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Abstract — A large proportion of users do not achieve adequate 

control using current non-invasive Brain-computer Interfaces 

(BCI). This issue has being coined “BCI-Illiteracy”, and is 

observed among BCI modalities. Here, we compare the 

performance and BCI-illiteracy rate of tactile selective sensation 

(SS) and motor imagery (MI) BCI, for large subject samples. We 

analyzed 80 experimental sessions from 57 subjects with two-class 

SS protocols. For SS, the group average performance was 

79.8±10.6%, with 43 out of the 57 subjects (75.4%) exceeding the 

70% BCI-illiteracy threshold for left and right hand SS 

discrimination. When compared to previous results, this tactile 

BCI outperformed all other tactile BCIs currently available. We 

also analyzed 63 experiment sessions from 43 subjects with 

two-class MI BCI protocols, where the group average 

performance was 77.2±13.3%, with 69.7% of the subjects 

exceeded the 70% performance threshold for left and right hand 

MI. For within-subject comparison, the 24 subjects who 

participated to both the SS and MI experiments, the BCI 

performance was superior with SS than MI especially in beta 

frequency band (p<0.05), with enhanced R2 discriminative 

information in the somatosensory cortex for the SS modality. Both 

SS and MI showed a functional dissociation between lower alpha 

([8 10] Hz) and upper alpha ([10 13] Hz) bands, with BCI 

performance significantly better in the upper alpha than the lower 

alpha (p<0.05) band. In summary, we demonstrated that SS is a 

promising BCI modality with low BCI illiteracy issue, and has 

great potential in practical applications reaching large 

population. 

I. INTRODUCTION 

Brain-computer Interface (BCI) provides a non-muscular 

communication and control channel between the brain and the 

external environment, which would be particularly useful for 

locked-in patients [1]. Without requirement of external 

stimulus, sensory-motor rhythms (SMR) are generated by 

mentally performing motor imagery (MI) of a limb [2]–[5]. The 

MI induced event-related desynchronization (ERD)/ 

synchronization (ERS) brain signals [6], [7] enable direct BCI 

control. With the advantage of subjective motor intention 

decoding, this independent BCI modality has attracted 

extensive interest [8]–[11]. In addition, it has been shown that 

brain response evoked (transient and steady-state potential) or 

induced (oscillatory power) by exogenous stimuli can facilitate 

voluntary attention decoding, resulting in at least three BCI 

categories: (A) transient BCI [12]–[14], such as the visual 

P300-based speller; (B) steady-state BCI [15]–[17], such as the  

steady-state visual evoked potentials (SSVEP); and (C) 

oscillatory BCI [18], [19], such as the tactile BCI based on 

stimulus-induced oscillatory dynamics. The diversity of BCI 

modalities may offer alternative methods when a selected 

modality fails in achieving an adequate performance. 

As the number of experimental studies increased, it became 

evident that a portion of users cannot control specific BCI 

systems, even after extensive training [20]–[29], which has 

been termed “BCI Illiteracy” [26], [27]. Three major MI studies 

on 193 subjects [26], 80 subjects [30] and 52 subjects [31], have 

specifically investigated this problem. These studies reported 

that between ~40% and ~60% of the subjects investigated could 

achieve an average accuracy in BCI control of only ~50% in the 

classic two-class scenario [32]. A threshold in accuracy of 70% 

was proposed for defining BCI-illiteracy [32]. According to 

this definition, visual P300 and steady-state visual evoked 

potential (SSVEP) based BCI systems showed substantially 

lower rates of BCI-illiteracy, with less training [27], [28]. 

However, these fast visual BCIs require the full engagement of 

the users’ gaze control, which can be challenging and 

undesirable in real-life application settings. A tactile BCI 

provides an alternative approach to increasing current BCI 

diversity by fully exploring the functioning somatosensory 

system of the BCI user. The first prototype of a tactile BCI was 

proposed by Mueller-Putz et al. [33], and based on steady-state 

somatosensory evoked potentials (SSSEP) [34]–[36]. This 

tactile BCI system does not require eye control and is therefore 

independent of visual stimuli. SSSEP is a steady-state 

component of brain signals, evoked by sustained repetitive 

vibrotactile stimulation within the frequency range 17-35 Hz 

[37]. The evoked amplitude of the SSSEP can be modulated by 

subjective attention [38]. Early experimental studies have 

shown that the classification accuracy for this BCI modality 

ranged from 64% to 84%, with an average accuracy of 70.4% 

and a high BCI-illiteracy rate [38]. A subsequent study on 

SSSEP showed a mean classification accuracy of 58% for 16 

subjects, with 15 of the subjects resulting in accuracy less than 

70% [39]. Finally, a tactile P300 system, similar to the visual 

P300 BCI, based on the oddball paradigm, has also been 

proposed [13] and achieved an accuracy of 72% in 11 subjects, 

when selecting between two targets. 

Recently, in a series of studies, we proposed a tactile BCI 

based on oscillatory dynamics from the somatosensory area of 

the cortex, which we termed selective sensation (SS) tactile 

BCI [18], [19], [40], [41]. This approach is based on the 

observation that mental processing of afferent inflow in the 

human somatosensory system also induces ERD/ERS [42], 

[43] [44]. We demonstrated that the integration of 

stimulus-induced oscillatory dynamics in tactile selective 
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sensation has substantially outperformed previous tactile BCI 

systems [40], making tactile BCI potentially applicable to a 

large number of users. 

BCIs using MI and SS are both based on the dynamics of 

brain oscillation quantified as ERD/ERS [45], [46], which are 

modulated during imagined movement [2], [47], [48], and 

during perceiving sensory stimulation [42], [43], [49], [50]. For 

instance, motor imagery of hand movements accompanies 

contralateral ERD and ipsilateral ERS [2], [51], while selective 

attention modulates somatosensory oscillations in the alpha and 

beta bands [40], [52], which results in significantly increased 

beta ERD/ERS due to attentional effects. These two BCIs are 

based on different signal modalities, with one mainly from the 

motor cortex (MI) and the other from the somatosensory cortex 

(SS). Due to the physical proximity of the motor and sensory 

cortex and limited selectivity of EEG, the performance of MI 

and SS are similar, although an hybrid of MI and SS has shown 

superior performance than the individual modalities [19]. 

However, SS has been so far tested in small subject groups. 

Here, we provide a systematic analysis of the SS tactile BCI 

performance for 80 experimental sessions, performed 

cumulatively in previous studies, as well as a comparison with 

MI BCI from 63 experimental sessions. 

II. METHODOLOGY  

A. Subjects 

57 healthy, BCI-naïve subjects participated in the tactile 

selective sensation experiments (20 female, all right handed, 

average age 23.2±2.9 years), for a total of 80 experimental 

sessions. 43 healthy, BCI-naïve subjects participated in the 

motor imagery experiments (10 female, all right handed, 

average age 22.2±2.5 years), for a total of 63 experimental 

sessions. 

The measures were approved by the Ethics Committee of the 

Shanghai Jiao Tong University, Shanghai, China, for SS and 

MI experiments) and the Ethics Committee of the University of 

Waterloo, Waterloo, Canada for SS experiments (ORE#: 

21997). All participants signed an informed consent form 

before participation. 

B. EEG 

In six out of seven experimental sets [18], [19], [23], [41], 

[53]–[55] (as seen in table 1), EEG signals were recorded using 

a SynAmps2 system (Neuroscan, U.S.A.). A 64-channel 

quick-cap was used to collect 62-channel EEG signals, and the 

electrodes were placed according to the extended 10/20 system. 

The reference electrode was located on the vertex, and the 

ground electrode on the forehead. An analog bandwidth filter 

with 0.5 Hz to 70 Hz and a notch filter at 50 Hz were applied to 

the raw signals. The signals were digitally sampled at 250 Hz. 

A different EEG system was used in part of the experimental 

sessions. In these cases, a 32-channel wireless g.Nautilus EEG 

system (g.tec, Austria) was utilized. The electrodes were placed 

according to the extended 10/20 system. The reference 

electrode was located on the right earlobe, and the ground 

electrode on the forehead. A hardware notch filter at 60 Hz was 

applied to the raw signals. The signals were digitally sampled at 

250 Hz. 

C. Somatosensory Stimulation Methods 

Mechanical stimulation was applied to the wrists. Linear 

resonant actuators (10 mm, C10-100, Precision Microdrives 

Ltd., typical normalized amplitude 1.4 G) were used for 

producing vibrotactile stimulation. The stimulation device 

produced a 23-Hz sine wave for the left wrist, and 27-Hz sine 

wave for the right wrist. Both stimuli were modulated with a 

175-Hz sine carrier wave. These stimuli activate the Pacinian 

and Meissner corpuscles [56], which are sensitive to 

frequencies above 100 Hz and 20-50 Hz, respectively. The 

amplitude of the vibration was individually adjusted to be 

between the maximum amplitude (11.3 um) and half of the 

maximum amplitude at the resonant frequency. The selection of 

the optimal amplitude was based on individual feedback from 

the subject, such that they were comfortable with perceiving the 

vibration. 

D. Experimental Protocols for Tactile Selective Sensation 

We analyzed experimental data from four protocols as seen in 

Table 1. Thirty one subjects participated in the first experiment 

[18], which used the Neuroscan system. In these sessions, the 

subjects sat in a comfortable armchair in an electrical shielded 

room, with forearms and hands resting on the armrest. During 

the SS task period, sustained vibrotactile stimuli were 

simultaneously applied to both wrists and the subjects were 

 Table 1. Summation of the experiment paradigm in SS and MI. The number in the parentheses indicates the number of subjects who were also in SS 

 SS MI 

Experiment 

Sets 

Experiment 

One [18] 

Experiment 

Two [41] 

Experiment 

Three [53] 

Experiment 

Four [19] 

Experiment 

One [23], [54] 

Experiment 

Two [55] 

Experiment 

Three [19] 

Paradigm 

(Task) 
SS-L, SS-R 

SS-L,SS-R, 

SS-B, SS-S 

SS-L, SAO-L, 

SS-R, SAO-R 

SS-L, SS-R, 

MI-L, MI-R 
MI-L, MI-R 

MIvib-L, 

MIvib-R 

SS-L, SS-R, 

MI-L, MI-R 

Recording 
Device 

Neuroscan g.Nautilus Neuroscan Neuroscan Neuroscan Neuroscan Neuroscan 

EEG 

Channels 
62 32 62 62 62 62 62 

Subject 
Number 

31 20 16 13 38 (11) 12 13 (13) 

Number of 

Runs 
4 6 3 10 4 4 10 

Trials in 
each task 

80 60 60 100 80 80 100 

Baseline 

Interval for 
ER/ERS 

[-1 -0.2] s [-2 -1.2] s [-2 -1.2] s [-1 -0.2] s [-1 -0.2] s [-1 -0.2] s [-1 -0.2] s 
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required to focus the sensation on one of the sides, following a 

cue. Four runs were performed, with 40 trials in each run (20 

left-side and 20 right-side trials randomized in each run). At the 

beginning of each trial, a fixation cross appeared in the center 

of the screen. At the 1st second, a vibration burst of 200 ms 

stimulated both hands to prepare the subject for the subsequent 

task. At the 3rd second, a red cue arrow pointing either left or 

right was presented, with the left arrow corresponding to the 

SS-L task and right arrow corresponding to the SS-R task. This 

cue was superimposed on the fixation symbol and lasted for 1.5 

s. The subjects were asked to perform a tactile selective 

sensation task following the appearance of the cue. The mental 

task continued until the 8th second, when the fixation cross 

disappeared. During the first run, there was no feedback 

whereas in the subsequent three runs a vibration feedback 

provided information on the on-line classification [18]. The 

feedback stimulus was applied according to the decoded task 

and lasted 500 ms, e.g. if left hand task was recognized then left 

hand would be stimulated for 500 ms, similarly if decoded type 

was right hand then right hand would be stimulated for 500 ms. 

After the feedback, there was a relaxation time period of 1.5 s. 

Finally, a random interval of 0 to 2s separated the rest period 

from the next trial. 

Twenty subjects participated in the second SS protocol [41], 

with the g.Tec system. During the SS task period, sustained 

vibrotactile stimuli were simultaneously applied to both wrists. 

Four SS tasks were performed according to different cues: 1. 

Selective sensation on the left hand (SS-L); 2. Selective 

sensation on the right hand (SS-R); 3. Bilateral selective 

sensation (SS-B); 4. Selective sensation suppressed (SS-S). The 

other aspect of the protocol were identical to the first 

experimental protocol, with the four cues instead of two cues. A 

total of 240 trials (60 trials for each task) were performed by the 

subjects in 6 runs, each of which consisted of 10 trials of each 

task in random order. There were 2-4 min breaks between two 

consecutive runs. 

Sixteen subjects participated in the third experiment [53] 

using the Neuroscan system. Each subject seated on a 

comfortable armchair in an electrically shielded room. With 

both forearms and hands resting on the armrest, the subject 

limited as much as possible the eye blinking and the facial or 

arm muscular activations. Within each trial, the subject 

performed left or right SS tasks according to the cue (during 

task time, the left and right wrists were simultaneously 

stimulated), while maintaining the attention on the selected 

hand when the vibration stimuli were turned off (subjects 

performed imagined sensation when there were no stimulus, i.e. 

somatosensory attentional orientation (SAO)) [40]. A total of 

120 trials (60 left and 60 right classes) were performed by the 

subjects in 3 runs, with 1-2 min between runs. The trials were 

similar as to the previous two experiments. The difference was 

that, for half of the mental tasks the vibrotactile stimulation was 

turned off, and for the other half tasks the stimulation was 

simultaneously applied to both wrists. During the first run, 

there was no feedback after the L-SAO and R-SAO tasks. 

During the subsequent two runs, a vibration feedback was 

provided to the subject after the SAO task, as in the previous 

two experiments. To this experiment, only the EEG signals 

with respect to SS were extracted for subsequent analysis. 

Finally, 13 subjects participated in the fourth experiment [19] 

with EEG recorded using the Neuroscan system. SS and MI 

were both performed in this experiment. The subject’s task was 

to perform MI or SS according to a given cue. The procedures 

were the similar as in the first experimental protocol, with the 

four cues instead of the previous two cues. A red cue pointing 

either up left (L-MI), up right (R-MI), lower left (L-SS) or 

lower right (R-SS) was presented visually on the computer 

monitor, and subjects performed the corresponding tasks. A 

total of 400 trials were performed by the subjects in 10 runs, 

and subjects rested between runs. 40 trials in each run, and 

R-MI, L-MI, R-SS, L-SS (defined below) were randomly 

arranged with ten trials each.  

E. Experimental Protocol in Motor Imagery 

Data from three experiments of MI were analyzed here. 

Thirty eight subjects participated in the first experiment [23], 

[54], with EEG recorded using the Neuroscan system. At the 

beginning of each trial, a fixation cross appeared in the screen. 

At the 1st second, a vibration burst of the same intensity 

stimulated both hands to attract the subject’s attention mentally 

ready for the subsequent task, with the vibration time lasted for 

200ms. Then at the 3rd second, a red cue bar pointing either left 

or right was presented, which superimposed on the fixation 

cross and lasted for 1.5s. The subjects should perform the left 

hand motor imagery (left-pointing bar) or right hand motor 

imagery (right-pointing bar) task after appearance of the cue 

bar. The mental task continued until to the 8th second, at which 

time point the fixation cross disappeared. During the first run, 

there was no feedback after the termination of the mental task. 

In all the subsequent three runs, there would be vibration 

feedback. The feedback stimulus was applied according to the 

decoded task type, lasting for about 500ms. After the feedback, 

there was a relaxation time period lasting for about 1.5 s, during 

which the subjects should get relaxed and could blink his or her 

eyes. Then a random time period of 0 to 2s was inserted after 

the relaxation period to further avoid subject’s adaptation, after 

that the next trial began. 

In the second MI experiment [55] included 12 subjects. EEG 

was recorded using Neuroscan system. The experiment 

paradigm were the similar with experiment set one, except that 

at the 3.5th second, the vibration applied to both hands with the 

same intensity, till to the end of the motor imagery task. 

In the third MI experiment [19], 13 subjects participated. 

EEG was recorded using the Neuroscan system. The 

experimental protocol was the same as in the fourth experiment 

of SS protocol which included both MI and SS tasks. 

F. ERD/ERS and time frequency decomposition 

Event related desynchronization (ERD) and event related 

synchronization (ERS) are defined as the percentage of power 

decrease (ERD) and power increase (ERS) in a defined 

frequency band in relation to a reference interval (usually taken 

at a different time interval) [46]. The frequency band alpha-beta 

of [8 26] Hz was adopted in this study for EEG filtering before 

the ERD/ERS calculation. The grand averaged ERD/ERS 



1534-4320 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2017.2769686, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

 

 

4 

curves from all subjects of the same task were used to 

determine the activation and deactivation of the cortex areas 

involved in the mental tasks. Due to different timing of the 

200-ms vibration burst, in the SS experiments 2 and 3, the 

reference interval for the ERD/ERS calculation was from 1.2 s 

to 2.0 s prior to the appearance of the cue; in SS experiments 1 

and 4 it was from 0.2 s to 1.0 s prior to the appearance of the 

cue; and in the MI experiments 1, 2, and 3 it was from 0.2 s to 

1.0 s prior to the appearance of the cue. 

The EEG data was manually corrected for artifacts using the 

EEGLAB toolbox [57]. Trials contaminated with swallowing 

and physical movement artifacts (either in baseline or task 

interval) were excluded from the analysis. Time-frequency 

decomposition of each trial along each EEG channel was 

performed to construct the spatio-spectral-temporal structure 

according to the pre-defined mental tasks. It was calculated 

every 200 ms with a hanning tapper, convoluted with a 

modified sinusoid basis, in which the number of cycles linearly 

changed with frequency to achieve proper time and frequency 

resolution [58]. The R2 index (squared Pearson-correlation 

coefficient between feature and class label) [59], [60] was 

calculated based on the above spatio-spectral-temporal 

structures between different mental tasks, and used to locate the 

component of different EEG channels for the classification of 

the corresponding mental tasks. Moreover, the R2 index was 

averaged along the task time interval mentioned above, and 

along certain frequency bands, such as alpha (8-13 Hz), beta 

(13-26 Hz), or alpha-beta (8-26 Hz). 

G. Performance Evaluation 

Spatial filtering was adopted to reduce the number of 

channels and to enhance the feature discrimination among the 

investigated SS tasks. The spatial filters were determined with 

the Common Spatial Pattern (CSP) procedure, which has been 

extensively validated for BCI applications [61], [62]. The 

log-variance of the first and last three components produced by 

CSP were chosen as feature vectors, followed by linear 

discriminative analysis (LDA) for classification. As the most 

discriminative frequency bands are highly subject-dependent, 

the bands were selected from the following: lower alpha [8 10] 

Hz (α-), upper alpha [10 13] Hz (α+), lower beta [13 20] Hz 

(β-), upper beta [20 26] Hz (β+), alpha [8 13] Hz (α), beta [13 

26] Hz (β), alpha-beta [8 26] Hz (αβ), and eta [10 16] Hz (η) 

[53]. A fourth-order Butterworth filter was applied to the raw 

EEG signals before the CSP spatial filtering. A 10×10 fold 

cross-validation was utilized to evaluate the BCI performance 

among different frequency bands, and for selecting the optimal 

frequency band. 

EEG signals were segmented from 1 s to 4 s after the 

appearance of the cue (the timing interval of the 4th to 7th 

seconds from the beginning of the trial) for the analysis. 60 

SS-L and 60 SS-R trials were extracted for performance 

analysis from the above four SS experiment sets. Similarly, 60 

MI-L and 60 MI-R trials were extracted for performance 

analysis from the above three MI experiment sets. 

H. Statistics 

One-way ANOVA with repeated-measures was used to 

analyze differences in performance among BCI task pairs (with 

p=0.05), and multiple comparisons with Bonferroni correction 

was used for post-hoc comparison whenever the main effect 

was found to be significant. For the interpretation of the 

classification result, the theoretical chance level was corrected 

with the number of trials [63]. The corrected chance accuracy 

 
Figure 1. SS-based BCI performance. (A) BCI performance across session 

in different experiment sets. Each one represent one subject in one session. 

Green bar indicates the averaged value, the error bar indicates the 

standard error. Results are grouped according to experimental paradigm 

(light blue, orange, yellow and purple color represents experiment one, 

two, three and four in SS respectively), and the corresponding BCI 

performance is sorted with ascending order. (B) Pooled BCI performance 

distribution. Green bar indicates the percentage of different performance 

groups; blue bar indicates the cumulative distribution. Different BCI 

performance groups are: performance below 61.67%, between [61.67% 

70%], between [70% 80%], between [80% 90%], and above 90%. (C) BCI 

performance distribution of subjects in different BCI performance groups 

(for those subjects participated several sessions, one of the sessions with 

highest performance was selected). (D) BCI performance distribution of 

subjects in different BCI performance groups.  

 
Figure 2. Grand-averaged ERD/ERS distribution within alpha-beta 

frequency band [8 26] Hz across different BCI performance groups, with 

left topography corresponds to SS-L, right topography corresponds to 

SS-R. (A) ERD/ERS activation in BCI group of performance above 90%. 

(B) ERD/ERS activation in BCI group of performance between [80% 

90%]. (C) ERD/ERS activation in BCI group of performance between 

[70% 80%]. (B) ERD/ERS activation in BCI group of performance below 

70%. Color bar indicates the ERD/ERS value. Note: ERD/ERS value is 

averaged between 1 to 4 second after the appearance of the cue. 
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for p=0.01 for two-class classification was 61.67%. According 

to the BCI performance, subjects were grouped into five 

groups, with performance >90% as Group A, in the range [80% 

90%] as Group B, [70% 80%] as Group C, [61.67% 70%] as 

Group D, and <61.67% as Group E. 

III. RESULTS 

A. Tactile Selective Sensation BCI performance 

Fig. 1 (A) illustrates the SS-based BCI performance of 80 

sessions, grouped and color-coded by the four experiment 

protocols. The average classification accuracy was 

78.7±11.2%. Fig. 1 (B) illustrates the pooled distribution of the 

data shown in Fig. 1(A), with 3.75% in Group E, 23.75% in 

Group D, 28.75% in Group C, 26.26% in Group B, and 17.5 in 

Group A. Fig. 1 (C) illustrates the SS-based BCI performance 

of the 57 subjects (for those subjects participated in several 

sessions, the session with the highest performance was used). 

The average classification accuracy was 79.8±10.6%. Fig. 1 

(D) illustrates the pooled distribution of the data shown in Fig. 

1 C), with 1.75% in Group E, 22.81% in Group D, 26.32% 

Group C, 31.58% in Group B, and 17.54% in Group A. 

B. Cortical Activation among Different Group in SS 

Fig. 2 illustrates the ERD/ERS distribution of SS-L and SS-R 

tasks across groups with different BCI performance. It can be 

seen that contralateral activation was stronger as compared to 

the ipsilateral activation, i.e. during the left selective sensation 

task the ERD of the contralateral right hemisphere (channel C4) 

was congruently stronger than that of the ipsilateral left 

hemisphere (channel C3), and vice versa for the right selective 

sensation. Group A (performance >90%) has shown spatially 

diverse activation patterns with respect to different tasks, the 

ERS induced by SS-L and ERD induced by SS-R in C3 EEG 

channel presented a stronger discriminative brain signals for 

EEG classification. Similarly, Group B also exhibited similar 

phenomena, but with reduced ERD in C4 channel as induced by 

SS-L task when compared with group one. In contrast, Group C 

exhibited both ERD in left and right hemisphere when 

performing SS-L and SS-R tasks, but with stronger ERD in 

contralateral hemisphere than that in ipsilateral side. In the 

Group D, the left and right somatosensory cortexes were both 

activated as shown ERD in both hemisphere, but spatial 

discrimination between tasks were less discriminative, 

resulting the relatively poor BCI performance. 

C. BCI Performance within Different Frequency Bands in SS 

Fig. 3 (A) illustrates the BCI performance within different 

frequency bands. One way ANOVA with repeated measure has 

shown that there was significant difference among the different 

frequency bands. Post-hoc testing showed that BCI 

 
Figure 3. BCI performance in different frequency band. (A) Averaged BCI 

performance distribution across different frequency band (across all 57 

subjects). Error bar indicates standard error. (B) Grand-averaged R2 

value distribution within lower alpha frequency band. (C) 

Grand-averaged R2 value distribution within upper alpha frequency band. 

The R2 value was averaged between 1 to 4 second from the appearance of 

the cue. Color bar indicates the R2 value. 

 
Figure 4. MI-based BCI performance. (A) BCI performance across session 

in different experiment sets. Each one represent one subject in one session. 

Green bar indicates the averaged value, the error bar indicates the 

standard error. Subjects are grouped according to experiment paradigm 

(light blue, orange and yellow color represents experiment one, two and 

three in MI respectively), and the corresponding BCI performance is 

sorted with increasing order. (B) BCI performance distribution of session 

in different BCI performance group.  Green bar indicates the percentage 

of different performance group; blue bar indicates the cumulative 

distribution. Different BCI performance group are: performance below 

61.67%, between [61.67% 70%], between [70% 80%], between [80% 

90%], and above 90%. (C)  BCI performance distribution of subjects in 

different BCI performance group (for those subjects participated several 

sessions, one of the sessions with highest performance was selected). (D) 

BCI performance distribution of subjects in different BCI performance 

group. 

 
Figure 5. Comparison between SS and MI with common subjects who 

participated both experiments. (A) BCI performance between SS and MI 

among different frequency band. (B) BCI performance between SS and MI 

in β frequency band. (C) BCI performance between SS and MI when 

subject specific frequency band was selected. (D) BCI performance in 

different frequency band with respect to SS and MI. Green bar represents 

SS, and blue bar indicates MI. Two stars indicate significant difference. 
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performance of upper alpha band was significant higher than 

that in lower alpha band. Moreover, Fig. 3 (B) (C) illustrates the 

R2 discriminative information distribution across the scalp, 

which clearly demonstrates the importance of the upper alpha 

band in the discrimination of SS-L and SS-R. Similarly, this 

also holds for the MI discrimination. 

D. BCI performance of Motor Imagery 

Fig. 4 (A) illustrates the MI-based BCI performance of 63 

subjects/sessions, grouped and color-coded for the three 

experimental protocols. The average classification accuracy 

was 76.0±13.2%. Fig. 4 (B) illustrates the pooled distribution of 

the data shown in Fig. 4 (A), with 19.05% in Group E, 19.05% 

in Group D, 23.81% in Group C, 19.05% in Group B, and 

19.05% in Group A. Fig. 4 (C) illustrates the MI-based BCI 

performance of 43 subjects (for those subjects that participated 

in several sessions, the session with the highest performance 

was selected). The average classification accuracy was 

77.2±13.3%. Fig. 4 (D) illustrates the pooled distribution of the 

data shown in Fig. 4(C), with 13.95% in Group E, 16.28% in 

Group D, 30.23% in Group C, 20.93% in Group B, and 18.60% 

in Group A. 

E. Subjects in both SS and MI Data 

Fig. 5 is the analysis of the comparison of the performance 

between SS and MI among subjects who participated in both 

experiments (n=24). Fig. 5 (A) illustrates the performance 

correlation between SS and MI within different frequency 

band. It has shown that there was a linear correlation between 

them with R-square = 0.54 (p<0.05), and paired-t test has 

shown that SS was significantly higher than MI (p=0.002). Fig 

5 (B) shows the correlation of SS and MI in beta frequency 

band only, and in this frequency band the SS performance was 

significantly higher than MI (P<0.05). Fig 5 (C) shows the SS 

and MI when subject specific frequency band was selected, and 

no significant difference in performance was found (paired-t 

test, p=0.49). In this scenario, 17 subjects ≥70% in SS, 16 

subjects ≥ 70% in MI, and 20 subjects ≥ 70% when either SS or 

MI was selected. Moreover, Fig 5 (D) illustrates that the lower 

alpha [8 10] Hz (α-) and upper alpha [10 13] Hz (α+) frequency 

bands showed a significance BCI performance dissociation 

both in SS and MI (P<0.05). There was a significance 

difference in BCI performance between SS and MI when the 

beta [13 26] Hz (β) frequency band was utilized for BCI 

performance evaluation (P<0.05), which was also shown in Fig. 

5 (B). Fig. 6 shows the grand averaged discriminative R2 value 

distribution among different frequency bands. The 12 Hz 

frequency showed similar spatial distribution between SS and 

MI within the left and right sensorimotor cortex. In contrast, the 

22 Hz frequency component showed a spatial distribution 

within the left and right somatosensory cortex specific for SS. 

IV. DISCUSSION 

A. BCI-Illiteracy problem in Tactile BCI 

A group of 53 subjects with 80 session SS experiments 

revealed that the tactile BCI can achieve an averaged accuracy 

of 79.8±10.6%, with 27.5% of the investigated population 

below the 70% critical level of accuracy. Without the 

requirement of eye movement or focus control, tactile BCI 

opened new avenue for BCI development, which will be 

especially useful to those locked-in patients but with partly 

preserved somatosensory functionality. In the existed tactile 

BCI systems in the literature, the tactile stimulus evoked 

transient [13] and steady-state potential [33], [64] were utilized 

for BCI construction, reaching a mean BCI performance of 

72%, 70.4% and 58% respectively, with much higher 

BCI-illiteracy rate of 90% and 93.75%. In contrast, in our 

proposed tactile selective sensation BCI, the stimulus-induced 

oscillatory dynamics was utilized for BCI construction, which 

has demonstrated a significantly enhanced tactile BCI 

performance when compared with existing tactile BCI 

modalities in the literature [13], [33], [64], [65], with much 

higher classification accuracy in a much larger experiment 

subject group and much lower BCI-illiteracy rate. 

Combining the tactile evoked SSSEP and transient ERP 

brain responses, a hybrid three-class tactile BCI was recently 

proposed by Breitwieser et al. [66], with an average accuracy of 

57%, showing an improved BCI performance when comparing 

with solely SSSEP or ERP. The SSSEP response reflects the 

somatic information processing. It has a frequency specific 

feature, which is related to the stimulation frequency [34], [38]. 

In contrast, the ERD/ERS oscillatory dynamics reflects 

somatosensory processing, and has a non-stimulation 

frequency specific feature [50]. Therefore, the ERD/ERS 

oscillatory response and SSSEP response provide 

complementary information of the somatosensory input 

processing. Thus theoretically, in tactile BCIs, hybridizing the 

oscillatory dynamics and SSSEP response would provide a way 

to improve current tactile BCI performance. This would be 

worthy of future investigation. 

In the investigated 57 subject SS BCI group, the cortical 

activation map has shown different oscillatory dynamics 

among subject groups with different BCI performance ranges, 

i.e. BCI group with performance above 90% (Group One), 

within [80% 90%] (Group Two), [70%-80%] (Group Three), 

and below 70% (Group Four) as shown in Fig. 2. Contralateral 

somatosensory activation (ERD) was present in all four BCI 

 
Figure 6. Grand-averaged R2 value distribution between SS and MI within 

different frequency bands. (A) Grand-averaged R2 topography with 

respect to SS at 9 Hz (α-). (B) Topography with respect to SS at 12 Hz (α+). 

(C) Topography with respect to SS at 22 Hz (β+). (D) Grand-averaged R2 

topography with respect to MI at 9 Hz (α-). (E) Topography with respect to 

MI at 12 Hz (α+). (F) Topography with respect to MI at 22 Hz (β+). The R2 

value was averaged between 1 to 4 second from the appearance of the cue. 

Color bar indicates the R2 value. 
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groups. During the SS-L task, the ERD of the right hemisphere 

(C4) was stronger than that of the left hemisphere (C3), and 

vice versa for the SS-R task. Both group one and group two 

have shown a more pronounced ERS on the left hemisphere as 

compared to group three and group four when performing SS-L 

task. The SS-L induced ERD in contralateral right hemisphere 

was stronger in group one than that in group two. Moreover, 

group two exhibited a stronger ERS in occipital region than that 

in group one. The contrasted activation pattern during SS-L and 

SS-R were clear in spatial distribution among group one, group 

two and group three, which showed a BCI decoding 

performance above 70%, while to those considered as 

BCI-illiteracy subjects the spatial contrast between SS-L and 

SS-R was lower than the subjects with performance above 70%. 

In this study, sustained tactile stimulation were applied to 

subjects’ wrists, different stimulation pattern and body parts 

would provide some new way to further improve tactile 

performance, especially those considered as BCI-illiteracy 

subjects. 

B. Comparison with oscillatory MI BCI 

There were sustained research efforts to further improve MI 

performance and reduce the number of BCI deficiency users. 

Machine learning algorithm on MI detection has been largely 

improved through several BCI competitions, and the Common 

Spatial Pattern (CSP) is now the most recognized one in MI 

detection [9], [10]. However, recent studies have reported gains 

in accuracy of approximately 5% when using CSP extensions 

and optimized spatial-spectrum filtering based on mutual 

information [11]. Nevertheless some users still fail to reach the 

acceptable level of accuracy, which is often set to 70%, even 

with state-of-the art algorithms [67], [68]. In addition to 

machine learning algorithms that can better extract 

subject-specific pattern, subject training in modulating 

rhythmic activity [69], and coadaptation of the subject and 

algorithms [20] have all been shown to reduce the number of 

the poorly performing BCI users to some extent. In our 

accumulated MI experiments, the MI illiteracy rate was 30.3%, 

which was comparable to results reported in the literature [32]. 

In the offline performance evaluation, subject’s specific 

frequency band was optimally selected which reduced the MI 

illiterate rate to 30.3%. In our previous study about the MI and 

MI with vibration, the mechanical stimulation effect on MI was 

evaluated, and in group-level no significant difference in 

performance was found between MI with stimulation and MI 

without stimulation [55]. Therefore in current MI subject 

group, MI with stimulation in MI experiment set two and three 

were pooled together with MI without stimulation in 

experiment set one. 

Contrary to MI BCI using brain signal mainly from motor 

cortex, in our tactile BCI, brain signal from somatosensory 

cortex was exploited to decode subjective sensation intention. 

The BCI-illiteracy rate was 24.56%, which was approximately 

20% lower than existed large MI group studies [32], and a 

5.76% lower than MI group in current study. Only 1.57% of the 

subjects’ SS performance was lower than 61.67%, which was 

considered as random guess, in a two-class scenario. This 

number is much lower than the corresponding portion: 13.95%. 

In an earlier randomized controlled study with a smaller 

number of subjects, we demonstrated that the SS BCI 

performance was comparable to MI BCI [19]. Further, in the 

same study, we showed that a hybrid BCI combining SS and MI 

had significant lower BCI-illiteracy rate that using SS or MI 

separately: (63.64% in MI, 54.55% in SS, and 9.09% in hybrid 

modality (without subject specific frequency band selection). 

We observed that the beta ([13 26] Hz) frequency band 

played different role in SS and MI classification. In the 24 

subjects participated both in SS and MI, the performance of 

beta frequency band in SS was significantly higher than that in 

MI. Discriminative brain pattern analysis has shown that the R2 

in SS was more pronounced around the left and right 

somatosensory cortex in SS than that in MI. Moreover, lower 

alpha band and upper alpha band has shown significant 

difference in performance both in MI and SS, i.e. the 

performance of upper alpha band was significantly higher than 

that in lower alpha frequency band. This observation is also 

reported in our earlier study on SS [18], and is consistent with 

previous reports in the literature[70] during MI study. 

The performance correlation between SS and MI was found, 

which has shown a significant linear correlation with R-square 

= 0.54 (r=0.73), indicating the performance of SS can be a 

predictor for MI performance. In  [30], a neurophysiological 

predictor of BCI performance was proposed, that is, the BCI 

performance could be predicted within two minutes of 

recording a ‘relax with eyes open’ condition. A correlation of r 

= 0.53 between the predictor and the BCI performance was 

found. Moreover, our previous study also showed that a linear 

correlation existed between illusory stimulation and MI, with 

R-square= 0.47 (r = 0.69) [23]. In addition to the performance 

correlation between SS and MI, SS and MI provides 

complementary information to further increase BCI 

performance [19]. 

C. Limitation 

In this large group study, the ages of subjects were in the 

range of 19 to 42, but mainly concentrated on younger subjects, 

with an average of 22 years-old. Subjects were mainly male and 

most of them were right-handed. In future studies, subjects 

across different ages, and the balance of mixed gender and 

handedness should be considered. 

In the current analysis, offline performance evaluation was 

performed by pooling data sets obtained from several different 

experimental protocols. Some of the MI data was acquired 

while SS was also performed (i.e. vibration stimulation 

activating or preconditioning sensory cortex before MI). The 

data was collected in different countries with different EEG 

systems. The variation between different experimental sets may 

be considered as a factor that tests the robustness of SS-based 

BCI performance. 

By performing only imagined movement of his/her own 

body, MI might be applicable to a wider spectrum of patients as 

it does not require completely preserved sensation from the 

body. Any neurological condition, which affects proprioception 

to some degree, might affect performance of SS-based BCI. 

The potential and confounding factors for SS-based BCIs for 

patients, such as those that have suffered from a stroke, would 

be worthy of future investigation. 
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V. CONCLUSION 

In this work, we evaluated the “BCI-Illiteracy” problem of 

SS-based BCI, through a meta-analysis data consisted 80 

sessions from 57 subjects. We showed that, for SS modality, the 

average classification accuracy in the two-class scenario was 

79.8%, with BCI-illiteracy rate of 24.56%. Beta frequency 

band ([13 26] Hz) showed a significantly higher BCI 

performance in SS than that in MI. Only 1 out of the 57 (1.57%) 

subjects has an accuracy lower than 61.67% (random level), 

while MI modality, this number was 6 out of 43 (13.95%). The 

somatosensory BCI based on stimulus-induced oscillatory 

dynamics provides a new signal modality for enhanced tactile 

BCI development.  
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