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Abstract

Tor is the most popular tool for providing online anonymity. It is used by journal-
ists, activists, and privacy-conscious individuals to provide low-latency private access to
the Internet. However, Tor’s specific design and implementation is constantly changing
to improve the performance and privacy properties it seeks to provide. To test these im-
provements, some form of experimentation is needed. Running experiments directly on the
real Tor network is often not a viable option. The users of Tor are using it presumably
because of its privacy protections, and caution must be taken to avoid recording or reveal-
ing information from non-consenting parties, particularly when dealing with shortcomings
in Tor’s privacy protections or using new, untested versions of Tor. Because of the need
for reproducible experiments and the aforementioned ethical requirements surrounding Tor
experimentation, it is often necessary to use artificially constructed Tor networks.

Several tools are available to construct such networks, such as network emulators like
NetMirage, and simulators like Shadow. However, these existing tools do not provide the
scalability that would be desirable when running experiments on these networks — with
emulators requiring hardware capable of running all hosts in real time simultaneously, and
with Shadow (the only maintained network simulator capable of running Tor code) having
performance constrained by early design decisions. Since the behavior of a network can
change with its size, it is better to use larger networks that more closely resemble the size
of the real deployed network. Additionally, the ability to test the functional correctness
of a modification to the Tor source code is considerably simpler when there is a means of
quickly experimenting on a virtual Tor network to run such tests.

In both of these cases, a higher-performance testing platform is needed. To address this
shortcoming, for this thesis we designed and implemented a new model of Tor network sim-
ulation, centered around a modified version of the Shadow network simulator, using large
numbers of dynamically loaded binaries. This is accomplished by implementing a custom
dynamic loader, which we call drow-loader, that allows for dynamically loading more bina-
ries than any other dynamic loader that we are aware of, and with better performance. By
using the features of this dynamic loader, we are able to run simulated processes isolated
in “namespaces”. This allows for reduced lock contention, simpler process modeling, and
the ability to migrate simulated processes between worker threads. Using simulated Tor
networks ranging from hundreds to tens of thousands of hosts, we then demonstrate the
performance improvements our simulation technique provides over the state of the art.

111



Acknowledgements

I would like to thank my supervisor Ian Goldberg, for his advising and considerable help
with this research. I would also like to thank Rob Jansen for his time and assistance
with Shadow, as well as comments on this thesis. Finally, I would like to thank my thesis
committee members, Urs Hengartner and Tim Brecht, for their valuable comments during
the thesis revisions process.

This work benefited from the use of the CrySP RIPPLE Facility at the University of
Waterloo.

v



Table of Contents

List of Tables vii
List of Figures viii
1 Introduction 1
1.1 The Tor Anonymity Network . . . . . ... ... .. ... ... ...... 1
1.2 Tor Experimentation . . . . . . . . . ... oL 3
1.3 Contributions . . . . . . . . . ... 4

2 Related Work 6
2.1 Deployed Networks . . . . . . . . . .. 6
2.2 Emulators . . . . . . . 7
2.3 Network Simulators . . . . . . . . . .. ... 8
2.3. 1 ms-3 .. 8

232 DCE . . . . 9

2.3.3 Shadow . . . . .. 9

3 Current State of the Art 10
3.1 Dynamic Linking and Loading . . . . . . .. .. ... ... .. ....... 10
3.1.1 Symbol Resolution . . . .. ... ... ... ... 0. 12

3.1.2  Thread-Local Storage . . . . . . . . . ... ... .. 14



3.1.3 elf-loader. . . . . ...
3.2 Shadow . . . . . ..
3.2.1 Shortcomings . . . . . . . . ...

4 Improving Tor Simulation

4.1 Architecture . . . . . . ...
4.2 drow-loader . . . . . .. ..
4.2.1 Correctness . . . . . ...
4.2.2 Performance . . . . . ...
423 CONCurrency . . . . . . . . o
4.24 Memory Overhead . . . . . . . ... ... ... L.
4.2.5 Run-time Symbol Interposition . . . . . . ... ... ... ... ..
4.2.6 Initialization-Time Configurable Static TLS . . . .. .. ... . ..
4.2.7 TLS Migration . . . . . . .. ...
4.3 Scheduling . . . . . . ..
4.4 Experimental Results . . . . . . . ... o oo
4.4.1 Setup . . ...
442 drow-loader . . . .. ..o
4.4.3 Shadow . . . . . .

5 Future Work

6 Conclusion

Bibliography

vi

26
26
28
28
28
30
30
31
33
35
36
37
37
39
40

48

50

51



List of Tables

4.1 Dynamic loader performance

vii



List of Figures

1.1

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Tor from a very high level . . . . . . .. ... ... 0L 2
data structures used in TLS . . . . . . . .. ... L 16
Logical structure of Shadow . . . . . . . .. ... ... ... .. ... 19
Shadow’s state swapping technique . . . . . . .. . ... ... ... .... 20
Why Shadow cannot migrate hosts if state swapping is used . . . . . . .. 23
Amount of time each worker thread has spent blocked over the course of an

experiment . . . . . .. 25
Our new design . . . . . . . . . 27
Shared memory backing . . . . . . .. ..o 32
Amount of time blocked when using work stealing . . . . . ... ... ... 38
Thread scalability . . . . . . .. .. o 42
Normalized thread scalability . . . . . ... ... ... ... . ... .... 43
Pace of experiment . . . . . . . ... 44
Normalized pace of experiment . . . . . . . . ... ... ... ... . ... 45
larger experiment . . . . . . ... 47

viil



Chapter 1

Introduction

1.1 The Tor Anonymity Network

Pervasive Internet connectivity has been integrated into the daily lives of billions of people.
As it exists today, the Internet does not inherently provide anonymity to users’ connections.
Without some sort of extra care taken, every party that is involved in an Internet connection
— be it the destination, the source, or intermediaries on the path of the connection —
can identify the IP address of the source and the destination. One could conceive of many
situations where this lack of privacy is a cause for concern. For example, someone who
suffers from a medical ailment may not wish for the operator of a self-care site to know
their identity, nor would a network of dissidents wish to have their identities known to the
state.

For years, Tor has been the most popular tool to provide additional privacy to Internet
connections. One reason for its popularity is the low latency of Tor. Tor was designed to
provide acceptable levels of overhead for typical Internet use cases, such as web browsing,
instant messaging, or audio and video streaming. To achieve this low overhead, Tor uses a
technique known as onion routing. A user runs a Tor client (often referred to as an onion
prozy) to establish a series of connections encrypted in layers to the volunteers running the
Tor software configured in such a way to allow it to be used as an intermediary connection
(an onion router, or relay). After the desired number of “hops” are made (typically three),
the final connection to the endpoint is made from the last relay. Using this technique, no
point on the route of the connection should be able to simultaneously establish the true
source and ultimate destination of the connection. This simple design allows for both the
privacy and performance goals Tor seeks to achieve.
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Figure 1.1: The Tor anonymity network functions by routing traffic from a client through
several relays to the end destination.

However, it is important to note that Tor does not achieve absolute success in these
desired goals. Tor has no formal proof of correctness of its design or implementation that
indisputably establishes its privacy goals, or that it has no security vulnerabilities (being
networked software connecting to unvetted volunteers, securely handling untrusted input
is a crucial aspect of Tor’s privacy goals). In fact, Tor and its associated tools (such as
Tor Browser, the official web browser for use with a Tor onion proxy) are regularly found
to have flaws, [AG16] and the Tor Project will promptly push updates to address them.
Similarly, the performance of Tor, while good enough for many use cases and better than
many alternatives, is noticeably worse than that of a non-anonymous Internet connection.
It is therefore common for research and development on Tor and associated tools to focus
on improving performance. Doing so is not only desirable for its own right in usability, but
also because the developers of Tor assert that the number of Tor users is correlated to the
peak performance of the network [Torl7b; DMO9]. Therefore, improving the performance
of Tor increases the size of its anonymity set, thereby improving the privacy of those who
use Tor.

Since recording began in September 2011, the estimated number of concurrently and
directly connected Tor clients has ranged from five hundred thousand to almost six million,
with current estimates at around two million [Torl7b]. Tor relays, which have statistics
since 2008, have varied in number from 1,000 to 8,000, with approximately 7,000 running
as of August 2017.



1.2 Tor Experimentation

In order to demonstrate which changes in a network such as Tor would improve it, or
which attacks would subvert its privacy goals or security, one must construct and perform
some sort of experiment. The form that this experiment takes depends on the goals of the
experimenter.

Naively, a researcher may attempt to perform their experiments on the actual network.
Beyond the problems of a lack of a controlled environment and the difficulty in creating
reproducible results this technique presents, the nature of Tor makes this sort of research
antithetical to the goals of the network in many cases. One particularly well known example
of this is an incident where data from unpublished research by Carnegie Mellon University
was used in an FBI investigation to deanonymize Tor users — resulting in statements from
members of the Tor Project and research community that this was unethical behavior by
the researchers | ; |. Because of the sensitive nature of Tor research, the Tor
Project has a series of strict guidelines on what constitutes acceptable research methods
on Tor [ ]. The first of their guidelines is “Use a test Tor network whenever possible.”
Therefore, in order to protect the users of the Tor network and to act in accordance with
the wishes of the Tor project, having a means of testing Tor modifications and attacks on
a separate network is necessary.

There exist ways of setting up test networks on real or emulated networks. For exam-
ple, one could construct a network of virtual machines, each running Tor and configured
to run one of the necessary components of the Tor network. Similarly, one could run
Chutney | ], which is a means of running multiple instances of Tor on one machine.
However, these techniques do not easily scale natively, as the networks must be set up
manually. To facilitate emulation, there exist projects such as Mininet | |, Experi-
menTor | ], SNEAC | ], and NetMirage | ] that assist in setting up larger
emulated networks. Additionally, there are real large-scale test networks one could run
a Tor network on, such as PlanetLab | ]. These emulation testbeds, while poten-
tially effective, still have the problems of large overhead, and the associated problems of
considerable hardware requirements and difficulty in scaling. Additionally, the reliance on
real-time emulation can have effects on the reproducibility of experiments, as they will rely
heavily on the actual conditions in which the experiment was run.

The other means of creating a test network is that of simulated networks, using tools
such as ns-3 | ; |. Because simulators isolate real, wall-clock time from the
in-simulation time, simulations are more isolated from their host environments. While
simulation allows for experiments that do not depend on actual conditions of the machine



running the experiment, and in some cases can be more scalable, they typically have the
drawback of less realism compared to emulated or real test networks, as they do not truly
run the software.

To address this shortcoming of simulators, tools were made that allow execution of
native code in the simulation, such as DCE | ; | and Shadow | ]. However,
there have been no documented cases of anyone successfully using native Tor source code
with DCE | ]. Furthermore, because all other simulators created with Tor as the
intended use case are focused on a single aspect of Tor (e.g., TorPS | ; | and
COGS | ]), and because of the advantages of network simulations, Shadow is one of
the most commonly used tools for running experiments for Tor research | ].

In order for results on the performance of modifications to Tor code, or on the efficacy
of new attacks on Tor, to be valid, they must be tested on networks that closely resemble
the Tor network that is used in reality. This means that the network that was used for
testing should be of a similar size and topology of the Tor network in use in the real world.
Shadow, as a discrete-event network simulator, has a distinct advantage over emulators
and real networks in this aspect, as it is capable of running network simulations that far
exceed the actual computational and network capacities of the machine used to host the ex-
periment. However, Shadow currently has difficulty maintaining high performance on such
large networks. In particular, even on large compute clusters, the performance of Shadow
does not improve significantly, or in some cases at all, over typical desktop hardware. This
is the case despite the problem of large network simulation at least conceptually being
a task well suited for the massive parallelism that some systems available to researchers
provide.

1.3 Contributions
In this thesis, we aim to demonstrate the veracity of the following thesis statement:

We can construct a new platform for simulating Tor networks that allows for greater
performance than existing techniques, which makes existing experiments run more
quickly, and more realistically sized Tor experiments more feasible.

To demonstrate this, we implemented our technique by modifying the Shadow network
simulator. In particular, we have provided:



e A custom replacement to the dynamic loader for Shadow. By replacing this user-space
component of the operating system, we were able to revisit earlier design decisions
used by Shadow, and we were able to use a new method of representing simulated
process execution, which in turn removed performance bottlenecks, reduced memory
usage of large experiments, and assured greater simulation realism.

e A run-time scheduler for Shadow host-to-thread assignment. Building on the func-
tionality provided by the new dynamic loader, this scheduler allows the assignment
of simulated hosts to threads while the experiment runs, rather than when the simu-
lation initializes, before the respective computational intensity of the provided hosts
is known.

e A series of experiments that demonstrate the improved performance of Shadow with
these modifications on simulated Tor networks ranging from hundreds to tens of
thousands of hosts.

e Public access to our code,! so that other researchers may use it to run larger experi-
ments, or moderately sized experiments more quickly.

The rest of this thesis is organized as follows: we give an overview of the existing state
of Tor experimentation tools, and network simulation as it applies to Tor, in Chapter 2.
Chapter 3 provides the necessary background to understand our contributions, including
a design overview of Shadow. In Chapter 4, we detail the methods used in creating our
new design, and the reasoning behind them. We also show the results of implementing
our design, comparing the performance of Tor simulations using our implementation to
the previous state of the art. In Chapter 5, we provide some potential avenues for future
research regarding Tor simulations. Finally, we give our concluding remarks in Chapter 6.

! Available at https://github.com/shadow/shadow/.
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Chapter 2

Related Work

In this chapter, we examine some of the alternatives to Shadow for Tor experiments.
Shadow, being more directly related to our work, is detailed in the next chapter, in Sec-
tion 3.2.

2.1 Deployed Networks

Conceptually, the simplest means of testing networked software such as Tor is to deploy
it on an actual network. That is to say, one can simply install Tor clients and relays on
several machines that are networked, for example, via LAN or Internet connections, and
run them. Perhaps the most immediately obvious problem with this experimental setup is
that in order to run an experiment on a network that approaches the size and topology of
the real Tor network, it would require access to large numbers of machines, connected all
over the planet. Rather than attempt this feat individually, there exist organized testbeds
for researchers to share that provide such a network.

One prominent example of such a testbed available for researchers to use is Planet-
Lab [ |. Using PlanetLab, researchers are assigned, for a finite time, a “slice” of
the entire network to run their experiments on. With 1353 nodes at 717 sites | ] (as of
August 2017), PlanetLab allows for access to larger networks than an individual researcher
or research group could readily construct on their own. Although this number of nodes
could allow for networks within an order of magnitude of the number of deployed Tor
relays, it still fails to provide networks that approach the size of the actual Tor network
(which would include clients, and for testing, servers to communicate with).



Because of the nature of this style of testbed, the reproducibility of experiments suffers
on PlanetLab and similar networks. Experiments that run on PlanetLab suffer from the
unpredictability of other experiments concurrently running on the testbed, as well as the
variable conditions of the Internet connections that exist between the respective nodes
in the network. Furthermore, these conditions are not only variable and unpredictable,
but do not permit for intentional changes in network configurations, to model the real
Tor network or potential changes in it. For example, if the researcher wished to test the
behavior of Tor on a connection between two specific locations that have no sites available
on the PlanetLab network, then there is no means to use PlanetLab to do so — that is,
there is no way to explicitly specify corresponding latencies, bandwidth, packet loss and
jitter to a connection between these locations, and any attempt to mimic them is subject
to changes in real network conditions, such as changes in network paths, over which the
researcher has no control.

2.2 Emulators

Network emulators are tools that allow for networked software to be run on a virtual
network. Unlike real networks, emulated networks can be significantly larger than the
number of physical machines they run on.

The architecture of network emulators used for Tor experimentation, such as ModelNet,
SNEAC, and NetMirage, are very similar (mainly because the design of SNEAC was based
on that of ModelNet, and NetMirage is based on SNEAC). Some number of “edge node”
machines, each of which run multiple instances of the Tor software, web servers, etc., are
connected through a single “core”. The core is configured to simulate the behavior of the
network between the instances of each emulated host (bandwidth, latency, packet loss,
etc.).

In contrast to network simulators, emulators run the software that comprises the net-
work, with the measured timing information being the actual time of the experiment. For
this reason, the limiting constraint of an emulated network is, at best, the amount of re-
sources available for the emulated software to run without impacting the performance of
other instances. Furthermore, emulators are directly impacted by real-world conditions. It
is unlikely that the results from an emulated experiment would be perfectly reproducible
across distinct emulation setups, as factors such as the specific CPU qualities, storage
medium, or even ambient temperature could impact the behavior of the emulated network.
This variability reduces the precision of results, making it less certain that measured effects



are the result of changes in controlled variables (as it could instead be as a result of noise
in local conditions).

It is not uncommon for emulated networks to be seen as being more realistic than sim-
ulated networks, as they are truly running a network, and not a simplified model | ].
More specifically, because they rely on the native network stack of the underlying oper-
ating system instead of a model of it (as well as all other parts of the OS), it is assumed
there will be fewer discrepancies between the experimental setup and actual execution of
the software. In practice, however, this is not always the case, and it is not uncommon for
emulators to rely on features of the underlying OS that are either not designed to be used
in emulation, or contain bugs | ]. Therefore, despite their reputation, emulators are
not always more realistic than a simulated network.

2.3 Network Simulators

2.3.1 ns-3

Commonly used in research from the network community are network simulators. Unlike
network emulators, network simulators are typically designed to model the idealized be-
havior of the network, rather than run it directly. One of the most popular of the available
network simulation tools is ns-3. Indeed, there are some papers that have used ns-3 to
simulate Tor, so as to test modifications to the design of the network | ; ; ].
However, because of the complexity of Tor’s implementation, and the number of implemen-
tation details that are not documented outside of the C code it is written in, the accuracy
of these types of experiments, as they relate to the real Tor network, has been called into
question [ ; .

ns-3, as well as ns-1 and ns-2 before it, are discrete-event network simulators. This
means that time is broken into discrete intervals, with “events” coordinated between them
such that causality is preserved. Because of this discrete nature, the time of the events of
the simulation can be isolated from the time of the events that they truly occur in. For
instance, one could conceivably suspend the experiment for an arbitrary amount of time,
then resume it, or change the available resources on the machine the experiment is running
on, without affecting the results of the experiment. Similarly, the results of an experiment
can be made fully deterministic, by ensuring any randomness used in the application and
simulated conditions are seeded for such determinism. If this is done, the conditions in
which one starts or runs an experiment will not have an effect on the behavior of the
experiment, making reproducibility of results far simpler than real or emulated networks.



Because it is more relevant for the purposes of this thesis, details of the functionality
of an example discrete-event network simulator can be found in the relevant section on

Shadow (Section 3.2).

2.3.2 DCE

One means of bridging the gap between network simulators and emulators are simulators
that execute the code of the software that is being simulated, instead of using simplified
models of their behavior. The result is still a simulation and not an emulation, because
simulated time is still distinct from actual wall clock time, and because some set of system
interactions (such as network calls) are mediated through the simulator. DCE (“Direct
Code Execution”) is a module for ns-3 designed to allow ns-3 to do exactly this [ ;

]. It can run some simple, but commonly used network applications, such as ping
and iperf. However, despite some interest, DCE has not been made to function with the
Tor source code | ]. Because little progress has been made on this front, precisely how
much work on Tor or DCE would be required to make the two compatible is unknown. At
the very least, either the many instances of clock_gettime () would have to be removed
from Tor, or proper support for this system call would have to be added to DCE. Fur-
thermore, there has yet to be conclusive results for the scalability of DCE. Indeed, our
implementation largely originates from modifications to the “elf-loader” dynamic loader
that was originally a higher-performance, non-default option provided by DCE, which we
found to be insufficient to feasibly be used for large simulations in its original state. The
original papers that demonstrate DCE and elf-loader provide no results for experiments
with more than 65 nodes in their networks | ; | — far short of the thousands
of relays in the real Tor network.

2.3.3 Shadow

Shadow is also a discrete-event network simulator that allows for running real applica-
tions | |. While it is generally less popular than ns-3 itself, it is the most commonly
used network simulator for Tor experiments | ]. Because it is the current state of
the art, and because it is what we ultimately derive our implementation from, we go into
greater detail on Shadow’s design and use in Section 3.2.



Chapter 3

Current State of the Art

This chapter provides some background necessary to understanding our design for network
simulation. We first examine the state of the art with regards to dynamic linking and
loading — a central technique of our design. We then detail the design of Shadow — the
most commonly used network simulator for Tor, and the code base our implementation is
built on.

3.1 Dynamic Linking and Loading

The primary contributions to improving Shadow’s performance are obtained via a cus-
tom dynamic loader. Before describing the advantages of a dynamic loader specialized to
network simulation, we will describe the functionality a dynamic loader provides. While
many of the concepts described here are generalizable, we will focus on the specific case
of GNU/Linux running ELF executables. That is to say, a system using the Linux kernel,
with GNU components in the user space; the most important such component is glibc —
the GNU implementation of the C standard library.

As most programmers likely know, nearly all programs use pre-written code called
libraries, so as to avoid re-implementing the same functionality in every program (e.g.,
printing text to the screen, performing cryptographic operations, etc.). The functionalities
that libraries provide are commonly thought of as being included into the program when
it is being built, or rather “linked”, via one of two methods: static linking, or dynamic
linking.

10



Static linking can be thought of as simply copying and pasting the library code into
the code of the program that makes use of the library. While simple, it is also redundant,
and more difficult to maintain across projects that use the same library. It is also not
particularly relevant to the rest of this thesis, aside from contrasting it to dynamic linking.

In dynamic linking, libraries are themselves compiled into machine-readable binaries.
These binaries are called “shared libraries” generally, but in the case of ELF, they are re-
ferred to as shared objects, and typically have a . so file extension. (Standalone executables
and shared objects are collectively referred to as objects.) When building an executable,
the compiler and linker will add the names of these shared objects to the ELF file, so that
they may be used at the time of execution.

When running a modern operating system, it is rare that an executable is invoked
directly. Instead, a program called the dynamic linker is run. At start-up time, the
dynamic linker loads the desired executable into memory, as well as all of the dependencies
of the program listed in the ELF file. Each of these dependencies can be loaded at any
memory address, so long as there is enough contiguous space at that address to store the
entire uncompressed ELF file (to allow for this position independence, the locations of
many values in the executable are stored as offsets from the beginning of the file or from
the instruction pointer, so all segments must be contiguous). Loading dependencies via
this technique has several advantages. For example, suppose a shared object were updated,
because a bug in a function was fixed in the corresponding library. Since the new version
of the library would be loaded at the next execution of the program, all programs that
use that shared object would also have that bug fixed, without rebuilding each of those
programs individually. Additionally, only one instance of the library needs to be stored,
regardless of the number of programs that use it.

Static and dynamic linking are the common techniques of building an executable linked
to specific libraries. However, the above two methods are not the only means of attaining
library functionality in a program. Another means of executing library code is dynamic
loading. In dynamic loading, the desired library is loaded into memory during execution. In
the case of C code on Unix-like systems, the code may provide the path of the shared object
as an argument to the dlopen() function call, from the d1 library. When using dynamic
loading, the program makes use of functionality defined in another program called the
dynamic loader. The dynamic loader will perform some sort of dynamic loading operation,
such as loading a shared object into memory and returning a handle to it, as is the case
for dlopen(), or resolving a symbol with a specific name and returning the pointer to
that symbol, as is the case for dlsym() (see Section 3.1.1 for details on what is meant by
“resolving”).

11



Because this functionality is fundamentally an extension of the services the dynamic
linker provides, in practice, the dynamic linker and dynamic loader are the same program.
Whether one uses the term “dynamic linker” or “dynamic loader” may therefore depend
on the context in which one is using it, but the terms are often used interchangeably. The
GNU dynamic loader is implemented as part of the glibc code base, and typically referred
to as “1d.so”, though the name of the actual executable on a system may vary.

3.1.1 Symbol Resolution

One of the primary roles of a dynamic linker/loader is to resolve symbols. A symbol is a
unit of information used by the linker — as well as the dynamic linker, and anything else
that makes use of linker-relevant information. A symbol could, for example, represent a
function, a global variable, or a file section. Some symbol types are documented in open
standards, while others are implementation specific.

As part of the ELF specification, certain sections of an ELF file list all of the available
symbols in what is appropriately called a symbol table. When the dynamic linker needs to
resolve a symbol, it will begin to search through the symbol table of each shared object
in the requester’s scope. In the simplest cases of dynamic linking, this scope will be all
of the shared objects that the requester is linked against. When the dynamic linker finds
the requested symbol, it adjusts a data structure known as the Global Offset Table (GOT)
of the requester, so that all future lookups of that symbol through this table will directly
point to the correct address of the symbol.

When and why this lookup occurs varies based on factors such as compilation options,
run-time flags, and use cases. For example, suppose an executable has been compiled with
the “lazy loading” option enabled, and made use of the time () function by linking against
glibc. Upon the first invocation of time () from the executable, it will use the GOT to
get a function pointer, which will point to the dynamic loader’s symbol lookup function.
The dynamic loader will then iterate through each of the shared objects the requesting
object was linked against, in the order the linker specified, until it finds one that defines a
symbol with the name time, which modulo any additional complications, will be in glibc.
It will then modify the requester’s GOT so that the relevant entry no longer points to the
dynamic loader, but the address in memory at which glibc’s copy of time () was loaded.

'For the sake of simplicity, we are ignoring additional checks made and implementation details, such as
version numbers, how the GOT functions, and how the dynamic linker checks for a symbol in an object.
See “How To Write Shared Libraries” [ ] for more detail on the specifics of glibc’s symbol resolution
procedure.

12



It then calls this requested function. On the other hand, if lazy loading was not enabled,
this lookup would have occurred when the requesting object was first loaded.

One common way to affect how symbol resolution occurs is through the LD_PRELOAD
environment variable. If the LD_PRELOAD environment variable is set to a valid shared
object (or a list of shared objects), the dynamic linker will add it to the front of the scope
for all symbol lookups. This means that if the LD_PRELOAD shared object defines a symbol
with the same name (and, optionally, version) as a symbol in a shared object that was
linked against, the symbol in the LD_PRELOAD shared object will be used instead of the
definition in the linked library.

For example, suppose the previous example had LD_PRELOAD set to a shared object
with a symbol corresponding to something to the effect of the following function:

time_t time() {
return 7;

3

Then every call to the time() function would return not the current time, as typically
expected, but instead the number 7. This effect is called interposition — the function
definition in the LD_PRELOAD library interposes the function definition in glibc.

One more modification to scope resolution that must be explained is dlmopen(), as
opposed to dlopen(). Under normal conditions, when loading a library into memory
(whether this is due to dynamic linking, dynamic loading, or even static linking), there is
no reason for the library to be loaded more than once. A global variable should only ever
be defined once, a library function should only have one definition, etc.. As such, attempts
to link or load a shared object multiple times will usually result in linking to the same
library or returning the same handle as the first load of that library (respectively). For
example, code that both dynamically links against glibc, and loads glibc using dlopen(),
will only have one instance of glibc in the program’s memory, including only one instance
of glibc’s internal state.

However, there are cases where this is not the desired behavior — particularly with
dynamic loading, where it could be the intended behavior for the shared object to be
loaded multiple times, with isolated state for each. To achieve this, some dynamic loaders
(including glibc’s) provide the non-POSIX extension of dlmopen(). dlmopen() behaves
largely the same as dlopen(), with the caveat that it takes an additional argument of a
namespace. A namespace is a symbol resolution scope that is isolated from the default
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scope in which the program exists.? By loading a shared object in different namespaces,
the state of one instance of the shared object in memory will be distinct from the state of
another instance of the same shared object that was loaded in a separate namespace. This
will prove useful for our purposes of network simulation, in that it can be used to create
isolated instances of a shared object to represent distinct simulated processes.

3.1.2 Thread-Local Storage

One particular symbol type that behaves differently from all others is Thread-Local Storage,
or TLS. TLS are values that are specific to a particular thread; that is, one thread’s
instance of a TLS value is independent of another thread’s. There are many methods of
implementing TLS, such as the POSIX thread key-value stores, but for this thesis, the
relevant technique is that of TLS variable definitions.

This method of TLS was designed for the C and C++ languages, but it may be used by
any language that compiles to a compatible ABI®. Originally, it was a non-standard exten-
sion to the C/C++ languages, utilized, for example, via the __thread keyword in GNU’s
extensions to C/C++. It has since been added to the C11 and C++11 official standards,
via the _Thread_local and thread_local keywords in C | ] and CH++ | |, re-
spectively. As an explicit example, a GNU C program that defines a global variable as
“__thread int x;” will have a global variable x, whose associated memory (and therefore
value) is specific to each POSIX thread.

Unlike other symbols in shared objects, which can be loaded at an arbitrary location
in memory (so long as they are in their respective, contiguously allocated file section), the
dynamic loader must keep track of TLS allocations in a more standardized fashion | -
This is due, in part, to the fact that these symbols must be stored in such a way that is
ABI compatible with the POSIX thread implementation. By ensuring that the linker, the
dynamic linker, and the POSIX thread implementation all use compatible representations
of TLS symbols, features associated with TLS (such as their allocation/deallocation during
the construction/destruction of a thread, respectively) can be safely implemented.

A shared object may use one of two types of TLS models (both of which are available
on each POSIX thread): dynamic TLS or static TLS | |. Dynamic TLS is the default

2There are some exceptions to this isolation, such as the dynamic linker itself, but they are minor
enough to be ignored for our purposes.

3An ABI (Application Binary Interface) is the set of constraints on compiled code to interoperate with
other compiled code, such as the exact data alignment and layout of parameters to correctly call a function
on them.

14



form of TLS, and is stored internally as a dynamically allocated vector of pointers that
grows and shrinks as objects are loaded and unloaded. Static TLS is TLS that has been
marked as incompatible with dynamic loading. Because it is not to be loaded during
execution, its size is known at the time of program initialization (before execution, while
the dynamic linker loads dynamically linked libraries into memory), and it is allocated
as part of the POSIX thread data structure. Since the only advantage it provides is one
less layer of indirection (and therefore faster access to the data), and it is not the default
behavior, static TLS is rarely used by shared objects. The specifics of the memory layout
and data structures used can be seen in Figure 3.1.

3.1.3 elf-loader

As mentioned previously, the dynamic loader of GNU/Linux (1d.so) is implemented as
part of the glibc code base. To be clear, despite glibc being an implementation of the
C standard library, and 1d.so being a part of glibc, 1d.so is a dynamic linker/loader,
and is therefore a standalone executable (as well as a shared object). In fact, it can be
executed from the command line; though as the output of doing so says, this is rarely
desired. Instead, the PT_INTERP field of an ELF executable contains the path of the
dynamic linker. The operating system’s program loader reads this field, loads the file it
points to, and executes it | |. As such, the dynamic loader used can be set at compile
time (or, for that matter, modified in an existing binary, if the replacement path string
is no longer than the original). Doing so, however, is very unusual, as any replacement
dynamic loader would require ABI compatibility with the libc implementation (i.e., glibc),
and if debugger support is required, the debugger (e.g., gdb, which is written under the
assumption that the glibc dynamic linker, and therefore the glibc ABI, is used). The ABI
cannot be changed, as doing so would require recompiling glibc, and then relinking all
programs and libraries that make use of it® (a practically infeasible task for most users, as
the C standard library is linked to most applications and libraries). It would then stand
to reason that for a custom dynamic loader to be valuable, the existing dynamic loader
would have to be missing functionality that is very useful (otherwise we would make do
without it), but not generalizable enough to be implemented upstream (or else we would
simply make the necessary modifications and submit them to the glibc maintainers).

4Strictly speaking, this field points to the “Program Interpreter”, which is the program that ensures the
executable is loaded at the correct virtual address. In practice, this is the same program as the dynamic
linker (and therefore, the dynamic loader as well).

5While some changes can be made to a library without requiring relinking dynamically linked programs,
ABI changes do require relinking, as they change how the symbols are used.
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Figure 3.1: The data structures used in TLS for x86-64 POSIX threads | ]. The

thread pointer points to the start of a standard data structure called the TCB (Thread
Control Block). The first field of this structure points to the dtv (Dynamic Thread Vector).
The dtv consists of pointers to each object’s actual TLS allocation. In the case of Static
TLS, these allocations must be in the contiguous memory immediately before the thread
pointer (or equivalently, before the TCB), so that they may be accessed without using
the dtv (as offsets from the thread pointer register, %fs). In the case of Dynamic TLS,
these allocations can instead be at arbitrary memory locations, with access done as an
instance of symbol resolution, through the dynamic linker. While the dtv can be changed
and reallocated, the thread pointer should not be modified, and therefore all Static TLS is
allocated at thread initialization.
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One such limitation of the glibc dynamic loader is that its implementation of dlmopen
is limited to 16 concurrent namespaces. This number is somewhat arbitrary, in that it is
simply the size of a statically allocated array that stores all namespaces. But while the
number could conceivably be increased in the code, glibc is written assuming a statically
allocated array of namespaces, and does not have any mechanism of dynamically allocating
this array at run or initialization time. Furthermore, significantly increasing this number
would add a non-trivial amount of overhead to all programs dynamically linked to glibc —
a cost the developers are unlikely to be willing to make just so a specific use case of network
simulation can make use of it. Therefore, for the foreseeable future, namespaces in glibc
will remain some constant number, set at the compile time of glibc (again, recompiling
then relinking for our own purposes being an overly burdensome task on the user).

The small bound on the number of calls to dlmopen was the primary motivation
for the creation of a custom dynamic loader, called “elf-loader”, as part of the DCE
project | |. The developers of elf-loader found that modifying glibc to allow for
more namespaces dynamically would be prohibitively difficult, and therefore opted to con-
struct an entirely new (though again, glibc ABI compatible) dynamic linker.

elf-loader is an optional alternative to DCE’s default mechanism of swapping global
state (similar to the method Shadow used, see below in Section 3.2). The developers of DCE
found using elf-loader in DCE improved memory usage and greatly improved performance
over state swapping by simplifying simulated process representations | ; |, but
it is not used by default in DCE because of unspecified “issues” | -

3.2 Shadow

Shadow is a discrete-event network simulator, but with the original design goal of running
Tor code. Accordingly, Shadow is more directly comparable to ns-3 using DCE than to ns-3
itself. Indeed, Shadow conceptually resembles ns-3 with DCE in its design in many ways
(though it is originally forked from the DVN network simulator | |). However, unlike
DCE, Shadow, since its inception, has been able to run Tor (as one would expect). Shadow
is at least theoretically able to run any TCP-based application with slight modifications and
constraints — the most notable being that I/O events are polled using supported interposed
functions such as poll, epoll, and select, the application does not use fork or exec, and the
application can be compiled as a shared object or position-independent executable (which
most applications can). While Shadow has seen some use in Bitcoin simulations | ],
Tor remains the most popular use case of Shadow. Conversely, Shadow is currently one of
the most popular means of performing Tor experiments | ].
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Here, we will provide a brief overview of the design of Shadow, as it existed before our
modifications.

A host or wvirtual node is an entity on the simulated network. While all of Shadow
runs in a single process from the perspective of the OS, hosts can run multiple simulated
processes (that represent the Linux processes being simulated), each of which may use
multiple logical threads (run on a single system thread using a modified version of the
GNU Pthreads library), as shown in Figure 3.2. The types of hosts, which processes they
run, and the layout of the network that connects them are specified in a user-supplied
XML file, which we will refer to as the configuration file. Upon initialization, these hosts
are distributed evenly across some user-specified number of system threads, called “worker
threads”.

To execute a simulated process on a host, Shadow dynamically loads the process exe-
cutable, known as a plugin, as a shared object into memory. Using features of the LLVM
compiler, these plugins have their entire data segment stored in a known location in mem-
ory, as a single structure (a technique known as hoisting). Upon switching execution from
one process to another, the data segment of the previously executing process is copied else-
where in memory and exchanged with the newly executing process — a procedure we call
state swapping (see Figure 3.3). Using this technique, multiple instantiations of a process
corresponding to a particular plugin may be simulated, despite the dynamic loader only
allocating memory for the plugin once.

An optimization Shadow implements for the sake of parallel processing is how these
plugins are dynamically loaded. As described above, Shadow relies on state swapping for
running multiple simulated processes from the same shared object. While state swapping
does achieve this goal, it does not allow for doing so concurrently, as only one state may
be in the allocated memory for the shared object at any one time (as a result of using
dlopen, see Section 3.1.1). To circumvent this problem, Shadow copies the shared object
file representing the plugin in the file system, once for each worker thread. Because it is
now multiple distinct shared objects, the dynamic loader can now load it each time with
its own state, without relying on namespaces. Thus, each worker thread has its own copy
of the plugin, and they can concurrently run different simulated processes.

As a discrete-event network simulator, Shadow’s execution centers around the process-
ing of events. An event is the fundamental unit of simulation in the simulator. For example,
an experiment may have events corresponding to sending or receiving a network packet, the
beginning or the end of an experiment, or the starting or shutdown of a host. To construct
these events from the execution of plugin code, Shadow relies on the LD_PRELOAD feature
of the dynamic loader. By setting the LD_PRELOAD environment variable to a shared object
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Figure 3.2: The logical structure of Shadow. There is one Shadow process, with some
number of worker threads, each with some set of hosts assigned to it, each of those having
some number of simulated processes to run (for example, Tor, a web server, etc.), which
correspond to plugins. Not shown are logical threads, which would be a sub-division of

each simulated process.

19




Library Code

Library Data

AN

links to

Plugin Code

Active Data [ "+«

-.“ “ “‘ “‘

e v
Plugin Plugin Plugin
Data 1 Data 2 Data 3

Figure 3.3: Shadow’s state swapping technique. Each instance of a plugin (e.g., Tor) has
its data segment’s previous state copied into the data segment of the corresponding shared

object when executing, then copied back out when it is done for this round. All plugins
link to a single instance of each library.
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that defines functions with the same names as the functions that correspond to desired
events (as well as any functions that would cause indeterminacy), Shadow interposes the
functions that were linked against and calls Shadow’s versions instead. This interposed
version of the function will then have whatever behavior is needed for the simulation to
proceed. For example, when a plugin attempts to call the “send” function (which is it-
self a C POSIX library wrapper for the “send” system call), it will instead call Shadow’s
definition, which creates an event corresponding to this action.

Conceptually, we can then think of all of these events being placed in a global queue,
ordered by the simulation time at which the event is supposed to occur. Each event is
popped off the queue as it is processed by its respective host, causing the current simulation
time to progress with the head of the queue. But to allow for parallel processing, the queue
is broken into discrete rounds, which consist of a start and ending simulation time. The
amount of simulation time in a round is set at the start of the experiment to the minimum
time it takes for one host to affect another (via network latency set in the configuration
file). Every host on every worker thread can then process all events that occur before the
end of the round, without fear of violating causality, from some set of queues. When a
worker thread has completed processing all events in the current round, it waits on a barrier
for all other threads to complete their events for the same round (henceforth referred to
as the round barrier, or simply the barrier). How these queues are organized is set by the
“scheduler policy” option.® In the default setting, this consists of one queue of events per
host, in an attempt to reduce contention for locks on the queues. Each host, in the order
they were assigned to the thread, then executes all of its available events in this round,
and the algorithm repeats until completion.

3.2.1 Shortcomings

While the design of Shadow has been good enough to become one of the more popular
means of simulating Tor networks, it is not without its shortcomings. Most important for
large experiments is the lack of scalability in Shadow’s multithreading. While using Shadow
for Tor research, we found that a small experiment we were using finished more quickly on
an eight-core desktop machine with eight worker threads, than on a machine in the CrySP
RIPPLE Facility | | with 160 cores, irrespective of the number of threads, because of
a marginally higher CPU clock speed on the desktop machine. (More rigorous experiments

6Scheduler policies were added to the development branch of Shadow our implementation is forked
from, prior to said fork. The release version of Shadow will have them available at the same time our
changes are released upstream.
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on the scaling of Shadow across thread counts with a more detailed experimental setup
can be found in Section 4.4.3.)

There are several reasons for this, but they largely originate from Shadow’s method of
loading plugins. As mentioned previously, Shadow creates multiple instances of a simulated
process from a single plugin by swapping state. However, this technique comes with some
drawbacks. The most obvious is that copying the entire state of a plugin can be expensive,
depending on the size of the data segment. Doing so every time a different simulated
process runs adds some amount of overhead over directly running the application.

Another drawback is that this state swapping technique cannot work for any shared
object that was not built using the LLVM pass that moves the entire state into a single,
movable structure. This means there is an assumption made that every system library
used by a simulated process is effectively stateless, or that there is no effect of sharing
this state between multiple simulated processes between events. In the instances where
state does impact operation (as is the case for the OpenSSL library used by Tor), a lock
is required to ensure only one host is using that library at any time (a workaround that
does not actually solve the underlying problem, but in practice was found to be sufficient).
As a contrived but demonstrative example, suppose the SSL library used stored state in
the form of which cipher suite was currently being used. When there is only one process
making use of this state, it operates correctly. But when multiple simulated processes, all
operating from the same actual process, attempt to use two different cipher suites, this
state would be corrupted, and the simulated behavior would not match the behavior of the
actual application.

Yet another drawback of this technique is that it greatly complicates any attempts to
migrate hosts or simulated processes from one worker thread to another. Because each
thread has its own distinct copy of the plugin, each with its own associated memory where
the active state is located (which, as previously stated, must be contiguous with the rest of
the executable in memory), any pointer variables that store an address within the active
state would no longer point to the correct address after the state was migrated to another
thread’s copy of the plugin (Figure 3.4). Because of this, Shadow’s scheduler only assigns
hosts to worker threads once, when Shadow is preparing the experiment. Since there is no
adjustment of the initial scheduling, some worker threads will frequently run considerably
longer than most of the others before hitting the barrier. As such, the simulation fails to
make effective use of the multithreaded environment it runs in, with initial tests showing
some threads remaining idle for upwards of 80% of an experiment. This effect can be seen
in Figure 3.5, which compares the “round” Shadow is in (which has a direct correlation to
simulation time) to the amount of wall clock time each worker thread has spent idle (as
well as the elapsed time of the experiment over all). We see that the fraction of time each
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Figure 3.4: Why Shadow cannot migrate hosts if state swapping is used. Top: The state of
a plugin active on thread 1 before attempted migration. Bottom: The state of the plugin
after attempting to migrate to thread 2, creating a stale pointer to some other instance of
the plugin’s state on the original thread.
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thread spends idle remain in their relative positions throughout the experiment.

Finally, because of the hoisting technique described earlier, Shadow in its original state
can only be compiled with the LLVM /Clang C compiler. More importantly, it can only be
compiled with the default set of compiler optimizations. Attempting to set the optimiza-
tions to a higher level causes segmentation faults during the course of an experiment, for
reasons that were never fully determined by us or the Shadow developers, but we believe
are due to the hoisting technique.
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Figure 3.5: Amount of time each worker thread has spent blocked over the course of an
experiment, as well as the elapsed time of the experiment. The graph is not normalized in
order to show the absolute cost of the blocking — the right side, where the lines spread, is
visibly the more time-consuming portion of the experiment. Some of the worker threads
are blocked 80% of the time throughout the experiment. Simulated Tor network with
268 hosts, simulating 1 hour of operation, on 7 worker threads.
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Chapter 4

Improving Tor Simulation

To address the shortcomings of existing Tor experimentation platforms, we designed a new
simulation architecture and implemented this design by modifying an existing simulation
framework. In this chapter, we explain this design and how it was implemented. First, we
detail the general architecture of our implementation, which is forked from Shadow. Then,
we describe drow-loader — our fork of elf-loader, which adds a series of performance and
feature improvements, and has been integrated into our modified version of Shadow. Fi-
nally, we detail how we used the new functionality drow-loader provides to add a scheduling
mechanism to our version of Shadow, allowing for more even distribution of work through
the migration of hosts between worker threads.

4.1 Architecture

In this section, we describe the overall design of our implementation. In particular, we
draw distinctions between it and the original Shadow design it is derived from, so as to
better understand its advantages. A visual representation of these differences can be seen
in Figure 3.3 and Figure 4.1 for reference as we describe the distinctions.

Like the original Shadow, we rely on the dynamic loading of shared objects to run
plugins that represent the simulated programs. Unlike the original Shadow design, however,
we make use of drow-loader (see Section 4.2 for details) to open the shared object with
dlmopen, into its own namespace, once per instance of that plugin in the network. Because
each plugin is run in its own namespace, it obviates the need for state swapping. Instead,
each instance of a plugin has its own copy of the entire executable associated with it,
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Figure 4.1: Our new design. Fach instance of the plugin has its own dedicated namespace,
which includes its code, data, and linked libraries.

including code and data, ready for execution at any time. (At first this may seem to
increase the required memory overhead, but in practice it does not, as described below in
Section 4.2.4.) The lack of state swapping means there is less overhead from copying these
states every time a different host is run, simulated process execution is simpler, and the
build process is decoupled from LLVM /Clang to allow for use of other compilers (notably,
GCQ).

In addition to the advantage of each plugin having its own namespace, all dependencies
of the plugin are also loaded into the respective namespace. This contrasts with Shadow’s
original design, where there can only be one instance of any library in memory for the entire
simulation, irrespective to the number of simulated processes making use of it. Aside from
greater assurances of correct behavior of applications by isolating each dependency’s state,
this has the direct benefit of removing the global lock that was added to the Tor plugin on
use of the OpenSSL library, meaning that Tor code making use of OpenSSL can be run in
parallel.
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4.2 drow-loader

drow-loader! is a custom dynamic loader intended for use with network simulation. As elf-
loader is the only dynamic loader written to support large numbers of dlmopen calls, and it
sought to maintain glibc ABI compatibility, as we do, it was a natural choice as a starting
point for drow-loader. However, it was found to be insufficient in many regards for our uses,
hence our creation of the fork we call drow-loader. As of this writing (September 2017), we
have added approximately 7,500 lines of C and removed 4,500 (elf-loader originally having
approximately 13,000 lines of C). This section is divided according to the goals we had for
drow-loader, and how we addressed them.

4.2.1 Correctness

For a dynamic loader to be useful, be it in network simulation or any other application, it
must behave as expected by the compiled objects. While elf-loader’s authors claim that it
“could replace the system dynamic loader seamlessly” | ], we found that there were
flaws in how it matched the behavior both of the ELF standards, and of glibc’s ABIL.
Accordingly, some of the primary changes to elf-loader were to its loading and symbol
resolution behavior. To ensure the correct execution of given programs, we spent a con-
siderable amount of time identifying the causes of specific 1d.so behavior and adjusting
drow-loader so that it matched. Some examples include symbol version checking, scope or-
dering, glibc stack management compatibility, support for existing flags and symbol types,
and several undocumented glibc behaviors.

4.2.2 Performance

A crucial goal in the development of our modifications to elf-loader is that all dynamic
loader operations used by the network simulator (dynamic loading, symbol resolution,
etc.) should be sublinear time in both the number of namespaces and the total number
of objects. This is due to the intended use of Shadow loading each process, for thousands
of hosts, into its own namespace, which in turn has its own copy of each necessary object
(for example, Tor, OpenSSL, etc.) in memory. Any linear operation in the dynamic loader
would therefore turn into a quadratic operation in execution, as said linear operation must
be called a linear number of times.

L“Drow” (rhymes with “now”) are a race of shadow elves from the game Dungeons and Dragons.
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It is worth noting that the necessity of sublinear time does not extend to the number
of objects within a single namespace, or unique objects — that is, drow-loader does not
need to run in sublinear time in the number of objects that do not map from the same
object file. Such use cases are not relevant to Shadow, as no existing programs make use of
a large number of namespaces or unique objects. If these programs did exist, they would
be unable to run with anything resembling reasonable performance, or at all, on the glibc
dynamic loader, since the glibc loader does not support large namespace counts, and some
operations within a namespace are inherently linear (e.g., symbol lookup requires a search
through the objects in scope) [ ].

To accommodate a large number of dlmopen() calls, elf-loader relies on linked lists as
its primary data structure. While linked lists are simple to grow, many operations on linked
lists are not fast enough for our purposes. Lookup of a particular handle, for example, is
an operation frequently used by a dynamic loader that is not well suited for linked lists.
Additionally, elf-loader has many algorithms in its code where it was clearly not intended
for use with large numbers of namespaces or objects, with many operations having linear
or even quadratic run-time in the number of namespaces or loaded objects.

Unfortunately, there are some instances where the existing data structures are required
to maintain ABI compatibility with glibc and gdb. Most notably, the internal data struc-
ture glibc uses to keep track of objects associated with a namespace is a form of linked list
structure, referred to as a linkmap,? which is required for ABI compatibility.

To address these problems, drow-loader uses different data structures that either replace
or work in conjunction with these linked lists. For example, a red-black tree is used to
map a given memory address to the instance of an object it is associated with, instead of
iterating over all objects until one with a memory mapping that contains that address is
found. Similarly, a hash table is used to map handles to their linkmap entries, so that a
lookup in the linkmap is now a constant-time operation, instead of linear. Each of these
data structures is implemented within drow-loader’s code. This is because the dynamic
loader cannot rely on dynamically linked libraries such as glibc to function. Therefore, the
dynamic loader requires custom implementations of basic functionality (such as memory
allocation and system calls), which in turn prevents static linking to many common library
implementations.

With the modifications made, drow-loader achieves its goal of sublinear time dynamic
loading, and can be used to load hundreds of thousands of instances of a minimal shared

2This is the origin of the “lm” in many of the namespace operations exposed to userspace, e.g., the
“Lmid_t” data type, or the “LM_ID_NEWLM” flag used in dlmopen().
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object on standard desktop hardware in minutes.®> For measured results, see Section 4.4.2.

4.2.3 Concurrency

Another goal which, while less important than sub-linear dynamic loader operations, is
important to the desired performance of Shadow, is to maximize the concurrency of these
operations. If the dynamic loader operations are done under a single global lock, as is
the case for the glibc dynamic loader and elf-loader, then it is likely that many of the
concurrency improvements we would make to Shadow would be negated in practice. One
operation where this would clearly be the case are dynamic loading, where the initial
creation of hosts would contend for the lock. Another would be symbol resolution, where
the first use of any dynamically linked symbol (e.g., the first call of a function) would be
mutually exclusive with any other first use of any symbol.

To make drow-loader more parallelizable, we first created a reader-writer lock imple-
mentation. By doing so, this allowed for the data structures used to be read by multiple
threads, exclusive of any writes to those data structures. Then, we reduced the scope of
the global lock into locks on the data structures themselves, such that each is always in a
consistent state, without locking the other data structures involved that are not currently
being modified. Currently, there are twelve locks with global scope, all of which are only
used briefly or in rarely used functionality. If it is later found that these locks are sig-
nificantly impacting concurrency, some can be eliminated with the use of lock-free data
structures.

4.2.4 Memory Overhead

In order to feasibly run Shadow with drow-loader, it is necessary to minimize memory
overhead. To reduce the memory usage, drow-loader makes use of shared memory map-
pings. Because the shared objects are loaded into memory via mmap system calls, instead
of copied into allocated memory, they can make use of Linux’s Copy On Write, or COW,
functionality. Using COW, multiple instances of memory from the same mapping will not

3A “minimal shared object” here refers to a shared object that has no symbols aside from a main
function, linked against glibc. Larger and more complicated objects will take more time. Part of the
dynamic loading process is calling the initialization functions of the loaded objects. As these functions can
have arbitrarily defined behavior, they are not part of the analysis given here. While this is not a realistic
use of the dynamic loader, it isolates the performance evaluation to the dynamic loader and not the shared
object.
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be given their own physical memory until one instance is written to, at which point the
page is copied and the new copy is used as the target of the write. All of this happens
transparently to the application, as this is done in kernel allocated pages while the applica-
tion only sees its virtual memory. By doing this, parts of the files that are never written to
in memory are shared among each other, reducing the duplicated physical memory needed
to represent the file. One such section of the file where this would typically be used is
in the .text section, where the executable, read-only code is stored. However, this is
not the case in elf-loader or drow-loader. Because many of the shared objects used are
linked against glibc’s dynamic loader, elf-loader and drow-loader must modify this section
to replace any references to the original loader, so that they instead reference the new
loader. As a write operation, this causes COW to copy out the memory into separate
pages, despite the resulting memory contents being the same for all instances (that is, all
of these pages undergo identical modifications, but the corresponding memory does not
merge back together). To circumvent this, drow-loader explicitly loads all read-only seg-
ments into shared memory mappings, by opening a file descriptor in /dev/shm/, which on
Linux is mapped to memory, and not storage. By doing so, the modified segments are still
shared, even after modification. The resulting memory layout, from the perspective of the
kernel, can be seen in Figure 4.2.

4.2.5 Run-time Symbol Interposition

A problem with the LD_PRELOAD technique of function interposition that Shadow relies
on which was not mentioned previously is that it is global for the entire program. While
this is typically acceptable, there are situations where a more localized approach would be
desirable.

For example, suppose one wanted to run a simulated process that relied on LD_PRELOAD
under normal circumstances on some fraction of hosts (an example of one such instance
would be Torsocks, an application wrapper that forces a non-Tor application to use Tor —
since Torsocks is used by some Tor users, it might be useful in an experiment to simulate
clients that make use of it). The environment variable would either not include the addi-
tional shared object, or include it for all processes on all hosts. While one could construct
a new shared object that conditionally forwards interposed requests to the original scope
or the simulated LD_PRELOAD based on the simulated process the call originates from, this
is a non-trivial amount of work that would have to be done for each type of process that
relies on LD_PRELOAD.

More generally, any time it is desirable to modify the behavior of a specific plugin’s
calls to other shared objects (instead of every plugin’s calls to other shared objects), a more
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Figure 4.2: The memory layout found in Figure 4.1, from the perspective of the kernel.
Each read-only segment, and any pages that have not been modified, that are mapped

from the same file are backed by the same physical memory (in this case exemplified by
the code of each shared object).
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specifically focused interposition is warranted. An example of this in practice is Tor’s use
of cryptographic operations in OpenSSL, which are interposed to improve performance.
These interpositions should be able to be constructed via configuration for that simulated
process or host, not globally.

To achieve this goal, we add two new flags to dlmopen(). The first, RTLD_PRELOAD,
causes the newly loaded shared object to be loaded into the front of all scopes, as though
it were loaded from the LD_PRELOAD environment variable. This flag is almost identical
in behavior to the previous use of LD_PRELOAD, but has the advantage that it does not
rely on the user environment, making it more self-contained. It also allows for the paths
to be specified later in the run of the experiment, after the configuration file has been
parsed, without restarting Shadow (although as described in Section 4.2.6, Shadow is still
restarted for other reasons). The second new flag drow-loader supports in dlmopen() is
RTLD_INTERPOSE, which behaves much as RTLD_PRELOAD, but limits the scopes in which
the new shared object is added to a specific namespace. This allows for the configuration
file to specify shared objects that interpose a plugin’s symbol resolutions, while still being
local to a particular simulated process’s namespace.

4.2.6 Initialization-Time Configurable Static TLS

One problem encountered with utilizing large numbers of dlmopen() calls involves the
details of how memory is allocated for static TLS. As previously mentioned, TLS comes in
either dynamic or static models, chosen by the object as a flag in the ELF headers. Also
previously mentioned was that static TLS is used by a small minority of shared objects,
which is fortunate, as it is intended to explicitly forbid dynamic loading of the object.
Unfortunately, one of the few shared objects that makes use of static TLS (for performance
reasons) is glibe, which is linked with almost all shared objects and executables on a
GNU/Linux system. Since dynamically loading a shared object also dynamically loads all
dependencies of an object (including glibc), this means strictly speaking, almost nothing is
entirely safe to dynamically load. In practice, dynamic loading works because attempting
to dynamically load glibc will typically cause the dynamic loader to find and return the
copy of glibc that was presumably already loaded during dynamic linking. However, when
a new namespace is created, this is not the case, as a newly initialized namespace will only
have a set of base objects in it, and not glibc. Therefore, when a new copy of glibc (or any
other static TLS object) is loaded into a new namespace, it must store its TLS in some
unused memory allocated for static TLS. Unfortunately, the memory for static TLS cannot
be (re)allocated during execution, as it is part of the POSIX thread data structure, which
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cannot safely be moved once a thread has started executing.* The glibc dynamic loader
and elf-loader address this problem by allocating a small amount of extra space to the
static TLS memory allocation when performing dynamic linking, at program initialization,
so that some amount of objects with static TLS can be dynamically loaded anyway. Once
this space is used, additional attempts to load objects with static TLS will fail, causing
the program to crash.

In general, the entire design of static TLS is built around it not being dynamically
loaded, and the performance improvements this provides. Indeed, according to the Intel

ABI specification for TLS on Itanium, the entire purpose of the static TLS flag is “... so
that the dynamic loader can easily reject attempts to load such a file dynamically.” | ]

To make the dynamic loader accept attempts to load such files dynamically, drow-
loader relies on the fact that an executing program can have more knowledge of static TLS
requirements than the dynamic linker. It does this by providing two new features. The
first is support for an additional environment variable, LD_STATIC_TLS_EXTRA, that, if set,
determines the size of the extra static TLS space it allocates at the time of dynamic linking.
This means that a user can set the size of the static TLS allocation without recompiling the
dynamic loader — a significant improvement over the GNU dynamic loader and elf-loader.
The second feature is an additional request type to the dlinfo() function. dlinfo() is a
non-standard dynamic loader function provided by many dynamic loaders, including the
GNU dynamic loader, that is intended to provide requested information from the dynamic
loader (e.g., the namespace an object was loaded in, or the path an object was loaded
from). We add a request type that returns the amount of currently used static TLS. For a
program such as Shadow to allocate a variable amount of TLS, it executes in two stages.
First, the program calculates the amount of static TLS it will need during the course of
execution. In the case of Shadow, it does this by reading the amount of static TLS used
before and after loading one instance of a host, then multiplying the amount of additional
static TLS used by the number of hosts of that type it will run, for each type of host (e.g.,
a Tor relay, a Tor client, a web server, etc.). Once it has calculated the total TLS needed,
the program re-executes itself, this time with LD_STATIC_TLS_EXTRA set to the sum of the
previously calculated products — that is, the program calls exec on the program with
the original arguments, plus the additional environment variable set, so that the dynamic
linker can appropriately allocate the correct amount of static TLS memory. By doing this,
the program can dynamically load as many plugins as needed in separate namespaces,

4Specifically, code is compiled using the x86-64 POSIX thread ABI specified by Intel. Only the kernel
can modify (or for that matter, read the raw value of) the thread pointer, and while a system call does
exist to change it (arch_prctl()), it is not intended for frequent use (some kernels have it disabled entirely).
To quote the man page, “Programs that [set the thread pointer] directly are very likely to crash.” | ]
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despite their use of static TLS from glibc.

While this technique could be considered a bit of a hack, it has proven to be effective.
It is also worth mentioning that Shadow already relied on re-executing itself, to set the
LD_PRELOAD environment variable to the location of its interposing shared object. How-
ever, this reason is no longer necessary, due to the new RTLD_PRELOAD feature drow-loader
provides (as described in Section 4.2.5).

4.2.7 TLS Migration

One of the primary reasons for using drow-loader with Shadow is to allow for migrating
hosts from one thread to another. However, if this happens, then the TLS for the shared
objects associated with that host’s processes will no longer be on the correct thread. There-
fore, we added a new function to the dynamic loader API for drow-loader, which takes two
thread pointers as arguments, and exchanges their TLS.

In the case of dynamic TLS, we simply swap the pointers to the TLS allocations, which
are stored in the dynamic thread vector. Because the thread data being swapped in this
case is used by the application code to get the address of the TLS and is not the TLS
itself, this means that the swapping is transparent to the application code (so long as the
executing threads are swapped as well).

In the case of static TLS, which is stored as part of the thread pointer data structure, we
must swap the TLS directly. Unfortunately, this has two drawbacks. One is that swapping
data is more expensive than swapping pointers. Thankfully, in addition to static TLS
being rare, in practice it is less than a kilobyte in size for each instance of glibc (e.g., on
Ubuntu 16.04 x86-64, it is 120 bytes). The second problem is that because the data is being
swapped directly, any pointers in any shared object that point to that static TLS will point
to the wrong thread’s static TLS after swapping. This is, in essence, the same problem
that Shadow’s state swapping technique has with host migration (Figure 3.4), which we
were trying to avoid. Unfortunately, there is no generalizable solution to this problem.
Instead, we identify any instances where this is problematic, and use interposition to fix
it. However, these instances are rare. For one, unlike in the case of host migration while
using the state swapping technique, where any pointers to anywhere in the entire data
segment will become invalid, here, only pointers to the (very small) static TLS allocation
are problematic. Furthermore, static TLS values are typically only used internally by glibc,
which uses them directly as global variables and not via pointers. For now, the only case
that addressing this problem has been necessary is in adjusting code that stores the address
of errno. In any case, static TLS swapping is unlikely to be problematic, given that prior
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to drow-loader, Shadow functioned with TLS being global to all states for a shared object
on a particular thread (as TLS is not part of the state that was migrated when swapping
hosts). This implies that in practice, static TLS is not particularly stateful.

4.3 Scheduling

One of the primary motivations for implementing the new dynamic loader functionality was
to allow for a better scheduling mechanism than the scheduler policies Shadow previously
allowed (see Section 3.2). With the additional features provided by drow-loader, we were
able to implement a means of migrating hosts from one thread to another during the course
of execution. As a result, we were able to better distribute work among worker threads
while the experiment runs using a new scheduler option we implemented.

The new scheduling algorithm is a form of work stealing | ; |. Just as with
Shadow’s original design, all hosts are distributed evenly across the available worker threads
at the start of the experiment. As in Shadow’s default scheduler, each worker thread
executes every host assigned to it, until none of the hosts has any events left to process
in this round. However, unlike in the original scheduler, once a worker thread has finished
executing all hosts assigned to it, instead of blocking on the round barrier, it queries the
lists of hosts assigned to other worker threads. If it finds there is a host on another worker
thread that has yet to begin executing this round, it will remove the host from that list of
hosts, insert it into its own, and begin executing its events for this round. This continues
until every worker thread finds all worker threads have no hosts that have yet to begin
execution this round, and the round barrier is reached.

In this manner, we ensure that work is evenly distributed across worker threads; as can
be seen by comparing Figure 4.3 and Figure 3.5, no thread spends significantly more time
than any other being blocked. Because hosts are migrated only when a worker thread is idle
after executing its currently assigned hosts, we avoid much of the cost of TLS swapping
and cache invalidation that would come with an algorithm more akin to a thread pool,
where hosts are not a priori affiliated with any particular thread by the scheduler. This
algorithm also naturally lends itself to the changing behavior of the simulation over time.
For example, hosts that are particularly active at infrequent or irregular intervals will not
skew the work distribution in chaotic ways. Contrast this with a scheduler that attempts to
redistribute hosts at intervals based on estimates of the amount of work each host performs
(as is typical in many classic operating system scheduling algorithms). Such an algorithm
would likely assign a host that is highly active at infrequent intervals a large estimate of
anticipated work, despite the fact that most rounds it would be doing very little work. The
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work stealing algorithm we use avoids this problem, since no estimates are made, and hosts
are stolen from other threads on an as-needed basis, and not assigned in anticipation.

In the unlikely event that a user encounters a case where our scheduling algorithm
decreases performance, one of the original scheduling algorithms may be selected instead
via command line arguments. This could be the case when all hosts are identical and
evenly divisible by the number of worker threads, though even then, the difference would
likely be negligible.

4.4 Experimental Results

In this section, we give some experimental results from our implementation of our new
Tor experimentation platform. We start by giving some comparative microbenchmarks for
elf-loader and drow-loader to demonstrate performance and memory improvements. Then,
we compare the performance of Shadow in its original design (state swapping), our new
design making use of drow-loader with dlmopen(), and finally with our new scheduler.

4.4.1 Setup

The experiments were run on different hardware setups, generally using the most readily
accessible machine capable of running the desired experiment. We used a total of three
hardware configurations — one from a desktop computer, and two that use the RIPPLE
Facility [ ].

e Desktop: AMD X8 FX-8370E (8 cores @ 3.3 GHz) machine with 16 GB of RAM,
running Ubuntu 16.04. Used primarily for drow-loader microbenchmarks, where
overall experiment time and resource usage is small.

e Ticks: Six completely independent machines, each with 8 Intel Xeon E7-8870 CPUs
(10 cores + hyperthreading @ 2.40 GHz), 1TB of RAM, running Ubuntu 14.04.
Used for the majority of Shadow experiments, where it was desirable to test the
scalability across the number of threads. The six machines were used concurrently to
more quickly run experiments in parallel, and did not utilize any sort of distributed
computation.

e Tock: A single machine with specifications identical to the Ticks, but with 2 TB of

RAM instead of 1 TB. Used for the larger Shadow experiments, which use more than
1TB of RAM.
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Figure 4.3: Amount of time each worker thread has spent blocked over the course of an
experiment when using work stealing. Simulated Tor network with 268 hosts, simulating
1 hour of operation, on 7 worker threads. Individual threads cannot be readily seen because
their blocked times are nearly identical. Contrast with Figure 3.5.
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4.4.2 drow-loader

To demonstrate the performance improvements of drow-loader over elf-loader, we ran a
series of simple experiments. We first built a minimal shared object, consisting only of
an empty main function, linked against glibc. We then wrote a small program in C that
creates a specified number of new namespaces, and dynamically loads the minimal shared
object into each one. Using this program, we can compare the running time for a given
number of object loads, as well as memory usage. The results of these experiments can be
seen in Table 4.1.

It is worth noting that, since we rely on Linux’s Copy-On-Write mechanism (COW)
and shared pages for reduced memory usage, which are transparent to the application
itself, we cannot rely on the reported Resident Set Size (RSS) for measuring memory
usage. Instead, we record the amount of memory measured as used/available for the entire
system, as reported by the kernel via /proc/meminfo, immediately before the experiment
terminates and immediately after it terminates. While this is less precise in that it contains
noise from the other programs running on the system (for example, daemons), it is a
significantly more accurate measure of real-world memory usage. Indeed, the reported
RSS can and will report that the process is using (almost arbitrarily) more memory than
the machine even physically has available to it, if enough objects originating from the
same physical memory backing are mapped in the process. We were unable to find any
alternative means of obtaining an accurate measure of a single process’ memory usage that
takes into account these deduplication effects, likely because these shared mappings can be
shared across multiple processes as well as in the same process itself, making distinguishing
which specific process is “using” the physical memory difficult or impossible in practice.

The missing entries for 50,000 and 100,000 shared object loads in elf-loader are due
to a bug in the original elf-loader code involving the interaction between the glibc ABI
for stack management and static TLS. This bug caused consistent crashes when used with
sufficiently many loads, even when modifying the size of the static TLS allocation and
recompiling appropriately.

As can be seen in the table, elf-loader exhibits superlinear growth in both runtime
and memory usage. Given that each host will be running multiple simulated processes
and at least one preload library, this growth is clearly at such a rate to be untenable for
larger experiments, even if it were the case that it functioned properly. On the other hand,
drow-loader shows linear growth for memory usage, and while higher load counts begin to
diverge from linear in execution time, they are still well within acceptable ranges for large
experiments (and several orders of magnitude less than what we would expect elf-loader
to perform at).
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Table 4.1: A comparison of the average amount of time and memory elf-loader and drow-
loader take to create a specified number namespaces and dynamically load a minimal shared
object into each one. Single-threaded, run with 10 iterations on the Desktop configuration.
95% confidence intervals provided.
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4.4.3 Shadow

To measure the performance impact of drow-loader on Shadow, we opted to measure actual
workloads across our modifications. In particular, all results are from simulated Tor net-
works of one of two configurations. For all experiments, the first 30 minutes of simulation
time is designated for bootstrapping the network. This bootstrapping consists of some
configuration-specified time to initialize the Tor protocol, which is largely unsuitable for
experimental use. (Specifically, it provides a spacing out of the Tor protocols for commu-
nicating with the directory authorities, so that they are not inundated with packets in a
single round.) The types of operations the hosts are doing during this time are entirely
different from the normal portion of the experiment, and are not generally intended to be
an accurate reflection of any reality, but instead to simply to get the network to a more
realistic state. Once this 30-minute period has passed, the actual experimental data starts
being generated.

For the first of these experiments, a smaller configuration was used, set up such that
one hour of simulation time takes approximately one hour of wall clock time in the origi-
nal Shadow when run with eight worker threads. The smaller configuration simulates one
hour of simulation time for 268 hosts: 20 web servers, 18 Tor relays, and 230 Tor clients.
Each client uses one of the preconfigured traffic behaviors that comes with the Shadow
Tor plugin, designed to simulate web browsing, bulk file downloading, etc. The smaller
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configuration was run with four different versions of Shadow: Shadow before any of our
modifications; Shadow using drow-loader; Shadow using drow-loader with compiler opti-
mizations enabled; and Shadow using drow-loader with compiler optimizations, and our
new scheduling algorithm. Each of these were run with a number of worker threads varying
from 1 to 18, once on each tick machine (for a total of six runs per thread per Shadow
version). The results of these experiments can be seen in Figures 4.4, 4.5, and 4.6.

In Figure 4.4, we plot the number of worker threads vs. the average total runtime of
the experiment, with standard deviations. We can see that the performance of Shadow
with drow-loader is slightly worse than what it was originally. While we cannot say for
certain why this is the case, one possibility is the use of a different compiler and default
optimizations.® However, once we enable compiler optimizations, overall performance is
improved by approximately 30%-40%, for all worker thread counts. After enabling work
stealing, the performance improved by up to 20% over the compiler-optimized version for
smaller worker thread counts, for an overall performance improvement of 40% over the
original Shadow code in most cases, as seen in Figure 4.5.

In Figure 4.6, we take a closer look at the differences in the progress of an experiment
over time. Each line in the figure is a single run of the associated Shadow implemen-
tation (original, drow-loader, drow-loader with compiler optimizations, drow-loader with
compiler optimizations and work stealing), from one of the 18-thread runs on one of the
tick machines. On the horizontal axis is wall clock time, and on the vertical is simula-
tion time, so that the performance at a particular moment in time could be thought of
as the slope of the line. Here, we see that the original Shadow implementation and the
Shadow implementation with just drow-loader have similar bootstrap times. It is after
bootstrapping completes that a slight difference in slope makes the original Shadow code
faster. Similarly, when enabling compiler optimizations, and then work stealing, with the
drow-loader version of Shadow, it is the performance increase observed after initialization
that has the largest overall performance impact (see Figure 4.7). One reason this may be
the case is that there is simply more time spent outside of the initialization period, so this
is where improvements are most noticeable.

Finally, we tested Shadow with a significantly larger experiment setup. The larger test
consists of 42 simulated minutes® of 56,898 hosts: 5,100 web servers, 1,998 Tor relays,

5As stated in Section 3.2.1, prior to our modifications, Shadow could only use the default optimizations,
and only be used with LLVM. Currently, drow-loader makes use of some handwritten assembly from elf-
loader that does not assemble with LLVM (though this could likely be fixed, we were unable to do so).

5The experiment was originally set up to be 45 minutes of simulated time, but an unfortunately timed
power failure caused the truncation of one of the experiments. Since there is no particular activity at the
end of a simulation that we are interested in measuring, and because of the length of time the experiments
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and 49,800 clients. Again, the first 30 minutes of the experiment are configured to be
used for bootstrapping. As the experiments take on the order of 5 days to complete, and
because there is only one machine in RIPPLE that is capable of running them, we opted
to measure the differences in three Shadow implementations (original, drow-loader with
compiler optimizations, drow-loader with compiler optimizations and work stealing) with
64 worker threads one time each. The results of these experiments can be seen in Figure 4.8.

While the impact of drow-loader on Shadow is still noticeable for an experiment of this
size, the impact appears to be reduced. This may be due to a greater amount of time being
spent in the running of the hosts themselves, rather than in the Shadow code whose design
was improved. Unlike the smaller experiment, the most significant improvements appear
in the initialization portion of the experiment, where drow-loader’s greater concurrency in
loading and bootstrapping Tor is beneficial.

The performance impact of work stealing was more noticeable, with a decrease in
overall run time of approximately 5%. Furthermore, there was a considerable difference in
the amount of time threads were blocked on the round barrier (and thus doing no work).
When using drow-loader without work stealing, the time spent blocked on the barrier
ranged from 20%-63% across threads, with an average blocked time of 45%. With work
stealing, the barrier block time ranged from 18.6%-18.7% across all 64 worker threads.

One potential explanation for the lack of a more significant speedup is the reality of
Amdahl’s law, which states that the speedup of a workload is determined by the fraction
of the workload where the speedup applies and the size of that speed up | ]. While
reducing blocked time does not translate directly into a value of “increased parallelization”
(since it is typically the case that not all threads block at once), if we estimate the reduction
of blocked time as an increase in the parallel portion of an experiment by an average of
26% (approximately the improvement we saw from work stealing), we can use Amdahl’s
law to show with 64 worker threads, the expected speedup would be

1
=1.34
(1-.26) + 28

which, while non-negligible, is less significant than the improvements in the smaller ex-
periment. Again, the smaller experiment had a more significant impact from the compiler
optimizations than the larger experiment (due to Amdahl’s law as applied to the fraction
of the experiment in which the optimizations were applied).

take to complete, we simply look at the first 42 simulated minutes of all experiments.
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Chapter 5

Future Work

While our new process simulation technique comes with its own observable benefits of
greater simplicity and performance, the primary contribution comes from the ability to
provide further improvements to Tor simulation using Shadow. There are many ways in
which Shadow’s design and implementation can be improved to allow for performance that
more easily accommodates larger and more realistic networks.

For one, the ability to migrate hosts across worker threads allows for a new line of
research in scheduling algorithms for Shadow. While we have already implemented a new
scheduler that provides a noticeable performance improvement over Shadow’s execution,
there is no reason to believe that this algorithm is optimal. Potential avenues for fur-
ther research along these lines include reducing lock contention, improved data structures
for managing events, and applying the existing body of research and state of the art on
scheduling algorithms to Shadow. For example, it is possible that every thread attempting
to query every other thread’s host queue every round is overly thorough, and less time could
be spent attempting to steal work. As another example, it is possible that there would
be a means of reducing the remaining 18.6% of barrier waiting by sorting the hosts or
events to be run by their expected execution times. Since this blocking is uniform across
threads now, a reduction in this number should translate directly into lower execution
times. Without a more thorough investigation, we do not know exactly how advantageous
such modifications would be.

That said, there is also the possibility that the most fruitful performance improvements
will come from aspects outside the scheduler. For example, it may be possible to improve
performance by using hosts whose effective behaviors are the same as multiple hosts (so
that, for example, one Tor client instance could simulate several), resulting in fewer hosts
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needed overall. To do so, one could utilize our newly provided functionality of function
interposition specific to a particular host. Using this feature, Shadow could create events
specific to the host, allowing for, as an example, different simulated behaviors for Tor
clients and Tor relays.

An area of research that requires more examination is the possibility of single Shadow
experiments run across multiple machines. While it is unlikely that doing so would see
a significant performance improvement, at the very least until a greater performance im-
provement can be seen from greater worker thread counts on a single machine, there is still
merit to pursuing this feature because of the greater availability of multiple machines than
single machines with sufficient memory for large experiments. It stands to reason then that
adding such functionality would allow for more research groups to experiment on large-
scale Tor simulations. The greater encapsulation of hosts provided by our modifications to
Shadow is likely to prove useful in implementing this functionality.

Finally, it is perhaps worth investigating why when DCE integrated elf-loader, it had

a significantly larger performance impact than drow-loader did with Shadow. | ;

| While it is likely that the cause is the much smaller networks and presumably much

simpler hosts being run in the DCE experiments, it is also possible that DCE and/or ns-3
are making use of techniques that would prove useful to integrate into Shadow.
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Chapter 6

Conclusion

This thesis aimed to allow for faster simulation of existing Tor experiments, and to allow
for larger Tor experiments to be run, by constructing a new experimentation platform to
do so. In pursuit of that aim, we have presented a new design for Shadow’s execution
of simulated processes and implemented said design. We did so using drow-loader, our
custom dynamic loader, which is catered for network simulation with its unique ability
to dynamically load hundreds of thousands of ELF files into isolated namespaces. We
have also implemented a new scheduler for Shadow, to demonstrate the usefulness of this
new design. We evaluated our implementation, and have shown considerable performance
improvements, with overall run times reduced by up to 49% in some configurations.

One way this could prove beneficial is to Tor development. As can be seen in some of the
experiments performed, it is not uncommon for Shadow to finish a simulation in less wall
clock time than the total simulation time. By providing faster turnaround times for more
moderately sized experiments that can be used to test the correctness of modifications
to the Tor source code, Tor developers could take a more iterative approach to their
development practices.

We have also provided examples of several lines of future research that could continue
to build upon the work described here. By pursuing these lines of research, we can hope
to achieve the ultimate goal of simulating Tor networks that rival, or even exceed, the size
of the true Tor network.
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