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Abstract

With millions of people suffering from dementia worldwide, the global prevalence of

this condition has a significant impact on the global economy. As well, its prevalence has

a negative impact on patients’ lives and their caregivers’ physical and emotional states.

Dementia can be developed as a result of some risk factors as well as it has many forms

whose signs are sometimes similar. While there is currently no cure for dementia, effective

early diagnosis is essential in managing it. Early diagnosis helps people in finding suitable

therapies that reduce or even prevent further deterioration of cognitive abilities, and in

taking control of their conditions and planning for the future. Furthermore, it also facil-

itates the research efforts to understand causes and signs of dementia. Early diagnosis is

based on the classification of features extracted from three-dimensional brain images. The

features have to accurately capture main dementia-related anatomical variations of brain

structures, such as hippocampus size, gray and white matter tissues’ volumes, and brain

volume.

In recent years, numerous researchers have been seeking the development of new or

improved Computer-Aided Diagnosis (CAD) technologies to accurately detect dementia.

The CAD approaches aim to assist radiologists in increasing the accuracy of the diagnosis

and reducing false positives. However, there is a number of limitations and open issues in

the state-of-the-art, that need to be addressed. These limitations include that literature
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to date has focused on differentiating multi-stage of Alzheimer’s disease severity ignoring

other dementia types that can be as devastating or even more. Furthermore, the high

dimensionality of neuroimages, as well as the complexity of dementia biomarkers, can

hinder classification performance. Moreover, the augmentation of neuroimaging analysis

with contextual information has received limited attention to-date due to the discrepancies

and irregularities of the various forms of data. This work focuses on addressing the need

for differentiating between multiple types of dementia in early stages.

The objective of this thesis is to automatically discriminate normal controls from pa-

tients with various types of dementia in early phases of the disease. This thesis proposes

a novel CAD approach, integrating a stacked sparse auto-encoder (SSAE) with a two-

dimensional convolutional neural network (CNN) for early identification of multiple types

of dementia based on using the discriminant features, extracted from neuroimages, incor-

porated with the context information. By applying SSAE to intensities extracted from

magnetic resonance (MR) neuroimages, SSAE can reduce the high dimensionality of neu-

roimages and learn changes, exploiting important discrimination features for classification.

This research work also proposes to integrate features extracted from MR neuroimages

with patients’ contextual information through fusing multi-classifier to enhance the early

prediction of various types of dementia.

The effectiveness of the proposed method is evaluated on OASIS dataset using five
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different relevant performance metrics, including accuracy, f1-score, sensitivity, specificity,

and precision-recall curve. Across a cohort of 4000 MR neuroimages (176 × 176) as well

as the contextual information, and clinical diagnosis of patients serving as the ground

truth, the proposed CAD approach was shown to have an improved F-measure of 93% and

an average area under Precision-Recall curve of 94%. The proposed method provides a

significant improvement in classification output, resulted in high and reproducible accuracy

rates of 95% with a sensitivity of 93%, and a specificity of 88%.
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Chapter 1

Introduction

1.1 Motivation

Dementia is a brain disorder characterized by a chronic decline in mental ability due

to loss of, or damage to, neurons in the brain. The term dementia is widely used for

brain disorders that result in a set of symptoms that disturb normal brain functions.

These include thinking, intellectual abilities, memory recollection, problem-solving, and

use of language. Dementia is severe enough to affect the patients’ daily activities. In

recent years, the incidence of dementia has increased at an incredible rate. Every year,

7.7 million new cases are diagnosed as having dementia worldwide. In [89], the article

reported that 47.5 million people have dementia worldwide, with just over half (58 %)

living in low- and middle-income countries. The global prevalence of dementia has had a

significant impact on patients’ lives, their caregivers’ physical and emotional states, and
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the global economy. In 2015, total health care cost of people with dementia amounted more

than 1 percent of the global gross domestic product or US$ 818 billion. Early diagnosis

of dementia is essential to help people to take control of their condition, plan for the

future, and get proper treatment to delay the progression of the disease into advanced

stages, as well it facilitates the research efforts to understand the causes of dementia

[39]. Dementia has many types who often present themselves with very similar symptoms.

These types can be split into two groups based on which part of the brain is affected.

Cortical dementias happen because of problems in the cerebral cortex, whereas subcortical

dementias happen because of problems in the parts of the brain beneath the cortex. When

studying medical neuroimages with various dementia types, many differential clinical and

biochemical markers can be observed with respect to the cerebral cortex, hippocampus,

ventricles, and gray and white matter tissues.

Accordingly, numerous researchers have been working towards the development of new

or improved CAD technologies to accurately detect dementia. There is a number of lim-

itations in the state-of-the-art, and there are many gaps that need to be addressed. This

includes the state-of-the-art studies focused on differentiating various stages of severity of

Alzheimer’ s disease (AD), whereas there remains a gap in the early diagnosis of other

types of dementia that can be as devastating or even more. Moreover, the high dimen-

sionality of neuroimages, as well as the extreme complexity of dementia biomarkers, can
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hinder classification performance. Furthermore, the combination of medical images and

the contextual data is challenging. However, this work focuses on early identification of

various types of dementia using medical neuroimages.

This thesis proposes a novel deep-learning-based CAD approach with an ensemble of

classifiers to differentiate among multiple types of dementia in the early stages. This

research work proposes using dimensionality reduction techniques to reduce images’ high

dimensionality and extract key features and then accurately classify different forms of

dementia with lower computational costs and lower storage space. Thus, the dimensionality

reduction helps in making the learning model more robust and faster. Furthermore, this

study aims to enhance classification performance by fusing the classification outputs of two

individual classifiers.

1.2 Objectives and Hypothesis

This study aims to help radiologists in obtaining early accurate predictions of various

types of dementia. Section 1.2.1 summarizes the research objectives. These objectives

then assisted in formulating hypotheses, which will be tested in this research. These

hypotheses are presented in Section 1.2.2.
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1.2.1 Research Objectives

This thesis aims to accurately classify several types of dementia in early stages. To ac-

complish this goal, this research work seeks to provide a fast and a robust CAD model for

the classification task by reducing the high dimensionality of neuroimages while extracting

discriminant features . Thus, dimensionality reduction allows for multiple types of demen-

tia to be classified with lower computational costs and storage space. Furthermore, the

research work aims to enhance the accuracy of the model for predicting multiple types of

dementia by integrating features extracted from neuroimages and contextual data through

the fusion of multi-classifiers.

1.2.2 Research Hypotheses

This research work seeks to prove some hypotheses using some experiments. These hy-

potheses are summarized as follows:

• Predicting multiple types of dementia with deep learning of dementia biomarkers

could be achieved with very high classification accuracy.

• Reducing high dimensionality of neuroimages into high-level feature would yield

higher classification performance and accurate identification of various types of de-

mentia biomarkers.
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• Incorporating medical neuroimages with the clinical and physiological data, utilized

by many classifiers, would enhance the accuracy of the diagnosis and outcome early

prediction of several types of dementia.

1.3 Contributions

The proposed research offers a deep-learning-based CAD approach using the Convolutional

Neural Network (CNN) and logistic regression for distinguishing multiple types of dementia.

The most prominent contributions of this research paper include:

• The Diagnosis of Various Types of Dementia using a convolutional neural

network:

State-of-the-art research has focused on differentiating multiple stages of Alzheimer’s

disease, ignoring other dementia types, i.e., vascular dementia and frontotemporal

lobe degeneration, that can be as devastating or even more. In this research, a novel

convolutional neural network (CNN)-based approach is proposed for the early di-

agnosis of multiple types of dementia. The CNN takes images’ pixel intensities to

learn high-level features, representing dementia characteristics. Then, the learned

features are classified by feeding them into the output layer of the CNN that rec-

ognizes the type of dementia. Our results perform better than results of comparing

state-of-the-art approaches.
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• Feature extraction and dimensionality reduction using a Stacked Sparse

Autoencoder (SSAE):

Neuroimages may suffer from the curse of high dimensionality that makes it difficult

to visualize and capture features required for classification during the analysis phase.

In fact, high dimensionality of images has a negative impact on the performance of

Machine Learning (ML) classifiers during training on these images, so that overfitting

increases due to increased data complexity. To address this concern, the SSAE is

proposed for reducing high dimensionality of data and extracting relevant features

to provide a rapid and robust model for predicting dementia in its early stages, and

then improving accuracy and efficiency of the model for early identification of five

types of dementia.

• Incorporation of contextual data through multiple classifiers fusion:

Different types of dementia share the same set of pathological characteristics. This

is further compounded by the need for early diagnosis in which medical brain scans

can show limited biomarkers. Thus, neuroimages may not be sufficient for accurate

identification of dementia. This work proposes a novel context-aware CAD for early

detection of multiple types of dementia by augmenting the medical imaging data

with contextual patients’ data through the decision fusion of multiple classifiers to
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enhance the accuracy of identification of the various types of dementia.

1.4 Thesis Outline

The structure of this thesis can be broken down into six chapters.

Chapter 2 provides a general overview of dementia by explaining the statistics of its

prevalence, reviewing the risk factors that increase the chances of developing dementia, and

discussing the most common types of dementia. It also covers an overview of all medical

tests used in diagnosing dementia as well as a brief study of the most popular performance

measures used to evaluate the CAD methodologies in diagnosing dementia. Furthermore,

the most common features that have been used in state-of-the-art CAD methodologies to

enhance early detection of dementia have been highlighted. This chapter also provides a

comprehensive review of the CAD methodologies that have been implemented for early

detection of dementia.

Chapter 3 proposes a novel deep-learning-based CAD approach for classification of mul-

tiple types of dementia. The proposed approach utilizes the CNN to extract features, which

are then used for classifying MR brain images into one of the various types of dementia.

Then, the classification accuracy is computed for evaluating the proposed approach’s per-

formance and comparing it to the performance results of some state-of-the-art techniques

in the detection of dementia.
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Chapter 4 advances a deep-learning-based algorithm previously proposed using an auto-

encoder that seeks to learn a subset of relevant features to facilitate learning and improve

classification performance. Then, the CNN is trained with high-level features of MRI

images for classification. The performance of the proposed learning approach is verified

by using various classifiers with both the SAE-based low dimensional dataset and with

PCA-driven representation for comparison.

Chapter 5 advances the learning approach provided in Chapter 4 to enhance the per-

formance of early detection of multiple types of dementia. It offers a novel CAD system

for early detection of multiple types of dementia that initially pre-trains SSAEs to extract

features, denoting differentiable structural variations in neuroimages. Subsequently, the

extracted features are classified using CNN. As well, the extracted features, as well as con-

text, are classified by logistic regression into categories of dementia types. Probabilities,

outputted by two classifiers are fused by linear pooling decision fusion to obtain the final

decision probability.

Finally, Chapter 6 summarizes the study’ s results presented in Chapter 3, Chapter 4,

and Chapter 5 as well as presents possibilities for future research work.
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Chapter 2

Background

2.1 Introduction

Dementia is a brain disorder that is characterized by a chronic decline in mental ability

due to loss of, or damage to, neurons in the brain. The term dementia is a widespread term

for brain disorders that result in a set of symptoms that disturb normal brain functions,

such as thinking, intellectual abilities, memory recollection, problem-solving, and use of

language, serious enough to affect their daily activities [23]. In recent years, the number of

patients who have Alzheimer’s disease (AD) and other dementias indicates the prevalence

of such cognitive impairment. Early diagnosis of dementia is intended to help people to

get proper treatments, prevent or slow down cognitive ability deterioration, as well as seek

the appropriate support and plan for the future [39]. Accordingly, numerous researchers

have been seeking the development of new or improved technologies to accurately detect
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dementia. The most prominent diagnostic technique that can capture early symptoms of

dementia is through revealing the internal structure and the function of the brain. This

paper provides a novel comprehensive study of the state-of-the-art CAD methodologies

that enable early detection of dementia.

This chapter provides a novel comprehensive study of the state-of-the-art CAD method-

ologies that enable early detection of dementia. Section 2.2 provides a general overview

of dementia by explaining statistics of its prevalence, reviewing the risk factors increasing

the chances of developing dementia, and discussing the most prevalent types of dementia,

including AD, in more details, as well as describing what happens in the human brain as

dementia develops. Section 2.3 gives an overview of all medical tests used in diagnosing

dementia, as well as discusses their challenges and limitations. This is followed in Section

2.4 by a brief study of the most popular performance measures used to evaluate the CAD

methodologies in diagnosing dementia. Section 2.5 highlights the most common features

that have been used in state-of-the-art CAD methodologies to enhance early detection of

dementia. Section 2.6 provides a comprehensive review of the CAD methodologies that

have been implemented for early detection of dementia, and identifies their gaps.
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2.2 Overview of Dementia

2.2.1 Incidence and Prevalence of Dementia

Over the past few centuries, many researchers have worked on developing the general notion

of dementia. The Latin term ”Dementatus”, which means out of one’s mind, is considered

as the root of term ”Dementia” [2]. According to [19], the physician Aurelius Celsius was

the first person who used the term ”dementia” as a medical term to describe delirium

resulting from having got a fever during the first century A.D. By the fourth century A.D.,

the physician Oribasus conducted his first attempts to describe an etiology far from aging

through creating a relationship between the signs of cerebral atrophy condition and the

aging process [8].

In recent years, the prevalence of dementia has risen incredibly throughout the world. In

England alone, more than 500,000 people had been diagnosed with dementia in 2011[15].

This number has significantly increased such that, in 2015, it has been reported that

46.8 million people worldwide were living with dementia and the projections indicate a

significant increase which is estimated to be about 75.6 million by 2030, and will almost

triple by 2050 to 135.5 million [56]-[57]. Total health-care costs for people with dementia

amounted to more than 1 per cent of the global gross domestic product (GDP), or US $

604 billion, in 2010 [7]. Based on the facts mentioned above, it can be concluded that the
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prevalence of dementia forms is expanding rapidly in most world regions. Generally, the

number of cases with different types of dementia increases due to the exposure to various

environmental and genetic factors that are discussed in the next section.

2.2.2 Causes and Types of Dementia

Dementia can develop as a result of a number of risk factors; some of these factors are

advanced age, genetic disorder, traumatic brain injuries, and environmental factors [16].

Advancing age is the greatest known risk factor of dementia. The majority of dementia

cases have been diagnosed in people over 65 years old [3]. As well, family history may

play a role in increasing the likelihood of developing dementia through having dominant

genetic mutations; abnormal changes in the sequence of chemical pairs that make up genes

[58]. Furthermore, the process of developing dementia could be increased by environmental

factors, such as drinking alcohol above the recommended level and excessive smoking [59]-

[48]. In addition, exposure to head injuries frequently or suffering from atherosclerosis and

hypertension could increase the risk of developing some types of dementia.

Dementia disorders have many forms whose signs are sometimes similar; nevertheless,

some types of dementia are more popular than others. Alzheimer’s disease (AD) is the

most prevalent type of dementia, as can be noted from Figure 2.1. AD accounts for nearly

63 percent of all diagnosed cases of dementia and it has been estimated that almost five

12



million people from various age groups in the United States of America have been diag-

nosed with AD in 2015 [5]. AD was discovered by Dr. Alois Alzheimer in the middle

of 1906. It is defined as a neurological disorder caused by loss of brain cells that results

in memory degeneration and cognitive impairment [60]. As illustrated in Figure 2.1, the

second most common type of dementia is called vascular dementia (VaD). Recently, the

percentage of patients with vascular dementia has risen gradually in which 10 percent of all

cases diagnosed with dementia have been clinically diagnosed as having VaD [6]. Addition-

ally, having abnormal characteristics from more than one type of dementia concurrently

represents mixed dementia; which is the third prevalent type of dementia. Overall, many

other forms of dementia have been clinically diagnosed, including Lewy-body dementia,

Frontotemporal dementia, young onset dementia, Mild Cognitive Impairment (MCI), and

some other rare forms [61]. As a result of the increased prevalence of AD and VaD around

the world in comparison with other dementia types, these two types will be discussed in

more depth through the rest of paper.

2.2.3 Understanding Dementia

Once dementia disease is triggered, whether by having any of the abnormal genes or through

the exposure to any of the environmental factors, some abnormal changes take place in

the human brain that affect its functionality. For example, plenty of abnormal structures
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Figure 2.1: The prevelance of types of dementia.

called plaques and tangles form in the brain causing AD, as shown in Figure 2.2 [62],

or the oxygen supply decreases to the brain causing VaD, which may be the result of a

series of injuries to blood vessels in the brain [60], as seen in Figure 2.3 (D) [63]. Due

to an abundance of these plaques and tangles in the brain, nerve cell connections are

affected. As a result, these nerve cells may die [64]. Also, the human living brain has

neurotransmitters-significant chemicals that are responsible for conveying signals among

nerve cells. The amount of these chemicals decreases in the brain when dementia develops.

Eventually, the symptoms of the disease start to emerge because of the occurrence of these

abnormal changes.

Some symptoms of dementia like memory loss, personality change, disorientation, mood

swings, and bad concentration are shared among its various forms while some others have
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Figure 2.2: Difference between structures of normal and Alzheimer’s diseased brains [62].

been clearly distinct to some types [65]. The diagram shown in Figure 2.4 clarifies the

process that the human brain goes through as it develops dementia. When studying and

investigating scans of normal brains and demented ones, many differential characteristics

can be observed among them in terms of the cerebral cortex, hippocampus, and ventricles.

First, as shown in Figure 2.3 (B) and (D), the cerebral cortex; the outer layer of the brain,

referred to by arrow 1, looks smaller in a brain with dementia compared to in a healthy

brain. In terms of hippocampus’s size, referred to by arrow 2 in Figure 2.3 (B) and (D),

it can been seen that the hippocampus is shrivelling up in a demented brain while it looks

bigger in a normal brain. While the ventricle region, referred to by arrow 3 in Figure 2.3
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Figure 2.3: The differences between Normal brain, brain diagnosed with Alzheimer’s disease
and brain diagnosed with vascular dementia.

(B), looks enlarged in brain diagnosed with dementia compared to that in healthy brain.

2.3 The Diagnosis of Dementia

The process of diagnosing dementia is achieved by the examination of its symptoms and

signs to identify the nature of the disorder. Diagnosis of dementia, especially in its early

stages, is often complicated due to the absence of conclusive tests diagnosing the different

types of dementia. As illustrated in Figure 2.5, the process of diagnosing dementia may
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Figure 2.4: What happens in dementia?.

involve five different categories of exams that include: physical examinations, neurological

examinations, neuropsychological tests, laboratory tests, and brain imaging techniques [5].

During the physical examination, the physicians are expected to review all medications

used by the patients; and check their blood pressure, temperature, and heart pulses. As

well, physicians are expected to inquire about dietary habits and nutrition, in addition

to the use of alcohol, to identify the probability of other health problems that may cause

strokes or brain tumors [66]. In contrast, through evaluating memory, reflexes, speech, eye

movement, and muscle tones, neurological examinations are used to detect nervous system

problems that are causing difficulties with thinking and behavior [67]. Patients may be

subjected to laboratory tests used to collect blood or urine samples in order to detect

physical problems affecting the brain, such as vitamin B-12 deficiency or an underactive

thyroid gland. Also, patients could be subjected to a Mini Mental State Examination
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(MMSE); a 30-points questionnaire in which a score of 23 or lower is indicative of cognitive

impairment, in order to evaluate mental abilities like attention, memory, language, and

planning [28]. In addition to all previously mentioned clinical tests for diagnosing cases

with dementia, computer imaging is widely used in capturing scans of the human brain

in order to rule out other brain disorders. Overall, it has been noticed that neuroimaging

is more effective than clinicians and radiologists in the detection of dementia in its early

phases.

Figure 2.5: The set of common tests used for diagnosing dementia.

2.3.1 Brain Imaging Techniques for Diagnosis of Dementia

Neuroimaging aims to create high-quality images of structure and function of the nervous

system inside the human brain to detect brain disorders by using any, or the combination,
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of medical imaging techniques, such as computerized tomography (CT), magnetic reso-

nance imaging (MRI), positron-emission tomography (PET), and single proton emission

computerized tomography (SPECT). These four imaging techniques are the most com-

monly used techniques in diagnosing dementia. The procedure of CT scans is used to

produce cross- sectional images through taking a series of x-ray images of the brain from

several angles and using computer processing techniques to fuse them. In addition, the

MRI scan is a radiology technique that helps to show structure and metabolic function

of the brain through using a magnet and radio frequencies [68]. Functional SPECT, that

provides information about regional cerebral blood flow, has been found to be a valuable

aid for early diagnosis of AD while PET provides information about Amyloid beta plaques

deposition [29]. Overall, radioactive tracers are used during SPECT scans in order to track

cerebral perfusion distribution of substance within brain tissue as well as these tracers dis-

close Amyloid beta plaques in the brain during PET imaging. Brain imaging outperforms

all tests mentioned above in early detection of dementia in which it distinguishes among

dementia and other disorders like tumors that may lead to symptoms similar to that of

dementia. During diagnosing dementia, the use of neuroimaging techniques in achieving

this purpose makes it possible to visualize the structure and function of the brain in a

noninvasive way and see various changes in the brain [69].

Table 2.1 provides a comparison between these four imaging techniques in terms of
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possible negative impact, costs of the procedure, the quality of images, and the time

spent in conducting the brain test. As shown in Table 2.1, all stated imaging techniques,

except MRI, have an effect on the patient’s body due to an involvement of ionization

radiation [70]. In terms of the financial cost, PET is the most expensive technique among

all the aforementioned radiology techniques [71]. Regarding the quality of the image, MRI

provides high quality images with high-resolution, and more details about soft tissue and

anatomic structures such as gray and white matter in the brain. Among all previously

discussed imaging techniques, CT is the fastest technique in providing information during

diagnostics procedure.

Table 2.1: Comparison of Different Imaging Modalities

Measures CT MRI PET SPECT

Cost Low- Med Low - High Very High High

Effect on body Yes No Yes Yes

Quality of image Low Very high High High

Examination time Only 15 min 30-45 min 30 m-1 hour 30 m-2 hours

2.3.2 Challenges of the CAD of Dementia

Although diagnosing dementia by using brain imagery techniques yields a number of signif-

icant advantages, it has proven to be a challenging task [72]. The diagnosis of early stages

of dementia further complicates the task as it encounters many challenging problems. The
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following list discusses the most prominent set of these challenges:

• Interactive visualization and navigation: During the scanning of a huge amount of

data, the process of navigating and visualizing this large data collection is challenging.

For each human brain, different cuts of the brain are taken and stored in a dataset.

Each of theses cuts is scanned by Polarized Light Imaging (PLI). After interactively

visualizing nerve fibers by using a 3-D navigator, the visualization of these nerve

fibers merged with PLI scans needs to be stored in a memory; therefore, the memory

of the Central Processing Units must be a very huge space to be able to store all

datasets without being overloaded [21].

• Compression for storage or transmission: Most medical images need to be compressed

using lossless compression in order to store the huge amount of images or transmit

them. Data for each pixel of the image is valuable. Image compression is one of

challenging problems in image processing since the compressed image could emerge

with severe loss of image quality.

• Quality of image: The quality of medical images is calculated by measuring the

degradation of the image. In fact, the quality of medical images relies on various

factors, including noise, image contrast, and artifacts. Many researchers have worked

on improving the quality of medical images. In particular, some researchers sought
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to increase the MR image quality by reducing image noise through an application of

lossy compression as a noise reduction filter [30].

• Preprocessing and Segmentation: Image preprocessing and segmentation is key to

standardize image quality, in terms of resolution, artifacts, and noise levels. Such

preprocessing can be used for measuring and visualizing the brain’s anatomical struc-

tures, analyzing changes in the brain, and delineating pathological regions. The ac-

curacy of the CAD methodology may significantly depend on the accuracy of the

preprocessing and segmentation technique used.

2.4 Performance Measures of CAD of Dementia

The performance of CAD of dementia in literature is assessed through the calculation

of various measures, such as sensitivity, specificity, predictive value, reliability, and the

accuracy of diagnosis in early detection of dementia. The rest of this section discusses

these performance measures.

2.4.1 Validity

The validity of the available set of screening tools in identifying early dementia is measured

by investigating the ability of these tools to differentiate between healthy people and pa-
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tients with dementia as well as investigating the ability to differentiate between subgroups

of patients based on type of dementia [13]. This validation is evaluated by computing

sensitivity, specificity, and predictive values of diagnosing dementia.

• Sensitivity: The probability of diagnostic tests to identify the subjects who have

dementia [9]. The CAD sensitivity can be calculated by the formula given in Equation

2.1, in which the value of a refers to the total number of patients having dementia as

a positive result of the test while the value of c indicates to total number of people

with dementia who tested negative. Thus, a + c refers to the total number of subjects

with dementia.

Sensitivity =
a

a+ c
(2.1)

• Specificity: The probability of negative tests identifying subjects without dementia.

The CAD specificity can be calculated by the formula given in Equation 2.2 [9].

Specificity measures the total number of patients the system classifies as not having

dementia, referred to by d, compared to the total number of subjects without demen-

tia, refers to by d + b in which b indicates to people without dementia who tested

negative.

Specificity =
d

d+ b
(2.2)
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• Predictive values: Predictive values (PV) are the sum of rates of people who are

correctly identified as having dementia, i.e., true positives (TrP), and rates of people

who are correctly identified as not having dementia, i.e., true negatives (TrN) [73].

PV is given by

PV = TrP + TrN (2.3)

2.4.2 Inter-rater Reliability

Many studies sought to evaluate Inter-rater reliability of traditional early diagnosis methods

of dementia. In fact, Inter-rater reliability is evaluated by measuring how many physicians

diagnose the same samples of patients by using the same diagnostic test and got the

same diagnosis results. CAD systems aim to support radiologists in the early diagnosis of

dementia by providing preliminary interpretations of the medical images [31]. These CAD

systems are responsible for analyzing the medical imagery and yielding a decision on their

interpretation. Therefore, CAD algorithms need to preform with high reliability such that

these algorithms should continue to produce similar results under consistent conditions

over time.

2.4.3 Accuracy

The key performance measure for CAD is the accuracy of the image interpretation in

differentiating normal controls from patients with cognitive impairment. The accuracy can
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be evaluated by a number of measures, some of them discussed below:

• Classification Accuracy: It is the percentage of correct predictions in identifying pa-

tients with early stages of dementia to the total number of samples. The classification

accuracy can be calculated by Equation 2.4, in which the value of a + b + c +d refers

to the total number of subjects.

Accuracy =
TrP + TrN

a+ b+ c+ d
(2.4)

• Confusion matrix: It is a two dimensional matrix where each row of the matrix rep-

resents an actual class while each column represents a predicted class. By evaluating

the performance of a CAD algorithm against a test dataset with known ground truth

diagnosis, each matrix cell refers to the number of subjects of the predicted class

with respect to their actual class.

• Precision: It refers to the closeness of two or more measurements to each other.

Precision is independent of accuracy. In order to get the high precision of dementia

diagnostics, CAD systems provide consistent interpretations of medical images.
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2.5 Brain Image Features For Diagnosing Dementia

Individual measurable properties of the human brain can be observed to discriminate

healthy brains from those brains that are developing dementia. This section describes the

most popular features in the human brain observed and measured by the state-of-the-art

CAD methodologies for the early detection of dementia.

2.5.1 Voxel-Based Morphometry (VBM)

VBM is a neuroimaging analysis technique that has been developed to identify the focal

differences in the structure of human brain. The VBM involves normalizing brain images

and then segmenting it into gray matter and white matter that are smoothed using an

isotropic Gaussian kernel. Finally, the differences between gray and white matter are

analyzed [32]. VBM has been used to characterize a variety of diseases, including Down’s

syndrome, Parkinson’s disease, and Alzheimer’s disease.

2.5.2 Regions Of Interest (ROIs)

ROI in medical images is an area on a digital image that circumscribes a desired anatomical

location in the human brain. The characteristics of the ROIs are analyzed and average

parametric values are computed. Extracting morphologic properties of an ROI, including

volume and dimensions of length, assists in distinguishing between normal brain and brain
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diagnosed with dementia [17]. Some researchers sought to calculate the volume of the ROI

to identify the demented patients through use of Multi-Atlas based Label propagation

(MALP) and the expectation maximization algorithm [33].

2.5.3 Hippocampal Regions Intensity Features

Hippocampus is one of the key parts of the brain that is responsible for memory. However,

the hippocampal region may suffer from neuro-degeneration early as dementia develops.

There are a number of reliable intensity features of the hippocampal region that deter-

mine the hippocampal body health. These features include the mean, kurtosis, skewness,

standard deviation and wavelet-based texture features of the hippocampal region [34].

2.5.4 A Combination of Volume, Thickness, and Shape

• Hippocampal volume: Studies have identified the relationship between memory per-

formance and hippocampal volumes [35]. The volume of hippocampus in the brain

can be measured by the Multi-Atlas Segmentation (MLS) method and then using an

expectation maximization algorithm [36].

• Cortical thickness: Cortical thickness represents the thickness of the outer layers of

the cerebral cortex in the brain. It is one of the main commonly used features in

the state-of-the-art CAD of dementia methodologies. The cortical thickness of the
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brain commonly determined on the basis of the brain’s gray matter segmented in

neuroimaging data [107].

• Shape features: The shape features could be computed by the use of one of the

spectral shape descriptors, like ShapeDNA [37]. There are various types of shape

features that can be computed, such as BrainPrint and shape differences between

different joined regions within the brain [14].

• Volume and intensity of entorhinal cortex: Lot of models that have been developed

recently for the detection of dementia spotlights changes in hippocampus and en-

torhinal cortex. The entorhinal cortex is a region of the brain, located near from the

hippocampus. Patients diagnosed with dementia, especially those with AD usually

suffer from atrophy of entorhinal cortex [35].

2.6 A Classification of State-of-the-Art CAD Approaches

of Early Detection of Dementia

Our problem is to detect multiple types of dementia in their early stages using MRI scans.

Significant effort has been made to develop an effective approach to aid in the identification

of early cases of dementia. Recently, various state-of-the-art CAD methodologies for early

detection of dementia have been proposed. These methodologies are classified with respect

to the need for preprocessing, features used to describe dementia biomarkers, and learn-
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ing techniques. Initially, this relevant literature can be divided into learning techniques,

which require segmentation and feature extraction as preprocessing steps and techniques,

which can extract features from input without such preprocessing. Fig. 2.7 shows the

classification of the CAD methodologies for identification of dementia.

Before training some learning techniques, a meaningful representation of observation is

obtained by using feature extraction techniques as preprocessing step and then classified

into categories like NC or patients with dementia based on the extracted features. Here,

the following techniques, which perform data classification after preprocessing it (see Table

2.6.1.3).

Other techniques operate on features extracted from images by itself and classify them

as NC or patient with dementia. The classification of techniques also can be based on the

features, which are used to classify a given image as NC or not. Table 2.6.2.2 provides a

comparison between the key CAD methodologies in literature, not required preprocessing

for detecting dementia.
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2.6.1 Techniques Requiring Feature Extraction as Preprocessing
step:

2.6.1.1 Support Vector Machine (SVM)

Numerous research efforts have proposed using Kernel Support Vector Machine (SVM)

[80] as a classifier to discriminate NC from patients with dementia. In [1, 26, 35], re-

searchers have applied Voxel-based morphometry (VBM) [50] using Statistical Parametric

Mapping (SPM8) to analyze data, reduce a set of features and then learn the meaningful

representation of data. These studies computed the grey matter densities from medical

images to classify various stages of AD. On the contrary, Sarica et al. [18] proposed using

FreeSurfer?s means to learn features from MRI scans. The extracted features included

cortical and subcortical volumes, and hippocampus volume to distinguish between AD,

MCI, and NC. In [28], the researchers have also focused on reducing the high dimension-

ality of input data before training SVM for classification and transforming data into a

reduced set of features. Dimensionality reduction of the neuroimaging data was carried

out using Principal Component Analysis (PCA), Partial Least Square, and Independent

Component Analysis. Ramrez et al. study was conducted through combining discriminant

image parameters as best input vector as well as using ROIs for classifying and selecting

the discriminant slices - coronal and sagittal - of the brain. As a result, the accuracy that

results from this algorithm could yield up to 90% accuracy [34].
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2.6.1.2 Linear Discriminant Analysis (LDA)

A couple of papers has proposed Regularized Linear Discriminant Analysis (LDA) for pur-

pose of multi-class classification of AD, MCI, and NC based on the extracted features from

neuroimages. The aforementioned features include the changes of brain volume, the thick-

ness of cerebral cortex, the score of hippocampal shape, and the score of hippocampal. On

both works, the features were learned using FreeSurfer. The results of Sorenson algorithm

show that the accuracy of the diagnosis of dementia in its early stages is 63% [37].

2.6.1.3 Logistic Regression

Some researchers have proposed using a regression for classifying subjects as NC, AD, or

MCI. Franke and Gaser [4] proposed the use of relevance vector regression, whereas Smith

et al. [71] proposed using logistic regression for data classification. a CAD algorithm

for dementia based on the analysis of the volumes of ROIs from fluoro-2-Deoxy-D-glucose

(FDG)-PET and MRI images. This algorithm produces the high-level accuracy that may

be up to 94% for early dementia detection [36].

Table 2.2: State-of-the-art CAD Methodologies based on

Feature Extraction as Preprocessing Step
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Algorithm Publication

dates

Features Classifiers Reported

Accuracy

Imaging

techniques

Rocchi et al.

[36]

2015 ROIs SVM 94 % FDG-PET

and MRI

Ramrez et al.

[34]

2013 ROIs and image pa-

rameters

RBF-SVM 90.38 % SPECT

Sarica et al.

[18]

2014 Volume and thick-

ness

RBF-SVM 53.7 % MRI

Sorensen et al.

[37]

2014 Volume, shape, in-

tensity, thickness

LDA 63 % MRI

Abdulkadir et

al [1]

2014 VBM SVM 60 % MRI

Smith et al.

[71]

2014 Area, volume, and

raw intensities

Regression 32.2 % MRI

Wachinger et

al. [16]

2014 Volume, shape,

thickness

Generalized

linear

model

80 % MRI

Bron et al. [26] 2014 VBM SVM 92 % MRI
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Rana et al.

[60]

2015 Whole brain volume SVM 86.76 % MRI

Franke and

Gaser [4]

2014 VBM Regression 90 % MRI

2.6.2 Techniques Learning Features without Preprocessing Step:

2.6.2.1 Artificial Neural Network (ANN)

The methods presented on these papers performed dementia diagnosis based on apply-

ing Artificial Neural Network (ANN). According to [75], an optimal interpolative neural

network (OINN) algorithm has been developed in order to classify between patients di-

agnosed with AD and others with VD based on training ROIs extracted from SPECT

images. The researchers in [76] suggested to pretrain Artificial neural networks (ANN) to

enhance the performance of CAD methods in discriminating among AD, MCI, and NC.

The initial training of ANN is performed by initially projecting samples in dataset into key

features and then the relationship between key projected features and classification labels

is maximized by the centered kernel alignment (CKA).
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2.6.2.2 Deep Learning Techniques

These papers have developed effective approaches that have used deep learning approaches

to aid in the identification of early cases of dementia. DL techniques allow for initially

extracting the significant features and then implement a classification procedure [73]. In

[17], the researchers sought to differentiate between patients with AD and healthy people

using a new approach that combines a sparse auto-encoder [41] in order to learn the

features extracted from MRI images and the filters of a convolutional layer under sparsity

constraints in addition to 3D convolutional neural network that are built to solve problems

of image classification. As a result, the accuracy of correctly predicting dementia using

3D convolutional networks outperforms the accuracy of prediction with 2D convolutional

networks. As well, a new contribution introduced in [33] also focuses on improving the

accuracies of three suggested classifications: AD vs. NC, AD vs. MCI, and MCI vs.

NC based on using a deep-learning-based feature representation that has been developed

with stacked auto-encoder (SAE). SAE has been used to explore a latent representation of

input by extracting features like the volume of grey matter tissue and intensity from MRI

and PET, respectively. Consequently, the accuracy of correct prediction of two types of

dementia has been enhanced based on the proposed model in which accuracies of 95.9%

and 85% of diagnosing AD and MCI, respectively, have been obtained.
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To summarize, most of studies that have been discussed above used MRI technique

for the early detection of dementia as seen in Figure 2.6. In contrast, the use of CT

imaging in identifying the early dementia has not been notable. This is attributed to the

fact that although CT scans are accessible and low cost, this imaging technique cannot

capture brain function. Support vector machine (SVM) has been the most popularly

used classifier in the state-of-the-art CAD of dementia methodologies, as shown in Table

2.6.1.3 due to its ability to identify which class or group an object belongs to based on

the value of linear combination of feature values. VBM and ROI characteristics have

been the most prominently used feature to diagnose dementia. From Table 2.6.2.2, it is

clear that algorithms that use deep learning techniques yield higher diagnosis accuracy

for early detection of dementia compared to their counterparts. Figure 2.7 shows the

classification of the CAD methodologies for the identification of dementia based on the

need of preprocessing.

Table 2.3: State-of-the-art CAD dementia methodolo-

gies, where preprocessing step is not required

Algorithm Publication

dates

Features Classifiers Reported

Accuracy

Imaging

techniques
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Payan and

Montana [17]

2015 Full images Deep learning

techniques

89.11 % MRI

Suk and Shen

[33]

2013 Volume of gray

matter tissue and

intensity

Deep learning

techniques

95.9 % MRI and

PET

Sarraf and

Tofghi [75]

2016 grey matter and

white matter

LeNet-5 98.84% MRI

DeFigueiredo

et al. [76]

1995 intensities neural net-

works

80% SPECT

2.6.3 Gaps in the Research for a Literature Review

There is a number of limitations in state-of-the-art and there are many gaps that need to

be addressed. This include that all state-of-the-art research focused on the diagnosis of

multi-stages of AD severity ignoring other dementia types that can be as devastating or

even more. Furthermore, the high dimensionality of neuroimages can hinder classification

performance. Moreover, it can be difficult to distinguish between the various dementia

syndromes given the overlap in many common clinical features across the dementia types;
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Figure 2.6: A comparison among different state- of- the- art imaging techniques used for
diagnosing dementia.

eventually, this can lead to degrade classification performance.

2.7 Summary

Dementia has become one of the major causes of disability among older people world-

wide. Dementia is very prevalent among elderly people, but is often overlooked even by

skilled clinicians. This chapter provided a comprehensive survey of the state-of-the-art
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Figure 2.7: The classification of the state-of-the-art CAD methodologies for diagnosing
dementia.

CAD methodologies for early detection of dementia. An overview of dementia has been

presented investigating the causes of dementia, neuroimaging techniques used for its di-

agnosis, and the challenges of the early detection of dementia. The key characteristics of

CAD methodologies have been investigated including brain features, learning techniques,

and accuracy of detection. MRI scans are the most-used imaging technique in the CAD of

dementia due to its high quality and its ability to capture brain functions.

A multitude of machine learning techniques have been investigated to enable early

detection of dementia and provide a reliable classification approaches between different

types of dementia. The most popular machine learning classifiers used include SVM and

regression. However, the highest accuracy of classification has been obtained using deep
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learning techniques. Overall, deep learning architectures that been proposed as CAD ap-

proaches for diagnosing dementia, are yielding more promising classification accuracy than

other classifiers. The state-of-the-art CAD methodologies focused on generating features

associated with differentiating many severity stages of AD. In other words, they are lack-

ing of acknowledgement of learning features needed for differentiating of other dementing

conditions including VADs, Frontotemporal dementia, and other rare types of dementia.

In the following chapter, a new convolutional neural networks- based learning model

has been proposed in order to learn set of features that is useful for detecting multiple

types of dementia in their early stages.
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Chapter 3

Multi-class Classification of Dementia

3.1 Introduction

Dementia is a rapidly progressing condition that affects the brain. Therefore, it needs

to be detected as early as possible, preferably even before symptoms are evident. Early

diagnosis of dementia considerably increases the chances of successful treatment. Hence,

suitable care and support can be offered in a timely manner [51]. It is a well-known fact that

structural brain imaging is playing a vital role in the identification of changes that occur

in the brain associated with dementia. However, early diagnosis of dementia is challenging

due to image noise and high dimensionality, as well as dementia biomarkers complexity.

Accordingly, numerous researchers have devoted their efforts to develop new or improved

Computer-Aided Diagnosis technologies based on medical neuroimages to detect dementia

accurately.
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Aforementioned state-of-the-art studies focused on differentiating various stages of

Alzheimer’ s disease (AD) severity, whereas other prevalent dementia types, such as vascu-

lar dementia (VaD) and frontal lobe degeneration that can be at the least as devastating

have not been investigated by the CAD community. In an attempt to solve such limita-

tion, this work aims to predict various types of dementia in early stages through training

deep learning technique on MR neuroimaging data. We hypothesize that applying deep

learning-based approaches is more efficient in early prediction of multiple types of demen-

tia due to their capabilities to transform information layer after layer into higher-level

representations, capturing discriminant biomarkers of different types of dementia.

This chapter presents a novel convolutional neural network-based CAD approach to

aid in analyzing MR neuroimages to differentiate various types of dementia. The rest of

this chapter is arranged as follows. Section 3.2 elaborates on the basic concepts of our ap-

proach, including an overview of three commonly used ML classifiers used for conducting

experiments in this chapter. Section 3.3 presents a review of previous CAD approaches

developed for detecting dementia. The experimental setup is detailed in Section 3.4. Ad-

ditionally, the experimental results are reported in Section 3.5, with further discussion in

Section 3.6.
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3.2 Preliminaries

3.2.1 Support Vector Machine (SVM)

Support vector machine (SVM) is one of the best-known models in image classification. It is

a supervised ML algorithm that analyzes data used for linear and non-linear classification.

It separates a set of training data into their appropriate class labels. SVM maximizes

a minimum distance between hyperplane and the nearest examples. SVM does not only

supports binary classification, but also multi-class classification tasks through doing more

enhancements, such as adding more parameters and constraints to optimize the separation

among multiple classes [107]. Let {xi, yi} represents a set of training data, whereby xi is

feature vectors, yi denotes an array of class labels, and i={1,..,N} , where N denotes a

number of training images. The linear classifier is represented by given Equation 3.1

yi = argmaxi=1,..,N((Wi)
Tφ(xi) + bi) (3.1)

where Wi represents weight matrix, bi represents bias vector, and φ represents the function

that maps training examples xi into higher dimensional space.
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3.2.2 Logistic Regression

Logistic regression is another commonly used ML methods for implementing classification

problems. It provides more non-linearity on linear classifiers by using the sigmoid or logistic

function. Logistic regression fits sigmoid function into training data { xi, yi} by minimizing

classification error as given by equation 3.2.

p(yi|xi) = σ(
D∑
i=1

(wTxi)) (3.2)

where σ is the sigmoid function, xi represents training data, and yi denotes class label

associates with each data xi. Multinominal logistic regression (MLR) model is an extension

of the binary logistic regression model, used to predict more than two classes. MLR

uses Maximum- likelihood estimation method to evaluate the probability of each instance.

Given input data (x), the output is predicted by combined all input values linearly using

weights and modeling them into binary values. Maximum- likelihood estimation method

is used to estimate these weights from training data xi.

3.2.3 LeNet-5

LeNet (LeNet5) is one of the shallow Convolutional neural networks. This network com-

posed of two convolutional layers; two subsampling layers, one after each convolutional
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layer, two hidden layers and one output layer. In case of LeNet, logistic sigmoid is an

activation function used for nonlinearity. Unlike the deeper CNNs, the activation function

in case of LeNet is added on subsampling layers instead of after convolutional layers.

3.2.4 Deep Learning

Deep learning is an emerging and exciting area of machine learning research that has

gained significant attention during the past several years [44]. This deep form of machine

learning has improved a broad array of applications, including music generation [52, 53],

medical image classification [54], pattern detection [79], and biometric identification [55].

Recently, it has been observed that deep learning can have a significant impact on the

early prediction of dementia due to its a huge improvement in classification performance

as well as its ability to learn high-level features. Because of the need to deal with massive

amounts of and high dimensional data, as well as the difficulty in abstracting high-level

features from data, a number of researchers have proposed the deep learning to retrieve

more sophisticated features from training data. In 2015, certain researchers proposed CNNs

in order to learn features extracted from MRI images for differentiating between patients

with AD and healthy people [11,80]. In [108], AlexNet is finetuned and then pretrained

with ADNI dataset to classify healthy controls and AD’ s patients.

In comparison to conventional image classification techniques of machine learning, the
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deep learning allows for computational models to extract key features (learn multi-level

representation) of inputs passing across many layers so that each layer learns features

from the output of the previous layer as described in Figure 3.1. It learns a feature

hierarchy automatically all the way from pixels into classification decision scores, whereas

conventional ML techniques perform classification tasks based on using features extracted

from raw pixels in preprocessing phase [78].

Figure 3.1: An overview of deep learning- based algorithm.

3.2.4.1 Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is one of the most frequently used deep learning

architectures, utilized in order to obtain good performance in various computer vision

applications. CNN is widely used deep learning techniques in image classification due to its

unique characteristics compared to other deep learning techniques. These Characteristics

include the fact that its layers are fully connected. In addition, the max-pooling process

down-samples image representation and reduces its dimensionality, thereby eliminating

non-maximal values and reducing the computational cost. Typical CNNs are made of a
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set of different types of layers, that is one or more convolutional layers, a basic layer plus

additional layers: the input layer, local response normalization layer, subsampling layer,

and the output (fully connected) layer. Each of these layers takes a multi-dimensional

array of numbers as input and produces an output that is another multi-dimensional array

of numbers [81].

3.3 Related Work

Reasonable efforts have been made to aid in the identification of early cases of Alzheimer

disease (AD) using medical neuroimaging modalities in AD. For instance, numerous work

efforts have used Voxel-based morphometry (VBM) that computes the grey matter densities

from medical images to classify the different stages of AD [1, 23, 34]. The second approach

is based on analysis of some features of regions of interest (ROIs) from medical brain

images including volume and cortical thickness [32, 35, 13]. In 2014, some researchers

attempted to improve the accuracy of multinomial classification [39] that is provided by

the combination of three binary classification models; NC vs. AD, NC vs. MCI, and AD

vs. MCI [20]. Additionally, other studies proposed algorithms that evaluate changes in

brain volume, measure the thickness of the cerebral cortex and compute the hippocampal

shape score, and the hippocampal texture score from MRI brain images [36, 10].

Moreover, a regularized linear discriminant analysis classifier is used to differentiate
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between healthy and demented brains based upon the features mentioned above. In [28],

researchers proposed a CAD for dementia methodology that distinguishes patients with

Parkinson’ s disease from NC by evaluating given samples using a calculation of sensitivity,

MMSE, and specificity scores.

In recent years, several advances in research have been made to obtain accurate early

diagnosis of dementia by the use of any of the deep learning approaches. Specifically,

in 2015, some researchers sought to differentiate between patients with AD and healthy

subjects using a new approach. Their method combined a sparse auto-encoder [43] to

learn features extracted from MRI images and learn filters of a convolutional layer under

sparsity constraints as well as convolutional neural networks that are built to solve problems

of image classification [12, 44]. As well, another contribution has been introduced in [31] to

improve accuracies of three suggested classifications: AD vs. NC, AD vs. MCI, and MCI

vs. NC through implementing a deep learning-based feature representation that has been

developed with stacked autoencoder (SAE) [20]. Moreover, SAE has been used to explore

a latent representation of input by extracting features like the volume of grey matter tissue

and intensity from MRI and PET, respectively.

Conversely, few research works proposed Artificial Neural Network (ANN)-based CAD

approaches in literature to diagnose dementia. In 2016, Sarraf and Tofighi developed in

[83] a CAD method that differentiates patients with AD from healthy controls by classify-
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ing features extracted from converted MRI images using the LeNet architecture proposed

in [47]. Moreover, De Figueiredo et al. developed a new learning algorithm in order

to differentiate between patients diagnosed with AD, patients diagnosed with VaD and

healthy controls. They initially extracted relevant features and removed redundant ones

from Single-photon emission computed tomography (SPECT) images. Therefore, Feature

extraction has been applied by measuring of average intensity. Then, an optimal inter-

polative neural network (OINN) was used to analyze these features, and then predict a

diagnostic output accuracy of dementia based on using k-means clustering algorithm [74].

As a result, the accuracy that results from this algorithm could yield up to 86% accuracy in

differentiating between patients with VaD and NC. Subsequently, the work in [7] proposed

an algorithm for pretraining ANN in order to enhance differentiating various stages of AD.

First, the authors employed FreeSurfer software for analyzing MR images and producing

feature vectors. Then, the projection matrix was created for feature vectors by imple-

menting and maximizing the centered kernel alignment (CKA) for enhancing classification

task.

This chapter proposes a novel deep neural network-based CAD method has been pro-

posed to aid in analyzing MR neuroimages and then diagnosing dementia in its early stages.

Unlike in [46], the CNN-based technique has been developed in this paper to accurately

differentiate various types of dementia instead of focusing on differentiating multi-stages of
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AD. Moreover, the suggested CNN based architecture consists of six convolutional layers

and three fully connected layers while the architecture of CNN in [46] consists of only two

convolutional layers.

3.4 The Proposed Method

In this work, a novel deep neural network-based CAD method is proposed to analyze MRI

neuroimages to diagnose dementia in its early stages. This research work aims to differenti-

ate multiple types of dementia based on MR imaging data. Our objective is accomplished

through implementing a new two-stage CAD approach for detecting dementia, whereby

the CNN is used to extract features from an input and then classify features into one of

dementia types. The architecture of the proposed approach is illustrated in Figure 3.2. As

shown in the figure, the proposed method initially preprocesses raw MRI neuroimages to

remove image noise in addition to removing all bone and other portions surrounding the

brain. Then, it pre-trains the CNN to extract latent feature representations from the seg-

mented images and build robust CAD system. Finally, The learned features are then fed

into the last fully connected layer of the CNN to identify the expected dementia diagnosis

outcomes.

The various phases of the proposed approach will be further discussed in the following

sections: In section 3.4.1, the image preprocessing techniques that are developed and used
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to improve the quality of grayscale images are presented, while feature extraction and

classification are detailed in Section 3.4.2.

Figure 3.2: An architecture of proposed Convolutional Neural Network-based CAD algo-
rithm for early prediction of various forms of dementia.

3.4.1 Image Preprocessing and Segmentation

This section discusses several image preprocessing techniques that are proposed to enhance

MR scans before building the CNN. As MR images may be characterized with different

sizes, All the raw images to be used as input are initially resized to be feed as input to

CNN. In this research work, the images are resized to 176× 176 pixels based on the sizes

of the images in the OASIS dataset. The resized images are then preprocessed by digital

spatial filtering [38] and image-adjustment techniques [43] to filter out various types of

noise available in neuroimages. Overall, the preprocessing step plays a significant role

in increasing the reliability of the features selected from the images and optimizing the
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images’ quality.

In this research work, as seen in Figure 3.3, intensity normalization, Gaussian filter

[52], and histogram equalization have been applied on the original MR neuro-images for

preparing them of CAD system. Initially, these MRI images are normalized to the similar

range of grayscale from 0 to 1because normalization reduces the range of intensity values

simplifying feature abstraction process. Data is normalized by subtracting the mean and

dividing by the standard deviation as illustrated by Equation 3.3

y =
x− z
σ

(3.3)

where x is feature vector, z is the mean of that feature vector, and σ is its standard

deviation.

Next, the Gaussian filter has been applied to remove or reduce noise from images with

reduced size. The equation of a Gaussian function in two dimensions is

G(x, y) =
1

2πσ2
e−
x2 + y2

2σ2
(3.4)

, where σ is the standard deviation of the distribution.

In addition, histogram equalization has been applied to improve the low contrast in
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grayscale image by adjusting image pixel intensities [18]. Suppose i denotes given MR

neuroimage represented as n1 × n2 array of pixel intensities, giving a range of possible

values from 0 to 255, whereby zero tends to black color, whereas 255 refers to white color.

Histogram of i is equalized by given Equation 3.5,

h =
numof pixelswith intensity n

total numof pixels
, n = 0, 1, .., L− 1 (3.5)

where L is the number of possible gray intensity values, often 256.

There are data instances that are incomplete and do not carry the data needed to ad-

dress the problem. The presence of missing values in the training data often affects the

performance of the model and, furthermore, it may lead to wrong and imprecise predic-

tions. To avoid the performance issues and improve the classification accuracy, various

imputation methods have been suggested in [82] in order to treat these missing values.

In this research work, the missing data of numerical attributes is imputed by getting an

average of the existing values in each attribute. Equation 3.6 is used for calculating the

average of attributes with missing values. However, the most frequent value is selected for

treating missing values for categorical variables in a dataset.

mean =
sumof existing values

total number of subjects existing values
(3.6)
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Segmentation also has an important role in analyzing medical images of the brain and

allowing interpretation for the better diagnosis of dementia. Image segmentation is the

process of dividing the image [33] to differentiate various regions, dissimilar characteristics

in medical images. In this research, two different segmentation approaches are applied

on MRI images of the brain to visualize the anatomical structures of the brain, and then

analyze changes of that brain:

• Edge-based segmentation: Detection of a wide range of edges in an image is one of

the important steps in retrieving the desired information from given images. Edges

are lines identified on the basis of predicting the changes in various properties of

the image like brightness, by using any edge detectors [24]. In this research work,

Canny edge detection is performed to discriminate between gray and white matter

tissues. This technique identifies edges that represent one of the significant features

for analyzing brain images and prevent unconnected edges from continuing [38].

• Region-based segmentation: An image could be also segmented into regions. Each

connected region is comprised of a set of adjacent pixels with shared characteristics

and the same grayscale values. For applying this kind of segmentation in this research,

the watershed transform algorithm is used to produce better segmentation results

[37].

53



Figure 3.3: Preprocessing and segmentation results.

3.4.2 Feature Extraction and Classification

Accurate identification of the various types of dementia can be achieved by the use of the

structural and functional biomarkers extracted from neuroimages. This chapter proposes

to use the convolutional neural network (CNN) for extracting these high-level biomarkers

and reducing the high dimensionality of large imaging dataset. Then, features from the

top layers of the CNN are utilized for classification. As depicted in Figure 3.4, a deep CNN

is trained to classify MR neuroimages in the dataset into the different five categories. The

proposed CNN consists of six convolutional layers, which are followed by six max-pooling
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layers and three fully connected layers with a final 5-way softmax. These layers are stacked

to build the full architecture of the CNN. In more details:

Figure 3.4: An architecture of the convolutional neural network for multi-class classification
of dementia.

For the CNN input, the preprocessed 176 × 176 image pixels are reshaped into four-

dimensional (4D) tensors. Each tensor consists of batch size, image width, image height,

and the desired number of color channels, which is 1 in case of using grayscale images. The

model input can be represented as follows:

xi = [m1, ...m30976], i ∈ [1, 30976] (3.7)

where i is the sample index, mi is a column vector representing feature vector.

The extraction of the dementia features is achieved through a combination of the core

parts of the CNN: the convolutional and pooling layers. The proposed CNN architecture

includes six convolutional layers, which are followed by six max-pooling layers, with six local
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normalization layers, three fully connected layers, and two dropout layers. The proposed

CNN can be more simply described if the input, the output, and the hyperparameters of

the lth layer of the CNN are considered to be identified by xjl , y
j
l , and[W j

l , b
j
l ], respectively.

The convolutional layer is denoted as C (k, s), which indicates that there are k kernels,

called filters, each having a size of s × s. Each filter composes a local patch of lower-

level features into a higher-level representation by convolving the image matrix and then

generating feature maps. The max-pooling procedure is identified with the use of an MP.

During each convolutional layer, the stride is set to 1. Convolution is applied to the input

image after reshaping it to a 4D tensor, and the MP is then applied on the convolution

output to make the representation smaller and more manageable without the loss of a

great deal of information representing feature vector. Dropout method is used to reduce

overfitting in fully connected layers of the CNN. For first to seventh layers, the Rectified

Linear Unit (RLeU) function is used as an output function to speed up learning procedure,

introduce sparsity effect on the network as well as to avoid saturation issues. The output

of the lth convolutional and pooling layers can be written as:

oj = MP (σ(W j
l × x

j
l + bjl )), j ∈ [1, k] (3.8)

where σ is the activation function, and j is the index, considering multi-convolutional filter
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in the convolutional layer. Overall, the architecture of CNN can be described as: C (16,

8) - MP- LRN- C (32,4) - MP- LRN- C (64,2)- MP - LRN -C (128,1)-MP- LRN- C (256,1)

- MP-LRN- C (1024,1) - MP - LRN.

The learned features that are outputted by the last convolutional and pooling layers

are concatenated into a dense vector, composing the most high-level features of the input.

Finally, the vector is transformed into outputs through the fully connected layer, in which

the number of neurons in last fully connected layer is a number of types of dementia that

can classify each instance of a dataset into one of the different categories of dementia.

For optimizing the neural network, a back propagation algorithm can be used in order to

train it to minimize cost and accelerate the convergence rate. In the proposed approach,

a stochastic gradient descent algorithm, a popular back propagation algorithm, facilitates

the achievement of the CNN training goal by adjusting its hyperparameters, including

weights, learning rate, and biases. The details of the proposed CNN are listed in Table

3.1.

3.5 Experimental Results

The effectiveness of the proposed CAD method is evaluated by measuring some certain

performance metrics, and then comparing the performance of the proposed approach to

the performance of three state-of-the-art approaches, namely, Support Vector Machine
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Table 3.1: Convolutional Neural network structure and hyperparameters adopted in our
model.

No. Layer type Filter size Stride Output size Nonlinearity

1 Input – – 176x176x1 –
2 Convolution 4x4x16 2 44x44x16 ReLU

3 Convolution 2x2x32 2 22x22x32 ReLU

4 Convolution 2x2x64 1 11x11x64 ReLU

5 Convolution 1x1x128 1 11x11x128 ReLU

6 Convolution 1x1x256 1 11x11x256 ReLU

7 Convolution 1x1x1024 1 11x11x1024 ReLU

8 Fully-connected – – 128 ReLU

9 Fully-connected – — 256 ReLU

10 Fully-connected – — 5 ReLU

(SVM), logistic regression, and convolutional neural networks with different depth.

3.5.1 Data Description

The performance of the proposed model has been evaluated on publicly available MR scans

from the Open Access Series of Imaging Studies (OASIS) [97]. A classification of dementia

was tested on 738 MR images collected from 74 different subjects. These images were taken

from a dataset chosen from among many datasets available on the OASIS. OASIS is a multi-

center project that consists of many brains’ MRI datasets, collected from various centers,

including Washington University Alzheimer’ s Disease Research Centre, Howard Hughes

Medical Institute, the Neuroinformatics Research Group, and the Biomedical Informatics

Research Network.
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Overall, each patient record consists of at least three cross-sectional brain scans. Figure

3.5 shows an example of three slices of MR brain images for each subject. Table 3.2 shows

details of the dataset used for evaluating the proposed model’ s performance. With regard

to the general eligibility criteria in OASIS, subjects were in the age of between 18 and

96. General inclusion/exclusion criterias are as follows: All healthy control subjects had a

clinical dementia rating (CDR) of 0 and MMSE scores between 24 and 30 (inclusive). On

the other hand, subjects diagnosed with dementia had a CDR of at least 0.5 and MMSE

scores between 20 and 26.

Figure 3.5: Three slices of patients’ s brain with dementia.

3.5.2 Performance Evaluation Metrics

To evaluate the proposed model’ s performance, several evaluation metrics described above

in Chapter 2 have been calculated, including classification accuracy, sensitivity, and speci-

ficity. To do this calculation, true positives (TPs), true negatives (TNs), false positives

(FPs), and false negatives (FNs) have been initially measured as follows:
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Table 3.2: Data description.

Attribute Description Values Num. of subjects

Age Age in years

18-25
26-45
46-65
66-96

45
8
16
40

Sex Gender of patient
Male

Female
45
68

CDR Clinical dementia rate
0

0.5
1

89
16
8

MMSE Mini-mental state examina-
tion

18-23=demented
24-30=NC

nWBV Normal of whole brain vol-
ume

0.644-0.797=demented
0.645-0.893=NC

Sequence MRI image sequence 3D T1-weighted images

• True positives (TPs): The number of cases correctly predicted to have dementia.

• True negatives (TNs): The number of cases incorrectly diagnosed to have demen-

tia.

• False positives (FPs): The number of cases correctly predicted to be normal

controls.

• False negatives (FNs): The number of cases incorrectly diagnosed to be normal

controls.
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1. Accuracy: Equation 3.9 is used to calculate accuracy, which represents how often

the proposed learning model is correct in its prediction of multiple types of dementia

after measuring TPs, TNs, FPs, and FNs.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.9)

2. Sensitivity: Sensitivity is calculated by the fraction of relevant instances that have

been retrieved over the total relevant instances in the image.

Sensitivity =
TP

TP + FP
(3.10)

3. Specificity: Specificity is calculated by the fraction of those without dementia who

will have a negative test result.

Specificity =
TN

TN + FN
(3.11)

To evaluate the performance of the proposed model making predictions of various de-

mentia types on new unseen data, seven-fold cross validation is performed on the MR

images. Cross-validation reduces the chance of overfitting that occurs due to model com-

plexity, thereby allows a good estimation of the proposed method's accuracy of proposed

61



CAD method in predicting multi-type dementia. After getting the preprocessed dataset,

seven random datasets are produced to repeat training and testing of the model in which

60% of MRI images are assigned to the training set, whereas 40% of images are used for

testing the algorithm. The comparison among the proposed method and some state-of-

the-art models, including Support Vector Machine (SVM) [23], logistic regression and the

LeNet-5 in [83] is made after training and testing them on the same MRI dataset in terms

of following evaluation measures.

3.5.3 Classification Results

• Investigating CNN depth for the proposed CAD approach:

In the designing phase of the CNN for recognizing dementia in MR neuroimages,

some empirical experiments were conducted to select and tune various CNN param-

eters, including the number of hidden layers and the number of nodes in the CNN

architecture as these parameters have profound effects on the system.These experi-

ments were conducted at a specific learning rate for stochastic gradient descent that

has been set to a value of 0.01. As well, the models were trained for 2000 epochs.

Initially, I built the CNN consisting of two convolutional layers, followed by two max-

imum pooling and one fully connected layers. The results show that the proposed

method is correctly predicted multi-types of dementia with an accuracy of 38.59%.
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Then, the CNN has been developed with adding more hidden layers, so that it con-

sisted of four convolutional layers, followed by four maximum pooling and two fully

connected layers. From the results, it has been shown that an error is still decreasing,

and the accuracy increases up to 50.87%. Finally, additional hidden layers have been

added into the proposed CNN, in which two additional convolutional layers and two

max-pooling layers, as well as one more fully connected layer, have been added to

the proposed model to enhance classification performance.

The experimental results indicate that the classification accuracy increases from

50.87% to 74.93%. After that, it has been noticed that the error stop decreasing

when the number of convolutional layers was increased than six layers. Table 3.3

presents the detailed results of an impact of the CNN with different depth on iden-

tifying of various types of dementia.

Table 3.3: A comparison between the proposed CNN-based approach and other approaches
with different depth of the CNN.

Depth of CNN Accuracy Specificity Sensitivity

Two convolu-
tional layers

38.59% 33.33% 77.2 %

Four convolu-
tional layers

50.87% 13.56% 85.53%

Six convolutional
layers

74.93% 46% 63%
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• A comparison with State-of-the-Art Methods:

In order to evaluate the efficacy of the proposed CAD approach in predicting multi-

type dementia in its onset stage, we compare its performance with the performance

of three state-of-the-art techniques including SVM proposed in [23], logistic regres-

sion, and LeNet-5 in [83] in terms of measuring classification accuracy achieved by

network, sensitivity, and specificity. However, the clinical diagnosis was used as the

target during training and testing procedures. It is a categorical scale quantifying

various types of dementia. As a result, Table 3.4 shows that the results of the pro-

posed approach in classifying of five dementia types outperform the results of other

compared ML models on testing data regarding accuracy and specificity while the

sensitivity of the proposed model is worse than the sensitivity of others.

Table 3.4: Multi-label classification results for multi-type of dementia detection.

Machine learning
classifier

Training
accuracy

Testing ac-
curacy

Specificity Sensitivity

SVM [23] 67.01% 70.09% 33.33% 77.2 %

Logistic regres-
sion

67.04% 68.36% 13.56% 85.53%

LeNet-5 [83] 61% 70.04% 31% 74%

Our model 70.97% 74.93% 46% 63%

64



3.6 Summary

In this chapter, a new computer-aided classification system for differentiating the various

types of dementia in its early stages has been built and tested. This CAD method com-

bined convolutional neural networks with logistic regression. Also, a comparison of the

performance of the proposed model and three different models was conducted.The results

of this study indicate that the hypothesis that early diagnosis that is based on classifi-

cation of feature extracted from MRI neuroimages is more accurate than early diagnosis

that is based on classification of raw image pixels intensities has been accepted so that

the proposed model yields higher classification accuracy compared to that using Logis-

tic regression by 6 percent and that using LeNet-5 or SVM by 4 percent of classification

accuracy.

These investigations about the performance of our model could be improved in the

future studies. For example, the first convolutional layer could be pre-trained with autoen-

coder. In addition, 3D convolutions could be used instead of 2D convolutions to boost the

performance of the model and enhance its prediction.

The next chapter proposes pretraining the first convolutional layer of CNN with low-

dimensional features learned by sparse autoencoder (SAE) to boost the performance of the

model and enhance prediction results of dementia. The learned features by the SAE and
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that obtained from the popular PCA approach, are then used to train a Linear Discriminant

Analysis (LDA) and a Logistic Regression classifiers to compare their prediction accuracy.
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Chapter 4

Feature Abstraction For Enhancing
Classification Performance

4.1 Introduction

Due to the importance of early diagnosis for prevention or treatment of dementia, Computer-

Aided Diagnosis (CAD) methods are deemed essential to enable early identification of de-

mentia. Recently, neuroimages have become an important tool in the diagnosis of dementia

and subsequent prediction of its progression. Neuro-images often suffer from the curse of

dimensionality that can make them difficult to visualize and classify [84]. In fact, high

dimensionality of images has a negative impact on the performance of Machine Learning

(ML) classifiers during the training phase on these images, such that overfitting increases

due to increased data complexity. To address this concern, feature-abstraction techniques

have been developed in order to reduce and avoid the effects of the high dimensionality,
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enhance the accuracy of generalization, and then enable more robust systems. The feature

abstraction is a technique that collects relevant features and ignores irrelevant or redun-

dant ones from data, without the loss of much information can be developed to improve

classification performance. State-of-art studies for diagnosing dementia have been imple-

mented based on features extracted to differentiate between multi-stages of the severity

of Alzheimer’ s disease (AD). However, the feature abstraction to discriminate between

multi-types of dementia has not yet been explored.

The main novelty of our approach is to extract key features from different Region of

Interests (ROIs) and use them to differentiate between normal controls (NC), individual

patients with AD and patients with Frontotemporal lobe dementia (FTD) using Sparse

Autoencoder (SAE). The proposed method is verified by using Linear Discriminant Anal-

ysis (LDA), logistic regression and Convolutional Neural Network (CNN) in coupled with

logistic regression (CNN+ regression) classifiers, with both the SAE-based low dimensional

dataset and with PCA driven representation for comparison.The remainder of this chapter

is organized as follows: Section 4.2 briefly reviews the definitions and notations. Section

4.3 is an overview of the most popular techniques for improving the dimensionality of in-

put space to fit sample size. Section 4.4 introduces the CAD methodology proposed for

producing the high-level representation of neuroimaging data so as to extract the key fea-

tures that identify multi-types of dementia. Then, these features are compared to those
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extracted using the popular Principal Component Analysis (PCA) through training several

types of dementia classification methods. The experimental results are discussed in section

4.5. Finally, Section 4.5 concludes this study.

4.2 Preliminaries

4.2.1 Principal Analysis Component (PCA)

PCA is probably the most common multivariate statistical techniques and one of the most

commonly used techniques for reducing the high dimensionality of sets of data because

it allows compressed images to be produced without loss of much important information.

By applying PCA to the dataset, it finds principal variables for the given dataset by

measuring the eigenvectors of a matrix and then listing them by their eigenvalues. The

centered data can then be projected onto these principal axes to yield principal components

(”scores”) obtained from singular value decomposition of given dataset. For the purposes

of dimensionality reduction, one keeps only a subset of principal components and discards

those with a smaller variance. Furthermore, it represents a pattern of similarity among

probabilities and variables by displaying them as points on the map [94].
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4.2.2 Linear Discriminant Analysis

LDA is one of the popular techniques for data classification and dimensionality reduction.

Dimensionality reduction can be achieved by feature extraction [95]. The primary difference

between LDA and PCA is that PCA does more feature extraction, whereas LDA does more

data classification as well as high-level feature extraction.

For reducing the dimensionality using LDA, consider (xi, yi)i = 1n represents a set of

data points in the given dataset, where xi ∈ Rd, yi ∈ 1, 2, ..., c represents class labels of ith

data point. Multi-dimensional data matrix is denoted as X = [x1, x2, ..., xn].

4.2.3 Sparse Autoencoder

Autoencoders (AEs) have been recently applied as a preprocessing step, with success for

various computer vision tasks. An AE is an Artificial Neural Network (ANN) that can

be carried out for reconstructing input data to fit into lower dimensional space [87]. The

architecture of autoencoders, as seen in Fig. 4.1, is made up of a set of layers: the

input layer, the output layer, and one or more hidden layers. Initially, the input layer

represents an encoding function f (x), mapping given data x ∈ Rnuminput to compressed data

h ∈ Ru.Then, the hidden layer that represents an identity function measures the amount

of information loss between the compressed representation of data and the decompressed

representation. Finally, h is decoded to get x∗ ∈ Rnuminput, which is a representation of

70



the input reconstructed by applying a decoding function g (x) at the output layer. The

input and output layers have the same number of neurons [11].

4.3 Related Works

Medical image segmentation and feature extraction for the early detection of dementia

from medical imaging modalities are very important processes for deciding the right ther-

apy at the right time. Significant effort has been made to develop an effective approach

to aid in the identification of early cases of dementia. While dimensionality reduction and

feature extraction are still crucial, various recent CAD methodologies for early detection of

dementia have focused on image classification without reducing image dimensionality. For

example, the researchers in [21] proposed a CAD for dementia methodology that distin-

guishes patients with Parkinson’s disease from normal controls by evaluating given samples

using a calculation of sensitivity, MMSE, and specificity scores. As well, Rocchi et al. [25]

proposed an approach with some enhancements to differentiate between patients diagnosed

with dementia and healthy controls by extracting ROIs from medical brain images.

High dimensional neuroimaging data has a lot of redundant and irrelevant features.

For this reason, a number of researchers have focused on reducing the high dimensionality

and obtaining better features by applying dimensionality reduction techniques in order to

extract features from medical images and so detect and classify different stages of AD.

71



Davatzikos et al. [85] proposed using Linear PCA to reduce input's dimensionality and

extract features by analyzing medical images of the brain.The extracted features are then

represented as a set of orthogonal variables called principal components that are classified

for differentiating between AD, NC, and FTD. On the other hands, Sorenson et al. [26]

and Ramirez et al. [23] suggested Linear Discriminant Analysis (LDA) for extracting key

features, denoting dementia biomarkers to enhance classification accuracy between healthy

and demented brains. These features include the whole brain volume, the thickness of the

cerebral cortex, the hippocampal shape score, or the hippocampal texture score, extracted

from MRI brain images.

Several recent advances in research to extract the significant features of neuroimaging

data have been made by the use of an autoencoder. Some researchers sought to differenti-

ate between patients diagnosed with AD and healthy people by proposing a combination

of a sparse auto-encoder (SAE) [27]. This SAE learns features extracted from MRI im-

ages and then the output is fed into convolutional neural networks to solve problems of

image classification [11, 80]. As well, Liu et al., and Suk and Shen [22,86] proposed an

AD classification methods based on a deep learning-based feature representation that has

been developed with Stacked Sparse Autoencoders (SSAEs) [20]. SSAEs has been used

to explore a latent representation of input by extracting features like the volume of gray

matter tissue and the intensity from MRI and PET, respectively.
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Thus, the existing literature indicates that the field of neuroimaging is well situated to

provide a powerful tool for diagnosis of dementia. In comparison to the works in [11,80],

instead of focusing on distinguishing multiple stages of AD, the proposed approach focuses

on learning high-level information about brain’s structure for differentiating among multi-

types of dementia. The differentiation between the gray and white matter voxels has

been suggested to generate high quality and detailed input data of SAE. Unlike dava and

others who use the linear techniques to extract features [85], this chapter proposes to use

a nonlinear technique for learning a nonlinear combination of features showing dissimilar

properties of brains with AD, FTD, and NC.

4.4 Proposed Method

This research study aims to accurately classify multi-type dementia with lower compu-

tational costs and lower storage space. To achieve these objectives, SAE is proposed for

learning high-level features associated with several types of dementia using the pixel inten-

sities of MRI neuroimages. As seen in Figure 4.1, raw MRI images are initially carefully

preprocessed and segmented, and then reconstructed with SAE for extracting the relevant

features. Finally, these features extracted are tested with several ML classifiers to evaluate

classification performance of the proposed method in early prediction of many types of

dementia.
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Image preprocessing and segmentation are detailed in Section 4.4.1 and 4.4.2, respec-

tively. In section 4.4.3, the architecture of SAE is presented. Section 4.4.4 describes

different ML algorithms applied for the classification task.

Figure 4.1: The architecture of a spare autoencoder-based CAD approach proposed to
learn latent feature representation from MRI scans.

4.4.1 Image Processing and Segmentation

This section discusses several image-preprocessing techniques proposed for enhancing the

MRI scans prior to the building of the CNN. With the raw MRI images as input, prepro-

cessing involves converting the image format, resizing the images, normalizing the intensity,

and stripping representations of the skull and all non-brain tissues. This is accomplished

by importing MRI neuroimaging data into FreeSurfer software. After rescaling MRI im-

ages into a unified size, 176 pixels x 176 pixels, the downsize of images in the dataset,

we initially convert MR neuroimaging data into a NIFTI format, followed by performing
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an initial intensity correction, that is followed by an automatic brain mask creation. The

creation of brain mask removes the portions that reflect all non-brain tissues using the

watershed transform algorithm. Figure 4.3 shows MR neuroimages after removing the

skull and all non-brain tissues. Later, the images are segmented according to whether they

depict cerebrospinal fluid (CSF), gray matter, or white matter as seen in Figure 4.4.

Figure 4.2: The raw images are imported into FreeSurfer software that converts images’
format into NIFTI format.
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Figure 4.3: MRI images after removing the skull and all non-brain-tissues.

4.4.2 Feature Abstraction and Dimensionality Reduction

• Sparse Autoencoder: In this study, input xi represents pixel intensity values extracted

from MRI brain images where xi = x1, x2, ..., x30976. Overall, the encoder function

initially converts the input x to compressed form h ∈ Ru that fits in limited spaces

u, where u represents the number of hidden units as in Equation 4.1.

h = f(Wx+ b) = W ∗x+ b∗ (4.1)
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Figure 4.4: Segmentation of images into the white-gray matter tissues.

, where W ∈ Ru∗n−input and b ∈ Ru represent the matrix of weight and the vector of

biases of encoder function, respectively. Also, f is a sigmoid function.

Finally, the decoder function reconstructs the input x by taking the hidden repre-

sentation of x as input to get x*, which denotes relevant features for the dementia

classification task. Equation 4.2 is used to apply the decoder function.

x∗ = g(W ∗x+ b∗) = W ′′x+ b′′ (4.2)
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, where g is the identity function due to real-valued input as well as W ∗ ∈ Ru∗ninput

and b∗ ∈ Rninput denote the weight matrix and the bias vector of decoder function.

In addition to restricting AE by reducing the number of hidden units, the sparsity

constraint pc, given by equation 4.3, is forced by AE on the hidden units u in order

to make them produce a better low-dimensional representation of input x. To achieve

this, the activation of each hidden unit, denoted as a, is averaged to be close to a

given sparsity parameter.

pc =
1

n input

n input∑
i=1

auj
(xi) (4.3)

Then, the sparsity constraint of each hidden unit is added to the optimization objec-

tive to minimize an error between it and the given sparsity parameter. For training

SAE, root mean square propagation is proposed to improve computational efficiency

by minimizing an error and the cost.

4.4.3 Classification

The performance of the new representation of features is evaluated on the validation set

of data using a classifier. After training the SAE, a deep 2-D CNN is built, which it

takes MRI scans as input. The details of training the built CNN are listed in Table 3.1.
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For optimizing the deep neural network, back propagation algorithm is often used for

training it to minimize cost and speed up convergence rate [17]. In the proposed approach,

stochastic gradient decent, one of popularly used back propagation algorithms, is used

for CNN training by adjusting its hyper-parameters, including weights, learning rate, and

biases.

For comparative analysis, LDA and Logistic regression have been used for testing the

proposed approach. Given the whole low-dimensional image as input, the output of clas-

sifier is sensitivity, specificity, and accuracy of true prediction of five types of dementia.

• Convolutional Neural Network: After training CNN, the extracted features of each

subject in the testing set is fed into the last output layer of CNN that is softmax

layer to predict the type of dementia. Then, correct prediction accuracy is com-

puted the network and is diagnosed by the layer of network, logistic regression layer.

Then, correct prediction accuracy is then computed for each diagnosis as a means of

evaluating the algorithm’s performance.

4.5 Experimental Results

The extracted SAE features are classified by using CNN, LDA, and logistic regression classi-

fication models so that the classification accuracy of five types of dementia is calculated and
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compared. Then, classification accuracy using SAE and PCA generated low-dimensional

features is compared. For conducting experiments, we selected 734 MRI images collected

from 113 subjects in each one of following classes: elderly controls (HC), patients with

Frontotemporal lobe dementia (FTD), patients with uncertain dementia (UD), patients

with incipient PTP dementia, and patients with dementia of Alzheimer’s disease (DAT).

In order to evaluate the efficiency of the high-level features, classification methods are

applied on these features.The proposed method was trained used a training set of 520 ex-

amples. A testing set of 214 examples was used to evaluate the model’ s performance. In

order to evaluate the efficiency of the high level features, classification methods are applied

on these features. TensorFlow is a deep learning framework that is used for implementing

this study.

4.5.1 Data Description

Experiments are conducted on MRI images made available as part of Open Access Series

of Imaging Studies (OASIS) datasets analyzed in [97] for evaluating the performance of the

proposed model.The description of this dataset is shown in Table 3.2, provided in Chapter

3.
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4.5.2 Classification Results

To enhance the performance of the proposed model when deployed to make a prediction

on a new unseen data, seven-fold cross validation is performed on 734 MRI images. Cross-

validation could assist in overcoming any overfitting problem that could occur due to model

complexity thereby providing a good estimation of the accuracy of proposed CAD method

in predicting multi-type dementia. After reducing the dimensionality of the dataset, seven

random datasets are produced to repeat training and testing of the model in which 60% of

MRI images are assigned to the training set while 40% of images are used for testing the

algorithm. Moreover, various state-of-the-art techniques including LDA, logistic regression

as well as CNN in [80] are adopted on the same data to evaluate the robustness of the

proposed method. For comparative analysis of the proposed method and some state-of-the-

art models, various performance measurements are used including classification accuracy,

sensitivity, and specificity.

The first experiment is conducted in this chapter to test the hypothesis that training

the proposed model with features learned by SAE provides higher accuracy of the correct

prediction for different types of dementia than training it on the raw pixel intensities. As

shown in Table 4.1, maximum testing accuracy reached, sensitivity, and specificity are

computed for comparing the performance of the proposed algorithm and the performance
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of some state-of-the-art methods after training them on the selected dataset. However,

the clinical diagnosis is used as the target during training and testing procedures. As a

result, Table 4.1 indicates that the accuracy of our proposed model that combines SAE

and CNN and then classifies different types of dementia by the output layer outperforms

classification accuracy of other state-of-the-art methods. Table 4.2 provides the confusion

matrix of four-way classification with features extracted from MRI images.

Table 4.1: Accuracy of various classifiers using SAE for dimensionality reduction in the
prediction of dementia.

Machine learning model Testing Accuracy Sensitivity Specificity

LDA 71.8% 80.86% 20.25%
Logistic regression 76.2% 35.72% 65.0%
Gupta et al. [80] 70.04% 25.29% 64.15%
proposed method 80.1% 63.82% 75.49%

Table 4.2: Confusion Matrix of the proposed method.

Actual No dementia Uncertain dementia HC DAT

DAT 7 2 27 1
Uncertain dementia 2 1 6 0

HC 25 15 203 2
FTD 0 0 3 0

The second experiment is conducted to test the hypothesis that high-level feature rep-

resentation with SAE would get better classification performance results than features
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learned by PCA. By comparing the SAE features to the PCA generated features, we re-

port that SAE outperforms PCA in obtaining higher accuracy of diagnosing dementia. In

this experiment, PCA decomposes the selected dataset in three orthogonal components

that have the maximum amount of the variance, so that principal axes in feature space

represent the directions of maximum variance in the data; The overall accuracies are il-

lustrated in Table 4.3. Therefore, we could say that SAE can preserve a lot of details for

MRI images after compressing them in a comparison to PCA.

Table 4.3: The comparison between the accuracies obtained by autoencoder and PCA in
a combination with each of Machine Learning techniques.

Machine learning model Autoencoder Principal Component Analysis

LDA 71.8% 63.2%
Logistic regression 76.2% 68%

4.6 Summary

This chapter proposed a new method that included the following steps: normalization, im-

age preprocessing and segmentation, feature abstraction as dimensionality reduction, and

classification. This method applied the SAE for learning a low-dimensional representa-

tion of input data in order to improve the classification task. The proposed approach and

some state-of-the-art methods were tested with OASIS dataset. The experiment indicates
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that our method, combining the SAE with the CNN performs better than other compared

state-of-the-art methods. The experimental results showed that the proposed approach

yields higher classification accuracy compared to that using the PCA by 8 percent of clas-

sification accuracy. The experimental results showed that use of features learned by SAE

in early diagnosis of dementia provides better classification performance than the use of

raw image pixel intensities for diagnosing dementia. Specifically, the proposed model per-

forms better than PCA in reducing the dimensionality of input data. As future work, the

number of sparse autoencoders for reducing dimensionality could be increased to boost the

performance of the model, thereby enhancing the accuracy of prediction of multi-type of

dementia.

The upcoming chapter proposes a Stacked sparse autoencoder (SSAEs)-based learning

approach to learn high-level features from a huge MRI neuroimage dataset.The features

extracted by applying the SSAEs are taken as input of the CNN. Finally, the learned

features by the CNN can be used for the classification of 4000 MRI neuroimages to improve

the early diagnosis of multi-type dementia.
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Chapter 5

Context-aware CAD using
Multi-Classifier Fusion

5.1 Introduction

Early diagnosis of dementia and its type can strongly influence its prognosis [51], however,

accurate identification of various types of dementia is a challenging task. Types of demen-

tia as well as other brain disorders share a set of neurotic pathology. For example, Lewy

Bodies dementia has many of the clinical and pathological characteristics of the dementia

that occurs during the course of Parkinson’s disease. This is further compounded by the

need for early diagnosis in which medical brain scans can show limited biomarkers. Thus,

neuroimages and medical brain scans may not be sufficient for accurate identification of de-

mentia. Accordingly, this work aims to utilize additional medical and context information

to enhance the accuracy of identification of the various types of dementia.
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Accurate identification of various type of dementia can be achieved by the use of the

structural and functional biomarkers extracted from neuroimages coupled with the con-

textual data that interprets images and describes patients’ status. The augmentation of

neuroimaging analysis with contextual information is challenging due to the discrepancies

and irregularities of the various forms of data. Multi-classifier fusion has proven to be

a powerful tool to improve the classification accuracy when data is characterized by high

discrepancies and irregularities. Using multiple individual classifiers can provide a joint de-

cision by combining their individual output in order to derive the final result. Accordingly,

we hypothesize that augmenting the features extracted from neuroimages with contextual

and medical data of the patients through multi-classifier decision fusion would enhance the

classification accuracy.

This chapter presents a novel context-aware CAD for early identification of multiple

type of dementia by augmenting the medical imaging data with contextual patients’ data

through the decision fusion of multiple classifiers. This novel approach can help in building

a robust model that offers a high degree of diagnostic accuracy regarding the identification

of multiple types of dementia. The rest of the chapter is organized as follows: Section

5.2 briefly describes a stacked sparse autoencoder and reviews the related work on multi-

classifier fusion. Section 5.3 presents the framework of a context aware approach proposed

to automatically detect several types of dementia. Section 5.4 reports the significant ex-
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perimental results, and Section 5.5 summarizes the chapter.

5.2 Background and Related Work

5.2.1 Stacked Sparse Autoencoders (SSAEs)

Recent reports have proposed the use of stacked sparse autoencoders (SSAEs) in order to

reconstruct original input data to fit in a smaller representation and to enable the features

of a dataset to be learned in an unsupervised manner. Both tasks are accomplished through

the minimization of the reconstruction error between the input data at the encoding layer

and the data reconstruction at the decoding layer. The goal of these tasks is to improve

AD detection [87]-[88].

SSAEs are deep neural networks made up of multiple layers of basic sparse autoencoders

in which the output of each layer is wired to the input of the successive layer. SSAEs can

be pre-trained using a greedy layerwise approach that involves training each layer in turn.

The first SSAE layer tends to learn the first-order features of the raw input. The second

layer is then focused on learning second-order features that correspond to patterns in the

appearance of the first-order features. Higher SSAE layers are generally directed toward

learning even higher-order features.
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5.2.2 Multi-Classifier Fusion

An ensemble of classifiers is a set of classifiers that are trained over features extracted

from a dataset. Their individual output results are then combined using any of the fusion

techniques to obtain a final classification score [89]. Classifier fusion has recently become

viewed as one of the most promising methods in the field of pattern recognition. The

design of multi-classifier fusion involves two phases: the design of multiple classifiers and

the design of a combination technique (fuser).

A variety of multi-Classifier fusion methods have been recently developed, suggested as

alternative approaches leading to a potential enhancement in classification performance.

These methods include weighted averaging, fuzzy integral methods, ranking methods,

Dempter-Shafer method, and weighted voting [105]. These existent methods for the com-

bination of multiple classifiers can be classified into three frameworks, i.e. linear opinion

pools, evidential reasoning, and logarithmic pools.

In recent years, few multi-classifier fusion algorithms have been proposed for early

prediction of multiple stages of Alzheimer’ s disease severity [90,91,103,104]. In 2013, Liu

et al. proposed a novel multi-classifier fusion approach to differentiate between patients

with AD and healthy people with the weighted voting strategy. Then, the outputs of all

high-level classifiers were combined for making a final classification. Their results revealed
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that classification was enhanced by combining the output of multiple classifiers, which

provided an accuracy level of 92.0%, and 85.3% for classifications of AD versus NC and

MCI versus NC, respectively [90]. In [91,103], new contributions were introduced in order to

improve classification performance with respect to multi-stages of AD. Both works proposed

multiple classifiers fusion approaches with a majority-voting rule in order to obtain the

final prediction. After extracting features that capture AD biomarkers, small set of these

features were selected for classification tasks, including volume of GM, WM, and CSF and

size of hippocampus. Their results showed that building multiple classifiers outperforms

the use of a single classifier with respect to accurately predicting AD.

5.3 Methodological Approach

This research work aims to boost the accuracy of early prediction of dementia through

augmenting the medical imaging data with contextual patients’ data. In contrast to the

state-of-the-art approaches described above, the proposed CAD approach differentiates

among various types of dementia, whereas most of the reported studies have been focused

on differentiating among the varied stages of AD severity. While all aforementioned studies

focused on evaluating features extracted from MR neuroimages, contextual information of

dementia, that can be inferred from the metadata associated with neuroimages, are rarely

considered or discussed in dementia classification literature. For example, types of de-
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mentia can be more confidently labeled by considering scores of clinical diagnosis tests like

clinical dementia rate and mini-mental examination tests. This work proposes a novel CAD

approach, which integrates features extracted from MR neuroimages as well as contextual

information instead of only using the extracted features for the classification purpose. This

objective is accomplished through the decision fusion of multiple classifiers. Figure 5.1 il-

lustrates the proposed hierarchical structure of the context-aware multi-classifier fusion

framework.

Figure 5.1: Block diagram of the proposed context-aware method for improving the early
detection of multiple types of dementia and for predicting classification accuracy.

As shown in Figure 5.1, the proposed framework initially preprocesses, and segments

magnetic resonance imaging (MRI) scans to normalize and remove all portions surrounding

the brain. An SSAE is pre-trained with regions of interest, hippocampous and gray matter
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tissue, to extract more sophisticated features that capture multiple types of dementia

biomarkers, and reduce the high dimensionality of the images. Subsequently, the whole MR

images are classified based on features learned by the SSAE along with context information

using two classifiers, the convolutional neural network (CNN) and logistic regression. The

CNN output and the logistic regression output are then combined by the linear opinion

pool to obtain the final classification decision.

Image preprocessing and segmentation are detailed in Section 5.3.1, and Section 5.3.2

explains feature extraction and dimensionality reduction, followed by a description of the

classification fusion technique in Section 5.3.3.

5.3.1 Image Preprocessing and Segmentation

An image preprocessing and segmentation as described in chapter 4 will help to remove

the skull portion surrounding the brain tissues and to identify and measure the regions

of interest, i.e. hippocampus, and gray and white matter tissues, required for dementia

classification. For preprocessing and segmenting medical neuroimages, FreeSurfer software

is used. Using FreeSurfer is discussed in detail in Chapter 4.

The rationale of this study is the enhancement of classification performance for early di-

agnosis of multiple types of dementia by advancing the CAD method, presented in Chapter
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4. In addition to using MR neuroimages in classification, some data can be inferred from

metadata associated with images to improve classification performance. Such data serves

as contextual information that can be a complementary to the information extracted from

images for training and classification. This context information is converted into features

that can be understood by a classifier.

5.3.2 Feature Extraction and Dimensionality Reduction

Feature extraction from medical images is critical significance of increasing the accuracy of

the CAD method in early prediction of multiple types of dementia. When the used features

for training deep-learning techniques are insufficient or imprecise, this often leads to poor

classification. For example, a sparse autoencoder was pre-trained on MR neuroimaging

data to learn a latent or compressed representation in the earlier chapter. From the ex-

perimental results, it was demonstrated that the sensitivity of SAE-based model is worse

than specificity of one of comparing state-of-the-art studies. This may happen due to the

simple shallow structural characteristic of SAE, which restricts the extraction of high-level

features. To modify the extracted features and build more robust learning method, this

chapter proposes to use the Stacked Sparse Autoencoder (SSAE) for extracting high-level

features and reducing the high dimensionality of large imaging dataset.

The SSAE is composed of two layers that represent the sparse autoencoder (SAE).
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Figure 5.2 illustrates the SSAE model with two autoencoders stacked hierarchically. The

SSAE is applied in order to learn the latent features of the raw 2D images that have been

input. The output of each SAE is wired to the input of the following layer. Each layer

consists of three input/output mapping functions: an encoding function f(x), a feature for

mapping the data to compressed data, and a distance function that computes the amount of

information lost between the compressed representation of the data and the decompressed

representation. A final feature is a decoding function g(x) that maps the compressed data

to low-dimensional data, which is approximated to the original data.

In the input layer, the raw 3D images, x ∈ Rn−input, are converted to pixel intensity

values so that each image is represented as a column vector of pixel intensity whose size is

176 2 × 1 . The input layer contains n-input=176 × 176 = 30976 input units. Input x is

fed into first trained SAE with 5000 hidden units, which is then encoded so that it learns

primary features, h1, for each of input x and reduce its dimensionality by adjusting the

weight, W1, as given in Equation 5.1.

h1 = f(Wx+ b) = W1x+ b1 (5.1)

where W ∈ Ru×ninputand b ∈ Ru represent the matrix of the weight and the bias vector of

the encoder function, respectively. with respect to the activation function, this study was
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based on consideration of a logistic sigmoid function for f(a) = 1/(1 + exp(−a)), which is

the one most widely used in the field of pattern recognition or ML. These primary features

are then used as input for the second SAE with 1000 hidden units, so that it can learn

secondary features, h2, for each of primary features h1 by adjusting the weight W2. The

secondary features are given by Equation 5.2.

h2 = f(W1x
∗ + b1) = W2x+ b2 (5.2)

where W1 ∈ Ru×ninputand b1 ∈ Ru represent the trained matrix of the weight and the bias

vector of the encoder function, respectively. In the final stage, the extracted features are

treated as input to the CNN, which is trained to map secondary features to more sophisti-

cated features so that h2 is decoded to obtain x*, which is a low-dimensional representation

of input x. In this way, the extracted features are classified as identifying one of the several

types of dementia. This greedy layer-wise learning is called ”pre-training”.

5.3.3 Classification

Chapters 3 and 4 have proposed features-based deep-learning approaches, so that these

approaches are trained directly on features extracted from MR images for identification of

dementia. As a result, it has been shown that predicting the type of dementia for some

input images are not correct. This may result from sharing the same clinical and patho-
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Figure 5.2: A deep architecture of our stacked auto-encoder.

logical characteristics among various types. So, the extracted features from neuroimages

and medical brain scans may be not adequate for accurate identification of dementia. To

address this shortcoming, this chapter proposes to combine features learned from images

and the complementary context information in order to enhance classification performance.

These two kinds of data have been used by the set of base classifiers for recognizing

type of dementia for each image and then producing the probability vector for each image.

two probability vectors resulted from the CNN and logistic regression are fused by the

linear pooling rule into a single probability vector.

• Convolutional Neural Network (CNN): The architecture of CNN for feature ex-

traction and classification, discussed in chapter 3 is used in this chapter. For training
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CNN in this study, many experiments are conducted to optimize its hyperparameters,

including learning rate, number of filters, and filter size.After tuning and optimizing

CNN’ s parameters, a softmax function is applied in order to convert raw scores into

normalized probabilities that represent possible categories of types of dementia.

• Logistic regression: The high-level feature vector learned by SSAE are also treated

as input to the logistic regression for classifying into several types of dementia. In

addition to these features, some additional data has been inferred from metadata

associated with images that may potentially enhance classification accuracy. Such

data serves as contextual information that can be a complementary to the information

extracted from images for classification. This context information is converted into

features that can be understood by a classifier.

Given dimension-reduced training samples x’,the feature vector reconstructed by

SSAE as well as contextual data as the inputs, the logistic regression is trained

for differentiating multiple types of dementia. For multi-class classification, logistic

regression model uses the softmax function, a probabilistic function, which calcu-

lates the probabilities p(y/x) for the given types of dementia y from a combination of

the extracted features from input x’. This function chooses the output label y that
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maximizes the probability as given by equation 5.3.

y∗ = argmaxy p(y/x) (5.3)

The outputs of two classifiers are combined based on the weighted averaging rule to obtain

the final decision score using equation (6). For a sample i in a dataset D with five classes, we

assume that there are P(P>1) feature vectors, which can be extracted from sample i called

x1, .., xP . Accordingly, we employ two classifiers C1 and C2, to learn the classification task

using features extracted from raw data in D, respectively, in which the input of classifier Cj

is the feature vector xpj (1 ≤ pj ≤ P ). The output of each base classifier Cj is as follows,

that have been trained over the same training set.

p(Cj, x) ≤ 0,
5∑

j=1

p(Cj, x) = 1 (5.4)

where pj(x) denotes the probability that sample i belongs to label Lk recognized by the

classifier Cj with the input vector xpj , x denotes a feature vector of sample i with its form

of representation being a vector.

This work proposes the set of base classifiers to recognize type of dementia for each

image and fuses their outputs using the linear opinion pooling rule. This rule involves

97



taking a weighed linear average of classification outputs combined from various classifiers.

In this research, linear opinion pool decision fusion method works on fusing probability

vectors resulted from CNN and logistic regression into a single probability vector by using

equation (7).

L(p1, .., pn) =
n∑

i=1

(piwi) (5.5)

Where outputs of classifiers are represented by probability vectors p1,..,pn. pi = (pi,1, .., pi,c)

represents the probability vector of each classifier in which c referes to a number of target

labels. L is the pooling operator, and wi denotes the weight associated with classifier i’s

probability vector so that

n∑
i=1

(wi = 1), 0 ≤ wi ≤ 1 (5.6)

5.4 Experimental Results

To measure the performance of our proposed approach, we have used two classifiers that

perform linear pooling decision fusion. Seven-fold cross validation strategy is applied for

the evaluation of our approach. The dataset was randomly partitioned into seven folds, and

six of the seven folds were then used for training, with the remaining one for testing. This

entire process was repeated seven times in order to obtain an unbiased evaluation. The
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purpose of choosing cross validation is to optimize the hyperparameters of the classifiers.

Moreover, cross-validation is used to ensure the best generalization ability of the proposed

model on used independent dataset

The effectiveness of the proposed model based on the measurement of metrics such

as sensitivity, specificity, precision, f1-score, and the accuracy of the diagnosis for the

early detection of dementia. These evaluation measures were implemented in the Python

scripting language (version 2.7.11) using the scikit-learn library. The proposed deep neural

network model was built using TensorFlow and trained on Google Cloud Platform. In this

study, MRI structural data and contextual data interpreting images are used for training

the proposed CAD model to categorize types of dementia.

5.4.1 Dataset

Similar to works proposed in the previous chapters, experiments in this chapter are con-

ducted on the OASIS dataset. This chapter uses the entire dataset that consists of 4000

T1-weighted MRI scans, collected from 417 subjects and divides it into three subsets, in-

cluding training dataset, validation dataset, and testing dataset. To increase classification

performance, some additional data can be used. This data includes clinical examination,

and demographic and anatomic values. Table 5.1 lists details of the selected dataset. The

following data, taken from metadata associated with images in the selected dataset, is used
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for conducting our experiments:

• Demographical data: Considerable demographic data has been used for conducting

our experiments and enhancing the performance of the proposed model including an

age of subjects, their gender, their educational status, and their handeness.

• Clinical dementia rate (CDR): The CDR is a five-point scale used to assess the

cognitive performance of each patient in different domains and so quantify the severity

of dementia. The scale ranges from zero to three, and a value greater than zero

indicates that subjects diagnosed with dementia, whereas all healthy control subjects

had CDR of 0.

• Mini-Mental state examination (MMSE): The MMSE is a test that can be used

to evaluate mental status by answering questions about different cognitive areas.

However, the score of MMSE, ranges between zero and 30, so any score greater than

or equal to 24 points (out of 30) indicates subjects have normal cognition.

• A number of whole brain volume (nWBV): nWBV denotes the percent of all voxels

within the brain mask that are classified as gray or white matter’ s tissue.
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Table 5.1: Contextual data of patients in OASIS dataset.

Attribute Description Values Num. of subjects

Age Age in years

18-25
26-45
46-65
66-96

120
48
71
178

Sex Gender of patient
Male

Female
160
257

CDR Clinical dementia rate

0
0.5
1

89
16
8

MMSE Mini-mental state examina-
tion

18-23=demented
24-30=NC

nWBV Normal of whole brain volume
0.644-0.797=demented

0.645-0.893=NC
Sequence MR image sequence 3D T1-weighted images

5.4.2 Performance Evaluation

To evaluate the effectiveness of the proposed approach in predicting multiple types of de-

mentia, a number of metrics are used, including classification accuracy, sensitivity, speci-

ficity, precision, and f1-score. In addition to these metrics, precision-recall curve and

micro-averaging are also used for evaluating the model’ s performance in predicting each

class of dementia in the dataset. Furthermore, the pre-mentioned metrics are used for

comparing the performance of the proposed model with the performance of that in earlier

chapters.
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5.4.2.1 Performance Evaluation of the Proposed Approach:

The results clarify how incorporating neuroimages with the contextual data affects clas-

sification performance as it will be discussed. Table 5.2 shows that the proposed model

yields an overall classification accuracy of 95% of five types of dementia with a specificity of

93%and a sensitivity of 89%. From these results, it can be confirmed the effectiveness of the

proposed approach and its merit in increasing classification accuracy by fusing of multiple

classifiers that use the extracted features and contextual data for training and classifica-

tion. Figure 5.3 shows accuracy during training and after testing. The results show that

the convergence between training accuracy and testing accuracy curves is increased until

200k epochs and starts to decrease.

Table 5.2: The results of classification performance using a combination of ML classifiers.

Performance metrics Percentage (%)

Training Accuracy 95
Testing accuracy 90

Sensitivity 93
Specificity 88
Precision 94
F1-score 93
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Figure 5.3: Training and testing accuracy of performance of proposed model.

5.4.2.2 Performance Comparison of the Proposed Approach with that of Per-
vious Chapters:

The second experiment is performed to test the effectiveness of proposed approach which

augmenting data with patient’s context information through fusing multiple classifiers.

Specifically, we compare the performance of the proposed multi-classifier fusion method

with those of other three possible classification methods presented in previous chapters.

The classification results and their comparisons with respect to different methods are sum-

marized in Table 5.3. Regarding augmenting data with contextual data, it has been ob-

served that the ensemble of classifiers is a good option for the overall classification between
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dementia subjects and healthy controls due to its superior accuracy rate compared to its

base classifiers. We have been able to achieve higher sensitivity, specificity, and accuracy

rates as compared to other competing approaches [102]-[106] (see Table 5.3) for identifica-

tion of several forms of dementia.

Table 5.3: A comparison of the proposed method with three methods presented in the
previous chapters in terms of classification accuracy, specificity, and sensitivity.

Classification methods Accuracy Sensitivity Specificity

The proposed CNN-based CAD 75% 63% 46%

The proposed SAE+CNN CAD 80.1% 63.82% 75.49%

The proposed SSAE+CNN CAD 83.69% 79.32% 77%
The fusion-based approach 95.0% 93% 88%

5.4.2.2.1 Discussion

The dataset used to conduct the experiments is imbalanced. The dataset has five labels,

representing types of dementia, to be classified. Due to splitting dataset into training and

testing dataset randomly, training dataset contains a limited number of examples in differ-

ent classes of dementia. The highly imbalanced dataset leads to overfitting, thereby neg-

atively affecting classification performance.To boost the classification performance, some

ways are performed to compact imbalanced training dataset before providing the data as

input to the proposed method. This improvement is accomplished by tuning the hyper-

parameters of the CNN and the SSAE, modifying the proposed classification algorithm,
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and augmenting and resampling data. This section presents performance results of the

proposed model with imbalanced data as well as the results of the proposed model after

handling data.

5.4.2.2.2 Experimental Results with an Imbalanced Dataset without Data Im-
provement:

Due to working with very imbalanced classes in the selected dataset, some measurements

instead of accuracy have been designed to measure the success of prediction of multiple

types of dementia. These metrics include the precision-recall curves, confusion matrix, and

micro-averaging. The Precision-Recall curves for all labels of dementia are plotted on the

same graph, and then the area under the curve (AUC) is calculated for all classes (see

Figure 5.4). As illustrated in this figure, the proposed algorithm is biased towards the

majority class, where the precision of the diagnosis of normal controls is 83%, whereas the

precision of classification of other remaining types of dementia is under 8%.

In addition to plotting precision-recall curves, the micro-averaging is also calculated

in order to evaluate the performance of the proposed approach in early prediction of five

types of dementia by summing all true positives, true positives, and false negatives for each

class label, and then applying them to get classification performance. Figure 5.5 illustrates

an area under the micro-averaging curve, which represents the average precision of the

dementia diagnosis. AUC is 62 % which has been computed from prediction scores. The
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Figure 5.4: The precision-recall curves for all classes of dementia.

results in this figure show that AUC of the last class, uncertain dementia, in the dataset

is nan that means no any instance with this class is correctly predicted.

In addition, Figure 5.6 shows the confusion matrix of the five-way classification with

augmenting the features extracted from the MRI images and the contextual data. The

results presented in this confusion matrix show that the CAD approach yields poor pre-

dictive accuracy for the minority classes, including AD, FTD, uncertain dementia, and

incipient dementia PTP and it tends to classify most new samples in the majority class

which is normal controls. However, these unsatisfied results are happened due to the use
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Figure 5.5: An average precision score, micro-averaged over all classes.

of highly imbalanced dataset.

5.4.2.2.3 Experimental Results after Handling Imbalanced Dataset:

In Section 5.4.2.2.2, it has been notable that classification is biased in favor of the majority

class. This problem is attenuated by manipulating MR neuroimages before training the

proposed model whereby a variety of augmented images for each of minority classes are

generated. The proposed CAD approach tested patients clinically diagnosed as having

dementia due to AD, FTD, uncertain dementia, or incipient dementia PTP. It correctly
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Figure 5.6: Confusion matrix of identification of five types of dementia.
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classified 400 out of 500 samples. Figure 5.7 shows the confusion matrix of the five-way

classification after up-sampling the minority classes. In this figure, the five diagonal cells

show the percentage of correct classifications by the trained CAD model. For example, 51

samples are correctly classified as patients having AD. This corresponds to 86% of all 500

samples. Similarly, 51 cases are correctly classified as patients with FTD. This corresponds

to 100% of all samples. Moreover, 316 out of 335 normal controls are correctly classified so

that it corresponds to 94%. Also, all patients with incipient dementia PTP and patients

diagnosed with uncertain dementia have been classified correctly. This corresponds to

100%.

A nine out of 500 samples are incorrectly classified as having AD, and this corresponds

to 0.15. Similarly, 19 of patients with different dementia types are incorrectly classified as

normal controls and this corresponds to 5% of all data. Out of 325 no dementia predictions,

94% are correctly predicted as normal controls and 15% are predicted as AD. Similarly,

out of 65 AD predictions, 86% are correct and 4% are wrong predictions. Overall, 94% of

the predictions are correct and 6% are wrong classifications.

In addition to group classification, Figure 5.8 and Figure 5.9 illustrate the multi-class

precision-recall curves and the area under the micro-averaged curve (AUC) to visualize the

performance of the proposed model in the prediction of multiple types of dementia. The

results in Figure 5.9 clarify that the AUC for precision is significantly higher than that
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Figure 5.7: Confusion matrix of identification of five types of dementia after manipulating
imbalanced data.
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computed using the imbalanced dataset in the previous section. It has been shown that

average precision is up to above 93%. This score of micro-averaging shows that the proposed

CAD model is returning accurate results (high precision), as well as returning a majority

of all positive results (high recall). Moreover, Table 5.4 summarizes some classification

statistics in the prediction of several types of dementia, including the precision, recall,

and specificity along with the F1 score for each label after handling its bias. The results

displayed in that table demonstrate that proposed classification method can achieve high

classification performance due to manipulating high dimensional imbalanced data.

Figure 5.8: The precision-recall curves for all classes of dementia.
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Figure 5.9: An average precision score, micro-averaged over all classes after balancing
dataset.

Table 5.4: A classification report displaying percentages for each of precision, recall, speci-
ficity, and f1-score of each class.

Class label Precision Recall Specificity F1-score

Alzheimer’s disease 78% 86% 96% 82%
Fronto-temporal dmentia 100% 100% 100% 100%
Incipient dementia PTP 70% 100% 99% 77%

No dementia 97% 94% 87% 96%
Uncertain dementia 67% 100% 100% 80%

avg/total 94% 93% 88% 93%

112



5.5 Summary

This chapter has described the investigation of a new context-aware CAD approach for early

differentiation of multiple types of dementia based on MRI scans and the contextual data.

An ensemble of classifier-based automated classification algorithms has been proposed for

gradually combining individual decisions into a unified model, in this case, based on linear

pooling decision fusion rule, in order to enhance classification performance. The specific

process involves first the building of a CNN for transforming the features learned by an

SSAE into more compact high-level features through unsupervised learning. A logistic

regression classifier and a neural network are then generated, each evaluating the high-

level features of different brain regions. In the final stage, the classification outputs of both

classifiers are combined to obtain the final classification decision. The proposed method

has been evaluated using MR neuroimages of 417 subjects from the OASIS dataset.

The experimental results revealed that the proposed learning algorithm achieved an

accuracy level of 95 %, a sensitivity level of 93 %, a f1-score of 93 %, a precision of 94%,

and a specificity level of 88 % for multi-type dementia classification, thus demonstrating

very promising classification performance.The correct classification is 93% for all groups,

86 % for AD, 94% for NC, 100% for incipient dementia PTP,100% for uncertain dementia,

and 100% for FTD.
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Chapter 6

Conclusion and Future Work

6.1 Summary and Contribution

This work has proposed a novel deep learning based computer-aided diagnosis (CAD) ap-

proach for early identification of multiple types of dementia, whereby features extracted

from neuroimages and patients’ contextual data are incorporated and utilized to decision

process. The architecture of the proposed approach consists of three stages, including

image preprocessing and segmentation, feature extraction, and classification. After seg-

menting images and obtaining the interest regions for detecting dementia, the proposed

approach trained Stacked Sparse Autoencoders (SSAEs) consisting of two layers to learn

an improved feature space, including the hippocampus’ s size, and gray and white matter’

s volumes. Each layer of SSAEs learned a combination of features from features produced

by the previous layer. Then, the learned features as well as context information were then
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classified by a combination of classifiers to enhance classification accuracy of multiple types

of dementia.

This thesis developed a novel deep learning-based CAD approach on several stages to

assist and help practitioners in differentiating among several types of dementia in early

stages using MRI scans. Chapter 3 presented a convolutional neural network- based ap-

proach for early prediction of multi-type dementia. As a successful deep model applied in

dementia diagnosis, the results of Chapter 3 showed that the Convolutional neural network

in classification has demonstrated superior performance to the state-of-the-art approaches

whether in classification accuracy or sensitivity while the specificity of prediction achieved

using the proposed method is not better than the specificity measured by other compared

methods. The weakness of specificity can be a result of training a very deep CNN with a

small dataset.

In chapter 4, this research work sought to make the proposed model, presented in

Chapter 4 more robust and faster through reducing high dimensionality and extracting

features from MRI images before feeding them into the CNN for classification. However,

this paper suggested computer aided approach for differentiating the different forms of

dementia in its early stages by training low representation of MRI images obtained by

SAE. This CAD method combines autoencoder that learns high level features with ML

techniques that classifies data into one of five dementia classes. The accuracy of this
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proposed approach was predicted on large patient population. The experiment indicates

that our proposed model, merging SAE with CNN, achieves better accuracy than both

linear support vector machine and logistic regression. Also, a comparison among the

performance of the proposed model and the performance of PCA was conducted. It has

been noticed that the results of proposed model outperforms the results of PCA.

Chapter 5 advanced the CAD approach, presented in earlier chapter to enhance clas-

sification performance. This was accomplished by increasing training data with patient’s

contextual information through multi-classifier fusion. The results indicate that the fusion

of multiple classifiers achieves better performance results in prediction of multi-type de-

mentia in early stages than building a single classifier for achieving the same goal. The

proposed approach has best sensitivity and specificity values as compared to that of ex-

isting approaches. The proposed approach has an overall accuracy value comparable to

existing approaches despite the fact that we have used smaller feature set. the early iden-

tification of multiple types of dementia. While there is no cure for dementia, early effective

diagnosis of dementia is essential in managing it. Early diagnosis plays an important role in

identifying the right treatment, preventing or slowing down cognitive ability deterioration,

and in seeking the appropriate support and planning for the future [28]. However, the early

diagnosis of dementia is a challenging task due to the extremely complexity of dementia

characterizations in neuroimaging data. The proposed multi-stage CAD approach
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6.2 Concluding Remarks

The results of the hypotheses tests are summarized below:

• H1: The use of features extracted by the deep learning techniques in the early di-

agnosis of dementia provides higher classification performance than the use of raw

image pixels’ intensity in diagnosing dementia. The results of this study indicate

that this hypothesis is tested by conducting an experiment explained in Chapter 3.

The experiment was an attempt to investigate that using features learned by Con-

volutional neural Network (CNN) from MRI images of brain improves classification

accuracy comparing to the use of raw image pixels for classification purposes. Using

deep learning techniques in the early diagnosis of dementia would perform higher

classification performance.

• H2: Reducing high dimensionality of neuroimages into high-level feature would yields

higher classification performance and accurate identification of various types of de-

mentia biomarkers. This hypothesis was tested by conducting the experiment pro-

vided on Chapter 4. The proposed CAD approach is compared with state-of-the-art

approaches, and it has shown its superiority with 4.1% better performance.

• H3: Augmenting the features extracted from neuroimages with contextual and med-
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ical data of the patients through multi-classifier decision fusion would enhance the

classification accuracy. Chapter 5 provided the experiment, conducted to test this

hypothesis (H3). A multi-classifier- based CNN and logistic regression are fused

to enhance classification performance. The results showed that the hypothesis is

accepted.The proposed CAD approach has shown high performance in early identifi-

cation of multiple types of dementia, where its accuracy has reached 95%. The model

has compared with models, presented in previous chapters,it has outperformed both

methods with 75% and 80.1%, respectively.
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