii); the color bar matches the color scheme
used in the other two graphs. In the middle graph, the volume fraction φi (r) of monomers and crowders with i = ‘m’ (monomer) or ‘c’ (crowder) is
plotted on the left axis, and ∑i φi (r)/ai on the right axis, for ac = 0.4a; also note that r is the longitudinal distance from the center of mass of the polymer.
For visual clarity, φc (r) is normalized as φc (r)/φc (r = ∞) and φm (r) as φm (r)/φm (r = 0); ∑i φi (r)/ai is rescaled by ∑i φi (r = ∞)/ai. Consistent with the
results for a free space in Fig. 2, in regime (ii), ∑i φi (r)/ai tends to a constant through the entire range of r shown and converges onto φc(r = ∞)/ac.
The graph on the right summarizes the results for ∑i φi (r)/ai for various choices of ac. In regime (ii), ∑i φi (r)/ai ≈ φc(r = ∞)/ac is satisfied for all ac
values used. Outside regime (ii), ∑i φ (r)/ai deviates a bit more appreciably from ∑i φi (r = ∞)/ai (up to 15%). As noted earlier (Fig. 2), the sum rule is
invariant under the exchange in role between monomers and crowders. (Error bars are shown for a few representative curves.)

Appendix
In this Appendix, we justify the sum rule in Eq. 5 for confined
cases. First note that it is a local relation. Unlike large scale prop-
erties, the way monomers and crowders are spatially distributed
at a given position is expected to be insensitive to confinement,
as demonstrated here.

Fig. 4 displays our results for chain compaction and spa-
tial organization of monomers and crowders for a quasi-two-
dimensional slit-like space. The simulation parameters used are
N = 80, Dslit = 5a, and ac = 0.2,0.3,0.4,0.5a (a> ac). These results
can readily be understood in parallel with those in Fig. 2.

First, the graph on the left suggests that normalized chain size
R/R0 is a function of the ratio aφc/ac, similarly to what is seen in
the corresponding unconfined case in Fig. 2; recall that R0 is the
equilibrium chain size in the absence of crowders. Also shown is
an effective-solvent result (dashed line in magenta) obtained in
the same way discussed in subsec. 3.1. The color bar on the x axis
represents a varying degree of compaction: weak (i), moderate
(ii), and strong (iii); it matches the color scheme used in the other
two graphs.

The middle graph shows the volume fraction φi (r) of monomers
and crowders with i = ‘m’ (monomer) or ‘c’ (crowder) plotted
on the left axis as well as ∑i φi (r)/ai on the right axis, for
ac = 0.4a; here, r is the longitudinal distance from the center
of mass of the polymer. For visual clarity, φc (r) is normalized
as φc (r)/φc (r = ∞) and φm (r) as φm (r)/φm (r = 0); ∑φi (r)/ai is

rescaled by ∑i φi (r = ∞)/ai. Consistent with the results for a
free space in Fig. 2, in regime (ii), ∑i φi (r)/ai tends to a con-
stant through the entire range of r shown and converges onto
φc(r = ∞)/ac.

The results for ∑i φi (r)/ai for various choices of ac are displayed
in the graph on the right. In accord with what is shown in the
graph on the right for a > ac in Fig. 2, in regime (ii), ∑i φi (r)/ai ≈
φc(r = ∞)/ac is satisfied for all ac values used:

φ (r)
a

+
φc (r)

ac
≈ φc(r = ∞)

ac
=

φc

ac
(slit). (14)

Outside regime (ii), ∑i φ (r)/ai deviates a bit more appreciably
from ∑φi (r = ∞)/ai (up to 15%).

Fig. 2 suggests that the sum rule holds for both a > ac and
a < ac. In our view, this is a natural consequence of the functional
form of Eq. 5: the terms on the left hand side is symmetric with
respect to the exchange between the roles of a and ac. By the
same token, we argue that the sum rule in Eq. 14 works for ac > a.
For a reason similar to the one describe earlier in the Appendix
(ı.e., locality of φi(r)), it is expected to hold for a cylindrically
confined case (data not shown).
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Fig. 5 Interrelationship between molecular crowding and the spatial or-
ganization of a biopolymer: the sum of the volume fractions of monomers
and crowders rescaled by their size is constant in a parameter space of
biophysical interest (the data are normalized at r = ∞).
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