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Abstract 

Flavobacterium psychrophilum, the causative agent of bacterial coldwater disease (BCWD) is a significant 

threat to global aquaculture. True to its name, BCWD tends to occur at temperatures between 8-12oC and 

presents as a systemic disease with characteristic skin ulcerations. Juvenile rainbow trout are particularly 

susceptible and in these fish the condition is referred to as rainbow trout fry syndrome (RTFS). Resistance to 

F. psychrophilum is heritable and is not adversely correlated with the growth of fish, thus selective breeding 

appears to be an achievable approach to its control. The current study explores the connection between 

resistance to BCWD and several immunological markers. After determining resistance/susceptibility to F. 

psychrophilum following experimental infection in 40 full-sibling families of rainbow trout, selected families 

were experimentally infected with F. psychrophilum and differences in antibody production, major 

histocompatibility (MH) class IIβ genotype and respiratory burst activity (RBA) throughout infection were 

compared. Serum IgM production increased over time but significant differences between resistant and 

susceptible families were not observed at either 28 days or 120 days. Of the six families that were genotyped 

for MH class IIβ, there did not appear to be specific genotypes that conferred resistance or susceptibility to F. 

psychrophilum. Further, the RBA of both head kidney leukocytes and whole blood was not significantly 

different between the resistant and susceptible rainbow trout families. Although the selected immune 

markers did not differ based on resistance status, the RBA of head kidney leukocytes in all families studied 

dramatically decreased seven days after infection while total blood RBA remained constant. Day seven was 

also when severe symptoms and/or mortality due to BCWD was first observed, thus these results may reveal 

information regarding the pathogenesis of the organism. A better understanding of appropriate immune 

defenses could provide the basis for breeding programs to effectively combat this costly pathogen, but 

further study of functional immune markers particularly during the fry stage of development is required. 

 

Keywords: rainbow trout, BCWD, major histocompatibility, respiratory burst, antibody 
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1. Introduction 

A large obstacle to overcome when dealing with aquaculture production of any type is the 

vulnerability to disease outbreaks. Like other forms of agriculture, aquaculture places animals in a setting 

that deviates significantly from that of their natural environment. The stress induced by conditions such as 

overcrowding, temperature fluctuations and handling can result in normally benign microorganisms 

becoming opportunistic pathogens (Meyer, 1991). One such pathogen causing significant losses in the 

farming of rainbow trout (Oncorhynchus mykiss) is Flavobacterium psychrophilum, the etiological agent of 

bacterial cold-water disease (BCWD). Rainbow trout, a coldwater salmonid, is an important species of choice 

in global aquaculture, which has enabled BCWD to become a worldwide concern. 

F. psychrophilum is widespread in freshwater aquatic environments but typically only causes 

infection in intensively reared salmonids at temperatures lower than 16oC (Holt, 1987). Although F. 

psychrophilum can infect many salmonid species and some non-salmonid species, juveniles of coho salmon 

(Oncorhynchus kisutch) and rainbow trout are particularly susceptible (Nematollahi et al. 2003, Starliper, 

2011). Clinical signs and manifestations vary depending on location as there appears to be geographic 

variability between isolates (Lumsden et al., 2004). In North America, the most common presentation of 

BCWD in fish larger than fingerling is an ulcerative dermatitis known as peduncle disease (Lumsden et al. 

2004). The nature of this presentation means that the financial losses associated with BCWD are not due to 

mortalities alone as surviving fish often produce fillets that are less valuable or not marketable (Lumsden et 

al, 2004). In fry, the most important presentation is a systemic disease, often with exopthalmia and anemia, 

known as rainbow trout fry syndrome (RTFS, Bebak et al. 2007). With no commercial vaccine available and 

mortality, although variable, has been reported to be as high as 50-85% (Brown et al, 1997, Cipriano and Holt, 

2008), the financial losses due to F. psychrophilum infection can be devastating. 

To combat the significant losses due to infectious disease, there has been increasing interest in 

selectively breeding aquaculture stocks for disease resistance. As has been demonstrated with many other 
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aquatic diseases (Gjedrem 1991, Henryon 2005, Kjoglum 2006, Kjoglum 2008), resistance to BCWD does 

appear to be heritable (Silverstein et al. 2009), but there has been little research to identify the basis for this 

resistance. In addition, a method to consistently produce resistant crosses is yet to be developed for the vast 

majority of aquatic organisms. Creating and challenging families of rainbow trout takes a great deal of time 

and finances, thus identifying a marker for the observed resistance to BCWD would decrease costs and 

expedite this process immensely. With the immune system playing a vital role in the prevention and 

clearance of infection, it is reasonable to hypothesise that the heritable resistance to BCWD may be 

associated with teleostean immune function. 

Like mammals, teleosts have both innate and adaptive immune systems. The innate immune 

response constitutes the first line of defense against infection and is activated through recognition of 

conserved molecular patterns common to pathogenic organisms (Uribe et al. 2011). Phagocytosis, or the 

engulfment of particles, is a major component of immunity in fish (Uribe et al. 2011). Circulating phagocytes 

will take up foreign bodies such as bacteria and eradicate them through the production of reactive oxygen 

species (ROS) during a respiratory burst (Nikoskelainen et al. 2004). Phagocytosis, and the killing activity 

associated with it, is reported to be the mechanism of innate immunity that is the least influenced by low 

temperatures (Callazos et al. 1994a, Callazos et al. 1994b, Nikoskelainen et al. 2004), thus this process may be 

critical when dealing with a cold-water pathogen such as F. psychrophilum.  

While the innate immune system is fast-acting, adaptive immunity requires more time to develop 

and has greater specificity. A key component of vertebrate adaptive immunity is the generation of antigen-

specific antibodies from B cells. Antibodies promote the control and clearance of infection through such 

processes as opsonisation for phagocytes, complement activation and neutralization of microbes and toxins 

(Forthal, 2014). To date, three classes of immunoglobulins have been discovered in teleosts: IgM, IgT and IgD 

(Sunyer, 2013). The most abundant immunoglobulin is a tetramer of the IgM class (Fillatreau et al. 2013). IgM 

is the first antibody class to appear after initial exposure to an antigen and may be part of an effective 
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humoral response against invading pathogens (Fillatreau et al. 2013, Reyes-Cerpa et al. 2013). With these 

protective properties in mind, there have been numerous attempts to identify antigens capable of inducing 

an effective antibody response to combat F. psychrophilum (LaFrentz et al. 2002, Crump et al. 2005, Dumetz 

et al. 2006, Sudheesh et al. 2007). Although antibody titres have been observed to increase after 

immunization with many of these antigens and whole-cell lysates, similar increases were often observed with 

adjuvant alone (LaFrentz et al. 2002). As there is limited information regarding consistent infection and 

vaccination models for F. psychrophilum (reviewed in Gomez et al. 2014), there is a critical need to better 

understand the serum IgM response in fish presenting resistance/susceptibility to BCWD.  

Although fish farmers can benefit from breeding programs based solely on survival phenotype, 

identifying genes (markers) correlated with enhanced immune performance could aid in the more rapid 

development of optimum stocks. One possible marker, and a focus of this study, is the major 

histocompatibility (MH) class II genes. As the class of molecules that recognize and present antigens from 

extracellular pathogens to tailor the resulting immune responses (reviewed in Neefjes et al. 2011), there has 

been a great deal of interest in determining whether specific MH class II genotypes are linked to bacterial 

resistance/susceptibility in fish species (Xu et al. 2010, Dionne et al. 2009, Rakus et al. 2009, Kjoglum et al. 

2008). Conversely, MH class I is associated with recognition and presentation of antigens from intracellular 

pathogens such as viruses (reviewed in Neefjes et al. 2011). Because F. psychrophilum appears to have both 

intracellular and extracellular tendencies throughout its infection cycle (Wood and Yasutake, 1956, Decostere 

et al. 2001, Nematollahi et al. 2005, Nilsen et al. 2011), it is not fully understood whether MH class I or MH 

class II genes would provide more protection towards BCWD. To date there has been some evidence of an 

association between MH class II variability and resistance to F. psychrophilum (Johnson et al. 2008), but there 

has been minimal research since then to relate specific alleles with BCWD resistance. As such, one 

component of this study aims to link MH class IIβ alleles with observed resistance to BCWD and determine 

whether this association goes further.  
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In the present study, full-sibling families of rainbow trout displaying resistance/susceptibility to 

BCWD were experimentally infected with F. psychrophilum so that differences in MH class IIβ genotype, 

respiratory burst activity and antibody production could be observed and compared. As there is limited 

knowledge regarding both the pathogenesis of F. psychrophilum and what constitutes an effective immune 

response against the organism, this study aims to analyze functional immune differences in fish that are 

resistant/susceptible to provide information that could be used for the development of effective breeding 

programs.  

 

2. Materials and Methods: 

 

2.1 Fish 

Forty full-sibling families of rainbow trout were produced at Lyndon Fish Hatcheries (Dundee, Ont.). 

These families were transported to the Hagen Aqua Lab or the Alma Aquaculture Facility at the University of 

Guelph as eyed eggs. Susceptibility to F. psychrophilum experimental infection was compared between the 40 

family groups. Six to ten families per experiment were divided into four 60 L tanks containing 40 fish (40 g 

each) per tank, which were supplied with single pass well-water at 11oC. Fish were fed a commercial pellet 

diet (Martin Mills Inc.). All maintenance and procedures were done in accordance with the University of 

Guelph Animal Care Guidelines. 

 

2.2 Culture and quantification of F. psychrophilum strain 101 

Frozen stocks of F. psychrophilum strain 101 (FPG 101) were sub-cultured onto cytophaga agar (CA) then 

following incubation at 15oC for 72 h, cells were harvested and suspended in cytophaga broth (CB, Hesami et 

al., 2011). Cell suspensions were adjusted to an optical density of 0.6 at 600 nm using a Novaspec Plus 

spectrophotometer (GE Healthcare Life Sciences) and the suspension was then diluted to obtain a final 
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concentration of ~1 x 109 colony forming units (CFU)/mL. The concentration was then adjusted so that the 

desired CFU/mL for each trial could be obtained. To confirm the cell numbers, suspensions were enumerated 

by plating 0.1 mL of ten-fold serial dilutions on CA plates in triplicate. After incubation at 15oC for 4 d, plates 

containing 25-250 colonies were counted and the number of CFU/mL calculated.  

2.3 Determining susceptibility/resistance to F. psychrophilum (Preliminary Trials) 

The Ontario F. psychrophilum isolate, FPG 101, was used for all experimental infections as it had been 

shown to produced ~50% mortality in experimental trials of 30-40 g rainbow trout at doses similar to those 

used in the current study (JS Lumsden pers. comm.). After sedation with ~50 ppm benzocaine (Millipore 

Sigma) in well-aerated water, triplicate tanks (n = 40) of each family received intraperitoneal (i.p.) 0.1 mL 

injections ranging in concentration between 1.13 and 6.60 x 107 CFU/mL. With every family, a fourth tank of 

fish was sham-injected with 0.1 mL of sterile CB as a negative control. Following injection, all fish were 

observed three times a day and any mortalities were collected and saved at -20°C. In addition, fish with 

marked exopthalmia, hemorrhage or skin ulcerations were removed and euthanized using an overdose of 

benzocaine. These fish were counted as mortalities. 

After the predetermined trial period (15 d), any surviving fish were euthanized with an overdose of 

benzocaine and were recorded as survivors. The caudal fins of mortalities and final survivors were collected, 

submerged in RNAlater and stored at -20oC for later use. Mortality was the measure used to rank the rainbow 

trout families for their resistance to F. psychrophilum infection. For subsequent experiments described below 

(sections 2.4 and 2.5), resistant and susceptible families were selected based on this resistance ranking.  

 

2.4 MH Class II β1 Genotyping 

2.4.1 DNA Extraction 

Based on the susceptibility results (section 2.3), caudal fins from survivors and mortalities of families 3, 

4, 6, 7, 9, and 10 were collected for DNA extraction. DNA was extracted from all fin clips as described by 
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Kellendonk, 2014. The final concentration of DNA was determined using the Take3 plate in a Synergy H1 plate 

reader (BioTek Instruments) before samples were moved to the -80oC for storage. 

 

2.4.2 Amplification and Sequencing of MH Class II β1 genotypes 

Primers were designed to amplify the MH class IIβ region for this study. The forward primer, OMYF (5'-

TGCCAATTGCCTTCTACATTTGCCTG-3') was designed to a conserved region of MH class IIβ at the beginning of 

exon 1, while the reverse primer, OMYR (5'-TGGGGGCTCAACTGTCTTGTCCAGT-3') was designed to a 

conserved region at the end of exon 2 (Hodgins, 2011). These primers ensured the amplification of a portion 

of the peptide binding groove, the region that binds specifically to foreign antigens such as extracellular 

pathogens. For MH class IIβ amplification, the following PCR parameters were used: denaturation at 95oC for 

2 min, followed by 24 cycles of denaturation at 94oC for 30 sec, annealing at 55oC for 30 sec and extension at 

72oC for 1.5 min. A final extension at 72oC was carried out for 8 min. Two PCR reactions were performed per 

individual. The amplified PCR products were separated on 1% agarose gels containing 3% Gel Red (Biotium 

Inc.). Bands of the desired size were cut out of the gel and extracted using the QIAquick Gel extraction kit 

(Qiagen). The resultant fragments were cloned into pGEM®-T Easy as per the manufacturer’s instructions 

(Promega Corporation, Madison, WI).  Competent E. coli XL1–blue cells were transformed using the Inoue 

procedure as described in Green and Sambrook, (2012) and grown on LB plates with 100 μg/mL of ampicillin, 

240 ng/mL IPTG and 100 μg/mL X-gal.  Ten colonies per PCR reaction were selected and grown in LB medium. 

Plasmids were extracted from the transformants using the GenElute Plasmid Miniprep Kit (Millipore Sigma) 

according to the manufacturer’s instructions. Plasmids were sequenced using both T7 and SP6 primers at the 

TCAG sequencing facility (Sick Kids Hospital, Toronto, Ont.).  The sequences were analyzed using both 

GENEious and the Basic Local Alignment Search Tool (BLAST) software 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). A G-test was performed on the resulting contingency table using the 

SPSS statistical software. Significant differences were established at p< 0.05. 
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2.5 Induction of F. psychrophilum Antibody Responses 

2.5.1 Infection 

Two trials were performed to measure the levels of IgM antibody developed towards F. psychrophilum 

throughout infection. These trials were conducted in triplicate tanks (n = 40) when the fish were, on average, 

108 g. The first trial (referred to as Trial 1) included two resistant families (F21 and F30), as well as two 

susceptible families (F11 and F17). After sedation with benzocaine, all fish received 100 μl injections i.p. of 

1.10 x 107 CFU/mL of FPG101 suspended in CB. As a control, fish from the four families analyzed were mixed, 

then received 100 μl i.p. injections of sterile CB and separated into triplicate tanks. On days 0, 1, 7, 14, 21 and 

28, blood was drawn from the caudal vein after anesthesia with ~50 ppm benzocaine. Fish were then 

euthanized using an overdose of benzocaine and whole-body weights and lengths were measured. Blood 

samples were left to clot overnight at 4oC before centrifugation at 1000 g for 10 min. The serum was then 

removed, aliquoted into 1.5 mL tubes and immediately stored at -20oC.  

Because it has been reported that rainbow trout require up to 12 weeks to reach peak serum IgM levels 

when injected with killed F. psychrophilum (LaFrentz et al. 2002), a second trial (referred to as Trial 2) was 

conducted wherein fish were injected i.p. with 100 μl of a lower dose of live FPG101 (3.25 x 106 CFU/mL) and 

sampled over 140 days. In this trial, one resistant family (F32) and one susceptible family (F38) was used and 

all experiments were done in triplicate tanks (n = 40) where the fish were, on average, 85 g.  For both 

families, triplicate control tanks were set up where all control fish received 100 μl i.p. injections of sterile CB 

broth. Serum samples were collected as described above. In Trial 2, the anterior head kidney was also 

removed from sampled individuals so that respiratory burst activity of head kidney leukocytes could be 

measured (described further in section 2.6). 
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2.5.2 Isolating Antigens from F. psychrophilum 

Subcultures of glycerol stocks of FPG101 were grown on CA at 14oC and carefully checked for purity. An 

isolated colony was then used to inoculate 50 mL of CB, which was subsequently used to inoculate 200 mL of 

CB after three days of incubation at 14oC. When the culture reached an optical density of approximately 0.8 

at 525 nm, indicating a concentration of ~1 x 108 CFU/mL (Holt, 1987), 0.5% formalin was added to the flask 

and cells were incubated at 14oC for 24 h with gentle stirring. The killed bacterial cells were then washed 

twice with 4 mL of phosphate buffered saline (PBS) then harvested by centrifugation (9,500 g at 4oC for 15 

min) and the resultant pellets resuspended in 2 mL of PBS.  

Six hundred microliters of 0.1 mm zirconia/silica beads (BioSpec Products) was added to a 1.5 mL screw 

cap tube followed by the addition of 600 μl of the inactivated F. psychrophilum culture. The tubes were 

placed in a BioSpec mini-beadbeater and agitated on full speed for 45 sec followed by 1 min of incubation on 

ice. This procedure was repeated five times for each tube before the samples were centrifuged at 9,500 g for 

15 min. Following centrifugation, the supernatants were removed and combined in a sterile 15 mL Falcon 

tube. The protein concentration of the bacterial lysate was then quantified using a bicinchoninic acid assay 

(ThermoFisher Scientific) following the manufacturer’s protocol. The bacterial lysate was then diluted to a 

final concentration of 0.5 µg/mL in coating buffer (0.015 M Na2CO3, 0.035 M NaHCO3, pH 9.6). 

 

2.5.3 Indirect ELISA Assay to Detect Levels of F. psychrophilum antibodies in Serum 

One-hundred microliters of the whole-cell bacterial lysate preparation was used to coat the test wells of 

NuncTM MicroWellTM 96-well microplates (ThermoFisher Scientific). Hyperimmune serum from rainbow trout 

injected with F. psychrophilum FPG25 (Hesami et al. 2008) was also used at a dilution of 1:50 as a positive 

control. To obtain hyperimmune serum, 200 g rainbow trout were injected in the dorsal sinus with 100 μl of 

formalin-killed FPG25. Three months later, fish received a 100 μl booster of formalin-killed F. psychrophilum 

FPG25. Serum samples were obtained at 5 months and 7 months following the initial exposure. Negative 
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control wells were coated with the whole cell bacterial lysate but were incubated with 100 µl Tris-buffered 

saline supplemented with 0.5% Tween 80 (TBS-T) rather than rainbow trout serum to account for any non-

specific binding of the detecting antibodies. The coated plates were incubated overnight at 4oC to enable 

adherence of the antigens. 

The following day, all wells were washed three times with TBS-T. Three hundred microliters of blocking 

solution (2% laboratory grade gelatin (ThermoFisher Scientific) dissolved in TBS-T) was added to each well 

and incubated for 1 h at 37oC. The plate was then washed three times with TBS-T and 100 μl of each trout 

serum (diluted 1:50) was added to triplicate test wells. After incubation for 1 h at room temperature (RT) the 

wells were washed thrice with TBS-T and 100 μl of mouse anti-rainbow trout IgM monoclonal antibody 

(Aquatic Diagnostics) at a dilution of 1:50 was added to each test well and hyperimmune serum control wells. 

The plate was incubated for 1 h at RT after which all wells were washed thrice with TBS-T. All test and the 

hyperimmune serum positive control wells received 100 µl of goat anti-mouse IgG conjugated to alkaline 

phosphatase (Millipore Sigma) at a dilution of 1:30 000. The plate was incubated for 1 h at RT and then 

washed three times with TBS-T. Fifty microliters of substrate, p-nitrophenyl phosphate (p-NPP), was added to 

each well and the plate was incubated in the dark for 30 min. The reaction was then stopped by the addition 

of 50 µl of 0.03M of NaOH to each well. The plate was read immediately at an absorbance of 405 nm in a 

Synergy H1 plate reader (BioTek). The negative control wells, which received TBS-T rather than trout serum, 

were averaged and subtracted from all other absorbance values. Plate variation was accounted for by 

normalizing each plate to the hyperimmune serum positive control. Statistical analysis was conducted using a 

two-way ANOVA through the GraphPad Prism software (v7.0, GraphPad Software, Inc. USA) where each of 

the triplicate tanks was considered an experimental unit (n = 3), and variation among tanks of each family 

receiving the same treatment was used as experimental error. This was then followed by Sidak’s Multiple 

Comparisons Test with significant differences established at p < 0.05. 
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2.6 Measuring Respiratory Burst Activity (RBA) of Blood and Head Kidney Leukocytes 

2.6.1 Infection 

To determine whether RBA was associated with the observed resistance or susceptibility to F. 

psychrophilum, two infection trials were conducted. The families used for the first RBA trial are described 

above in section 2.5.1 (Trial 2). On days 0, 1, 7, 14 and 28, three fish per tank were euthanized with an 

overdose of benzocaine and the anterior head kidneys were collected and transferred to sterile plasticware 

containing approximately 20 mL of L-15 medium (Lonza) supplemented with 5% FBS, 100 U/mL of penicillin 

and 100 U/ml of streptomycin. These samples were stored on ice until the HKL could be isolated. 

To validate the results observed for RBA in Trial 2, a repeat trial (Trial 3) was completed using the 

resistant family, F36 and the susceptible family, F38. Challenged fish received 100 μl i.p. injections of FPG101 

(3.50 x 106 CFU/mL). This trial was conducted in triplicate tanks (n = 40) when the fish were, on average, 200 

g. As a control, fish from the two families analyzed were mixed, received 100 μl i.p. injections of sterile CB, 

and were separated into triplicate tanks. On days 0, 3, 7, 14 and 20, three fish per tank were euthanized with 

an overdose of benzocaine so that the anterior head kidney of each individual could be removed and 

processed as described. 

 

2.6.2 Isolation of Head Kidney Leukocytes 

The head kidney samples were vigorously vortexed 5 times at maximum speed for 30-60 sec to 

dissociate the cells from the underlying connective tissues. The dissociated cells were passed through a 40 

μm sterile nylon mesh (ThermoFisher Scientific) then rinsed with 5 mL of sterile media. The resulting cell 

suspensions were brought up to a final volume of 28 mL and, after thorough mixing, divided into four 7 mL 

aliquots. The 7 mL cell suspensions were then layered on top of 3 mL of Histopaque 1077 (Millipore Sigma) 

and centrifuged for 500 x g for 30 min at 4oC. The leukocyte layer located at the medium:histopaque interface 

was collected and cells were pelleted by centrifugation at 500 x g for 5 min at 4oC. The supernatant was 
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aspirated and the pellets were washed using 5 mL of PBS and again, harvested by centrifugation. The 

resultant cell pellets were resuspended in 1-3 mL of fresh 5% FBS/L-15 so that cell concentration and viability 

could be determined using a trypan blue exclusion assay. After cell viability was determined to be above 95%, 

cell concentrations were adjusted to 7.0 x 106 cells/mL.  

 

2.6.3 Real-time luminol-enhanced chemiluminescence assay for RBA 

The RBA of both the whole blood samples and the head kidney leukocytes (HKL) was measured 

following the protocol of Jimenez-Vera et al. (2013) with minor variations. Briefly, CorningTM 96-well solid 

white polystyrene microplates were prepared with 6 wells containing either 100 μl of HKL (7.0 x 106 cells/mL) 

or 75 μl of blood sample from each individual. The first three wells per individual received 40 μl of luminol (10 

mM, Millipore Sigma), 100 μl of zymosan A (20 mg/mL, Millipore Sigma), and were brought to a final volume 

of 300 μl using Hank’s Balanced Salt Solution (HBSS, Millipore Sigma). To ensure that the increase in 

luminescence was due to stimulation, the remaining three wells per individual were used as unstimulated 

controls and received 100 μl of HBSS in place of zymosan A. The chemiluminescence of each well was 

measured with a Synergy H1 luminometer (Biotek) every 2 min for 90 min. The chemiluminescence emission 

of the HKL and blood samples was expressed as the integral of the relative light units (RLU) between 0 and 90 

min. Statistical analysis was conducted using a two-way ANOVA through the GraphPad Prism software (v7.0, 

GraphPad Software, Inc. USA) where each of the triplicate tanks was considered an experimental unit (n = 3), 

and variation among tanks of each family receiving the same treatment was used as experimental error.  This 

was followed by Sidak’s Multiple Comparisons Test and significant differences were established at p < 0.05. 

 

 

 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

14 
 

3. Results and Discussion 

3.1 Preliminary trials to determine rainbow trout families resistant/susceptible to F. psychrophilum 

Fish from 40 families were infected with F. psychrophilum and survival was monitored. As Figure 1A 

displays, there was a broad range of survival between the families, with the most resistant family (F8) having 

90.9% survival while the most susceptible family (F36) had only 2.5% survival. This broad range in BCWD 

susceptibility has been observed in previous studies aimed at understanding and consistently standardizing 

the production of resistant rainbow trout (Hadidi et al. 2008, Wiens et al. 2013).  From the results presented 

in this study, families were chosen to conduct repeat infection trials so that both genetic (families presented 

in Figure 1B) and functional immune markers (families presented Figure 1C) could be assessed. To ensure 

that the observed resistance/susceptibility was consistent, the infection trial was repeated for a resistant 

family (F7) and a susceptible family (F10). In the initial trial F7 and F10 displayed 90.5% and 14.3% survival 

respectively. These results were confirmed to be robust as F7 and F10 displayed 86.0% and 19.9% survival 

respectively when the infection trial was repeated (data not shown). As the fish were approximately the 

same size (~30-50 g) during this repeat trial, these results provide evidence that susceptibility to FPG101 was 

consistent at this size/age.  

  

3.2 Relating MH class IIβ genotype to disease susceptibility 

To explore whether there is a link between BCWD resistance and MH class IIβ alleles, a minimum of 18 

individuals from six of the rainbow trout families studied were genotyped. The families selected (F3, F4, F6, 

F7, F9 and F10) had variable survival rates when challenged with F. psychrophilum (see Figure 1B) and thus 

were hypothesized to have variability in their MH genotypes. Table 1 presents the MH class IIβ genotype 

frequencies observed between the six different families. Overall, there were five alleles identified which 

created a total of twelve MH genotypes in the six families studied. This is a lower number than previously 

observed when wild fish populations were analyzed (Conejeros et al. 2012, Conejeros et al. 2008, Dorschner 
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et al. 2000). However, because the rainbow trout families used in the current study were not from wild 

populations and thus had likely been selected for faster growth, better feed to weight conversion and better 

flesh quality, this greater degree of homogeneity was not unexpected. Increasing the variability of MH 

genotypes has not been a breeding focus for these families, therefore low diversity in MH genes may simply 

be a by-product of selection for other desirable traits. This has been reported in many other studies of 

production (Gomez et al. 2011, Croisetiere et al. 2008, Kjoglum et al. 2007, Grimholt et al. 2003), thus the low 

allele frequencies presented in this study are likely representative of the commercial origin of the families 

that were used.  

Remarkably, individuals with three or four allele genotypes for MH class IIβ were observed in this study 

(Table 1) but these generally occurred at very low frequencies in the families analyzed. The occurrence of two 

or more alleles per individual has been observed in previous MH studies (Conejeros et al. 2012, Conejeros et 

al. 2008, Kruiswijk et al. 2004, Noakes et al. 2003, Dixon et al. 1996) but this was usually attributed to high 

MH polymorphism. Although PCR artifacts and false alleles can arise due to the nature of MH sequences and 

the cloning process, precautions were taken in this study by modifying the PCR protocol to minimize their 

formation (Lenz and Becker, 2008). Accordingly, we have high confidence that the sequences presented in 

this study represent real genotypes, even those animals containing three to four alleles. Another explanation 

for these interesting genotypes is that the alleles come from two different loci. If this is the case, after 

phylogenetic tree analysis, researchers would anticipate seeing two major branches with clusters of alleles in 

each. Instead, researchers that have analyzed this phenomenon have observed a subdivided tree with many 

small clusters of alleles (Dorschner et al. 2000). As this has not been the central focus of MH analysis in 

teleost species, further research is required.  

When relating the allele prevalence to the observed number of survivors per family, as presented in 

Table 2, both DAB*1001/DAB*1001 and DAB*1001/DAB*0801 were observed at the highest frequency in 

both survivors and mortalities. These results are consistent with what has been previously observed in 
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microsatellite and SNP analysis studies wherein classical MH class II genotypes were not found to be linked to 

BCWD resistance (Johnson et al. 2008) or only a weak correlation (p < 0.15) has been noted (Overturf et al. 

2010). Despite these similar results, the MH genotypes presented in the current study represent full allele 

sequences rather than correlating a measure of MH genetic diversity with BCWD resistance. As a result, this is 

the first study in which specific amino acid sequences of the MH class IIβ peptide binding groove have been 

analyzed in rainbow trout to determine whether they are associated with resistance/susceptibility to F. 

psychrophilum infection. Based on the analysis of 110 rainbow trout from six different full-sibling families, the 

MH class II genotypes of these fish do not appear to be associated with resistance/susceptibility towards 

FPG101. 

 

3.3 IgM antibody development in rainbow trout families resistant/susceptible to F. psychrophilum  

Although the pathogenesis of F. psychrophilum is not fully understood, the organism is known to have a 

systemic phase during infection (Nilsen et al. 2011, Starliper, 2011). Accordingly, it is reasonable to 

hypothesise that the humoral immune response, including antibody production, may be important for the 

control of BCWD. In a recent study by Marancik et al. (2015) comparing whole body transcriptomes between 

resistant and susceptible rainbow trout groups, higher igm gene transcript levels were observed in rainbow 

trout lines that were resistant when compared to their susceptible counterparts. Thus, serum IgM could play 

a role in the observed resistance to BCWD. In the current study, the production of rainbow trout serum IgM 

against F. psychrophilum FPG101 appeared to increase over time regardless of the resistance in the six 

families studied. In Trial 1, anti-F. psychrophilum IgM levels increased over the 28-day infection but there was 

no significant difference in antibody production between the resistant (F21 and F30) and the susceptible (F11 

and F17) families (Figure 2A). A similar trend was also seen in the 140-day infection trial, Trial 2 (Figure 2B), 

where serum IgM levels were also observed to increase over time with no significant difference between the 

resistant (F39) and susceptible (F32) families studied. In contrast, the saline-injected controls in Trial 2 
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showed no increase in anti-F. psychrophilum serum IgM levels over time. Infection with F. psychrophilum 

induces an antibody response, but the levels were not significantly different in resistant versus susceptible 

fish. Although there has been an increasing interest in understanding the mucosal and systemic immunity in 

response to F. psychrophilum (Makesh et al., 2015), this is the first study in which serum IgM levels have been 

compared families with established F. psychrophilum resistance and susceptibility phenotypes. 

The survival curves of families in both Trial 1 (Figure 2C) and Trial 2 (Figure 2D) did not reveal significant 

differences between resistant and susceptible families in contrast to the preliminary trials (Figure 1C). This 

can be seen in Figure 2E and 2F where the percent mortality of families in the preliminary trial is compared to 

the percent mortality in Trial 1 (Figure 2E) and Trial 2 (Figure 2F). In the preliminary trials, the resistant 

families had low mortality rates (5 to 42%) while the rates in susceptible families were much higher (57 to 

85%). However, upon completion of Trial 1 and Trial 2, the percent mortality was more similar regardless of 

whether the family was previously observed to be resistant or susceptible to F. psychrophilum (Figure 2E and 

2F). In Trial 1, the four families studied had observed mortalities between 70 and 80% while in Trial 2, the two 

families studied had mortalities of 25 and 30%. The difference in mortality between Trial 1 and Trial 2 can be 

explained by the fact that the infectious dose used in Trial 2 was lower by a factor of ~10 which was used to 

ensure enough fish survived for sampling throughout the longer (4 mo.) period of this trial. The large 

differences in mortality between Trials 1 and 2 also reflected differences in the size and age of the fish. In the 

preliminary trials, all fish were approximately 40 g in size, versus the 108 g or 85 g average size of the fish for 

Trials 1 and 2 respectively. These results further support previous findings that the age of the host is very 

important in F. psychrophilum infection. For example, this age-related resistance has been observed in RTFS 

wherein macrophages obtained from susceptible 10-week-old rainbow trout fry were shown to contain 

viable, potentially replicating F. psychrophilum, while resilient fish aged 5 months and older did not 

(Decostere et al. 2001). Age-related disease susceptibility in salmonids has been observed for several other 

pathogens including the parasite Hexamita salmonis (Tojo and Satamarina, 1998), infectious pancreatic 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

18 
 

necrosis virus (IPNV, Espinoza and Kuznar, 2002, Roberts and Pearson, 2005) and Flavobacterium 

branchiophilum (Good et al. 2008). Thus, age/size differences have been shown to influence susceptibility to 

several aquatic diseases including F. psychrophilum, which may provide an explanation as to why the 

observed serum IgM for Trials 1 and 2 did not correlate with the resistance/susceptibility observed in the 

preliminary trial. 

 

3.4  The Effect of Head Kidney and Total Blood RBA on resistance to F. psychrophilum infection 

The RBA of head kidney leukocytes from the infected resistant (F39) and susceptible (F32) families of Trial 2 

were observed to differ significantly on day 14 (Figure 3A). Otherwise there was no significant difference in 

RBA between the groups. Throughout infection, the two families had very similar trends in RBA with high 

activity observed on Days 0 and 1, followed by a significant decrease in activity on Day 7 of the trial. For the 

final two weeks of the trial, RBA was observed to slowly recover until it was restored to pre-infection levels 

on Day 28 (Figure 3A). The large drop in RBA on Day 7 was interesting as this was also the time when 

mortalities were first observed in Trial 2. On Day 28 and beyond, when RBA activity appeared to have fully 

recovered, mortalities were rarely observed. The observed decrease in RBA of HKL in infected fish appears to 

be a consequence of F. psychrophilum infection as the sterile CB infected control fish had no significant 

difference in HKL RBA across all time points (Figure 3A).  

Depending on the organism in question, bacterial pathogens influence the respiratory burst activity of 

fish leukocytes in a variety of ways. The intracellular pathogen, Aeromonas hydrophila has been shown to 

increase the RBA of host leukocytes 7 days following infection (Biller-Takahashi et al. 2013). In contrast, both 

intracellular Renibacterium salmoninarum and extracellular Vibrio anguillarum have been shown to reduce 

the spleen leukocyte and HKL RBA of their hosts (Densmore et al. 1998, Sepulcre et al. 2007). This is not 

surprising considering that R. salmoninarum and V. anguillarum both produce virulence factors that 

negatively impact fish leukocytes (p57 and RTX proteins respectively, Wiens and Kaattari, 1991, Li et al. 
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2008), yet a comparable virulence factor of F. psychrophilum has not yet been discovered. To date there is 

little to no data regarding the effect of F. psychrophilum on total leukocyte populations but it has been 

previously shown that the organism can survive within, and be cytotoxic to, rainbow trout phagocytes 

(Nematollahi et al. 2005, Decostere et al. 2001, Wiklund and Dalsgaard, 2003, Lammens et al. 2000). As HKL 

would contain phagocytes and the RBA of these cells was dramatically reduced in this study (Figure 3A and 

3B), perhaps this cytotoxic effect to phagocytes extends to other leukocytes. Further research is necessary to 

understand what aspect of F. psychrophilum is responsible for the decrease in HKL RBA that was observed in 

this study.   

To ensure that the observed reduction in RBA was due to bacterial challenge, rather than leukocytes 

leaving the head kidney to monitor the periphery, a repeat trial (Trial 3) was conducted in which the 

respiratory burst activity of the HKL as well as in total blood from each fish was measured. If leukocytes had 

left the head kidney to monitor the periphery, an increase in the RBA of total blood would be anticipated. 

Much like what was observed in Trial 2, the RBA of the HKL did not differ significantly between the resistant 

(F36) and susceptible (F38) families studied. A significant decrease in RBA was observed at Day 3 of Trial 3 

(Figure 3B) and was maintained until trial completion on Day 20. Further, there was no difference in total 

blood RBA between the two families studied throughout infection (Figure 3C). It is tempting to speculate that 

the HKL are not travelling to the bloodstream because the total blood RBA did not significantly change 

throughout infection (Figure 3C). This is a possibility, but it is also feasible that immune cells were travelling 

to inflammatory sites such as the spleen or external lesions, and that their transit was not monitored at the 

time points selected for this trial. Although there is limited research on immune cell transit in salmonids, it 

has been shown in the embryonic zebrafish model that it can take as little as 4 hours for neutrophils to travel 

to the injection site of live Pseudomonas aeruginosa while no neutrophil transport is observed following 

sterile PBS injection (Deng et al. 2012). Similarly, phagocytes also migrate rapidly to sites of inflammation and 

bacterial infection (Herbomel et al. 1999, Davis et al. 2002, Zakrzewska et al. 2010) thus the time points 
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selected for this study may not have been early enough to observe leukocyte migration. The results of the 

current study do suggest that F. psychrophilum may reduce the respiratory burst activity of head kidney 

leukocytes but this finding merits further research to validate whether the leukocytes are truly influenced by 

F. psychrophilum, or simply in transit to deal with the infection at other locations.  

Although there was little to no difference in the RBA between the resistant and susceptible families 

studied, it is important to relate these results to the survival of each group throughout F. psychrophilum 

infection. In the preliminary trial, low mortality was observed in the resistant families, F32 and F36 (2-5%), 

while high mortality was noted in the susceptible families, F38 and F39 (42-55%) (Figure 1C). Despite these 

initial large differences in survival, upon completion of the RBA trials, all four of the families had consistent 

mortalities ranging between 1-10% (Figure 3D). Considering that all four of these families had similar survival 

during the RBA trials, it is not surprising that the RBA would have little difference between the resistant and 

susceptible families as well. As discussed in section 3.3, differences in fish size and age could explain why the 

immune performance does not better correlate with the resistance/susceptibility that was observed in the 

preliminary trials. Furthermore, the infectious dose was much higher in the preliminary trial compared to the 

final two immune function trials (Trials 2 and 3). This, along with the increased size/age of the fish, influenced 

the observed mortality but was essential for experimental design to ensure that some fish from all families 

survived until the end of each infection trial.  

 

Conclusions 

 In this study, we showed that the resistance of rainbow trout fry to F. psychrophilum may be 

influenced by age/size as differences in susceptibility were not consistent at later life stages. Breeding for 

resistance in fry/fingerlings could still be beneficial for fish farmers as BCWD tends to be a disease of young 

salmonids. As such, losses of even young stock can be costly in terms of increased management costs, 

reduced feed conversion, etc. No clear genetic markers were identified that could be used for informed 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

21 
 

breeding strategies aimed at combatting BCWD. More specifically, MH class IIβ genotypes do not appear to 

correlate with the observed resistance/susceptibility to F. psychrophilum. In addition, neither anti-F. 

psychrophilum IgM levels nor the RBA of HKL and total blood were found to differ between families 

previously observed to be resistant or susceptible to the organism. It is possible that the early observed 

differences in susceptibility would correlate with differences in these selected immune markers if tested 

during that earlier life stage. Accordingly, future research should emphasize the study of functional immune 

markers during the fry stage of development and additional immune/host markers should be evaluated. As 

RBA of HKL was significantly reduced in response to live infection with F. psychrophilum, future studies 

should also focus on understanding the pathogenesis of Flavobacterium psychrophilum FPG101 and its 

interaction with rainbow trout leukocytes. 
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Table 1: MH Class IIβ genotype frequencies among the six families of Oncorhynchus mykiss. A total of 19 

individuals were sequenced for families 4 and 9, meanwhile 18 individuals were sequenced for the other four 

families. Frequency was calculated using the formula f=x/n, where x is the number of times the genotype was 

observed and n is the number of individuals. 

 

 

 Families 

 3 4 6 7 9 10 

MH Class IIβ Genotype        

DAB*1001/DAB*1001 - 0.74 0.39 0.67 0.26 - 

DAB*1001/DAB*1101 0.22 0.16 - - 0.11 0.44 

DAB*0801/DAB*0801 - - - - 0.11 0.06 

DAB*1001/DAB*0801 - 0.05 0.56 0.33 0.21 0.39 

DAB*1101/DAB*0801 0.22 - 0.06 - - - 

DAB*1201/DAB*1001 0.17 - - - - - 

DAB*1201/DAB*0801 0.17 - - - - - 

DAB*0401/DAB*1001 - - - - 0.05 - 

DAB*0801/1001/1101 0.11 0.05 - - 0.05 0.11 

DAB*0401/0801/1001 - - - - 0.16 - 

DAB*1001/1101/1201 0.06 - - - - - 

DAB*0401/0801/1001/1101 - - - - 0.05 - 
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Table 2: Genotype prevalence in mortalities and survivors to F. psychrophilum infection. A G-Test was 

performed on this contingency table using SPSS statistical software and the result is shown below. 

 

Genotype  Percent of Mortalities Percent of Survivors 

DAB*1001/DAB*1001 32 40 

DAB*1001/DAB*1101 18 13 

DAB*0801/DAB*0801 3 2 

DAB*1001/DAB*0801 19 31 

DAB*1101/DAB*0801 6 2 

DAB*1201/DAB*1001 3 2 

DAB*1201/DAB*0801 5 2 

DAB*0401/DAB*1001 2 0 

DAB*0401/DAB*0801 2 0 

DAB*0801/1001/1101 6 4 

DAB*0404/0801/1001 3 0 

DAB*1001/1101/1201 0 2 

DAB*0401/0801/1001/1101 0 2 
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Figure Legends: 

 

Figure 1: Survival curves throughout F. psychrophilum infection for the forty rainbow trout families analyzed 

for resistance/susceptibility to BCWD. Panel A: Survival curves for all rainbow trout families analyzed. Panel 

B: Survival curves for the six families used for MH class II β genotyping. Panel C: The survival curves for the 

eight families selected for the functional immune trials (Trials 1 – 3).  

 

Figure 2: Indirect ELISA assay to compare serum IgM development against F. psychrophilum between 

resistant and susceptible families throughout infection. Panel A: Indirect ELISA results for serum IgM levels 

developed against F. psychrophilum between two resistant (F21 and F30) and two susceptible (F11 and F17) 

rainbow trout families throughout a 28-day infection trial. Panel B: Indirect ELISA results for serum IgM levels 

developed against F. psychrophilum between one resistant (F39) and one susceptible (F32) rainbow trout 

families throughout a 140-day infection trial. Serum from saline injected controls was also tested for antibody 

development to F. psychrophilum throughout the infection trial. Panel C: Survival curve for the two resistant 

(F21 and F30) and two susceptible (F11 and F17) families during the 28-day infection trial. Panel D: Survival 

curve for the resistant (39) and the susceptible (F32) families during the 140-day infection trial. Survival is 

only shown up to day 90 as there was no further mortality observed in this trial after this time. Panel E-F: 

Comparison of the observed mortality during the preliminary trial to determine resistance/susceptibility and 

the trials used to measure serum IgM against F. psychrophilum. Error bars represent the standard error of the 

mean (SEM). 

 

Figure 3: Respiratory burst activity of HKL and total blood in resistant and susceptible families of rainbow 

trout. Panel A: RBA of HKL in one resistant (F39) and one susceptible (F32) rainbow trout family throughout F. 

psychrophilum infection. Control fish received i.p. injections of sterile CB. Panel B: RBA of HKL in another 
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resistant (F38) and susceptible (F36) rainbow trout family throughout F. psychrophilum infection. Panel C: 

Impact of F. psychrophilum on the RBA of total blood in a resistant (F38) and a susceptible (F36) rainbow 

trout family throughout F. psychrophilum infection. Panel D: Comparison of the observed mortality during 

the preliminary trial to determine resistance/susceptibility and the observed mortality in the trials used to 

measure RBA throughout F. psychrophilum infection. Error bars represent the SEM.  
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Highlights: 

 Forty full-sibling rainbow trout families were created and resistance/susceptibility to F. psychrophilum 

infection was determined using experimental infection. 

 Specific MH class IIβ amino acid sequences did not correlate with resistance/susceptibility. 

 Serum antibody levels against F. psychrophilum did not differ between resistant and susceptible families. 

 Respiratory burst activity of head kidney leukocytes dramatically decreased on Days 3-7 of infection (the 

days when mortality and morbidity was first observed) in both sensitive and resistant families.   
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