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Abstract

Piece-wise linear structures are widely used to define problems and to represent simplified
solutions in computational geometry. A piece-wise linear structure consists of straight-line
or linear pieces connected together in a continuous geometric environment like 2D or 3D
Euclidean spaces. In this thesis two different problems both with the approach of finding
piece-wise linear solutions in 2D space are defined and studied: straight-line pursuit evasion
and straight-line morphing.

Straight-line pursuit evasion is a geometric version of the famous cops and robbers game
that is defined in this thesis for the first time. The game is played in a simply connected
region in 2D. It is a full information game where the players take turns. The cop’s goal
is to catch the robber. In a turn, each player may move any distance along a straight
line as long as the line segment connecting their current location to the new location is
not blocked by the region’s boundary. We first prove that the cop can always win the
game when the players move on the visibility graph of a simple polygon. We prove this by
showing that the visibility graph of a simple polygon is “dismantlable” (the known class of
cop-win graphs). Polygon visibility graphs are also shown to be 2-dismantlable. Two other
settings of the game are also studied in this thesis: when the players are free to move on
the infinitely many points inside a simple polygon, and inside a splinegon. In both cases
we show that the cop can always win the game. For the case of polygons, the proposed cop
strategy gives an asymptotically tight linear bound on the number of steps the cop needs
to catch the robber. For the case of splinegons, the cop may need a quadratic number of
steps with the proposed strategy, while our best lower bound is linear.

Straight-line morphing is a type of morphing first defined in this thesis that provides a
nice and smooth transformation between straight-line graph drawings in 2D. In straight-
line morphing, each vertex of the graph moves forward along the line segment connecting
its initial position to its final position. The vertex trajectories in straight-line morphing
are very simple, but because the speed of each vertex may vary, straight-line morphs are
more general than the commonly used “linear morphs” where each vertex moves at uniform
speed. We explore the problem of whether an initial planar straight-line drawing of a graph
can be morphed to a final straight-line drawing of the graph using a straight-line morph
that preserves planarity at all times. We prove that this problem is NP-hard even for
the special case where the graph drawing consists of disjoint segments. We then look at
some restricted versions of the straight-line morphing: when only one vertex moves at a
time, when the vertices move one by one to their final positions uninterruptedly, and when
the edges morph one by one to their final configurations in the case of disjoint segments.
Some of the variations are shown to be still NP-complete while some others are solvable
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in polynomial time. We conjecture that the class of planar straight-line morphs is as
powerful as the class of planar piece-wise linear straight-line morphs. We also explore
a simpler problem where for each edge the quadrilateral formed by its initial and final
positions together with the trajectories of its two vertices is convex. There is a necessary
condition for this case that we conjecture is also sufficient for paths and cycles.
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Chapter 1

Introduction

Geometric objects and geometric problems in their real representations and definitions can
be too complex to represent or to solve. To simplify matters, piece-wise linear structures are
widely used to define problems and represent geometric objects in computational geometry.
A piece-wise linear structure consists of straight-line or linear pieces which are connected
together in a continuous geometric environment like 2D or 3D Euclidean spaces. For
example connecting points in 2D via a set of straight-line segments in the presence of
obstacles or some other geometric constraints is a fundamental concept widely used to
define and solve problems in computational geometry. Piece-wise linear structures are also
called polygonal chains or poly-lines especially when the problem is defined in 2D space.
Polygons and polyhedra are examples of piece-wise linear structures widely used to define
the boundary of objects or regions in 2D and 3D.

Piece-wise linear solutions are also interesting in some problems because they are sim-
pler to visualize, easier to represent, and can be computed with less complexity. However,
piece-wise linear solutions are not always optimal. For example, a minimum link path
between two points in a polygonal region with the presence of obstacles is a piece-wise
linear path with the minimum number of bends. However, a shortest length path between
two points in a region with curved boundaries is not necessarily piece-wise linear.

Even though simplifying a problem into the piece-wise linear version usually makes the
problem easier, sometimes it defines a totally new problem with a different solution. A
famous example is the Lion-and-Man problem, where a lion is trying to catch a man in a
circular arena. In the continuous version, the man can escape indefinitely. However, if the
players take turns, which means the path each player traverses is piece-wise linear, the lion
may catch the man in finite time [64].
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Finding shortest paths, motion planning, polygon visibility problems, and morphing
graph drawings are a few more examples where polygonal chains are used to define a
problem or to represent an acceptable solution for a hard problem. Sometimes we break
down a complex solution, such as a solution to motion planning or morphing problems, into
a series of simple steps such as linear steps. Then, an acceptable solution can be achieved in
the form of a piece-wise linear structure. In problems like morphing or motion planning in
which timing is included, time can be seen as an extra dimension. Then, a piece-wise linear
solution in the higher dimensional space (including time as an extra dimension) might be
a desirable solution for the original problem.

In this thesis, we consider two interesting but very different problems both with the
approach of finding piece-wise linear solutions in 2D space: Straight-line pursuit evasion
and straight-line morphing.

The first problem, straight-line pursuit evasion, is a version of the popular cops and
robbers game in which the cop and robber move on straight lines inside a polygon or
a region with curved boundaries. In straight-line pursuit evasion there is an evader (or
robber) and a pursuer (or cop) playing in a simply connected region in 2D. Each player
is modeled by a single point. The game starts with the cop choosing a point inside the
region to start. Then the robber chooses its initial position accordingly. The game is full
information, so both players know everything about the environment and the other player’s
location. They start taking turns. The cop and the robber in their turns may move on a
straight-line to a new point inside the region if the new point is “visible” from the their
current location. The game finishes if the cop in its turn catches the robber by moving
onto the robber’s location. Then the cop wins and the game is called cop-win. Otherwise,
if the robber can escape indefinitely the game will be robber-win.

The version of the game we consider in this thesis is very close to the original cops and
robbers game introduced by Nowakowski and Winkler [68], and Quilliot [72] in 1983. The
original game is defined on undirected graphs, and the players are located on the vertices
and move along the edges of the graph in their turns. The version of the game in this thesis
can be seen as the geometric version of the original game played on the infinite visibility
graph of all points inside a simply connected region.

There are many different variations of the cops and robbers game defined in the lit-
erature. Continuous versions of the problem in geometric environments, which are also
interesting in robotics and video surveillance applications, are usually called “pursuit eva-
sion”. The Lion-and-Man problem in a circular arena from the 1930’s is the oldest pursuit
evasion problem in this category (see Littlewood [64]).

In continuous settings the players may move continuously with the same maximum
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speed. The pursuit evasion problem in this continuous setting is a harder problem. For the
simple version where the region is a circular arena in the Lion-and-Man problem, the man
can escape only by moving on a precise curve which is not very intuitive. One approach to
make the problem simpler is to force the players to take turns and make a limited movement
in each turn. Then, the trajectory of each player will be piece-wise linear which is easier
to solve and represent. However, as mentioned earlier in regards to the Lion-and-Man
problem, this simplification may change the solution of the problem significantly.

In the versions of the pursuit evasion problem that are closest to our setting, the
players take turns and are limited by the maximum distance the players may move in each
turn. [12, 10]. In the straight-line pursuit evasion problem we defined, the limitation is
actually on the link distance instead of the Euclidean distance. Each player may move to
any point with link distance one on its turn. This can be a more natural limitation in
real mobile robot navigation as moving forward on a straight-line can be done with higher
speed than changing directions several times in each turn. Moreover, the cost and delay
caused by changing directions can naturally simulate taking turns by the players. Even
though this is still not a real model, it seems closer to real situations than taking turns
with a maximum distance restriction in each turn.

There is no previous study on cops and robbers on visibility graphs, and this is the first
time that this version of the pursuit evasion problem has been considered, even though
visibility is central to many pursuit evasion problems.

In this thesis, we study the straight-line pursuit evasion problem in three different
settings and show that the cop wins in all three cases. The first setting is the game on the
“visibility graph” of a simple polygon. The players are on the vertices of a simple polygon.
They may move from vertex v to a vertex u in their turns if and only if vertices v and u
are visible inside the polygon.

In the second setting of straight-line pursuit evasion the game is extended to all the
infinitely-many points inside the simple polygon. This game is also proved to be cop-win
thus providing a non-trivial infinite cop-win graph. We also show that the number of steps
the cop needs to capture the robber is at most n with the suggested strategy, where n is
the number of vertices of the polygon. There are examples where Ω(n) steps are needed,
so the bound is tight.

In the last setting of the game we prove that the game is still cop-win if the boundary
of the region consists of simple curves (splines) instead of line segments. Such a region is
called a “splinegon” instead of a polygon. In our suggested strategy for the cop, it takes
O(n2 + d) steps for the cop to catch the robber, where n is the number of curve segments
forming the boundary of the region and d is the link diameter of the region. We cannot
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do better than Ω(n+ d) steps.

The second problem we consider in this thesis with the approach of piece-wise linear
solutions is morphing. By morphing we mean a smooth and continuous transformation from
a (planar) drawing of a graph to another (planar) drawing of the same graph. Morphing
is a relatively new term used since the 1980’s and has attracted much attention in graph
drawing [4, 14, 33]. The motivation of studying the special case of morphing of poly-lines is
that there are some applications that can be modeled as transformation of one curve/poly-
line to another curve/poly-line in a smooth and natural way. Morphing hand-writing
or morphing a curve representing a road or river between geographic maps of different
scales are some examples [33, 71]. In these examples the main challenge is to find a good
correspondence between the points of two curves/poly-lines. However, in graph drawing
morphs the correspondence of graph vertices is usually assumed to be known [21].

Planarity is usually the main property we want to preserve in the morphing of planar
graph drawings. It is also desirable to be visually clear how the initial drawing is changed
into the final drawing. In most studies the morph is broken into simple steps like linear
morphs where each vertex moves along a straight line with uniform speed [4]. This leads
to a piece-wise linear trajectories for the vertices. However, the trajectories might be
complicated and not nicely visualizable.

In this thesis we define straight-line morphing. A straight-line morph from a planar
straight-line drawing of a graph to another planar straight-line drawing is a morph where
the trajectory of each vertex is the straight-line segment connecting its initial position
to its final position. Straight-line morphs are similar to linear morphs since the vertex
trajectories are the same. In straight-line morphs, however, there is freedom of how each
vertex travels this simple trajectory. For example, a vertex might travel half-way to its
target position and pause there while some other vertices move before it finally completes
its journey to the target position. This property makes straight-line morphing more flexible
than linear morphing but more constrained than piece-wise linear morphing.

Straight-line morphing with this definition is a new concept introduced for the first time
in this thesis. The difference between a linear morph and a straight-line morph will be
clearer if we think of time as an extra dimension. Assume that the entire morph happens
in a unit time. Then in a linear morph the motion of each vertex in 3D space will be a
single line segment connecting point (x0, y0, 0) to point (x1, y1, 1) (the first two dimensions
indicate the vertex position and the last dimension is time). By contrast, in a straight-line
morph the trajectory in 3D space is not limited to a single line segment. Our definition
of straight-line morphs allows vertices to move along their straight-line trajectories with
speeds that are arbitrary functions of time. However, all the positive solutions we give
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for straight-line morphing involve piece-wise linear motions, and we conjecture that if a
solution exists to an instance of straight-line morphing, then a solution exists in which
the motion is piece-wise linear, i.e., the path in 3D space from (x0, y0, 0) to (x1, y1, 1) is a
poly-line whose projection to the first two coordinates is a straight line segment.

In this thesis we explore straight-line morphs for the case of disjoint segments, paths,
and cycles. We prove that deciding whether a planar straight-line morph exists is NP-hard
even for a set of disjoint segments. However, we have not shown that the problem lies in
NP and we still do not have any algorithm to decide the existence of straight-line morphs
even for a limited category of graphs. Therefore, we had to narrow our focus to more
restricted versions of the problem.

We narrow our focus in two ways: by restricting the input or by adding more limi-
tations to the straight-line morphs. In the first part, we simplify the input, for example
by eliminating the cases where some edges morph through a non-convex quadrilateral
in the morph. For the second part, more specific versions of the morphs are introduced.
For example, we consider straight-line morphs where only one vertex or edge is moving at
each time while the rest of the graph is stationary, or even where the moving edge/vertex
morphs to the final position without interruption.

Most of the restricted versions of straight-line morphs considered in this thesis are
simple enough to have exponential time algorithms. For some versions we even have
polynomial time algorithms, while some versions are shown to be still NP-hard. However,
for the case of one-vertex-at-a-time morphs we still do not know if the additional restriction
has decreased the complexity of the problem.

For the case where we simplified the input and limit it to edges with convex morphing
quadrilaterals, we develop a good necessary condition that is testable in polynomial time
and may rule out some negative examples. Even though this necessary condition is not
sufficient in general, we conjecture that for the case of paths and cycles it is a sufficient
condition.

The thesis is organized as follows. Part I (Chapters 2 to 5) is about pursuit evasion.
Chapter 2 is the introduction to the problem and the background on cops and robbers,
pursuit evasion, and splinegons. The cops and robbers problem on the visibility graph of
the polygon and on all points inside the polygon is in Chapter 3. Chapter 4 is for the cops
and robbers problem in splinegons (the regions with curved boundaries). The last chapter
in Part I contains the conclusions and open problems for pursuit evasion.

Part II (Chapters 6 to 9) is about straight-line morphing. Chapter 6 is the introduc-
tion and background about morphing. In Chapter 7 straight-line morphing in its original
settings is considered on disjoint segments, paths, cycles, and on a restricted category of
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morphing graphs (convex morphing) and the results are discussed. In Chapter 8 the more
restricted straight-line morph definitions, where only one vertex/edge moves at a time,
are considered. Chapter 9 contains the conclusion and open problems for the straight-line
morphing problem.
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Part I

Straight Line Pursuit Evasion
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Chapter 2

Pursuit Evasion: Introduction and
Background1

Cops and robbers games, also known as pursuit-evasion games, have a rich history both for
their mathematical interest and because of applications in surveillance, search-and-rescue,
and mobile robotics.

In pursuit-evasion games one player, called the “evader,” tries to avoid capture by
“pursuers” as all players move in some domain. There are many game versions, depending
on whether the domain is discrete or continuous, what information the players have, and
how the players move: taking turns, moving with bounded speed, etc. The “cops and
robbers game” mostly refers to discrete versions of the game on graphs, while “pursuit-
evasion” often refers in the literature to the variations of the game in continuous domains
such as mobile robotics and geometric environments.

Here, we consider a geometric version of the “cops and robbers game,” in the domain of
straight-line visibility in planar regions. Our version of the problem can also be related to
“pursuit evasion” problems, since the players move in continous space in polygons or planar
regions with curved boundaries. The rules of our game are the same as the original cops and
robbers game first introduced in 1983 by Nowakowski and Winkler [68], and Quilliot [72].
The cop and robber are located at vertices of a graph and take turns moving along edges
of the graph. The robber is caught when a cop moves to the vertex the robber is on. The
standard assumption is that both players have full information about the graph and the

1This part of the thesis represents joint work with Anna Lubiw and Jack Snoeyink and has appeared
as journal publication [65]
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other player’s location. The first papers on this game [68, 72] characterized the graphs in
which the cop wins; they are “dismantlable” graphs that are defined in the following.

Definition 2.1 (Dismantlable Graph). For a vertex v of a graph, let N [v] be the closed
neighbourhood of v, which consists of v together with the vertices adjacent to v. Vertex v
dominates vertex u if N [v] ⊇ N [u]. A graph G is dismantlable if it has a vertex ordering
{v1, v2, . . . , vn} such that for each i < n, there is a vertex vj, j > i that dominates vi in
the graph Gi induced by {vi, . . . , vn}.

Since then many extensions of the cops and robbers game have been explored; see
the book by Bonato and Nowakowski [16]. These extensions are mostly about making
the players stronger or weaker, adding uncertainty to the game, or providing the player
with partial information about the environment and other players. Note that the cops
and robbers version that Seymour and Thomas [73] develop to characterize treewidth is
different: the robber moves only along edges but at arbitrarily high speed, while a cop may
jump to any graph vertex.

In this thesis we consider three successively more general versions of the cops and
robbers game in planar regions. The first version is the cops and robbers game on the
visibility graph of a polygon. We regard a polygon as a closed set of points, the interior
plus the boundary. Two points in a polygon are visible or see each other if the line segment
between them lies inside the polygon. The line segment may lie partially or totally on the
boundary of the polygon. The visibility graph of a polygon has the same vertex set as the
polygon and an edge between any pair of vertices that see each other in the polygon.

We prove that this game is cop-win by proving that visibility graphs are dismantlable.
As explained below, this result is implicit in [1]. We prove the stronger result that visibility
graphs are “2-dismantlable.” The definition is in Chapter 3. We remark that it is an open
problem to characterize or efficiently recognize visibility graphs of polygons [42, 43], and
furthermore, the class of visibility graphs of polygons is not contained in any of the well-
studied graph classes. Thus this result is significant in that it places visibility graphs as
a subset of the class of dismantlable graphs which is known and can be recognized in
polynomial time [68]. Therefore, as the first step toward recognizing visibility graphs we
might test whether the graph is dismantlable (or even stronger if it is 2-dismantlable).

Our second setting is the cops and robbers game on all points inside a polygon. The cop
chooses a point inside the polygon as its initial position, then the robber chooses its initial
position. Then the players take turns, beginning with the cop. In each turn, a player may
move to any point visible from its current location, i.e., it may move any distance along
a straight-line segment inside the polygon. The cop wins when it moves to the robber’s
position.
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For any point x in polygon P , the visibility polygon of x, V (x), is the set of points in P
visible from x. Note that V (x) may fail to be a simple polygon; it may have 1-dimensional
features on its boundary in certain cases where x lies on a line through a pair of vertices.
We prove that the cop will win using the simple strategy of always taking the first step of
a shortest path to the robber. Thus the cop plays on the reflex vertices of the polygon.

Our third setting is the cops and robbers game on all points inside a bounded simply-
connected planar region. We show that if the boundary is well-behaved (see below) then
the cop wins. We give a strategy for the cop to win, although the cop can no longer follow
the same shortest path strategy (e.g. when it lies on a reflex curve), and can no longer win
by playing on the boundary.

The cops and robbers game on all points inside a region can be viewed as a cops
and robbers game on an infinite graph—the graph has a vertex for each point inside the
region, and an edge when two points see each other. These “point visibility graphs” were
introduced by Shermer (see [74]) for the case of polygons. Our result shows that point
visibility graphs are cop-win. This provides an answer to Hahn’s question [47] of finding
an interesting class of infinite cop-win graphs.

The cops and robbers game on all points inside a region can be viewed as pursuit-evasion
under a different metric, and could appropriately be called “straight-line pursuit-evasion.”
Previous work [53, 12] considered a pursuit-evasion game in a polygon (or polygonal region)
where the players are limited to moving distance 1 in the Euclidean metric on each turn.
In our game, the players are limited to distance 1 in the link metric, where the length
of a path is the number of line segments in the path. This models a situation where
changing direction is costly but straight-line motion is easy. Mechanical robots cannot
make instantaneous sharp turns so exploring a model where all turns are expensive is
a good first step towards a more realistic analysis of pursuit-evasion games with turn
constraints. We also note that the protocol of the players taking alternate turns is more
natural in the link metric than in the Euclidean metric.

The rest of this chapter gives the background and some related studies for this part of
the thesis. This includes the background on cops and robbers and pursuit evasion problems.
Moreover, we look at the background studies about regions with curved boundaries at the
end of this chapter. Chapter 3 is about our first two settings of the straight-line pursuit
evasion game, i.e., the cops and robbers game on the visibility graph of a polygon and on
all points inside the polygon. Chapter 4 is about the cops and robbers game in planar
regions with curved boundaries which is our third setting. Chapter 5 is about some open
problems and discussions.
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2.1 Background on Cops and Robbers

The cops and robbers game was introduced by Nowakowski and Winkler [68], and Quil-
liot [72] in 1983. They characterized the finite graphs where one cop can capture the robber
(“cop-win” graphs) as “dismantlable” graphs, which can be recognized efficiently; see the
definition of dismantlable graphs earlier in this chapter.

Theorem 2.2. [68] A finite undirected graph is cop-win if and only if it is dismantlable.

A year later Aigner and Fromme [2] introduced the cop number of a graph, the minimum
number of cops needed to catch a robber. The rule with multiple cops is that they all
move at once. In general, if we put one cop on each vertex of the graph, the cops will win
immediately when the game begins. Thus, the cop number is O(n). Among other things
Aigner and Fromme proved that three cops are always sufficient and sometimes necessary
for planar graphs. Beveridge et al. [11] studied what they called geometric graphs where
vertices are points in the plane and an edge joins points that are within distance 1 and
showed that 9 cops suffice, and 3 are sometimes necessary. Meyniel conjectured that
O(
√
n) cops can catch a robber in any graph on n vertices [8]. While Meyniel’s conjecture

is still open, Frankl proved a sub-linear bound on the cop number is O(n log logn
logn

) cops [38].

Frankl’s bound was then improved by Chiniforooshan to O( n
logn

) cops [26].

For any fixed k there is a polynomial time algorithm to test if k cops can catch a robber
in a given graph, but the problem is NP-complete for general k [35], and EXPTIME-
complete for directed graphs [45].

The cops and robbers game on infinite graphs was studied in the original paper [68]
and others, e.g. [15]. Unlike finite graphs, in the case of infinite graphs being dismantlable
is not sufficient for the cop to win the game. A simple counter-example is an infinite path
(ray) which is dismantlable as each vertex is dominated by its next vertex in the path, but
is not cop-win because the robber may escape infinitely.

In a cop-win graph with n vertices, the capture time is the maximum number of moves
that the cop must take to capture the robber, where the maximum is taken over all robber
strategies. It is implicit in the proof of Theorem 2.2 that the cop can win in at most
n moves. In the book by Bonato and Nowakowski [16, Section 2.2] it is shown that the
capture time for cop-win graphs is at most n− 3 and they showed an example where the
capture time is n−4. This gap was resolved by Gavenčiak by showing that the capture time
is at most n − 4 for n ≥ 7 [41]. For three cops playing on planar graphs, Pisantechakool
and Tan showed that the capture time can be at most 2n [70].
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When k cops are playing in a graph with n vertices, a rough upper bound of nk+1 for
the capture time is obtained by counting the number of different states of the k+ 1 players
on n vertices because we may avoid a repetitive state in a winning strategy. Recently
in 2017, Brandt et al. proved that this upper bound is tight for n ≥ 2 [18]. For a fixed
number of cops, the number of cop moves needed to capture a robber in a given graph can
be computed in polynomial time [49], but the problem becomes NP-hard in general [15].

Many other variations of the cops and robbers game have been studied [54, 40, 55, 23,
36, 13]. Isler and Karnad [55] explore the case where the cop only knows the robber’s
location when the robber is within some bounded distance from the cop. The cop can still
catch the robber with a randomized strategy, but the number of moves increases. Chalopin
et al. [23] studied the game when the robber can hide while playing and is visible every
k steps. They characterize the cop-win graphs for any value of k. Isler and Karnad [55]
considered the role of information for the game of cop and robbers and showed that the
game is still cop-win even if the cop does not have any information about the robber’s
position, but the capture time will be exponential in that case.

2.2 Background on Pursuit-Evasion

In the cops and robbers game, space is discrete. For continuous spaces, the main focus
has been on polygonal regions, i.e., a region bounded by a polygon with polygonal holes
removed. The seminal 1999 paper by Guibas et al. [46] concentrated on “visibility-based”
pursuit-evasion where the evader is arbitrarily fast and the pursuers do not know the
evader’s location and must search the region until they make line-of-sight contact. This
models the scenario of agents searching the floor-plan of a building to find a smart, fast
intruder that can be zapped from a distance. Guibas et al. [46] showed that Θ(log n)
pursuers are needed in a simple polygon, and more generally they bounded the number of
pursuers in terms of the number of holes in the region. If the pursuers have the power to
make random choices, Isler et al. [53] showed that only one guard is needed for a polygon.
For a survey on pursuit-evasion in polygonal regions, see [27].

The two games (cops and robbers/visibility-based pursuit-evasion) make opposite as-
sumptions on five criteria: space is discrete/continuous; the pursuers succeed by capture/
line-of-sight; the pursuers have full information/no information; the evader’s speed is lim-
ited/unlimited; time is discrete/continuous (i.e., the players take turns/move continuously).

The difference between players taking turns and moving continuously can be vital, as
revealed in Rado’s Lion-and-Man problem from the 1930’s (see Littlewood [64]) where the
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two players are inside a circular arena and move with equal speed. The lion wins in the
turn-taking protocol, but—surprisingly—the man can escape capture if both players move
continuously.

Bhaduaria et al. [12] consider a pursuit-evasion game using a model very similar to
ours. Each player knows the others’ positions (perhaps from a surveillance network) and
the goal is to actually capture the evader. Players have equal speed and take turns. In a
polygonal region they show that 3 pursuers can capture an evader in O(nd2) moves where
n is the number of vertices and d is the diameter of the polygon. They also give an example
where 3 pursuers are needed. In a simple polygon they show that 1 pursuer can capture
an evader in O(nd2) moves. This result, like ours, can be viewed as a result about a cop
and robber game on an infinite graph. The graph in this case has a vertex for each point
in a polygon, and an edge joining any pair of points at distance at most 1 in the polygon.
To the best of our knowledge, the connection between this result and cops and robbers
on (finite) geometric graphs [11] has not been explored. Recently in 2017, Beveridge and
Cai [10] extended the result by Bhaduaria et al. [12] from polygonal regions to the regions
with more general boundaries like curved boundaries. They showed that in any simple
region with piece-wise analytic boundaries one cop always wins and three cops are always
sufficient in the case of two dimensional regions with holes.

There is also a vast literature on graph-based pursuit-evasion games, where players
move continuously and have no knowledge of other players’ positions. Klein and Suri
showed that if the players have a maximum unit speed and only line of sight visibility
information, Θ(n1/2) pursuers are sufficient and sometimes necessary to catch an evader
in a simple polygon [58]. They also showed that the number of pursuers grows up to a
lower bound of Ω(n2/3) and upper bound of O(n5/6) in the case of a polygonal environment
with holes. Emadi et. al. [34] made a connection between pursuit evasion in polygons and
dynamic guarding (target tracking). They showed that bn/4c pursuers are sufficient and
sometimes necessary to dynamically track a target in a simple polygon (instead of bn/3c
for static guarding). For surveys see [5, 37].

2.3 Background on Curved Regions

Traditional algorithms in computational geometry deal with points and piecewise linear
subspaces (lines, segments, polygons, etc.). The study of algorithms for curved inputs was
initiated by Dobkin and Souvaine [31], who defined the widely-used splinegon model. A
splinegon is a simply connected region formed by replacing each edge of a simple polygon
by a curve of constant complexity such that the area bounded by the curve and the edge
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it replaces is convex. The standard assumption is that it takes constant time to perform
primitive operations such as finding the intersection of a line with a splinegon edge or
computing common tangents of two splinegon edges. This model is widely used as the
standard model for curved planar environments in different studies.

Melissaratos and Souvaine [66] gave a linear time algorithm to find a shortest path
between two points in a splinegon. Their algorithm is similar to shortest path finding in
a simple polygon but uses a trapezoid decomposition in place of polygon triangulation.
For finding shortest paths among curved obstacles (the splinegon version of a polygonal
domain) there is recent work [25], and also more efficient algorithms when the curves are
more specialized [24, 52].

As mentioned in previous section, there has been other recent work by Beveridge and
Cai [10] in which the pursuit evasion result by Bhaduaria et al. [12] for polygonal regions
is extended to regions with more general boundaries like curved boundaries. They showed
that in any simple region with piece-wise analytic boundaries one cop always wins and
three cops are always sufficient in the case of two dimensional regions with holes.
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Chapter 3

Cops and Robbers in Polygons

In this chapter the cops and robbers problem in polygons is considered. We examine two
settings: when the players move only on the vertices of a simple polygon and when they
are free to move on any point inside or on the boundary of a simple polygon. We show
that the game is cop-win in both settings.

Throughout this chapter the term “polygons” refers to simple polygons.

3.1 Cops and Robbers in Visibility Graphs

In this section we show that the visibility graph of any polygon is cop-win by showing that
any such graph is dismantlable.

This result is actually implicit in the work of Aichholzer et al. [1]. They defined an
edge uv of polygon P to be visibility increasing if for every two points p1 and p2 in order
along the edge uv the visibility polyons nest: V (p1) ⊆ V (p2). In particular, this implies
that v dominates every point on the edge, and that v dominates u in the visibility graph.
Aichholzer et al. showed that every polygon has a visibility-increasing edge. It is straight-
forward to show that visibility graphs are dismantlable based on this result.

Lemma 3.1. The visibility graph G of any polygon P is dismantlable.

Proof. By induction on the number of vertices of the polygon, let uv be a visibility-
increasing edge, which we know exists by the result of Aichholzer et al. Then vertex v
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dominates u in the visibility graph G. We will construct a dismantlable ordering starting
with vertex u.

It suffices to show that G− u is dismantlable. Let tu and uv be the two polygon edges
incident on u. We claim that the triangle tuv is contained in the polygon: u sees t on the
polygon boundary, so v must also see t as V (u) ⊆ V (v). (Triangle tuv is an “ear” of the
polygon.) Removing triangle tuv yields a smaller polygon whose visibility graph is G− u.
By induction, G− u is dismantlable.

Aichholzer et al. [1] conjectured that a polygon always has at least two visibility-
increasing edges. In the remainder of this section we prove this conjecture, thus giving
a simpler proof of their result and also proving that visibility graphs of polygons are 2-
dismantlable. Bonato et al. [15] define a graph G to be 2-dismantlable if it either has fewer
than 7 vertices and is cop-win or it has at least two vertices a and b such that each one is
dominated by a vertex other than a, b, and such that G − {a, b} is 2-dismantlable. They
show that if an n-vertex graph is 2-dismantlable then the cop wins in at most n

2
moves by

choosing the right starting point.

Definition 3.2 (2-Dismantlable Graph). A graph G with 7 or more vertices is 2-
dismantlable if it has a dismantlable ordering of vertices {v1, v2, . . . , vn} such that two
vertices v2i−1 and v2i are dominated by vertices vj and vk respectively, 2i < j ≤ k ≤ n
in the graph G2i−1 induced by {v2i−1, . . . , vn}. A graph with fewer than 7 vertices is 2-
dismantlable if it is cop-win.

We need a few more definitions. Let P be a simple polygon, with an edge uv where v is
a reflex vertex. Extend the directed ray from u through v and let t be the first boundary
point of P beyond v that the ray hits. The points v and t divide the boundary of P into
two paths. Let σ be the path that does not contain u. The simple polygon formed by σ
plus the edge vt is called a pocket and denoted Pocket(u, v). The segment vt is the mouth
of the pocket. Note that u does not see any points inside Pocket(u, v) except points on the
line that contains the mouth. See Figure 3.1 for examples, including some with collinear
vertices, which will arise in our proof. Pocket(u, v) is maximal if no other pocket properly
contains it. Note that a non-convex polygon has at least one pocket, and therefore at least
one maximal pocket. This will be strengthened to two maximal pockets in Lemma 3.4
below.

To prove that the visibility graph of a polygon is 2-dismantlable we prove that a max-
imal pocket in the polygon provides a visibility-increasing edge and that every nonconvex
polygon has at least two maximal pockets. Aichholzer et al. [1, Lemma 2] essentially proved
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Figure 3.1: Pocket(ui, vi), i = 1, 2, 3, shaded.

this although it was not expressed in terms of maximal pockets. Also they assumed that
the polygon has no three collinear vertices.

Lemma 3.3. If uv is an edge of a polygon and Pocket(u, v) is maximal then uv is a
visibility-increasing edge.

Proof. We prove the contrapositive. Suppose that edge uv is not visibility-increasing.
If u is a reflex vertex whose next neighbour on the polygon boundary is vertex w, say,
then Pocket(w, u) properly contains Pocket(u, v), which implies that Pocket(u, v) is not
maximal. Thus we may assume that u is convex. Flat angles (180 degrees) are considered
as convex angles of the polygon. Since uv is not visibility-increasing there are two points
p1 and p2 in order along uv such that the visibility polygon of p1 is not contained in the
visibility polygon of p2. Thus there is a point t which is visible to p1 but not visible to p2.
See Figure 3.2(a). By extending the segment p1t, we may assume, without loss of generality,
that t is on the polygon boundary. We claim that t lies in the closed half-plane bounded
by the line through uv and lying on the opposite side of Pocket(u, v). This is obvious if p1
is internal to edge uv, and if p1 = u it follows because u is convex. Furthermore, t cannot
lie on the line through u, v otherwise p2 would see t.

Now move point p from p1 to p2 stopping at the last point where p sees t. See Fig-
ure 3.2(b). There must be a reflex vertex v′ on the segment tp. The points v′ and t divide
the polygon boundary into two paths. Take the path that does not contain v, and let u′

be the first neighbour of v′ along this path. It may happen that u′ = t. Then, as shown in
Figure 3.2(b), Pocket(u′, v′) properly contains Pocket(u, v), so Pocket(u, v) is not maximal.
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Figure 3.2: If uv is not visibility-increasing then Pocket(u, v) is not maximal.

Lemma 3.4. Any polygon that is not convex has two maximal pockets Pocket(u1, v1) and
Pocket(u2, v2) where u1 does not see u2.

Proof. Let Pocket(u1, v1) be a maximal pocket. Let u be the other neighbour of v1 on
the polygon boundary. Consider Pocket(u, v1), which must be contained in some maximal
pocket, Pocket(u2, v2). Vertex u1 is inside Pocket(u, v1) and not on the line of its mouth.
Therefore u1 is inside Pocket(u2, v2) and not on the line of its mouth. Since u2 cannot
see points inside Pocket(u2, v2) except on the line of its mouth, it therefore follows that u2
cannot see u1.

From the above lemmas, together with the observation that the visibility graph of a
convex polygon is a complete graph, which is 2-dismantlable, we obtain the result that
visibility graphs are 2-dismantlable.

Theorem 3.5. The visibility graph of a polygon is 2-dismantlable.

Proof. According to Lemma 3.4 any polygon has at least two distinct maximal pockets
Pocket(u1, v1) and Pocket(u2, v2), and by Lemma 3.3 each of these maximal pockets corre-
sponds to a visibility increasing edge, u1v1 and u2v2. Therefore u1 and u2 are candidates
to be the first vertices of a 2-dismabtlable ordering. Also, as discussed in the proof of
Lemma 3.1, removing the ears corresponding to vertices u1 and u2 of the polygon P is
equivalent to removing vertices u1 and u2 from the visibility graph G of the polygon. By
induction, the visibility graph G− u1 − u2 is 2-dismantlable.
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Consequently, the cop wins the cops and robbers game on the visibility graph of an
n-vertex polygon in at most n

2
steps. There is a lower bound of n/4 cop moves in the

worst case, as shown by the skinny zig-zag polygon illustrated in Figure 3.3. The robber
can survive at least n/4 steps by choosing the end vertex that is farthest from the cop’s
initial position and staying still. In Section 3.2.1 we will prove an Ω(n) lower bound on the
number of cop moves even when the cop can move on points interior to the polygon, and
even when the polygon has link diameter 3, i.e. any two points in the polygon are joined
by a path of at most 3 segments.

Figure 3.3: An n-vertex polygon in which the robber can survive for n/4 steps.

3.2 Cops and Robbers Inside a Polygon

In this section we look at the cops and robbers game on all points inside a polygon. This is
a cops and robbers game on an infinite graph so induction on dismantlable orderings does
not immediately apply. Instead we give a direct geometric proof that the cop always wins.
Although the next chapter proves more generally that the cop always wins in any simply
connected planar region with a reasonable boundary, it is worth first seeing the simpler
proof for the polygonal case, both to gain understanding and because this case has a tight
Θ(n) bound on the maximum number of moves, where n is the number of vertices of the
polygon (discussed in Section 3.2.1).

Theorem 3.6. The cop wins the cops and robbers game on the points inside any polygon
in at most n steps using the strategy of always taking the first segment of the shortest path
from its current position to the robber.

Proof. We argue that each move of the cop restricts the robber to an ever shrinking active
region of the polygon. Suppose the cop is initially at c0 and the robber initially at r0. In
the ith move the cop moves to ci and then the robber moves to ri.

Observe that for i ≥ 1 points ci are at reflex vertices of the polygon. To define the
active region Pi containing the robber position ri, we first define its boundary, a directed
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line segment, ¯̀
i. Suppose that the shortest path from ci−1 to ri−1 turns left at ci, as in

Figure 3.4.

Define ¯̀
i to be the directed segment that starts at ci and goes through ci−1 and stops

where the segment exits the polygon or becomes tangent to the polygon on the left side of
the directed segment. (If the shortest path turns right at ci we symmetrically define ¯̀

i to
stop where the directed segment exits the polygon or becomes tangent to the polygon on
the right side of the directed segment.)

In general, the segment ¯̀
i cuts the polygon into two (or more) pieces; let the active

region Pi be the piece that contains ri−1. (In the very first step, ¯̀
1 may hug the polygon

boundary, so P1 may be all of P .)
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Figure 3.4: The segment ¯̀
i and the active region Pi (shaded) containing robber positions

rk, for all k ≥ i− 1.

We claim by induction on the (decreasing) number of vertices of Pi that the robber can
never leave Pi, i.e., that ri, ri+1,. . . are in Pi. It suffices to show that ri is in Pi and that
Pi+1 ⊆ Pi and that Pi+1 has fewer vertices.

Suppose that the shortest path from ci−1 to ri−1 turns left at ci. (The other case is
completely symmetric.) Observe that the next robber position ri must be inside Pi, i.e., the
robber cannot move from ri−1 to cross ¯̀

i. We distinguish two cases depending on whether
the shortest path from ci to ri makes a left or a right turn at ci+1.

Case 1. See Figure 3.5. The shortest path from ci to ri makes a left turn at ci+1. We
consider two subcases: (a) ci+1 is left of the ray ci−1ci; and (b) ci+1 is right of (or on)
the ray ci−1ci. We claim that case (b) cannot happen because the robber could not have
moved from ri−1 to ri—see Figure 3.5(b). For case (a) observe that ¯̀

i+1 extends past ci
and therefore Pi+1 is a subset of Pi and smaller by at least one vertex—see Figure 3.5(a).
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Figure 3.5: Case 1. (a) If ci+1 is left of the ray ci−1ci then Pi+1 (darkly shaded) is a subset
of Pi (lightly shaded). (b) It cannot happen that ci+1 is to the right of the ray ci−1ci
because the robber could not have moved from ri−1 to ri.

Case 2. See Figure 3.6. The shortest path from ci to ri makes a right turn at ci+1. We
consider two subcases: (a) ci+1 is left of the ray ci−1ci; and (b) ci+1 is right of (or on) the
ray ci−1ci. See Figure 3.6. In case (a) ¯̀

i+1 stops at ci and in case (b) it may happen that
¯̀
i+1 extends past ci, but in either case, segment ¯̀

i is outside Pi+1, and Pi+1 is a subset of
Pi and smaller by at least one vertex.
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Figure 3.6: Case 2. (a) ci+1 is left of the ray ci−1ci. (b) ci+1 is right of the ray ci−1ci. In
either case Pi+1 (darkly shaded) is a subset of Pi (lightly shaded).

We note that Bhadauria et al. [12] use the same cop strategy of following a shortest
path to the robber for the version of the problem where each cop or robber move is at most
distance 1.
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If the robber remained stationary, the cop should follow a minimum link path to the
robber. What if we use such a strategy instead of our shortest path strategy? The cop
would move in the same direction as in our strategy, but would move further into the
interior of the polygon, rather than stopping at a reflex vertex. In fact, we will use such a
strategy in the case of a region with a curved boundary, but even for a polygon, we must
be careful about the how far the cop moves into the interior. Our goal in this section was
to give a simple strategy that has a simple proof, restricts the cop to the polygon vertices,
and yields an asymptotically optimal number of moves.

Theorem 3.6 can alternatively be proved by decomposing the polygon into O(n2) trian-
gular regions and proving that they have an ordering with properties like a dismantlable
ordering, but we do not pursue that approach (it is not any easier).

3.2.1 Lower Bounds

In this subsection we discuss lower bounds on the worst case number of cop moves. The
example in Figure 3.3 shows that the cop may need Ω(n) moves even when it may move
on interior points of the polygon. We give an example to show that this lower bound holds
even when the polygon has small link diameter. The link distance between two points
inside the polygon is the minimum number of bends of a path between them through the
inside area of the polygon. The link diameter of a polygon is the maximum link distance
between two points inside the polygon. If the link distance between the cop’s position and
the robber’s position is d, it takes d steps for the cop to catch the robber if the robber
does not move. Therefore, the half the link diameter is a lower bound on the length of the
game.

Theorem 3.7. There is an n-vertex polygon with link diameter 3 and a robber strategy
that forces the cop to use Ω(n) steps.

Proof. We modify the zig-zag polygon from Figure 3.3 to decrease the link diameter to 3
as shown in Figure 3.7. The polygon consists of k = n/3 similar sections concatenated,
where n is the number of vertices of the polygon. We will show that the robber has a
strategy to survive at least k/2 steps in such a polygon.

Robber Strategy: The robber plays on points xi, 1 ≤ i ≤ k. Initially the robber chooses
the closest point xi to xbk/2c such that xi is not visible to the cop’s initial position. Observe
that xi is only visible to the gray area in Figure 3.7 and the line segments xi−1xi and xixi+1,
so the cop can only see at most three of the xi’s from its initial position.
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Figure 3.7: A polygon with constant link diameter in which the robber can survive for
Ω(n) steps.

xi

xi-1
xi+1

Figure 3.8: We can adjust the edges and the dashed-line path such that the polygon
becomes non-degenerate.

The robber remains stationary until it is visible to the cop, i.e., when the cop enters
the gray area or along the segments xi−1xi and xixi+1. Then, the robber moves to one of
the neighbors xi−1 or xi+1, the one that is not visible to the cop. At least one of xi−1 and
xi+1 is safe for the robber to move to in the next step as we observe that the only point
visible to all three of xi−1, xi, and xi+1 is xi, and the cop may not be at point xi otherwise
the robber would have been visible to the cop in the previous step.

The robber can survive at least k/2− 1 steps with this strategy as the game may only
be terminated at either x1 or xk.

Note that the polygon in Figure 3.7 is degenerate, with edges that lie on the same
line, but we can adjust it a little bit to resolve all degeneracies, as shown in Figure 3.8, at
the expense of decreasing the lower bound to n/8. We need to be careful not to increase
the link diameter of the polygon through the edge level changes. More precisely, assume
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that in Figure 3.7 there are k horizontal edges at y-coordinate 0 and k horizontal edges
at y-coordinate 1. The horizontal edges at y = 0 in Figure 3.7 are evenly spread from
y = 0 to y = k−1

3k
in Figure 3.8, and the horizontal edges at y = 1 are evenly spread from

y = 2k+1
3k

to y = 1. This will allow a corridor of width k
3k

and the link diameter is still
3. Also, the triangular dents are replaced with rectilinear ones to remove the collinear
diagonal edges.
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Chapter 4

Cops and Robbers Inside a Splinegon

In this chapter we consider the cops and robbers game in a simply connected region with
curved boundary, specifically a splinegon R whose boundary consists of n smooth curve
segments that each lie on their own convex hull. Other natural assumptions (such as
algebraic curves or splines of bounded degree, or other curves of constant complexity) give
regions that can be converted to splinegons with a constant factor overhead by cutting at
points of inflection and points with vertical tangents. Assume that tangents in a given
direction and common tangents between curve segments can be computed. A vertex is an
endpoint between two curve segments.

We need another assumption to avoid an infinite game where the cop gets closer and
closer to the robber but never reaches it. This occurs, for example, when two curves meet
tangentially at a vertex as in Figure 4.1—in fact, in this situation a robber at a vertex
avoids capture by remaining stationary. One possibility is to assume that the robber is
captured when the cop gets sufficiently close (within some ε). Instead, we will make the
assumption that the link distance between any two points in the splinegon R is finite, and
bounded by d.

With these assumptions—a splinegon R of n curved segments with link diameter d—we
prove that the cop always wins, and does so in O(n2 +d) steps. But first, we show through
additional examples that the strategy must be a little more complex than in the polygonal
case.

25



Figure 4.1: The number of cop moves may be infinite even when n = 2. Truncating the
vertices makes the game finite but the number of moves may depend on the link diameter.

4.1 The Cop Strategy

A major difference from the polygonal case is that the cop may need to move to interior
points in order to win. Figure 4.2, for example, shows a region in which the robber can
win if the cop always stops on the boundary.

𝑆1

𝑆3 𝑆2
𝑟1

𝑐1

𝑐2

𝑐3

𝑟2

𝑟3

Figure 4.2: If the cop plays only on the boundary then the robber can win: the robber’s
strategy is to play on the middle dashed portions of the boundary and always move to the
same curve Si that the cop is on. In our winning cop strategy the cop would move to the
endpoint tangents (drawn as thin lines).

Our strategy is that the cop starts off along the first straight segment of the Euclidean
shortest path [28, Chapter 15] to the robber’s current position. However, if this segment is
tangent to a concave curve of the shortest path then the cop should move further, into the
interior of the polygon. How far should the cop go? It is tempting to stop the cop when
it can see the robber, but Figure 4.3 shows that this strategy fails—the cop should move
farther. Figure 4.4 shows there is also a danger of moving the cop too far.

In our strategy the cop will stop at certain lines inside the splinegon. We first state the
cop strategy in terms of these lines, and then define the lines. We use the notation ci−1 for
the cop’s position and ri−1 for the robber’s position at the start of round i. Their initial
positions are c0 and r0. Recall that each round begins with a cop move.
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Figure 4.3: If the cop moves only far enough to see the robber then the robber can win
because it can force the cop to take smaller and smaller steps.
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Figure 4.4: If the cop moves too far then the robber can win: the cop moves from c1 to
c2, the robber moves from r1 to r2 (dotted line) and then this can be repeated around the
polygon. In our proposed strategy the cop would not move from c1 all the way to c2—it
would stop at a robber exit line (drawn as a thin line).

Cop Strategy for Round i. If the cop sees the robber, it moves to the robber’s position
and wins. Otherwise, define the cop’s next position, ci, as follows: Compute the shortest
path from the cop’s current position, ci−1, to the robber’s current position, ri−1. Let `i be
the ray along the first straight segment of this shortest path, or, if the shortest path begins
with a curve, let `i be the tangent to this curve at the point ci−1. Let bi be the first point
where the shortest path diverges from `i. Then bi lies on the boundary of the splinegon
R. If bi is not a splinegon vertex, let γi be the boundary curve containing bi. If bi is a
splinegon vertex then there are two boundary curves incident to bi, and we let γi be the
boundary curve segment containing bi such that in a neighbourhood of bi, the diverging
shortest path lies in the portion of the region bounded by γi, and the part of ray `i past bi.

By reflection if necessary, assume that the path starts upward and turns left, as depicted
in Figure 4.5. If bi 6= ci−1 and bi is a vertex, then define ci to be bi. (This matches the
polygonal case.) Otherwise `i is tangent to γi, so define ci to be the first point on the

27



ray `i, past bi, where `i intersects a common tangent or a robber exit line or touches the
splinegon boundary.

l
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γ
i

l
i

Figure 4.5: The cop move, showing the shortest path from ci−1 to ri−1 (thick grey path),
the first straight segment of this path ci−1bi upward along ray `i, the new cop position ci,
the downward segment ¯̀

i (dashed) and the active region Ri (lightly shaded).

We now define common tangents and robber exit lines. Refer to Figure 4.6. A common
tangent is a line segment that is tangent to R at two points and extends in both directions
until it exits R. At each endpoint of each curve we have an endpoint tangent—the tangent
to the curve through the endpoint. An endpoint tangent extends in both directions until
it exits R. We count endpoint tangents as common tangents. There are O(n2) common
tangents, because a curve has at most four common tangents with any other curve or
vertex.

We define robber exit lines relative to the current robber and cop positions, using the
notation from the cop strategy above. See Figure 4.6. Consider segments that start at ri−1
and are tangent to R, ending at the tangent point. Among these, a robber exit line is a
segment that crosses ray `i such that the tangent point is on the far side of the segment
with respect to the direction of `i. To be precise, the infinite line containing the segment
divides the plane into two parts, and the far side is the side not containing ci−1, the source
of ray `i.

If we extend a robber exit line past its tangent point to the region boundary we obtain
a bay of points not visible from the robber position. Note that every bay (including the
tangent point) contains a vertex of the region —either the tangent point itself is a vertex
or the tangent point is on a reflex curve, and we must change curves before the end of the
bay.

With these definitions of common tangents and robber exit lines, we have completely
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Figure 4.6: Lines f1, f2 and f3 are three of the many common tangents. Segments e1, e2
and e3 go through ri−1 and are tangent to R. Segment e1 is not a robber exit line because
it does not cross `i. Segment e3 is not a robber exit line because its tangent point is not
on the far side with respect to the direction of ray `i. Segment e2 is a robber exit line.
Lightly shaded regions are the bays.

specified the cop strategy. We note that the cop’s move can be computed in polynomial time
assuming we have constant time subroutines to compute common tangents and tangents
at a given point. We can preprocess to find all common tangents. For a given robber
position, we can find all robber exit lines in polynomial time. We can find shortest paths
in the splinegon R in linear time using the algorithm of [66]. With this information, we
can find the next cop position. A straightforward implementation takes O(n2) time per
move, though this can probably be improved.

4.2 The Cop Wins

In order to prove that the cop wins using the strategy specified in the previous section,
we first show that each cop move restricts the robber to a smaller subregion. Then we
show that the number of steps the cop needs to win is O(n2 + d) where n is the number of
segments and d is the link diameter of the region.

We begin by defining the subregion that the robber is restricted to during and after
round i. Define ¯̀

i to be the directed segment that starts at bi (the first point where the
shortest path diverges from `i) and goes through ci−1 and stops where the segment exits
the splinegon or becomes tangent to the splinegon on the side of the directed segment
opposite to the tangency point with γi (e.g., where part of the boundary is to the left of
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the downward directed segment ¯̀
i in Figure 4.5).

The segment ¯̀
i starts and ends on the boundary so it cuts the region into two (or more)

pieces; define the active region, Ri, to be the piece that contains ri−1. Define the exclusion
region to be its complement in R. See Figure 4.5. Observe that any line segment inside
the region R with one endpoint at ri−1 has its other endpoint inside Ri. In particular, this
means that ri is inside Ri, i.e. that the robber cannot exit Ri in round i.

We prove below in Lemma 4.3 that Ri+1 ( Ri, i.e., the active region shrinks. Following
that, we show that the cop wins in a finite number of steps. The proofs are similar
to the analogous results for polygons, and involve handling four cases for the left/right
configuration of the cop and the robber. Suppose that the shortest path from ci−1 to ri−1
makes a left turn at bi. (The other case is completely symmetric.) We distinguish the
following cases:

Case 1. The shortest path from ci to ri makes a left turn at bi+1.

(a) ci+1 is left of the ray ci−1ci—more precisely, in moving from ci−1 to ci to ci+1 the
cop turns left by an angle in the range (0, 180◦). (Turning by 0◦ will be handled in case
(b).)

(b) ci+1 is right of the ray ci−1ci—more precisely, the cop turns right at ci by an angle
in [0, 180◦).

Case 2. The shortest path from ci to ri makes a right turn at bi+1.

(a) ci+1 is left of the ray ci−1ci—more precisely, the cop turns left at ci by an angle in
(0, 180◦).

(b) ci+1 is right of the ray ci−1ci—more precisely, the cop turns right at ci by an angle
in [0, 180◦).

Note that the cop never turns by an angle of 180◦ (doubling back) because then bi+1

would be on the line segment between ci and bi or further along, on the ray ¯̀
i. In the first

case, bi+1 would provide a stopping point for ci according to the rule that the cop stops on
the boundary. The second case is impossible because the robber can never move from ri−1
to a position that would cause the cop to move onto ¯̀

i.

We begin by showing that Case 2(a) can happen only in special circumstances and that
Case 1(b) cannot happen at all.

Lemma 4.1. In Case 2(a) the segment cibi+1 is tangent to the boundary on its left side
(as well as tangent to the boundary on its right side at bi+1).
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Proof. See Figure 4.7. The segment cibi+1 is tangent to the boundary curve γi+1 on its
right side at point bi+1. If ci = bi, then the segment cibi+1 touches the boundary at its
right side at bi. Otherwise, ci is past bi. Suppose that segment cibi+1 is not tangent to the
boundary on its left side. We show that the cop has passed a common tangent, which is a
contradiction. Move ci back towards ci−1 while maintaining tangency with the curve γi+1

We can move some positive amount. Either we reach the tangent at an endpoint of γi+1

or the segment cibi+1 hits a boundary point on its left side (possibly because ci reaches bi).
In either case, we have arrived at a common tangent, so ci should have been placed here
rather than further along. Note that c− i may not reach ci−1, otherwise, bi = ci−1 and the
tangent at bi will be a vertical line.
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Figure 4.7: In case 2(a) if the segment cibi+1 is not tangent to the boundary on its left side
then there is an earlier choice for ci (on the dashed red common tangent).

Lemma 4.2. Case 1(b) cannot occur, i.e., it cannot happen that the shortest path from ci
to ri makes a left turn at bi+1 and ci+1 is right of the ray ci−1ci by an angle in [0, 180◦).

Proof. Suppose the situation does occur. See Figure 4.8(a). We show that the cop has
passed a common tangent or a robber exit line, which gives a contradiction. Because ci+1

is to the right of the ray ci−1ci, the robber’s move ri−1ri must have crossed the line through
ci−1ci, say at point x. We claim that segments ri−1ri and ci−1ci intersect. First note that
x lies after bi along the ray ci−1ci. We must show that ci lies after x along this ray. If ci
lies before x, then there is a two-link path inside the region, ci, x, ri that turns right at x.
Shortening this to a locally shortest path, we obtain the shortest path from ci to ri that
makes a first turn to its right, contradicting our assumption.

Define σ to be the shortest path from ri−1 to ci. The segment cibi+1 is tangent to the
curve γi+1. We will now move point p from ci towards bi, maintaining a segment τ through
p tangent to the curve γi+1. In the other direction, τ extends to its intersection point with
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Figure 4.8: Case 1(b) cannot occur in these situations: moving p from ci towards bi while
maintaining tangency of τ (dashed red) with γi+1 we encounter: (a) a robber exit line or
(b) a common tangent.

σ. See Figures 4.8 and 4.9, where τ is drawn as a dashed red line. If τ reaches an endpoint
tangent of γi+1 then we have a common tangent and the cop should have stopped at point
p. Otherwise, the segment τ must at some point lose contact with σ and we claim that
this can happen only because of one of the following:

• The segment τ intersects σ at ri−1; this is a robber exit line. See Figure 4.8(a).

• The segment τ becomes tangent to σ; this is a common tangent. See Figure 4.8(b).

• The segment bumps into the region boundary (possibly at point bi); this is a common
tangent. See Figure 4.9.

In all cases, the cop should have stopped at point p because of the common tangent or
robber exit line τ .

We are now ready to show that the active region shrinks.

Lemma 4.3. The active regions satisfy Ri+1 ( Ri.

Proof. Assume that the shortest path from ci−1 to ri−1 makes a left turn at bi, and consider
the cases as listed above.

Case 1(a). The shortest path from ci to ri makes a left turn at bi+1 and ci+1 is left of
the ray ci−1ci. See Figure 4.10. The ray ¯̀

i+1 from bi+1 through ci intersects `i at ci, and
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Figure 4.9: Case 1(b) cannot occur in these situations: moving p from ci towards bi while
maintaining tangency of τ (dashed red) with γi+1 we encounter a common tangent by
bumping into the region boundary (a) before p reaches bi, or (b) at bi.

is therefore completely contained in the active region Ri. Furthermore, the open segment
ci−1ci is outside Ri+1 but inside Ri. Thus Ri+1 ( Ri.

Case 1(b). The shortest path from ci to ri makes a left turn at bi+1 and ci+1 is right of
the ray ci−1ci. This case cannot occur by Lemma 4.2.

Case 2(a). The shortest path from ci to ri makes a right turn at bi+1 and ci+1 is left of
the ray ci−1ci. See Figure 4.11(a). By Lemma 4.1, the segment cibi+1 is tangent to the
boundary on its left side, say at point p. The ray ¯̀

i+1 that defines the active region extends
from bi+1 to p. Its extension goes through ci, so it is contained in Ri. Furthermore, the
open segment ci−1ci is outside Ri+1 but inside Ri. Therefore Ri+1 ( Ri.

Case 2(b). The shortest path from ci to ri makes a right turn at bi+1 and ci+1 is right of
the ray ci−1ci (or on the ray). See Figure 4.11(b). The ray ¯̀

i+1 intersects `i at ci, and is
contained in Ri. Furthermore, the open segment ci−1ci is outside Ri+1 but inside Ri. Thus
Ri+1 ( Ri.

Finally we prove our main result.

Theorem 4.4. Inside a splinegon of n curve segments with link diameter d, the cop wins
the cops and robbers game in O(n2 + d) moves.

Proof. We argue that at each step between the first and the last, the active region shrinks
in some discrete way. Define the newly excluded region, Ei, to be Ri − Ri+1. In order to
take care of collinearities, we will include the boundary of Ri+1 but exclude the boundary

33



c
i−1

c
ir

i

b
i

R
i+

R
i

b
i+

l
i+

Figure 4.10: Case 1(a).

of Ri. If the two boundaries intersect, the intersection point is not included in Ei. In
Figures 4.10, 4.11(a), and 4.11(b) the region Ei is lightly shaded. By Lemma 4.3, the Ei’s
are disjoint.

Let σ be a minimum link path from the initial to the final cop position. Then σ has
at most d bends. Note that there are at most O(n2) common tangents because there are
at most n2 pairs of curves, and each pair has at most four common tangents. Our bounds
derive from these two facts.

Our plan is to show that at each step we make progress in one of the following ways:

1. ci is a vertex

2. ci and bi are the tangent points of a common tangent

3. Ei contains a vertex of the region

4. Ei contains an endpoint of a common tangent with both endpoints in Ri

5. Ei contains a bend of σ.

We begin by bounding the number of events of each of the above types. After that we
will show that one of these events occurs in each step.

According to Lemma 4.3 ci and bi never repeat, so event (1) happens at most n times
and event (2) happens at most n2 times. Because the Ei’s are disjoint, event (3) happens
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Figure 4.11: (a) Case 2(a). (b) Case 2(b).

at most n times, event (4) happens at most n2 times, and event (5) happens at most d
times.

It remains to prove that at each step, one of the above 5 events occurs.

Recall the conditions for defining the cop’s position ci. If ci = bi because bi is a vertex
then we have event (1). Otherwise ci stops at a common tangent or a robber exit line or
on the boundary of the region.

Suppose first that ci stops on a common tangent that crosses `i. (If ci is on a common
tangent that does not cross `i then ci is one of the tangent points, and hence on the
boundary, and that case is dealt with below.) Since the common tangent crosses `i, both
tangent points must lie in Ri. The boundary of Ri+1 is a line segment that goes through
ci and therefore one endpoint of the common tangent must lie inside Ri+1, possibly on its
boundary. This endpoint is in Ei. Thus we have event (4).

We next consider the case where ci stops on a robber exit line of ri−1. Let the robber
exit line be the segment ri−1t. We will prove that Ei contains a vertex, i.e., event (3). We
will do this by proving that the tangent point, t, of the robber exit line, and its bay, must
lie in Ei. Then, as noted when we defined robber exit lines, this bay contains a vertex, so
Ei contains a vertex. It remains to prove that t lies in Ei. As observed when the active
region Ri was defined, any line segment inside the region R with one endpoint at ri−1 has
its other endpoint inside Ri. Applying this to the segment ri−1t shows that t lies in Ri.
It remains to show that t is outside Ri+1. Applying the observation that line segments
incident to ri remain inside Ri+1 to the line segment riri−1 shows that ri−1 is inside Ri+1.
Finally, there are two lines that cross at point ci: the robber exit line ri−1t, and the ray `i+1

35



which marks the boundary of Ri+1. Since ri−1 is inside Ri+1 the other end of the segment,
t, must be outside Ri+1.

Finally, we must consider the possibility that ci stops on the region boundary, i.e. ci is
at a point where `i exits the whole region, or where `i is tangent to the boundary of the
region. When can this happen? By Lemma 4.2, Case 1(b) never occurs. By Lemma 4.1,
the cop always stops at a common tangent in Case 2(a), and this tangent crosses `i, so this
is a case we already dealt with.

Thus we must be in Case 1(a) or 2(b). If ci is not at a point where `i exits the region
then `i is tangent to the boundary at ci. Since `i is also tangent to the boundary at bi,
thus ci and bi are the tangent points of a common tangent, i.e. event (2). We are left with
the case where ci is at a point where `i exits the region. We first claim that this cannot
happen in Case 2(b), because in this case (see Figure 4.11(b)) the robber’s move ri−1ri
must cross line `i beyond ci, which is impossible if `i exits the region at ci. Thus we must
be in Case 1(a). See Figure 4.12. The minimum link path σ from the initial cop position
(outside Ri, or possibly on the boundary of Ri) to the final robber position (inside Ri+1)
must include a bend point in Ei. This is event (5).

c
i−1

c
i

r
i b

i

R
i+

R
i

b
i+

l
i+

Figure 4.12: When the cop stops on the region boundary in Case 1(a), the minimum link
path from the initial cop position (in the white region) to the final robber position (in the
darkly shaded region) must include a bend point in Ei (the lightly shaded region).

Therefore, the cops and robbers game in its most general settings, i.e., when the cop
and the robber are playing inside or on the boundary of a splinegon, is also cop-win and
the suggested strategy guarantees that the cop will catch the robber after O(n2 + d) steps.
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Chapter 5

Pursuit Evasion: Conclusions and
Open Problems

We explored the straight-line pursuit evasion problem and the challenges to catch an evader
in three different settings: on the visibility graph of a simple polygon, on all the infinitly
many points inside a simple polygon, and on all the infinitely many points inside a spline-
gon. All three settings are shown to be cop-win, and all games are played in simply
connected regions in 2D.

Therefore, a natural next step is to consider the problem in regions with holes. A lower
bound of three cops may be achieved using the cop-number of planar graphs. Aigner and
Fromme showed that the cop number of planar graphs is three and there are examples
where three cops are required to catch a single robber [2]. Using such examples, we
may construct examples of the straight-line pursuit evasion problem on all points inside a
polygon with holes. This is by taking a straight-line planar drawing of the graph and cutting
out polygonal holes to leave narrow corridors for the graph edges. Figure 5.1 shows a 3-cop
win planar graph and the instance of the straight-line cops and robbers game constructed
from it. It is an open question whether three cops suffice for any polygon with holes.

Some other open problems and discussion about the straight-line pursuit evasion prob-
lem are as follows:

1. What is the complexity of finding how many moves the cop needs for a given poly-
gon/region? The graph version of this problem is solvable in polynomial time for
cop-win graphs [49]. For the cops and robbers game on the points inside a polygon
we conjecture that the problem is solvable in polynomial time if the cop is restricted
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(a) (b)

Figure 5.1: (a) A 3-cop win planar graph and (b) the cops and robbers game inside a
polygonal region with holes constructed from the graph; the game inside this polygonal
region needs at least three cops.

to the reflex vertices of the polygon. However, the cop may save by moving to an
interior point—for example in a star-shaped polygon whose kernel is disjoint from
the polygon boundary—so the problem seems harder if the cop is unrestricted.

2. Is there a lower bound of Ω(n2 + d) on the worst case number of cop moves in a
splinegon of n curve segments and link diameter d? From results in Section 3.2.1 we
have a lower bound of Ω(n+ d).

3. What if the evader can move distance 2 (or even 3) in the link metric? Does one cop
suffice? In the graph setting this problem has been considered by Frieze et al.[40].
They show that the cop number increases in general as the robber’s speed increases.
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Part II

Straight Line Morphing
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Chapter 6

Straight-Line Morphing:
Introduction and Background

The transformation of shapes or drawings under different assumptions and constraints is
widely studied in computational geometry. “Morphing” has been the standard term used
since the 1980’s to address the continuous transformation between shapes while some prop-
erties are maintained during this transformation. All 2D reconfiguration problems, i.e., to
change an object or shape from one configuration to another configuration, can be defined
as “morphing”. Research has been done to look at different constraints or properties to
be maintained according to different applications and problems. These problems may vary
from combinatorial problems such as linkage folding reconfigurations, morphing between
two different triangulations, and morphing of graph drawings, to transforming between
different shapes in computer graphics and animation applications. Some of these problems
are discussed in Section 6.3.

Preserving planarity is a common assumption in different morphing problems of graph
drawings. It is also visually desirable that vertices move on “nice” paths during the morph
to resemble a more natural transformation. “Nice” paths are generally defined as paths
that are not too long and do not have many bends.

In this part of the thesis we define a type of morphing in which the vertex trajectories
are simple, and yet the morphing method is powerful enough to preserve planarity.

40



6.1 Linear Morphing

The simplest way to morph with the optimal vertex trajectories would be to move each
vertex on the straight line connecting its initial position to the final position. This gives
the shortest trajectory for all vertices with no bends. When each vertex also moves with a
uniform speed from the beginning to the end of the morph, it is called “linear morphing.”

Definition 6.1 (Linear Morphing). Let G = (V,E) be a planar graph on n vertices,
with two planar straight-line drawings given by initial vertex positions P0 = 〈p01, p02, . . . , p0n〉
and final vertex positions P1 = 〈p11, p12, . . . , p1n〉. Without loss of generality, we assume that
the morph happens in time interval [0, 1]. The drawing of G at time t ∈ [0, 1] is captured
by the vertex positions Pt.

In linear morphing, the position of each vertex vi ∈ G at time t, denoted by pti, can be
viewed as a function defined by:

pti = (1− t)p0i + tp1i , (6.1)

As we can see, all vertices have deterministic position functions in linear morphing.
This makes it possible to verify whether a linear morph preserves planarity throughout the
morph. Figure 6.1 shows linear morph of a path in three different times.

Essentially, if planarity is violated at some point during the linear morph, there is a
time t in which two edges start to intersect. Time t can be computed in polynomial time
by solving quadratic equations of segment movements in a linear morph.

Figure 6.1: Linear morphing of a path from the initial configuration (solid red lines) to
the final configuration (gray dashed lines). The arrow lines show the trajectories of each
vertex. The path is in initial configuration at time t = 0, in the final configuration at time
t = 1, and the solid (dark green) lines show the path configuration at time t = 0.5. All
vertices traveled half of the way at t = 0.5.
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Lemma 6.2. There is an O(|V | · |E|) time algorithm to check whether a linear morph of
a planar straight-line graph maintains planarity.

Proof. The vertex positions at time t are determined by equation 6.1 which is a linear
function of t. Any edge e(vi, vj) of G at time t is a line segment connecting pti and ptj. To
check planarity, we only need to test if all edges are disjoint for all t ∈ [0, 1]. In other words,
is there a time t, 0 ≤ t ≤ 1 such that two segments (pti, p

t
j) and (pti′ , p

t
j′), corresponding to

edges e(vi, vj) and e(vi′ , vj′) in G, intersect? The parametric equation of the line passing
through a pair of points pti and ptj has the form:

qtk = kpti + (1− k)ptj, k ∈ [0, 1],

which is a quadratic formula in terms of t and k. To check if two segments intersect during
the morph we should check if the line segment formula for two segments has a common
point, i.e., to solve the equation qtk = qtk′ where, qtk′ is the equation of line segment of edge
e(vi′ , vj′). This equation is quadratic with three variables k,k′,and t that should be in the
range of [0, 1].

Since the vertices move continuously during the morph, if two segments intersect in
some time t, there should be a time t0 ≤ t when one endpoint of one of the two segments
lies on the other segment. That is because the two segments were disjoint initially at time
t = 0 and we only need to find when they start to intersect.

With this observation, the number of variables in the equation will be reduced to two,
because we only need to check if there is some point pti′ that lies on line segment (pti, p

t
j).

We must solve the equation qtk = pti′ for any vertex vi′ and any edge e(vi, vj), that forms
the quadratic formula for qtk. The quadratic equation can be solved in constant time and
we have |E| × |V | of these equations to solve to ensure that none of them have a solution.
Note that to ensure that a vertex/edge coincidence will lead to an intersection we also need
to check if the vertex vi′ is on opposite sides of edge e(vi, vj) just before and after time t.
This test can be done in constant time. Therefore, we can check in time O(|E||V |) if the
given linear morph preserves planarity.

Figure 6.2 shows an example where a linear morph does not preserve planarity. At time
t = 0.5 two edges intersect. The intersection first occurs shortly before t = 0.25.

Linear morphing is a very restrictive category of morphs and rarely maintains planarity,
however it is widely used as a basic step in different morphing algorithms. Next, we
introduce a new class of morphs which is much more powerful than the class of linear
morphs, but the vertex trajectories are still simple.
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Figure 6.2: Linear morph of a path that does not preserve planarity: (a) t = 0.5: the path
(dark green lines) is self crossing and violates the planarity condition; (b) t = 0.25: the
moments after the crossing starts to happen.

6.2 Straight-line Morphing

Linear morphing is restrictive in two ways: straight-line vertex trajectories and uniform
speed. In this thesis we focus on “straight-line morphing” or simply “SL-morphing”, as a
more powerful class of morphs, by relaxing the uniform speed condition in linear morphing:

An SL-morph is a continuous transformation of a planar graph drawing from an initial
straight-line drawing to a final straight-line drawing in which each vertex moves on the
straight-line segment connecting its initial position to its final position. A planar SL-
morph or PSL-morph is an SL-morph that preserves planarity. The detailed definitions of
SL-morphing and Planar SL-morphing will come later.

Compared to linear morphing, there is much more freedom on vertex movements in
SL-morphing; few or many vertices may move at once, they may move at different speeds,
or may pause while other vertices move, and so on. Figure 6.3 shows the same example
shown in Figure 6.2 with a planar SL-morph. As shown in Figure 6.3, if vertices a and
b morph first to the final configuration, and then the two vertices c and d morph, the
planarity is preserved.

Definition 6.3 (SL-morphing). Let G = (V,E) be a planar graph on n vertices, with
two planar straight-line drawings given by initial vertex positions P0 = 〈p01, p02, . . . , p0n〉 and
final vertex positions P1 = 〈p11, p12, . . . , p1n〉. Without loss of generality, we assume that the
morph happens in time interval [0, 1]. The drawing of G at time t ∈ [0, 1] is captured by
the vertex positions Pt.

In an SL-morph, the position of each vertex vi ∈ G at time t, denoted by pti, can be
viewed as the following function:

pti = (1− di(t))p0i + di(t)p
1
i ,
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Figure 6.3: The path from the initial configuration may morph to the final configuration
through the following steps: (a) The graph in the initial configuration; (b) The intermediate
state after a and b have morphed; (c) The graph in the final configuration

where di is a continuous non-decreasing parameterization of time, di : [0, 1] → [0, 1] with
fixed points of 0 and 1, i.e., di(0) = 0 and di(1) = 1.

Definition 6.4 (Planar SL-morphing). An SL-morph is called a planar SL-morph if
planarity is preserved throughout the morphing time [0, 1].

A linear morph is a special case of SL-morphing, where di is the identity for all i,
i.e., di(t) = t, for all i and t.

The problem of finding a planar SL-morph, or deciding if there is no such SL-morph
for a given graph from an initial drawing to a final drawing, does not seem to be easy
even for specific categories of planar graphs, e.g., for disjoint segments, paths, or cycles. It
is also interesting to see if more specific kinds of morphs exist between two given planar
drawings of a graph. For example, the category of solutions in which the vertices move one
by one from their initial positions to final positions is easier to check and also interesting,
because it is in NP whereas the general SL-morphing problem is not known to be in NP.
More problems and challenges in SL-morphing are listed and discussed in Section 6.3.

For any SL-morph, we will have a sub-morph if we only look at the time interval
[ts, tf ] ⊂ [0, 1]. A sub-morph can be seen as an SL-morph, where the initial vertex positions
are defined by Pts , and the final vertex positions are defined by Ptf . We only need to scale
the time interval [ts, tf ] into [0, 1] to be consistent with the definition.

Definition 6.5 (Piecewise Linear Morphing). A morph is “piecewise linear” if the
morph time interval [0, 1] can be divided into a finite number of sub-intervals, with dividers
t0 = 0 < t1 < t2 < · · · < tk = 1, such that, the morph is linear in each of the sub-intervals
[ti, ti+1], 0 ≤ i ≤ k − 1.
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For intuition about SL-morphs it is helpful to think of the “configuration space”. The
configuration space is an n-dimensional space, where n is the number of vertices of the mor-
phing graph or a sub-graph. Each axis represents the position of one vertex parameterized
from 0 (the initial position) to 1 (the final position). Each point in the configuration space
represents a possible configuration of the graph in an SL-morph. An SL-morph is a path
from point (0, 0, . . . , 0) to (1, 1, . . . , 1) that is non-decreasing according to all axes. Some
points/areas in the configuration space are not valid in a planar SL-morph because some
edges are crossing. If we block out the invalid areas, a planar SL-morph is a monotone
path from point (0, 0, . . . , 0) to (1, 1, . . . , 1) through the free space.

Figure 6.4 shows the configuration space of a morphing path. The blue non-decreasing
path that is shown in the configuration space corresponds to a planar SL-morph while the
red path corresponds to an SL-morph that does not preserve planarity.

𝑏
𝑎

𝑐

𝑎′ 𝑏′

𝑐′

(a)

𝑎

 

𝑏

 

𝑜

(1,1,1)

𝑐

1

1

1

(b)

Figure 6.4: (a) A path with three vertices to be morphed from initial configuration a,
b, c to final configuration a′, b′, c′ (b) The corresponding configuration space with two
non-decreasing paths from point (0, 0, 0) to point (1, 1, 1). In the blue path the vertices
morph to their final configuration one by one in the order c, a, b. This SL-morph preserves
planarity. In the red path the vertices morph one by one in the order a, b, c. This SL-morph
does not preserve planarity because the path of vertex c′ crosses the segment a′b′.

The blocked area in the configuration space is the union of the blocked regions cor-
responding to the crossing of two edges. We do not know the characterization of these
simple blocked regions, but we conjecture that the boundary of the region corresponding
to the crossing of two straight line segments should not be too complicated. For example,
it would be very nice if each such region were convex. Unfortunately, that is not true.
However, we still think the concave boundaries of the blocked regions are simple enough to
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ensure the existence of a piece-wise linear path through the free space if there is any path.

Conjecture 6.6. If there is a planar SL-morph for a planar graph, G, from initial vertex
positions, P0, to final vertex positions, P1, then there exists a piece-wise linear SL-morph
for G from P0 to P1.

Later in Chapter 8 we will rule out the existence of some specific piece-wise linear
planar SL-morphs such as the planar SL-morph when the path in the configuration space
consists of segments parallel to axes, i.e., when the vertices move one-at-a-time to their
final configurations. Specifically, we show examples where a planar SL-morph exists but
there is no uninterrupted-one-vertex-at-a-time morph.

6.3 Background on Morphing

The first result on morphing planar graphs was proved by Cairns in 1944 [21]. It was a
constructive proof that for every planar triangulation with two different planar drawings
with the same faces and the same outer face, there always exists a morph from initial
vertex positions to final vertex positions that preserves planarity using a finite sequence of
linear morphs. Later, this result was extended by Thomassen from planar triangulations
to general planar straight-line graphs [76].

Cairns’s constructive proof has two drawbacks. First, the number of steps is exponential
due to two recursions on morphing with one smaller size. Second, the constructed morph
is not satisfactorily visualizable. Cairns constructs a morphing in which vertices may move
very close together, and they may also move on complicated trajectories from their initial
to final positions.

The existence result by Cairns and Thomassen was improved in a succession of pa-
pers [4, 6, 9] culminating in a paper by Alamdari et al. [3] showing that any straight-line
drawing of a planar graph can be morphed to any other straight-line drawing of the graph
(with the same faces) using a sequence of O(n) linear morphs, where each linear morph is
“unidirectional”, i.e., all vertices move on parallel lines. The bound of O(n) is tight in the
worst case [3].

Angelini et al. also worked on morphing between convex graph drawings [7]. They show
that we can morph any convex drawing of a planar graph to another convex drawing while
convexity and planarity preserved at all times. This morph consists of O(n) linear morph
steps and this bound is tight in the worst case.
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There are also results on morphing planar graphs (or sub-classes such as cycles, paths,
or trees) while preserving additional properties, such as edge lengths [22], or edge direc-
tions [14]. When the lengths of edges is fixed the problem is called linkage reconfiguration.
We may think of the edges as rigid bars and the vertices as flexible joints. The edges may
rotate at the vertices as long as they do not cross other edges. Any path or cycle linkage
configuration in 2D can transform (morph) to the canonical configuration–straight path or
convex cycle–while planarity and the edge lengths are preserved at all times [22]. This is
not necessarily true for paths in 3D space [30]. See the book by Demaine and O’Rourke
for more interesting problems and results about folding and linkage reconfiguration [30].

Biedl et al. [14] worked on morphing from a planar graph drawing to another planar
graph drawing where each edge has the same initial and final direction and such that the
directions of all the edges (as well as planarity) are preserved all the time in the morph.
They prove that such morphs always exist in the case of orthogonal drawings. However,
the problem is NP-hard if there are three or more different edge directions.

There are studies also in graphics and modeling about morphing, with a slightly differ-
ent focus. In animation and graphics, morphing is mostly about finding the correspondence
between the different parts of two shapes to obtain a satisfactory transformation. Efrat
et al. [33] defined the best morph between two poly-lines (paths) as the correspondence
which gives the Fréchet distance between the polylines. The Fréchet distance is the mini-
mum leash length we need to connect a man that walks forward on the first poly-line and a
dog that walks forward on the second poly-line. At any time during the morph the man’s
and the dog’s locations give us a correspondence between the two poly-lines. After finding
the best correspondence, a linear morph can be computed and the maximum distance each
point travels will be minimized. Planarity might be lost in this algorithm. Nöllenburg
et al. [67] also use the term “morphing” to find the correspondence between the images of
a river or a road that are in the form of poly-lines in different maps with different scales.

There are studies on visualizability of graph drawings [39, 19] that can be applied to the
morphing of graphs too. One criterion for the visualizability of a morph is to see how the
intermediate frames satisfy the parameters of a nice drawing. For example, is the graph
simple in all intermediate steps? Does any vertex/edge coincidence happen, or how close
are the vertices in intermediate steps? How different are the intermediate frames from the
source and the target drawings?

Friedrich and Eades in 2002 [39] enumerate some criteria that make a transition from
one drawing of a graph to the other drawing smooth. According to their model, preserving
the mental map of a viewer and showing the changes in graph structure are two important
factors. Although these factors are not well defined, Friedrich and Eades suggest that
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making the path each node travels as short and simple as possible helps in maintaining the
structure of the graph in the viewer’s mind. This is one of our motivations for studying
straight-line morphing.
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Chapter 7

Straight-Line Morphing in the
Continuous Setting

In this chapter we consider the SL-morphing problem: given two planar straight-line draw-
ings of a graph, is there a planar straight-line morph between them? We consider this
problem for special classes of graphs, namely disjoint edges, paths, or cycles. For a set
of disjoint edges (segments) we prove that the problem is NP-hard. However, we still do
not have any algorithm that decides the existence of a planar SL-morph even for a set of
disjoint segments, so we do not know if the problem lies in NP.

For paths and cycles we look at some necessary conditions we can test in polynomial
time. We also show some negative examples that refute some conjectures about specific
categories of solutions for the case of paths and cycles.

We also explore SL-morphing in other restrictive settings when each edge of the graph
in its initial position and final position together with the trajectories of its two vertices
form a convex quadrilateral. With this limiting input condition the NP-hardness proof is
no longer valid. However, we show that even for disjoint segments with convex morph-
ing quadrilaterals the existence of local solutions (where all subsets of the problem have
solutions) does not guarantee a global solution.

7.1 Preliminaries and Definitions

In SL-morphing we can define morphing quadrilaterals by looking at the morph of a single
edge. Defining and looking at the properties of morphing quadrilaterals will help us later
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in extracting properties and defining challenges in straight-line morphing.

Definition 7.1 (Morphing Quadrilateral). Consider a single edge of the graph, drawn
as initial segment ab and final segment a′b′. Then one vertex travels on segment aa′, and
the other travels on segment bb′. The quadrilateral formed by ab, bb′, b′a′, a′a is called the
morphing quadrilateral. See Figure 7.1.

The morphing quadrilateral of each edge has one of the following forms; see Figure 7.1:

• Convex: when the morphing quadrilateral is convex

• Simple Non-Convex: when the morphing quadrilateral does not cross itself but is not
convex

• Crossing Morph Lines: when the two morph line segments (the segments each vertex
traverses in an SL-morph) cross

• Crossing Edges: when the initial and final segments of the edge cross

𝑎
𝑏

𝑏′

𝑎′

(a)

𝑎

𝑎′

𝑏′

𝑏

(b)

𝑏′

𝑎′

𝑎
𝑏

(c)

𝑎

𝑏

𝑏′

𝑎′

(d)

Figure 7.1: Four different types of morphing quadrilaterals: (a) convex; (b) simple non-
convex; (c) with crossing morph lines; (d) with crossing edges

Each of the morphing quadrilateral types has its own properties and difficulties to
morph: In convex morphing quadrilaterals, regardless of how the end vertices travel along
their morphing paths, all of the area inside the quadrilateral is always passed over by the
edge.

In simple non-convex morphing quadrilaterals it is still possible to morph by only using
the inside area of the quadrilateral. However, we might need to use the outside area in
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a planar SL-morph. Figure 7.2(a) shows an example in which we cannot have any SL-
morph that preserves planarity unless edge x goes through the outside of its morphing
quadrilateral at some time during the morph. Otherwise, edge y, which has a convex
morphing quadrilateral, cannot morph while preserving planarity.

In morphing quadrilaterals with crossing morph lines or crossing edges, even though it
may be possible to morph using only the inside area of the quadrilateral, the SL-morph
that only uses the inside area is very restrictive. In the case of crossing morph lines, two
vertices must morph to meet at the crossing point; then, they finish the morph by moving
to their final positions. This scenario is not acceptable as a planar morph, because a
segment would shrink to zero length, so two vertices would become coincident which is not
allowed in a graph drawing. Therefore, some area outside of the morphing quadrilateral is
always passed over in the case of crossing morph lines. Lemma 7.2 describes what the extra
area will look like. This property of segments with crossing morph lines will be used later
in designing Boolean gadgets. In the case of crossing edges, there is only one SL-morph
scenario that keeps the edge inside the quadrilateral, i.e., when the two endpoints morph
synchronously such that the edge always passes through the crossing point of the initial
and final configurations of the segment.

Lemma 7.2. Let s be a segment with initial position a0b0 and final position a1b1, and
suppose its morphing quadrilateral has morph lines that cross at point o. Then, either
some points of the triangle 4a0ob1 or triangle 4b0oa1 must be used in any PSL-morph of
s. Furthermore, no PSL-morph of s uses points of both triangles.

Proof. A scenario to morph a0b0 to a1b1, as discussed earlier, is to move both vertices
at any speed to meet at point o, then continue to their final positions. See Figure 7.6.
However, this scenario is not acceptable as the vertices pass each other and violate the
planarity condition. Therefore, two vertices do not reach point o at the same time.

Assume, without loss of generality, that vertex a is the first vertex that meets the
crossing point o. Then, no points of triangle 4a0ob1 will be passed by the segment and
some points in triangle 4b0oa1 will definitely be passed by the segment in any planarity
preserving morph scenario. Symmetrically, if vertex b meets the crossing point o first, no
points of triangle 4b0oa1 will be passed and some points of triangle 4a0ob1 will be passed
during an SL-morph that preserves planarity.

Figure 7.2(b) and Figure 7.2(c) show the situations where we need to use the outside of
the morphing quadrilateral for the cases of crossing morph lines and crossing edges, respec-
tively. Similar to the simple-non-convex case, segment y needs segment x to completely
clear segment y’s morphing quadrilateral to morph successfully.
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Figure 7.2: Sometimes it is not possible to morph without using the outside area of the
morphing quadrilaterals. In all cases segment x must leave its morphing quadrilateral
to allow segment y to morph: (a) segment x with simple non-convex quadrilateral; (b)
segment x with crossing morph lines; (c) segment x with crossing edges

For any planar graph, some negative instances may be ruled out by looking at the
edges as independent morphing elements. In general if there is no planar SL-morph for a
subgraph of the original morphing graph, then there is no planar SL-morph for the original
graph. This necessary condition in its simplest form is described in the following.

The Basic Necessary Condition. If there is a planar SL-morph for a graph G, then
for any pair of edges e1 and e2, there is a planar SL-morph that morphs both e1 and e2.
In other words, if there is a pair of edges e1 and e2 that may not be morphed through a
planar SL-morph, then there is no planar SL-morph for the entire graph G.

Figure 7.3 shows some examples that pass the basic necessary condition and some
examples in which the basic necessary condition fails. In Figure 7.3(a) segment x may
morph to stand outside of the morphing quadrilateral of segment y (either on the right
or the left side). Then segment y morphs to the final configuration. Segment x morphs
into the final configuration last. In Figure 7.3(b) segment x may morph to the final
configuration and clear the morphing quadrilateral of y first. Then segment y morphs to
the final configuration. In Figure 7.3(c) there is no planar SL-morph because segment x
may never clear the morphing quadrilateral of y. In Figure 7.3(d) also there is no planar
SL-morph. In this example, segment x may clear the morphing quadrilateral of y, but may
not do this without crossing segment y.

The basic necessary condition for a graph G = (V,E) can be tested in time O(|E|2).
That is because the basic necessary condition for a pair of segments is testable in constant
time since the size of the problem is constant and the segments may only have a constant
number of different relative positions. However, the basic necessary condition is not always
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Figure 7.3: (a), (b) examples of pairs of segments where the basic necessary condition
holds; (c), (d) the basic necessary condition does not hold for these pairs of segments.

sufficient. Figure 7.4 shows a counter example involving three segments. Each pair of the
segments passes the condition and may morph successfully, but there is no planar SL-
morph for the three of them. For segment y to pass the central common area of the three
morphing quadrilaterals, segment z should have passed the area and exited the morphing
quadrilateral of y. This means that it enters the morphing quadrilateral of segment x
and blocks it. Segment x may not morph before segment y either because of their special
configuration. In Section 7.4 we will see why this example does not have a planar SL-morph
using the dependency graph that will be defined.

𝑦

𝑥

𝑧

Figure 7.4: Each pair of these three segments passes the necessary condition, but there is
no planar SL-morph for the three of them.
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7.2 Planar SL-morphing of Disjoint Segments is NP-

hard

The morphing problem is simpler on disjoint segments because each segment’s movement
is independent of the rest of the graph. On the other hand, this might lead to exponentially
many ways to morph the entire set of segments when each segment has a few different ways
to morph. Also, the planarity constraint means that choices made for one segment affect
choices for other segments.

In this section we show that SL-morphing of disjoint segments is NP-hard. The re-
duction is from a version of the 3-SAT problem that is called the planar monotone 3-SAT
problem. The 3-SAT problem is a Boolean satisfiablity problem in which the formula to
be satisfied is in the form of the conjunction of a set of clauses, where each clause is the
disjunction of three literals or fewer. Each literal is either one of the n Boolean variables
or the negation of a Boolean variable. A 3-SAT problem is called monotone when for
each clause, all the literals in the clause are either positive or negative. Both 3-SAT and
monontone 3-SAT problems are known to be NP-hard [44].

Essentially, the planar 3-SAT problem is a 3-SAT problem when the following graph, G,
is planar: G has a vertex for each clause and each variable in the 3-SAT problem. There is
an edge between each clause vertex and all the three (or fewer) variables in it. It is shown
that the 3-SAT problem is still NP-complete if the graph G is planar [63]. There are many
geometrical problems shown to be NP-hard by reduction from the planar 3-SAT problem.
In fact, even more restrictive versions of planar 3-SAT remain NP-complete.

Knuth and Raghunatan introduced the rectilinear configuration of graph G of a planar
3-SAT instance. A rectilinear configuration is a planar drawing of graph G such that all
the variable vertices are located in a horizontal row and all the clause vertices are axis-
aligned rectangles that are connected to their variables by vertical edges [60]. The planar
3-SAT problem is NP-complete even if the rectilinear representation of the 3-SAT problem
is given.

Figure 7.5 shows a rectilinear representation of the graph G of a planar monotone 3-
SAT instance (with dashed lines indicating the rectangles corresponding to the clauses).
The figure also shows a planar drawing of G with a node for each clause inside its rectangle
and with a one bend orthogonal path for each edge. We use the representation shown in
Figure 7.5 later for our reduction.

Recently, in 2012, De Berg and Khosravi showed that the planar 3-SAT problem is still
NP-hard even if it is monotone and the rectilinear representation is given [29].
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Planar Monotone 3-SAT.

Input: A rectilinear representation of a planar monotone 3-SAT problem in which
all positive clauses (the clauses with all positive variables) are located above the row of
the variables, and all negative clauses (the clauses with all negative variables) are located
below the row of the variables.

Output: Is the 3-SAT problem satisfiable?

𝑐1

𝑣2

𝑐2

𝑣1 𝑣3

𝑐4

𝑐5

𝑣5𝑣4

𝑐3

Figure 7.5: A rectilinear representation of a planar monotone 3-SAT instance: (v1 ∨ v2) ∧
(v2 ∨ v3 ∨ v4) ∧ (v1 ∨ v4 ∨ v5) ∧ (¬v1 ∨ ¬v3 ∨ ¬v5) ∧ (¬v3 ∨ ¬v4 ∨ ¬v5).

Dashed lines indicate the rectangle corresponding to each clause.

Theorem 7.3. The planar SL-morphing problem is NP-hard even when the graph consists
of disjoint segments, i.e., the graph is a matching.

In the rest of this section, we show how to construct an instance of morphing of disjoint
segments from an instance of monotone planar 3-SAT. The reduction involves designing
variable gadgets that choose True/False values, clause gadgets, and wire gadgets that
propagate values from the variable gadgets to the clause gadgets.

7.2.1 Boolean Gadget

Figure 7.6(a) shows a gadget consisting of two disjoint segments, s1 and s2. Segment s1
in this gadget has a morphing quadrilateral with crossing morph lines most of which is
located inside the convex morphing quadrilateral of segment s2. We call s1 the crossing
segment of the gadget and s2 the straight segment of the gadget. We show in this section
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how this gadget can be used as a Boolean gadget in a 3-SAT construction. The idea is
that s1 must move out of the way to the left or right in order for s2 to morph in a planar
SL-morph.

 𝑠2

𝑠1
𝑎0 𝑏0

𝑜𝑙 𝑟

𝑎1𝑏1

(a)
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𝑠1
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𝑎1𝑏1

(b)

𝑎0 𝑏0

𝑠2

𝑠1

𝑙 𝑜 𝑟
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𝑎0 𝑏0

𝑠2

𝑠1
𝑟𝑜𝑙

𝑏1 𝑎1
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Figure 7.6: Boolean Gadget: (a) Initial configuration; (b)-(d) Illustrations for the proof of
Lemma 7.4: (b) Time t′ when the first endpoint of s1 reaches point o; s2 is behind point o
in its morph journey, (c) We will not have a planar SL-morph if the other endpoint of s1
enters the morphing quadrilateral of s2 before s2 passes over point o, (d) For s2 to morph
in a planar way, s1 has to fully clear the morphing quadrilateral of s2.

Figure 7.7 shows the configuration space of morphing segment s1 in the Boolean gadget
shown in Figure 7.6. The horizontal axis shows the configuration of the endpoint a and the
vertical axis is the configuration of endpoint b; on each axis 0 is the initial configuration
and 1 is the final configuration. Point t, 0 ≤ t ≤ 1 along the horizontal axis corresponds
to a being at position (1 − t)a0 + ta1. Each point in the space corresponds to a possible
configuration of segment s1 during the morph. According to the definition of SL-morphs,
a morph of segment s1 corresponds to a path from the initial configuration, point (0, 0),
to the final configuration, point (1, 1), that is non-decreasing according to both axes, i.e.,
xy-monotone. The two shaded areas in Figure 7.7 show the configurations of s1 in which
segment s1 lies outside the morphing quadrilateral of segment s2.

We prove below in Lemma 7.4 that in any PSL-morph solution of this gadget, the curve
λ representing the morph of segment s1 enters one of these shaded areas in the morph;
i.e., there must be some time during the morph when s1 lies outside of the morphing
quadrilateral of segment s2. If λ enters the top left shaded area in an SL-morph, this
means that s1 lies on the left side of morphing quadrilateral of segment s2 at some time
during the morph. We map this scenario to the “false” value of the Boolean gadget.
Otherwise, λ enters the bottom right shaded area, which is equivalent to lying on the right
side of morphing quadrilateral of segment s2. We map this scenario to the “true” value

56



𝑎

 

𝑏

 

(0,0)
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Figure 7.7: The configuration space of segment s1 in Boolean gadget, shown in Figure 7.6.
Any PSL-morph will enter one of the gray areas.

of the Boolean gadget. These two scenarios are mutually exclusive since an xy-monotone
path cannot enter both shaded regions.

Lemma 7.4. In the gadget shown in Figure 7.6, in any planar SL-morph there is some time
point when segment s1 lies outside of the morphing quadrilateral of segment s2, either to
the left or the right of the morphing quadrilateral of s2. Furthermore, these two possibilities
are mutually exclusive.

Proof. In a PSL-morph of the gadget, consider time t when segment s2 first reaches through
the point o, the crossing point of segments a0a1 and b0b1. At least one of the endpoints of s1
should have passed point o before t, as otherwise segment s1 would have blocked segment
s2 from reaching point o. On the other hand, it is not possible that both a and b have
passed o before time t, because otherwise segment s1 would lie on the bottom half of the
morphing quadrilateral of segment s2 for the rest of the time, blocking s2 from finishing the
morph to its final configuration. Therefore, at time t, one but not both of the endpoints
of s1 has passed o. By symmetry, assume that a has passed o.

Now consider the first time t′ < t when a reaches point o. At time t′ segment s2 is above
point o and even above segment ab, and endpoint b is on the right side; see Figure 7.6(b).
At time t′ point b may be outside or inside of the morphing quadrilateral of segment s2;
see Figure 7.6(b), and 7.6(c), respectively. We consider these two cases. If b is inside at
time t′ (Figure 7.6(c)) then for all times t′′ ≥ t′ part of the segment connecting a and b
will lie in the morphing quadrilateral of segment s2 making it impossible for s2 to finish
the morph.

Thus, b must be outside the morphing quadrilateral of s2 at time t′ (Figure 7.6(b)).The
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only way for segment s2 to pass segment s1 is for endpoint a of segment s1 to exit the
morphing quadrilateral of segment s2 before the endpoint b enters it. Therefore, there will
be a moment when segment s2 is lying on the right side of the morphing quadrilateral of
segment s2; see Figure 7.6(d).

Symmetrically, if the endpoint b passes the intersection point o first, segment s2 will
lie on the left side of the morphing quadrilateral of segment s2 at some time. These two
possibilities are mutually exclusive, because each one corresponds to a shaded area shown
in the configuration space in Figure 7.7 and any xy-monotone path in the configuration
space may not pass through both shaded areas.

We will use a rotated Boolean gadget as the core of each variable gadget.

7.2.2 Switch and Wire Gadgets

In this section, we introduce an important small gadget that works as a switch; see Fig-
ure 7.8. This switch will be used in making OR gadgets. Also, a chain of switches can be
used as a wire in propagating choices about morphing of one segment to another part of
the construction.

𝑒
𝑣

𝑤

(a) (b)

Figure 7.8: Switch gadget: Two endpoints of segment e must morph simultaneously to
avoid crossing with the stationary segments v and w. This gadget will be drawn as shown
in part (b) for simplicity.

The switch gadget consists of a main segment, e, and two small segments, v and w.
The segment e has a morphing quadrilateral with crossing edges. The two small segments,
v and w, are stationary, i.e., the initial and final configurations are the same. These two
segments, v and w, play the role of stationary obstacles that limit the morph of segment
e. Figure 7.9 shows the configuration space of segment e’s morph. The boundary of the
configuration space is not part of the configuration space of PSL-morphs, because segment
e crosses the segments v or w which are stationary. Therefore, to morph from point (0, 0)
to point (1, 1) in the configuration space, segment e has to follow the narrow shaded area
shown in Figure 7.9. In other words, in any PSL-morph of the gadget, moving one endpoint
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Figure 7.9: Configuration space (shaded) of segment e in the switch gate shown in Fig-
ure 7.8

of segment e will cause the other endpoint to move as well. We will use this property to
propagate choices made in variable gadgets to the clause gadgets.

Using switch gadgets, we can construct a chain that works as a directed wire that
propagates the morph of a segment to some other part of the plane; see Figure 7.10. In
Figure 7.10(a), when the main segment in switch s, as the first element of the chain, is
near its final configuration at time t, the next switch in the chain must be near its final
configuration too. Then, as we continue on, the last segment, f , will be near its final
configuration at time t. Note that this is a directed dependency from s to f , not the other
way around. In other words, segment f might be near its final configuration while switch
s, or some other switch element of the chain before f , is at any valid configuration.

We can use smaller size switches in the chain to make the chain pass the narrower
parts of the construction. Also, the chain may bend when necessary. The only essential
property we should preserve is that each switch element of the chain must be near its final
configuration when it clears the morphing quadrilateral of the main edge in the previous
switch element. Figure 7.10(b) symbolizes how we show the chains in the constructions.
The arrow goes from the start of the chain, s, to the end of it, f .

7.2.3 Clause Gadget

In this section we show how the straight line morph of a set of disjoint segments can form a
clause gadget. Figure 7.11 shows a construction of an OR gadget using the Boolean gadget
and the switch gadget. We will prove that this gadget implements x = x1 ∨ x2, where x,
x1, and x2 are the values of the Boolean gadgets. This means that for the Boolean gadget
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Figure 7.10: Switch chain gadget: The morph of one end, the switch f , must occur before
the morph of the other end of the chain, switch s.

x to have “true” value, at least one of the Boolean gadgets, x1 and x2, must have “true”
values. By cascading two of these OR gadgets, we will have a clause gadget for 3-SAT.
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Figure 7.11: OR gadtet: (a) the gadget in initial state; (b) the intermediate state when x1
has true value.

Lemma 7.5. In Figure 7.11, in order for the Boolean gadget x to have true value (where
the crossing segment morphs to the right side), at least one of the Boolean gadgets x1 and
x2 must have true value.

Proof. According to the definition of the “true” value for Boolean gadget x, described in
Section 7.2.1, if x has true value then there is a time, t, such that the crossing segment in
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x lies on the right side of the morphing quadrilateral of the straight segment. To preserve
planarity, switches A and C must be near their initial state, and the switch B must be
near its final state at time t. For the main segment in switch B to morph, the following
event should have happened before time t: In the middle Boolean gadget, y, both segments
have cleared the area that the right end of switch B needs to pass. Consequently, there
was a time, t′ < t, when the crossing segment in y was on the top or the bottom of the
convex morphing quadrilateral in y (instead of right or left, since the gadget is rotated).
So, at time t′ at least one of the switches, D and E, has morphed close to their final
configurations, depending on which intermediate state (top or bottom) the gadget y chose.

Consider the case where the gadget y uses the top intermediate state to morph. The
other case is symmetric. Then switch D is near its final configuration at time t′. Now we
focus on the Boolean gadget x1 and the two switches connecting to it, D and A, and claim
that it is not possible for x1 to morph through its left side. Assume, to the contrary, that
the Boolean gadget x1 morphs with the left intermediate state. Therefore, there is a time
t′′ such that the crossing segment in gadget x1, called s, is lying on the left side of the
convex morphing quadrilateral in x1. Observe that t′′ < t′ since after t′ the main edge of
the switch D will stay inside the convex morphing quadrilateral in x1 permanently. Also
observe that from t′′ onward the top endpoint of s (at time t′′) will stay in the morphing
quadrilateral of the main edge of switch A. This leads to a contradiction, because t′′ < t
and the switch A is near its initial configuration at time t. So, the Boolean gadget x1 may
not have false value in any PSL-morph of the OR gadget.

Lemma 7.6. In Figure 7.11, any valuation of Boolean gadgets, x1 and x2, that satisfies
x1 ∨ x2 can be part of an SL-morph solution of the entire gadget.

Proof. In any valuation that satisfies x1 ∨ x2 at least one of x1 or x2 has the true value,
i.e., the gadget uses the right intermediate state to morph. Now we suggest a morphing
scenario for the entire OR gadget. For the Boolean gadget(s) x1, x2, or both, which have
true values, follow these steps: first morph the crossing segment to lie on the right side of
the convex morphing quadrilateral; then, morph the straight segment to the middle of its
way, passing the area of the first switch, but not entering the area of the second switch;
then, morph the first (small) switch to its final configuration; for example see the state of
the Boolean gadget x1 in Figure 7.11(b).

Now, in the Boolean gadget y, at least one of the top and bottom sides (or both sides
if both x1 and x2 have true values) is clear. Then, we can morph the gadget y to the
intermediate state shown in Figure 7.11(b) in which the area of switch B is clear. We
then morph switch B; this makes the right (true) side of the Boolean gadget x clear.
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After completing the morph of x to its final configuration, switches A and C morph to
their final configurations. Then, the Boolean gadgets x1 and x2, that are either in the
intermediate state described above, or in the initial configuration, complete their morphs.
Finally, either of the switches, D or E, which is not morphed yet, morphs to its final
configuration, clearing the area of the gadget y to finish the morph.

Note that in the OR gadget, the Boolean gadget x1 is upside down. To fix that into a
normal form of a Boolean gadget we suggest the copy gadget, shown in Figure 7.12. This
gadget copies the right side value of a Boolean gadget, x, into the right side value of one
or more Boolean gadgets which are flipped vertically.

𝑥

 

𝑦1

𝑦2

Figure 7.12: Copy Gadget

Lemma 7.7. In Figure 7.12, if the Boolean gadget x uses the right intermediate state to
morph in a planar SL-morph, then all the flipped Boolean gadgets yi’s (y1 and y2 in this
figure) will use the right intermediate state to morph.

Proof. First, we show that it is not possible for any of yi’s to morph using the left interme-
diate state. The Boolean gadget x uses its right intermediate state to morph, so there is a
time t in which the crossing segment in x lies on the right side of the vertical dashed line in
gadget x. At time t, the upper switch chains of all yi’s are near their initial configuration
while the lower switch chains of all yi’s are near their final configuration. Assume, to the
contrary, that one of yi’s morph using the left intermediate state. So there must be a time
t′ when the crossing segment stands on the left side of the vertical dashed line in yi. At
time t′ the upper switch chain must be near its final configuration, because this segment
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never leaves the area that the first switch of the upper chain needs to morph through after
time t′, so t′ > t. On the other hand, the lower switch chain of yi may not morph before
time t′ since one endpoint of the crossing segment is blocking the area all the time before
t′, so t′ < t, which is a contradiction.

Second, we show that there is a planar SL-morph if all yi’s use their right intermediate
states to morph. This can be done by following these steps: In all yi’s, the crossing
segments go to their right intermediate states, and the straight segments travel half way,
waiting in the middle of the Boolean gadget, clearing the area of the lower switch, and
not entering the upper switch; then, the gadget x morphs into its right intermediate state,
meaning that the lower switch in all yi’s has morphed near its final configuration. Then,
the gadget x morphs to its final configuration, all upper switch chains morph to their final
configurations, then, all yi’s complete their morphs to their final configurations.

Note that the copy gadget, shown in Figure 7.12, only copies the right value of the
Boolean gadget x, not the left value. The following lemma shows how it may occur.

Lemma 7.8. In Figure 7.12, if the Boolean gadget x uses the left intermediate state to
morph, then each of the flipped Boolean gadgets yi (y1 and y2 in this figure) may use either
the right or the left side to morph.

Proof. The Boolean gadget x morphs through its left side, so only the morph of the straight
segment in x may conflict with the morph of the two switch chains connected to each
yi. The following scenario shows how the flipped Boolean gadgets yi’s may morph. The
straight segment in x passes the area of the first switch chain of y1, but does not enter the
area of the second switch chain yet; the right endpoint waits in the small area between
two switches. Then, the first chain morphs to its final configuration. This removes any
limitation from the Boolean gadget y1, so it may morph to its final configuration through
either the right or the left side. Then, the second switch chain from x to y1 may morph to
its final configuration, clearing the area that the waiting segment in x needs to proceed.
Now, the Boolean gadget x is finished with y1 and will repeat these steps with y2, and
continues on.

To construct a 3-clause-gadget we cascade two OR gadgets and a copy gadget, as shown
in Figure 7.13. Note that the switches in the OR gadget can be replaced with switch chains,
as shown in this figure when the variables of the clause are located far from each other in
the 3-SAT construction.
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𝑐𝑏

𝑐1

𝑐2

𝑐3

𝑚

𝑦

𝑥1

𝑥2

𝑦

𝑥3

Figure 7.13: 3-Clause Gadget

Finally, we want to force the clause to be true, and to do that we must force a Boolean
gadget to have a specific (true or false) value. This can be done by blocking the other side
of the Boolean gadget, as shown in Figure 7.14.

Lemma 7.9. In Figure 7.14 the Boolean gadget z may only have true value, i.e., for any
planar SL-morph, z morphs through its right-side. Furthermore, z can morph through its
right side.

𝑐

𝑧

Figure 7.14: A Boolean gadget which may only have true value
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Proof. Assume, to the contrary, that the Boolean gadget z uses the left intermediate state
(false value) to morph. Then, there is some time when the crossing segment in z lies on
the left side of the left vertical dashed line. This means that the first element of the switch
chain c is near its final configuration to clear the area while the last element of the chain
must be still near its initial configuration. This is not possible according to the property
of switch chains discussed earlier.

To morph through the right side, the crossing segment in the Boolean gadget z goes
into the right intermediate state. Then, the straight segment morphs half way and stops
between the two endpoint of chain c. Then, the chain c morphs into its final configuration,
and the straight segment may complete its morph into the final position. The crossing
segment may finish its morph last.

Note that in the complete clause construction, shown in Figure 7.13, the small chain
cb added to the left side of the Boolean z makes the entire gadget always true, as proved
in Lemma 7.9. Now, we must ensure that all appearances of the variables in clauses have
consistent true/false values. In the following section, we show how to join a variable gadget
to all appearances of that variable in the clause gadgets.

7.2.4 The Final Construction

In this section, we show how to connect all appearances of the same variable in the 3-SAT
problem together, ensuring that they all have consistent values, i.e., all identical literals
have the same value and the literals which are the negations of other literals have opposite
values.

Recall that we use one Boolean gadget for each variable vi. We then use the copy gadget
to copy the right (true) value of this Boolean gadget into all appearances of the positive
form of variable vi and copy the left (false) value into all appearances of the negative form
of vi (¬vi). Figure 7.15 illustrates this.

As shown in Figure 7.15, there is a pair of switch chains between the variable gadget
and each appearance of the variable in clauses. One chain is directed from the variable to
the initial part of the literal in the clause, and the other chain is directed from the final part
of the literal to the variable, as shown in the figure. Recall that in the monotone 3-SAT
problem the input is assumed to be a rectilinear representation with the variable gadgets
lined up in the middle, all clauses with positive literals above, and all clauses with negative
literals below. Then we connect each clause to its three variables with an edge, which is
actually a pair of switch chains following the path in the rectilinear representation. These
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to 𝑣𝑖 appearances

to ¬𝑣𝑖 appearances

...

...

Figure 7.15: Variable Gadget: A rotated Boolean gadget that is connected to all its ap-
pearances in the clauses using the copy gadget.

chains do not cross, because the rectilinear representation is planar. Figure 7.16 shows the
planar graph and the corresponding SL-morph construction of a monotone 3-SAT example.

The ordering of the chains in the variable side is also important. This will be clearer
after the following lemmas are given about the entire 3-SAT construction.

7.2.5 Proof of Theorem 7.3

For an instance I of the monotone 3-SAT problem, let M denote the morphing instance as
constructed above. To complete the reduction from the monotone planar 3-SAT problem
to the PSL-morph of disjoint segments, we prove that I is satisfiable if and only if M has
a PSL-morph. We separate the proof into two parts.

Lemma 7.10. If M has a PSL-morph, then I has a satisfying truth value assignment.

Proof. If M has a PSL-morph solution, then all main Boolean gadgets in all clauses,
denoted by z in Figure 7.13, morph through their right sides, since we have shown in
Lemma 7.9 that it is not possible for them to successfully morph through their left sides.
Then, according to Lemma 7.5, at least one of the Boolean gadgets y1 and x1 has morphed
through the right side. If y1 has morphed through its right side, for the same reason, at
least one of the Boolean gadgets y2 and x2 has morphed through their right sides. If y2
has morphed through its right side, x3 has morphed through its right side, as shown in the
copy gadget in Lemma 7.7. Consolidating these, at least one of the Boolean gadgets x1,
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3-clause

𝑣1 𝑣2 𝑣3 𝑣4

3-clause

Figure 7.16: The full construction of a 3-SAT problem (v1∨v2∨v4)∧ (v2∨v3∨v4)∧ (¬v1∨
¬v2 ∨¬v3); The first clause is shown with all details and the others are shown with a box.

x2 and x3 has true value. According to Lemma 7.7, the Boolean gadgets that have true
values force the corresponding variable gadgets to morph accordingly by two switch chains
connecting them to the corresponding variables. Therefore, all clauses are satisfied and,
also, all appearances of the variables in clauses have consistent values.

Lemma 7.11. If I has a satisfying truth value assignment, then M has a PSL-morph.

Proof. Consider the valuation of variables which satisfies the 3-SAT problem. We show
how the entire construction morphs according to this valuation. The value (true/false) of
each variable determines whether the corresponding variable gadget morphs through the
top or the bottom side (if a variable has true value it morphs through the bottom side;
otherwise, it morphs through the top side). Use the following step-by-step scenario for each
variable gadget, vi, that morphs through the bottom side (vi takes the true value): The top
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endpoint of the crossing segment morphs to the crossing point o. Now, the top endpoint
of the other segment, a, may pass through all switches one by one without crossing this
segment; see Figure 7.17.

Consider the clauses in which vi appears positively. These clause gadgets are connected
to vi’s gadget by chains starting from the top side of vi’s gadget. Let Ci1 , . . . , Cik be the
left to right ordering of these clauses along the top of vi’s gadget. Then, the endpoint a
stops between two chains connecting vi’s gadget to Ci1 . The first chain then morphs to its
final configuration; this will clear vi’s final position in Ci1 , so vi’s Boolean gadget in Ci1 is
free to finish its morph. Now, vi’s Boolean gadget in clause Ci1 morphs through its right
side to the specific configuration shown in Figure 7.18. This intermediate configuration
allows the other chain (between the top side of variable gadget vi to clause gadget Ci1) to
morph; also it allows the clause to morph successfully later. Then, the other chain morphs
and clears the way for endpoint a to proceed to the pair of chains connecting vi to Ci2 . We
now repeat the same steps for the next pair of switches on the path of a and continue on.

𝑎0

𝑜

...

...

𝑎1
𝑎

𝑐𝑖1
𝑐𝑖2

𝑐𝑖𝑘

Figure 7.17: The intermediate state of the gadget of variable vi to pass through the top
switch chains one by one.

We repeat this scenario for all vi’s that take false value, as well. The only difference
in such variables is that the process is vertically mirrored. Now all true literals in clauses
are in the intermediate configuration that is shown in Figure 7.18. All false literals, on
the other hand, may not have right-side values because they are connected to the opposite
sides of the variable gadgets as proved in Lemma 7.7.

Now, we can morph the rest of the clauses according to the scenario described in the
proof of Lemma 7.6 to the point where all false literals are in the morphing configuration
shown in Figure 7.19. Note that, this can be done because in the 3-SAT solution each
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𝑦

𝑥

𝐴

 

𝐵

𝐶 𝐸

𝐷

𝑥1

𝑥2

Figure 7.18: The state of the OR gadget when the true valued literals, x2 in this example,
are morphed to the intermediate state.

clause has at least one true literal. Now, all variable gadgets complete their morphs to
their final configuration; then, each clause morphs to its final configuration.

To complete the proof of Theorem 7.3 we also need to show that the reduction can be
done in polynomial time.

Lemma 7.12. The construction of the planar SL-morphing instance M from a planar
monotone 3-SAT instance I takes polynomial time.

Proof. The planar SL-morphing instance M consists of clause gadgets, variable gadgets,
and wire gadgets connecting the variables to all their appearances in clauses. The com-
plexity of drawing each clause gadget is constant, because the number of segments in each
clause is constant, so the segments endpoints can lie on a constant-size grid; say a k × k
grid. Each variable gadget may have O(n) segments (depending on the number of clauses
that include the variable) and can lie on a k × nk grid.

Wires consist of switch gadgets. Each switch has a constant number of segments and
the number of switches in each wire depends on the length, width, and the number of
bends in the wire. There are constant number of switches per length unit and in each
bend. We need more switches when the width of the wire decreases, but it is still constant
for wires with constant width. Figure 7.20 shows the wire gadget in bends and in straight
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𝐷

𝐸

𝑥

𝑦

𝑥2
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Figure 7.19: The state of the OR gadget when the false valued literals are morphing to the
intermediate state.

parts with different widths. When the width of the wire decreases by half, the number of
switches will be almost doubled.

Now we take a rectilinear representation of the planar monotone 3-SAT instance I as
shown in Figure 7.5. Observe that this drawing lies on an O(n) × O(n) grid where n is
the number of clauses and variables in I. We can expand this grid by a factor of nk and
thicken every edge to a constant width strip. Now we replace each variable and clause
node by the corresponding gadget and replace each edge by a wire made of switches. Note
that each edge has length O(n) and O(1) bends in the original rectilinear representation
and so the number of switches needed for each wire is O(n).

7.3 Morphing of Paths and Cycles

As shown in the previous section, the planar SL-morphing problem is hard even for the
special class of disjoint segments. In this section we explore SL-morphing of paths and
cycles and observe some of the properties and challenges in planar SL-morphing of these
two simple classes of graphs. SL-morphing of cycles and paths, together with the case of
disjoint edges, gives us a good understanding of the challenges of the morphing problem
for general graphs. However, we do not yet know the complexity status of the planar
SL-morphing problem for cycles and paths, in particular, we do not know if it is NP-hard.
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𝑓

𝑠

(a)

(b)

(c)

Figure 7.20: (a) The wire gadget in bends; (b) Wire gadget in straight parts with unit
width; (c) Wire gadget in straight parts with half width

Figure 7.21 shows an example of a morphing path. A possible planar SL-morph for this
path is to morph vertex c from its initial position to its final position (point c′) first. Then
the sub-paths on the right and the left side of vertex c can move independently without any
conflict. Note that the linear morph does not preserve planarity for this example because
of the edge cd that will be shrunk to zero length in the linear morph. Figure 7.22 shows
an example of a morphing cycle. A planar SL-morph for this cycle is to first morph the
edge ed to its final configuration. Then morph vertex c to its final position. Last, we can
morph edge ab to its final configuration. In this example also the linear morph does not
work because of the edge bc that will be shrunk to zero length in the linear morph.

𝑏
𝑎

𝑐

𝑎′ 𝑏′

𝑐′

𝑑

𝑒

𝑑′
𝑒′

Figure 7.21: A path that has a planar SL-morph from the initial configuration (solid red
lines) to the final configuration (dashed gray lines).

Planar SL-morphing of paths and cycles seems harder than planar SL-morphing of
disjoint segments. When each vertex of a cycle or a non-end vertex of a path moves, two
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𝑏𝑎

𝑐
𝑎′

𝑏′

𝑐′

𝑑𝑒

𝑑′
𝑒′

Figure 7.22: A cycle morphs from the initial configuration (solid red lines) to the final
configuration (dashed gray lines).

incident edges move and sweep some area while in the case of disjoint segments moving
each vertex only affects the movement of one edge. On the other hand, the denser the
graph the more restrictions there are on the movement of the vertices and there is hope
that the more limited solution space makes the problem easier to test. However, we do not
know of any algorithm that decides the existence of planar SL-morphs for paths or cycles.

7.3.1 Applying the Basic Necessary Condition

As the first step toward deciding if a morphing instance involving a path or cycle has a
planar SL-morph, we may apply the basic necessary condition discussed in Section 7.1.
According to this necessary condition, for a global planar SL-morph solution all pairs of
edges of the graph must have a planar SL-morph. Figure 7.23 shows a path example that
does not have any planar SL-morph, because it fails the basic necessary condition.

𝑏

𝑎
𝑐

𝑎′

𝑏′ 𝑐′

𝑒1

𝑒2

𝑒3

𝑑

𝑑′

Figure 7.23: A path that cannot morph into the final configuration through a planar
SL-morph, because two edges e1 and e3 do not pass the basic necessary condition. In
particular, vertex a may never leave the morphing quadrilateral of e3.
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Even though the basic necessary condition is helpful in ruling out some negative ex-
amples, it does not guarantee the existence of a planar SL-morph for a path or cycle.
Figures 7.24, and 7.25 show negative examples that pass the basic necessary condition but
do not have any planar SL-morph.

Claim. The example in Figure 7.24 has no planar SL-morph.

Proof. In Figure 7.24 the morphing quadrilateral of edge ab is convex. Assume that end-
point b reaches the crossing point with ee′ at time t. Then edge de must be in the lower
part of the morphing quadrilateral of edge bc at time t, because otherwise it crosses the
edge ab (no matter where the endpoint a is). Now, look at the configuration of edge bc.
The endpoint b is at the crossing of ee′ and bb′. Depending on the position of endpoint
c at time t, the edge de either crosses bc or will be in the morphing quadrilateral of bc
permanently after time t. Therefore, there is no planar SL-morph for this example, even
though it passes the basic necessary condition.

𝑏

𝑎

𝑐

𝑎′

𝑏′𝑐′

𝑑

𝑒

𝑑′
𝑒′

Figure 7.24: A morphing path that passes the basic necessary condition, but that cannot
morph through a planar SL-morph.

The example in Figure 7.25 has no planar SL-morph for a more general reason. Observe
that any cycle must have the same clockwise direction in the initial and final configurations
in order for a planar SL-morph to exist. In other words, a planar SL-morph cannot model
mirroring. This property has been observed for planar morphing, but we include an explicit
proof below. Note that the cycle is mirrored in the counter example in Figure 7.25 that
shows the basic necessary condition is not sufficient.

Lemma 7.13. When traversing a cycle clockwise in the initial configuration starting at
some vertex v, we visit the vertices in the same order as when the cycle is traversed clockwise
in the final configuration starting at the same vertex v.
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𝑏

𝑎 𝑐

𝑎′

𝑏′

𝑐′

𝑒1 𝑒2

𝑒3

Figure 7.25: A cycle that cannot morph into a mirrored drawing but still passes the basic
necessary condition.

Proof. Assume, to the contrary, that there is a planar SL-morph for a cycle mirrored in the
final configuration. Since the SL-morphing is a continuous transformation from the initial
configuration to the final configuration, there must be a time t in which the direction of the
cycle flipped during the morph. This can only happen if the area inside the cycle shrinks
to zero at time t and then increases in the flipped direction. A configuration in which the
cycle has zero inside area is not a valid planar configuration, so this is a contradiction.

7.3.2 Special Morphs

In this subsection we show through examples that for planar SL-morphs of paths and
cycles it is not enough to consider simple morphs like linear morphs or the morphs in
which the vertices morph one-by-one to their final positions (uninterrupted one-vertex-at-
a-time morphs). Figures 7.26 and 7.27 show examples of a path and a cycle that have a
planar SL-morph but there is no uninterrupted one-vertex-at-a-time or linear morph, as
we now show.

In Figure 7.26 the linear morph does not preserve planarity because of two edges ab and
bc that will pass over each other during the linear morph. Also there is no uninterrupted
one-vertex-at-a-time morph that preserves planarity because vertex c must move together
with vertices d and e to avoid crossings. However, a planar SL-morph is to morph vertices
c, d, and e together into their final positions. Then, move vertices b and a in any order.
Note that in this example all morphing quadrilaterals are convex.

In Figure 7.27 the cycle has a planar SL-morph: vertices a, g, and h may move together
through a linear morph to their final positions. Then the rest of the vertices may move one
by one in the following order from the initial position to the final position: b, f , e, d, c. The
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linear morph does not preserve planarity for this example. Also, there is no uninterrupted
one-vertex-at-a-time morph that preserves planarity because vertex b is the only vertex
that may morph into the final position without crossing. After morphing b to b′, there are
no other vertices that can move to their final positions without losing planarity.

Figure 7.28 shows an example where the morph is a simple translation of a path, and
the linear morph preserves planarity. However, we may not morph any single vertex to its
final position without crossing. In this example also the morphing quadrilaterals are all
convex.

𝑎

𝑏

𝑑

𝑐
𝑒

𝑒′

𝑑′

𝑐′

𝑏′

𝑎′

Figure 7.26: A path that has a planar SL-morph, but no uninterrupted one-vertex-at-a-
time or linear morph preserves planarity.

𝑏
𝑎

𝑐

𝑎′𝑏′

𝑐′

𝑑
𝑑′

𝑒

𝑒′

𝑓

𝑓′

𝑔ℎ

𝑔′

ℎ′

Figure 7.27: A cycle that has a planar SL-morph, but no uninterrupted one-vertex-at-a-
time or linear morph preserves planarity.
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𝑒
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𝑓
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𝑔

Figure 7.28: A path that has a planar linear morph, but no uninterrupted one-vertex-at-
a-time morph.

7.4 Morphing of Graphs with Convex Morphing Quadri-

laterals (Convex Morphing)

In this section we focus on planar SL-morphs for the specific case when the morphing
quadrilateral of each edge is convex. We call this specific case of planar SL-morphing,
convex morphing. We explore some properties of convex morphing when the graph is a
matching (disjoint segments), a path, or a cycle. When all morphing quadrilaterals are
parallelograms in a connected graph (such as a path or a cycle) the morph will be a simple
translation in the plane and a linear morph is always a solution. Note that even the case
of morphing disjoint segments will morphing quadrilaterals that are parallelograms is not
trivial, because the edges may morph in different directions. For an example see Figure 7.4.

The main motivation for convex morphing comes from the properties of different types
of morphing quadrilaterals. Among the four possible types of morphing quadrilaterals
listed in Section 7.1, the case of convex morphing quadrilaterals is the only one in which
the area of the plane that is passed over by the edge is fixed in all different morphing
scenarios. Moreover, the NP-hardness proof of PSL-morphing mainly relies on morphing
quadrilaterals that may sweep different areas in different morphing scenarios. It seems that
the point that makes the problem hard is to decide which area is swept by each segment.
Thus, convex morphing is a natural simplified PSL-morphing problem. In other words, an
interesting question is: can we find a polynomial time (or even exponential time) algorithm
for the planar SL-morph problem if the input only includes segments with convex morphing
quadrilaterals?
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7.4.1 A Necessary Condition for Convex Morphing

In this section we show a stronger version of the basic necessary condition for convex
morphing. We have the first observation as follows:

Lemma 7.14. For each pair of segments (s1, s2), if the two convex morphing quadrilaterals
intersect (the quadrilaterals have a common point), then for any point p in the intersection,
s1 and s2 pass over p in some order and this order is the same for all points in that common
area.

Proof. The intersection of the two convex quadrilaterals is a convex polygon R. Assume,
to the contrary, that there are two points, p and q, in polygon R such that s1 reaches p at
time t1 before s2 reaches p, and s2 reaches q at time t2 before s1 reaches q, where t1 ≤ t2.
Note that two segments may not reach a point at the same time because a planar morph
is assumed.

Consider the sub-morph of the two segments in the time interval [t1, t2]. This means
that the morphing quadrilaterals of s1 and s2 are cut at the times t1 and t2. We show that
both the initial and final positions of segment s1 in this sub-morph intersect the morphing
quadrilateral of s2. See Figure 7.29 for an example.

At the initial time, t1, segment s1 intersects the morphing quadrilateral of s2, because
s1 passes through point p at this time and s2 will reach p later. At the final time, t2,
segment s2 passes through point q and segment s1 will reach it later, so segment s1 still
crosses the segment pq at time t2. Thus, considering the sub-morph in [t1, t2] both the
initial and final configurations of s1 are inside the quadrilateral of s2 making it impossible
for them to have a planar SL-morph.

Note that Lemma 7.14 does not imply that one segment passes all the common area
before the other segment enters it, but it states that if we observe any single point p in the
common region, morphing segments s1 and s2 pass over p in the same order.

The condition described in this observation can be extended to the case when more
than two segments have overlapping morphing quadrilaterals. For any region that two or
more segments must pass over, the segments pass over all points in the region in the same
order. Some of these orderings may not be possible in a planar SL-morph because of the
initial or final configurations of the segments. Here are some conditions that we can check
to rule out some of these orderings for segments s1 and s2 with overlapping morphing
quadrilaterals. The conditions are symmetric if we swap the names of s1 and s2, so the
conditions must be checked for both pairs (s1, s2) and (s2, s1).
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𝑠2

𝑠1

𝑠2(𝑡1)
𝑠2(𝑡2)

𝑠1(𝑡1)

𝑠1(𝑡2)

𝑝

𝑞

Figure 7.29: An example of two segments with convex morphing quadrilaterals: there is
no planar SL-morph if s1 reaches point p before s2 and s2 reaches q before s1.

Let R be the intersection of the morphing quadrilaterals of s1 and s2:

1. If some point of the initial configuration of segment s1 is in R, then s1 must precede
s2 in any valid ordering according to Lemma 7.14; see Figure 7.30(a).

2. If some point of the final configuration of segment s1 is in R, then s2 must precede
s1 in any valid ordering according to Lemma 7.14; see Figure 7.30(b).

Lemma 7.15. Two segments s1 and s2 with convex morphing quadrilaterals have a planar
SL-morph iff the two conditions (1) and (2) (and these two conditions with swapped s1 and
s2) allow it.

Proof. If the two above conditions imply that no ordering of s1 and s2 is valid (s1 must
precede s2 and s2 must precede s1), then there is no planar SL-morph solution because it
will contradict Lemma 7.14 otherwise; see Figure 7.30(c) for an example.

On the other hand, if conditions (1) and (2) allow an ordering such as (s1, s2), it means
that the initial position of s2 and the final position of s1 do not intersect R. Then, we
can morph segment s1 to exit R. We then morph s2 to its final position. If none of the
conditions (1) and (2) apply to the segments s1 and s2 (and none of the conditions apply
to the swapped segments, s2 and s1), it means that R contains no point of the initial/final
configuration of either segment, then both orderings are possible; see Figure 7.30(d).

The above conditions force some ordering on the edges passing common regions. We
may construct a dependency graph Gd based on these conditions as follows: Graph Gd has
a vertex for each edge of the convex morphing graph G. There is an edge in Gd between two
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Figure 7.30: Two convex morphing segments with overlapped morphing quadrilaterals: (a)
s1 must pass over the points of the common region first; (b) s2 must pass over the points
of the common region first; (c) no planar SL-morph exists; (d) there is no constraint on
the ordering of s1 and s2 passing over points of the common region.

vertices iff the morphing quadrilaterals of the two edges overlap. The two above conditions
(1) and (2) determine the direction of some of the edges. An edge (s1, s2) ∈ Gd is directed

from s1 to s2 if s1 must pass the points in R first. Let
−→
Gd denote the partially directed

version of graph Gd formed by the two conditions (1) and (2). Figure 7.31 shows a convex

morphing path G and the corresponding
−→
Gd graph. In this example all edges of

−→
Gd are

directed, but in general, some may be undirected.

A planar SL-morph M yields a fully directed version of Gd that we denote by
−→
Gd(M).

Note that this is well defined by Lemma 7.14. The dependency graph
−→
Gd(M) may have

directed cycles. However, by Lemma 7.14, the morphing quadrilaterals of the segments
involved in such a directed cycle may not share a common point. If all the morphing
quadrilaterals contain a common point p, then the order in which segments pass p is a
total order.

We may try to find a planar SL-morph by looking at
−→
Gd and by orienting the rest of the

edges. Figure 7.32 shows a convex morphing example with n disjoint segments (n = k+ 2)
that does not have any planar SL-morph because the dependency graph Gd always contains
a directed cycle corresponding to a shared common point.
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Figure 7.31: A convex morphing path and the corresponding dependency graph
−→
Gd

Figure 7.32(b) shows the dependency graph
−→
Gd. Vertex b in this graph has edges to all

other vertices, because the morphing quadrilateral of segment b overlaps with the morphing
quadrilateral of all other segments. The other vertices in Gd form a path because the
morphing quadrilateral of each segment ai only overlaps with the morphing quadrilateral
of the two segments before and after ai in the order. All edges (ai, ai+1), 1 < i < k − 1,
are directed from ai+1 to ai since the initial configuration of segment ai+1 is inside the
morphing quadrilateral of segment ai. The edge c, a1 is directed from a1 to c because the
final configuration of segment c is inside the quadrilateral of segment a1. The edges from

b to c and ak are also determined in
−→
Gd as follows: edge (b, ak) is directed from b to ak and

edge (c, b) is directed from c to b.

We observe that any directions the remaining edges take, we will have a directed triangle
of the form (ai, ai+1), (ai+1, b), (b, ai). This triangle corresponds to a shared common area
between the morphing quadrilaterals of three segments ai, ai+1, and b. Therefore, this
example does not have a planar SL-morph. We also observe that there is a planar SL-
morph for any proper subset of the segments in this example. This shows that the existence
of a planar SL-morph cannot be tested by its sub-problems.

We now turn to one positive result. From the discussion above, we must orient the

undirected edges of
−→
Gd so that there is no directed cycle corresponding to morphing quadri-

laterals that share a common point. We can show that it is enough to impose this condition
on the cycles of size three (triangles).

Lemma 7.16. The dependency graph
−→
Gd(M) has a directed cycle corresponding to morph-

ing quadrilaterals that share a common point iff it has such a cycle of size three (triangle).

Proof. Any directed cycle of size k > 3 in
−→
Gd(M) that corresponds to a common region

among k morphing quadrilaterals forms a clique in Gd, because any two morphing quadri-
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Figure 7.32: A convex morphing example that does not have a planar SL-morph because
the necessary condition fails.

laterals in the cycle share a common region. Thus, if we have a directed cycle C of size

k in
−→
Gd(M), all other edges between any two vertices in the cycle are also present in Gd

and are directed. To find a directed cycle of a smaller size we only need to take any edge
e connecting two non-consecutive vertices in C. Depending on the direction of e we have
a directed cycle on one side of e (including e) or on the other side. Both cycles are smaller
in size than k. Repeating this process, we will end up with a directed triangle.

So, we only need to check if all the triangles in
−→
Gd corresponding to the quadrilaterals

that share a common point are acyclic. This condition is summarized as follows:

Necessary Condition for Convex Morphing. In any planar SL-morph M of a convex

morphing graph G, the dependency graph
−→
Gd(M) does not include any directed triangle

that corresponds to three morphing quadrilaterals that share a common point.

Some of the edge directions are fixed in all planar SL-morphs; these are captured in

the partially directed graph
−→
Gd. All other edges of Gd must be oriented in any planar

SL-morph M . If there is no orientation of the edge that satisfies the necessary condition
for convex morphing, then there is no planar SL-morph.

However, this condition is not sufficient and there are some acyclic orientations of Gd

that do not represent any planar SL-morph. Figure 7.33 shows an example. The morphing
quadrilaterals of every two of the three edges x, y, and z intersect, so Gd has all three edges.

However, none of the edges are directed in
−→
Gd. Also, the three morphing quadrilaterals do

not share a common point so any orientation of Gd will pass the necessary condition. Let
Rxy be the intersection of the morphing quadrilaterals of x and y, Rxz be the intersection
of the morphing quadrilaterals of x and z, and Ryz be the intersection of the morphing
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quadrilaterals of y and z. The orientation shown in Figures 7.33(b) is when the points in
Rxy are passed by x first, the points in Ryz are passed by y first, and the points in Rxz

are passed by z first. There is no planar SL-morph with this orientation, because any of
the segments are dependent on some other segment to reach the region in which it must
pass the points first. Figure 7.33(c) shows another possible orientation (again with a cycle)
that corresponds to a planar SL-morph. In this orientation the points in Rxz are passed
by segment x first, so segment x can pass over Rxz and wait in the gap between Rxz and
Rxy. Similarly, segments y and z can pass over Rxy and Ryz, respectively, and wait before
entering their second intersection region. Then, they all can finish their morphs into the
final positions.

𝑥

𝑧

𝑦

𝑅𝑥𝑧

𝑅𝑥𝑦

𝑅𝑦𝑧

(a)

𝑥

𝑦

𝑧

(b)

𝑥

𝑦

𝑧

(c)

Figure 7.33: Convex morphing of a set of disjoint segments with two possible orientations

of
−→
Gd that both pass the necessary condition for convex morphing. The orientation in (c)

represents a planar SL-morph but the orientation in (b) does not.

As shown in Figure 7.33 the necessary condition for convex morphing is not sufficient
at least for disjoint segments. We could not find a counterexample for paths or cycles, so
we make the following conjecture:

Conjecture 7.17. A convex morphing path or cycle has a planar SL-morph iff the de-

pendency graph
−→
Gd has an orientation that does not include any directed triangle that

corresponds to three morphing quadrilaterals that share a common point.
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Chapter 8

Morphing One Vertex/Edge at a
Time

In the previous chapter we considered the PSL-morphing problem: given initial and final
drawings of a graph, is there a PSL-morph between them? We showed that this problem
is NP-hard for a set of disjoint segments. We do not know of any, even exponential time,
algorithm that decides the PSL-morphing problem for disjoint segments. So, we do not
know if the problem in general is NP-complete. We conjecture that the PSL-morphing
problem is PSPACE-hard. That is because the sliding tokens problem which has some
similarities to the PSL-morphing problem, is PSPACE-hard [50].

In this chapter we narrow our focus and study more specialized morph definitions each
specifying a more restricted category of morphs. We explore planar morphs where only one
vertex or one edge moves at a time while the rest of the graph is stationary. We use “1V” to
denote one vertex moving at a time and “1E” to denote one edge moving at a time. Moving
only one edge is not possible in general, but makes sense when the graph is a matching
graph. We further distinguish whether the vertex/edge that moves travels from its initial
to final position in one step; we call this “uninterrupted” vertex/edge morphing, and we
use “U1V” and “U1E” to denote uninterrupted one-vertex-at-a-time and uninterrupted
one-edge-at-a-time morphings, respectively.

We show that the PSL-morphing problem for disjoint segments remains hard for some
of these restricted categories of morphs, but becomes testable in polynomial time for others.

Furthermore, we observe through examples that these different restricted categories of
planar morphs are not equivalent (i.e., do not solve the same set of inputs) even for the case
of disjoint segments. The diagram in Figure 8.1 shows the relation between the variations
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of PSL-morphs. Except for the border between Planar SL-morphing and 1V morphing
where we are not sure if they really define two different classes of morphs, the examples in
Figure 8.2 show that they solve different sets of inputs.

SL-Morph

1V

U1V

U
1E

 U
1V

U1E

Figure 8.1: The containment diagram of sets of inputs solved by the restricted versions of
planar SL-morphing.

Figure 8.2(a) shows a set of disjoint line segments in initial and final positions such
that there is a planar SL-morph but no U1E or U1V morph. In this example, at least one
of the segments w and z must pause its morph in the area between x and y. This scenario
may not arise in any U1E or U1V morph. The next example in Figure 8.2(b) (which is
also the switch gadget in Chapter 7) can be morphed through a U1E morph. However,
it has no U1V morph since the endpoints of the segment e must move together or must
take tiny 1V steps. The last example in Figure 8.2(c) shows the other direction: there is a
U1V morph but no U1E morph. It has no U1E morph because segments x and y may not
morph first, and if segment z morphs first it will block segment x permanently. However,
it has a U1V morph by morphing the right endpoint of segment x to its final position first.
Then segments y and z may morph to their final configurations and the other endpoint of
segment x will morph to its final position.

Table 8.1 shows the summary of our results about restricted categories of planar SL-
morphs for disjoint segments. For NP-hardness results, similar to the general problem
discussed in the previous section, the reductions are from planar 3-SAT and planar mono-
tone 3-SAT problems. Each of these special categories of morphs is explained in more
detail in the following sections.

The NP-hardness reduction for uninterrupted one-vertex-at-a-time (U1V) morphing is
explained in Section 8.1. Uninterrupted-one-edge-at-a-time (U1E) morphs and three vari-
ations (U1E 1V, U1E Linear, and U1E U1V) are described in Section 8.2. U1E morphing
and the two first variations are shown to have polynomial time algorithms while the U1E
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Figure 8.2: (a) A set of disjoint segments with a planar SL-morph but no U1V or U1E
morph; (b) A set of disjoint segments with a U1E morph but no U1V morph; (c) A set of
disjoint segments with a U1V morph but no U1E morph

U1V NP-complete Section 8.1
U1E P Section 8.2

Linear U1E P Section 8.2.1
U1E 1V P Section 8.2.1

U1E U1V NP-complete Section 8.2.2

Table 8.1: Summary of results for one-at-a-time planar SL-morphing of disjoint segments

U1V morph problem is proved to be NP-complete in Section 8.2.2. The last column of
Table 8.1 shows which results are in which section.

8.1 Uninterrupted One-vertex-at-a-time Morphing (U1V)

In this section the uniterrupted one-vertex-at-a-time morphs, a special category of the SL-
morphs, are defined and studied in detail. In this category of morphs, one vertex of the
graph morphs from its initial configuration to its final configuration at once while the rest
of the graph is stationary. Even though this category of morphs is more restricted and we
can test the existence of such morph for a given input in exponential time, we prove that
the decision problem remains NP-complete. Uninterrupted one-vertex-at-a-time or U1V
morphing is precisely defined as follows:

Definition 8.1 (One-Vertex-at-a-Time Morph (1V)). An SL-morph is one-vertex-
at-a-time or 1V when the morph time interval [0, 1] can be divided into a finite number of
sub-intervals delimited by t0 = 0 < t1 < t2 < · · · < tk = 1, such that in any time interval
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[ti, ti+1], 0 ≤ i ≤ k − 1, all vertices are stationary except one that is moving. Without loss
of generality, we can assume that the non-stationary vertex moves with uniform speed in
[ti, ti+1], i.e., with a linear morph.

Definition 8.2 (Uninterrupted One-Vertex-at-a-Time Morph (U1V)). An SL-
morph is uninterrupted one-vertex-at-a-time or U1V if the movement of any vertex is
done at once without interruption. Formally, the morph time interval [0, 1] can be divided
into n sub-intervals, where n is the number of vertices of G, such that in each sub-interval
all vertices are stationary except one that moves from its initial position to its final position.

Theorem 8.3. For a set of disjoint segments, finding a U1V morph that preserves planarity
is NP-Complete.

Finding a U1V morph that preserves planarity for a given morphing graph simply
involves checking if there is an order of the vertices of the graph such that the vertices may
morph one by one in that order without losing planarity. This problem is in NP as we can
check all different orderings of the vertices in the worst case. Similar to the PSL-morphing
problem, the NP-hardness reduction is from the monotone planar 3-SAT problem. Recall
that monotone planar 3-SAT means that every clause has all positive or all negative literals
and the graph of variables in clauses has a planar rectilinear drawing where clauses with
positive literals are above, variables are in the middle, and clauses with negative literals
are located below [29]. See Figure 7.5 in Chapter 7 for the drawing of the graph for an
instance of a planar monotone 3-SAT problem.

The rest of this section provides materials we need to construct an instance of a U1V
morphing of disjoint segments from any instance of planar monotone 3-SAT. This involves
designing variable gadgets, clause gadgets, and wires to connect each variable to all its
appearances in the clauses and propagate the chosen True/False values.

8.1.1 Boolean Gadget

A single segment with crossing morph lines can work as a Boolean gadget in the U1V
problem since there are two different ways to morph it. Once each vertex starts moving,
it must go to the end of its trajectory to the final configuration. Therefore, we only may
determine the ordering in which the vertices of the segment morph. The two different
orderings, as shown in Figure 8.3, lead to different areas of the plane to be swept.

If the left endpoint of the segment morphs first (Figure 8.3(b)), the morphing of the
left endpoint sweeps the right triangle 4oba′ and the segment lies on the right-side of
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the morphing quadrilateral in the intermediate state. Then, we say the segment morphs
through its right-side area and map it to the “true” Boolean value. Otherwise, if the right
endpoint of the segment morphs first (Figure 8.3(c)), symmetrically, the segment morphs
through its left-side area, and we map it to the “false” Boolean value. The shaded areas in
Figure 8.3(b) and 8.3(c) show the area that will be used when the segment morphs through
the right-side or the left-side area, respectively. A single Boolean gadget will simply work
as a variable gadget in the construction.

𝑎 𝑏

𝑎′𝑏′

𝑜
𝑟𝑙

(a)

𝑎 𝑏

𝑎′𝑏′

𝑜
𝑟𝑙

(b)

𝑎 𝑏

𝑎′𝑏′

𝑜
𝑟𝑙

(c)

Figure 8.3: (a) A single segment in the U1V problem works as a Boolean gadget and
thus as the variable gadget in the construction. (b) The Boolean gadget in the right (true)
intermediate state. The gray area shows the area that will be swept when the segment
morphs through its right side. (c) The Boolean gadget in the left (false) intermediate state.
The gray area shows the area that will be swept when the segment morphs through its left
side.

8.1.2 Clause Gadget

Figure 8.4 shows a gadget that works as an OR-gate in the U1V morph problem. By
cascading two of these OR gadgets, and also by blocking the left side of the Boolean
gadget, we construct a clause that always has true value; see Figure 8.5.

Lemma 8.4. In the gadget shown in Figure 8.4, if the Boolean gadget (segment) z has
true value (morphs through its right-side), then at least one of the Boolean gadgets x1 and
x2 has morphed through its right-side.

Proof. It is sufficient to prove that it is not possible that the segment z morphs through
its right-side, and both x1 and x2 morph through their left-sides. Assume, to the contrary,
that it occurs in some planar U1V morph. Segment z morphs through its right-side, so

87



 
𝑧

𝑚
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Figure 8.4: The OR gadget: In any planar U1V morph, if Boolean gadget z is true, then
x1 ∨ x2 is true.

there is some time point t in which the segment stands vertically on the right side of the
morphing quadrilateral. Both segments x1 and x2 need some of the area occupied by z
at its right intermediate state to morph. Therefore, both endpoints of segment x1 should
have morphed before time t, because after time t segment z will never clear the area that
segment x1 needs to morph. So, both endpoints of segment m have morphed before time t
to clear the area segment x1 needs to morph. On the other side, both endpoints of segment
x2 are in their initial positions at time t. That is because the right endpoint of segment z
must clear the area that segment x2 needs to morph. Segment x2 may not finish its morph
after time t either, because of the segment m which is in its final configuration and will
occupy the left side of segment x2 permanently after time t.

Lemma 8.5. In the gadget shown in Figure 8.4, any true/false valuation of Boolean gadgets
x1 and x2 that satisfies x1 ∨ x2, can be a part of a planar U1V morph when the Boolean
gadget (segment) z has true value (morphs through its right-side).

Proof. In the valuation that satisfies x1 ∨ x2, if x1 has true value (morphs through its
right-side), then the area that segment x1 needs to morph does not overlap with any of m
and z. This works for any U1V morph scenario in which x2 morphs after the morph of
segment z is finished and before the morph of segment m is started. Segment x1 in this
case may morph any time without any conflict. If x2 is assigned true value in the given
valuation, for a similar reason, x2 may morph any time without any conflict with other
segments in the gadget. A guaranteed successful scenario is to morph segment m first,
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Figure 8.5: The clause gadget in the planar U1V morph problem

then morph x1, through either the right or the left side (based on the given valuation),
and to morph segment z last.

We now show how to construct an OR gadget for 3 variables by cascading two basic
OR gadgets. See Figure 8.5

Lemma 8.6. In any planar U1V morph of the gadget shown in Figure 8.5, at least one of
the Boolean gadgets x1, x2, and x3 morphs through its right-side (takes true value).

Proof. Segment z in this gadget, may only morph through its right-side because of segment
b that permanently blocks the area segment z needs when it morphs through the left-side.
Therefore, according to Lemma 8.4, at least one of the Boolean gadgets x3 and y morphs
through the right-side. If y morphs through its right-side, for a similar reason, at least one
of x1 and x2 morphs through the right-side.

Lemma 8.7. In the gadget shown in Figure 8.5, any valuation that satisfies x1 ∨ x2 ∨ x3
can be a part of a planar U1V morph for the entire gadget.

Proof. This gadget is the cascade of two OR gadgets that is shown in Figure 8.4. If the
given valuation satisfies x1∨x2, it means that Boolean gadget y takes true value and there
is a U1V morph scenario for both OR gadgets according to Lemma 8.5. Otherwise, the
Boolean gadget y takes false (left) value and the Boolean gadget x3 must take true value.
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Similar to the scenario given in the proof for Lemma 8.5, a U1V morph solution is to
morph segment m first, then the entirety of the smaller OR gadget, and segments x3 and
z last.

Note that the Boolean gadgets of false xi’s morph first. We will need this property
later in the proof of Theorem 8.3.

In the next section, we introduce the variable gadget and the materials we need to
connect different appearances of the same variables in clauses.

8.1.3 Copy and Wire Gadgets

The gadget shown in Figure 8.6 works as an AND operator that copies the right (true)
value of the Boolean gadget z into all n Boolean gadgets connecting to its right side. We
will use the AND gadget later as the core of the variable gadget.

Lemma 8.8. In the gadget shown in Figure 8.6, if segment z morphs through its right-side,
all variables x1, . . . , xn (n = 2 in this figure) should morph through their right sides.

Proof. Segment z morphs through its right-side, so there is a time t in which the left
endpoint of segment z has morphed into its final position while the right endpoint is still
in its initial position. This means that the segment stands vertically where it crosses the
initial and final configurations of all the xi’s at time t. So, all xi’s should be either in the
right or the left intermediate position at time t. Being at left intermediate position is not
possible because it blocks the area that the left endpoint of segment z needs to morph, so
all xi’s should morph through their right-sides. Moreover, they are all standing vertically
on the right side of their morphing quadrilaterals when segment z stands vertically on
the right-side of its morphing quadrilateral. They all may finish their morphs to the final
configuration after segment z finishes the morph and clears the area.

Using the same idea in the copy gadget, we design a chain of segments to copy the
value of a Boolean segment into some other parts of the plane. The chain is essentially
the AND-gate with a single entry which is cascaded several times, as shown in Figure 8.7.
When the first element of the chain, x, is in the right position, the next element of the chain
must be in the right position as well for the same reason discussed in Lemma 8.8. As we
continue on, all elements of the chain to the last one, y, are in the right positions. Unlike
the chain in the general settings of the SL-morph problem, this chain is bidirectional, which
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𝑧

𝑥1

𝑥2

Figure 8.6: The gadget that works as an AND-gate: if segment z morphs through the
right-side x1 and x2 have to morph through their right-sides.

means that it is symmetric in both directions and may transfer the left value of the Boolean
segment y into the left value of the Boolean segment x as well.

As shown in Figure 8.7, we can make the chain of smaller segments pass through the
narrow parts, and the chain may also bend when it is necessary. Figure 8.7(b) shows how
the chain is symbolized for simplicity.

𝑥

𝑦

(a)

𝑥

𝑦

(b)

Figure 8.7: Chain gadget that transfers the right value of the Boolean segment x into the
other Boolean segment y as directed with arrow. The same chain may also transfer the
left value of the Boolean segment y into x.

We use these chains to connect a variable to all its appearances in the clauses. The
variable gadget of vi in the U1V problem is a Boolean gadget such that its “true” side is
connected to all the appearances of ¬vi in clauses using the AND-gate, and its “false” side
is connected to all the appearances of vi in clauses. Figure 8.8 shows an example.

91



𝑧

𝑥1

𝑥2

𝑥3

𝑏 𝑚
𝑦

clause

clause

 

𝑣1 𝑣2
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Figure 8.8: The full construction of a monotone planar 3-SAT instance (v1∨v2∨v4)∧ (v2∨
v3 ∨ v4) ∧ (¬v1 ∨ ¬v2 ∨ ¬v3). The first clause is shown with all details and the others are
shown with a box.

8.1.4 Proof of Theorem 8.3

For an instance I of the monotone 3-SAT problem let M denote the morphing instance as
constructed above and shown in Figure 8.8. To complete the reduction from the monotone
planar 3-SAT problem to the U1V morph of disjoint segments, we prove that I is satisfiable
if and only if M has a U1V morph that preserves planarity (a planar U1V morph). We
separate the proof into two parts.

Lemma 8.9. If M has a planar U1V morph, then I is satisfiable.

Proof. In the planar U1V morph of M , each variable gadget v1, . . . , vn morphs either
through the top or the bottom intermediate state. Define a valuation V of variables in I in
which a variable v in V has true value if the variable gadget v in the planar U1V morph of
M morphs through its bottom intermediate state, and v has false value otherwise, i.e., the
variable gadget v morphs through its top intermediate state. We show that the valuation
V satisfies I.
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Lemma 8.6 states that all the clauses are satisfied in any planar U1V morph of M .
It is sufficient to show that the value of each literal in the clauses is compatible with the
valuation V we defined. For positive clauses (the clauses above the variables in M), the true
literals are connected to the corresponding variables with the wires, ensuring that all are
assigned true. Therefore, the valuation V satisfies all the positive clauses. It is symmetric
for the negative clauses since the satisfied literals in negative clauses are connected to the
bottom of the corresponding variables, making it impossible to morph them through the
bottom intermediate state. Therefore, the valuation that comes from a planar U1V morph
satisfies I.

Lemma 8.10. If I is satisfiable, then M has a planar U1V morph.

Proof. Assume that the valuation V satisfies I. We give a scenario to morph M based on
the valuation V . For each variable vi which is assigned “true” in V , we morph the Boolean
segment vi in M through its bottom-side, and for each variable vi which is assigned “false”
in V , we morph the Boolean segment vi through its top-side.

A tricky point about the AND-gate and the wires in U1V morphing is that at the
time t in which the Boolean segment of a variable gadget vi is in top/bottom intermediate
state, all the Boolean segments connected to the top/bottom side of the variable gadget vi
(and thus all the elements in the wires) are in their top/bottom intermediate state. Thus,
the Boolean segments xi in clauses connected to the top/bottom side of a variable gadget
(the literals corresponding to ¬vi/vi) which take false value in the valuation V , must all
be in their left intermediate states at the same time. Moreover, we observe in the proof
of Lemma 8.7 that the literals with false values in a clause gadget cannot morph in any
ordering. A possible order of the false valued literals in a clause gadget is the order from
the lower indices to the higher ones.

This special point may cause two dangers in the morphing. First, if we have a clause
with repeated literals such as v1∨v1∨v2 then the morphing scenario in Lemma 8.7 does not
work if v1 takes false value, because the two Boolean segments in the clause connected to the
variable gadget v1 must be in their left-side state synchronously which is not possible. The
scenario that handles such situations is to first eliminate repeated literals by simplifying
the 3-SAT instance I before the construction.

The other danger, or issue, is that the wires force an interaction between the allowed
morphing order inside the variable gadgets and the allowed morphing order inside the
clause gadgets. According to the proof of Lemma 8.7, false valued literals among x1, x2,
and x3 in each clause morph from the lowest index to the highest index, and the true
valued literals will morph afterwards. For example, if x1 and x3 have false values according
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to the valuation V , then the Boolean segment x1 morphs through its left-side first, then
x3 morphs through its left-side, and x2 will morph through its right-side last.

To resolve this issue, it is sufficient to morph the variable gadgets from right to left in
the morphing construction M while the three variables appear in each clause from right
to left are connected to x1, x2 and x3 in this order. Also note that in this scenario the
Boolean segments corresponding to literals that take true values are free to morph after
the false literals.

The entire scenario can be as follows: morph the variable gadgets in the middle row of
the construction from the right-most one to the left-most one according to the valuation V .
If variable vi in V has true value, morph the Boolean segment vi through its bottom-side.
Then all the elements of the wires connecting the bottom side of the Boolean segment vi
to the negative clause gadgets (the clauses that have ¬vi as a literal) will be in their left
intermediate states when the Boolean segment vi is in its bottom intermediate state. This
is symmetric if variable vi has false value. We then morph it through its top-side and it
forces the Boolean segments corresponding to all appearances of vi in the clauses to morph
through their left-sides at the same time.

Then, we finish morphing of the Boolean segment vi to its final position and the Boolean
segments representing the literals in clauses are free to finish their morphs. According to
the internal scenario for each clause gadget in the proof of Lemma 8.7, we will have a
global U1V morph that preserves planarity for M .

The valuation V satisfies I, so at least one of the literals in each clause has true value
and by Lemma 8.7 there is a planar U1V morph for the clause.

Lemma 8.11 will complete the proof of Theorem 8.3 by showing that the reduction can
be done in polynomial time.

Lemma 8.11. The construction of the planar SL-morphing instance M from a planar
monotone 3-SAT instance I takes polynomial time.

Proof. The planar SL-morphing instance M consists of clause gadgets, variable gadgets,
and wire gadgets connecting the variables to all their appearances in clauses. Similar to
the case of planar SL-morph, the complexity of drawing each clause gadget is constant and
it can lie on a constant-size grid; say a k × k grid. Each variable gadget may have O(n)
segments (depending on the number of clauses that include the variable) and can lie on a
k × nk grid.
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The number of segments in wire gadget in planar U1V morphing only depends on the
number of bends, because the number of segments in each bend and in each straight part
of the wire are constant. See Figure 8.9.

Now we take a rectilinear representation of the planar monotone 3-SAT instance I as
shown in Figure 7.5. Observe that this drawing lies on an O(n) × O(n) grid where n is
the number of clauses and variables in I. We can expand this grid by a factor of nk and
thicken every edge to a constant width strip. Now we replace each variable and clause
node by the corresponding gadget and replace each edge by a wire made of switches. Note
that each edge has O(1) bends in the original rectilinear representation and so the number
of segments needed for each wire is O(1).

(a) (b)

Figure 8.9: (a) U1V wire gadget in bends; (b) U1V wire gadget in straight parts

8.2 Uninterrupted One-Edge-at-a-Time Morphing (U1E)

In this section we define uninterrupted one-edge-at-a-time morphing. Similar to U1V mor-
phing in which the vertices morph one by one from the initial position to the final position,
here the edges of the graph morph one by one to the final position without interruption.
However, we will show that unlike U1V morphing we can test in polynomial time if there
is a U1E morph that preserves planarity.

Definition 8.12 (Uninterrupted One-Edge-at-a-Time Morphing (U1E)). An SL-
morph of a set of disjoint line segments is uninterrupted one-edge-at-a-time or U1E if
the movement of any edge is done at once without interruption. Formally, the morph time
interval [0, 1] can be divided into |E| sub-intervals delimited by t0 = 0 < t1 < · · · < t|E| = 1,
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such that in each sub-interval [ti, ti+1], 0 ≤ i ≤ |E|, all vertices are stationary except for
the two endpoint vertices of one edge, which move from their initial positions to their final
positions.

Note that this category of morphs is only definable on disjoint segments, because other-
wise the edges may not move independently which is essential in the U1E morph definition.
In U1E morphs, unlike U1V morphs, there are morphs that cannot be realized if the two
endpoints of the moving edge must morph linearly. This is because different ways of mor-
phing the endpoints of a single segment may cause different areas in the plane to be swept,
and some of these may violate planarity. In this section we show how to test if there is a
planar U1E morph for a set of disjoint segments.

First, we review the properties of each type of morphing quadrilateral which were
discussed earlier in Section 7.1. See Figure 7.1. For all types of morphing quadrilaterals,
all the area inside the quadrilateral will be swept regardless of how the endpoints of the
segment morph. However, the segment may need extra area for some types of morphing
quadrilaterals to morph in a planar way. For U1E morphs, it is enough to morph each
segment with the minimum area. The properties of each type of morphing quadrilateral
are summarized as follows:

• For a segment with convex morphing quadrilateral (Figure 7.1(a)), the area that is
swept in a U1E morph is fixed regardless of how the segment endpoints morph.

• For a segment with simple non-convex morphing quadrilateral (Figure 7.1(b)), the
minimum area that will be swept in all U1E morphing scenarios is the area inside
the quadrilateral. There is a U1E morph that only uses this minimum area. This is
where linear morphing does not always suffice and may use some extra area.

• In the case of a morphing quadrilateral with crossing edges (Figure 7.1(d)), a U1E
morph will use the area inside the quadrilateral. However, only one specific morph
uses only the inside area, namely, when the two endpoints of the segment move
synchronously such that the segment always passes through the point where the
initial and the final configurations cross. In this case also the linear morph may use
extra area outside the morphing quadrilateral. See Figure 8.10 for an example.

• In the case of a morphing quadrilateral with crossing morph lines (Figure 7.1(c))
it again happens that any U1E morph will use the area inside the quadrilateral.
However, to use only the inside area the two endpoints must meet at the crossing
point of the morph lines and pass over each other which is not accepted as it violates
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the planarity condition. We can avoid this scenario by letting the segment use some
area outside the morphing quadrilateral as long as the extra area does not introduce
any morphing dependency with other segments.

Morphing of each segment s interferes with only the other segments that intersect
the morphing quadrilateral of s at their initial or final position. Thus, exiting the
morphing quadrilateral does not change the solution as long as the extra area does not
make any new intersection with other segments in their initial or final configurations.

For this type of morphing quadrilateral, we can always find a circle around the
crossing point of the morph lines such that the circle is empty of any new initial or
final segments that does not intersect the morphing quadrilateral already. Figure 8.11
shows the empty circle that will be used to morph a segment with crossing morph
lines in a planar way.

𝑎

𝑏

𝑏′

𝑎′

Figure 8.10: A segment with crossing edges in which the linear morph uses some area
outside of the morphing quadrilateral.

𝑥

𝑜

Figure 8.11: The small circle around crossing point o, such that it crosses the same set of
segments as the morphing quadrilateral of x, guarantees a planar U1E morph for segment
x. The morph will only use the morphing quadrilateral and some area in the small circle.

Now, we can compute how the morph of each segment depends on the morph of other
segments based on the minimum area each segment needs to morph. This forms a depen-
dency graph, Gd, that tells us which segment has to morph before some other segments:
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There is a vertex s in Gd for each edge (segment) s in the morphing problem. There is a
directed edge e(s1, s2) in EGd

if one of the following conditions happens:

• The initial configuration of segment s1 overlaps with the minimum area that segment
s2 needs to morph

• The final configuration of segment s2 overlaps with the minimum area that segment
s1 needs to morph

Theorem 8.13. For a given set of disjoint segments, there is a planar U1E morph iff the
dependency graph Gd is acyclic. Furthermore, there is an O(n2) to test this.

Proof. ⇒ First, we prove that if Gd is acyclic, then there is a planar U1E morph. The
acyclic Gd has at least one source s, i.e., a vertex with no edges directed toward it. We
can morph s first because there is no other segment in its initial position overlapping with
the area s needs to morph, and also the final configuration of s is not overlapped by the
minimum morph area of any other segment. This follows from the way Gd is defined. This
procedure uses a topological ordering of the segments which guarantees that if the segments
are morphed in this order in a U1E morph and each segment only uses the minimum area
to morph, then planarity is preserved.

⇐ Second, we prove that if Gd is cyclic, there is no planar U1E morph for the set
of disjoint segments. We can simply observe from the construction of Gd that if there
is a directed edge (s1, s2), the segment s1 should morph before the segment s2 in any
planar U1E morph because otherwise if s1 morphs after s2, either s2 crosses the initial
configuration of s1 or s1 crosses the final configuration of s2. If Gd has a cycle, then in any
U1E morph at least one edge of the cycle must go backward in the morphing order of the
edges, i.e., at least one (s1, s2) edge appears in the wrong order which violates planarity.

The following algorithm will find a planar U1E morph for a given set of disjoint seg-
ments, or decide that there is no such morph:

• For each segment s compute the minimum morphing area that has the least overlap
with other segments’ initial and final configurations. (O(n2))

• Construct the dependency graph Gd. (O(n2))

• Test if Gd is acyclic. (O(n+ |E(Gd)|))

• If Gd is acyclic, find a topological order of the segments to morph. This is the order
by which the U1E morph preserves planarity. (O(n+ |E(Gd)|))
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• If Gd has a cycle, there is no planar U1E morph.

The most time consuming step of the algorithm is to construct Gd in which we need
to test each pair of segments, in a constant time. Therefore, the algorithm takes time
O(n2).

8.2.1 U1E Morphs with Extra Conditions

In the previous section we showed that if each segment morphs using the minimum area,
which is the area with the least overlap with other segments in their initial or final con-
figurations, the problem of finding a planar U1E morph will be equivalent to finding a
topological order of the segments based on the dependency graph. We show in this section
how adding some extra conditions to the morphing of each segment in U1E morphs affects
the complexity of the problem. We consider the U1E linear morphs, U1E 1V morphs, and
U1E U1V morphs. While the first two variants of U1E morphs can be treated with the
same technique of finding the minimum area, we prove that it is NP-hard to decide if there
is a U1E U1V morph that preserves planarity for a given set of disjoint segments. It is
especially interesting that going from U1E 1V morphs to U1E U1V morphs, the complexity
of the problem changes from O(n2) to exponential.

Definition 8.14 (U1E Linear Morphing). An SL-morph is U1E Linear when it is U1E
according to Definition 8.12 and also the endpoints of each segment move with uniform
speed in the segment’s time interval, i.e., with a linear morph.

In U1E linear morphs, the area that each segment needs to morph is not the same as
the minimum area we had for U1E morphs. However, the area that each segment sweeps
is deterministic and can be computed in constant time for each segment. Therefore, the
algorithm for finding a planar U1E linear morph will be as follows:

• For each segment s compute the area that segment s sweeps in a linear morph. (O(n))

• Construct the dependency graph Gd. (O(n2))

• Test if Gd is acyclic. (O(n+ |E(Gd)|))

• If Gd is acyclic, then find a topological order of the segments to morph. This is the
order by which the U1E linear morph preserves planarity. (O(n+ |E(Gd)|))

99



• If Gd has a cycle, there is no planar U1E linear morph.

The complexity of the algorithm for planar U1E linear morph is still O(n2).

Definition 8.15 (U1E 1V Morph). A U1E 1V morph is a U1E morph when the morph
of each segment is also 1V, i.e., only one endpoint moves at a time. Note that the two
endpoints may move alternately in multiple steps.

In U1E 1V morphs we may also define the minimum morph area each segment needs.
The minimum morph area is the same as for the U1E morph problem, except for the case
of a crossing-edges morphing quadrilateral. In this case the minimum morphing area in
U1E is achieved when both endpoints of the edge move together. For U1E 1V morphs
we may need a little extra area when the two endpoints of the segments take turns and
move a little bit in each turn. The steps must be small enough such that it causes no
extra dependency edge in the dependency graph Gd. This is possible when the input has
no degeneracies and can be computed in O(n) for each segment. Thus, the algorithm that
decides if there is a planar U1E 1V morph for a set of disjoint segments will be the same as
the U1E morph case when the minimum morph area for each segment is adjusted for 1V
for segments with crossing-edges morphing quadrilaterals. Comparing to the two previous
cases, this planar U1E 1V morph may lead to many steps though.

Definition 8.16 (U1E U1V Morph). A U1E U1V morph is a U1E 1V morph in which
each vertex of the edge morphs at once without interruption.

In U1E U1V morphs, unlike the previous variations of the U1E morphs, we may not
define a minimum area for each segment to use in the morph. The segments may use
different areas in two different orderings of their endpoints in U1V morphs. This causes
the problem to be harder. In the following section we show that going from U1E 1V
morphs to U1E U1V morphs, increases the complexity of the problem from polynomial to
NP-complete.

8.2.2 Planar U1E U1V Morphing is NP-Complete

U1E U1V morphing is a more restricted version of U1V morphing, so finding a planar
U1E U1V morph is in NP. In Section 8.1, we show that finding a planar U1V morph
for a set of disjoint segments is NP-Complete. In this section, we prove that finding a
planar U1E U1V morph, unlike other versions of U1E morphs, is NP-complete even for a
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set of disjoint segments. Note that in U1E U1V morphing, as in other U1E morphs, any
morphing solution is an ordering of the edges. Moreover, in the morphing of each segment
we must decide in which order the endpoints of the segment morph.

Theorem 8.17. For a set of disjoint segments, finding a U1E U1V morph that preserves
planarity is NP-Complete.

As in the two other previous NP-hardness proofs for PSL-morphing and planar U1V
morphing, the reduction is from the planar monotone 3-SAT problem. See Figure 7.5 for an
example of a planar monotone 3-SAT drawing. Now, we show how we construct the variable
gadgets, clause gadgets and the wires connecting each variable to all its appearances in the
clauses in U1E U1V morphing.

Boolean Gadget

Similar to U1V morphing, a single segment with crossing morph lines works as a Boolean
gadget in U1E U1V morphing because it may morph in two different possible ways that need
different areas to be swept. If the left endpoint of the segment morphs first, the morphing
of the left endpoint sweeps the right triangle 4oba′ and the segment lies on the right-side
of the morphing quadrilateral in the intermediate state. Then, we say the segment morphs
through its right-side area and map it to the “true” Boolean value. Otherwise, if the right
endpoint of the segment morphs first, symmetrically, the segment morphs through its left-
side area, and we map it to the “false” Boolean value; see Figure 8.12. A single Boolean
segment will be used as a Boolean variable in the construction.

𝑎 𝑏

𝑎′𝑏′

𝑜
𝑟𝑙

Figure 8.12: A Boolean variable in U1E U1V morph: a single segment with crossing morph
lines
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Clause Gadget

The gadget shown in Figure 8.13 works as an OR gadget in the planar U1E U1V morph
problem. This gadget is different from the OR gadget for U1V morph, because here both
endpoints of each segment must morph immediately after each other without interruption.
The following Lemma 8.18 and Lemma 8.19 explain why the gadget shown in Figure 8.13
is an OR gadget.

𝑧

𝑚

𝑥1

𝑚1

𝑑1

𝑑2
𝑥2𝑚2

Figure 8.13: U1E U1V morph OR gadget: In any planar U1E U1V morph if Boolean
segment z is true, then x1 ∨ x2 is true.

Lemma 8.18. In the gadget shown in Figure 8.13, if the Boolean gadget (segment) z has
true value (morphs through its right-side), then at least one of the Boolean gadgets x1 and
x2 has morphed through its right-side.

Proof. First note that in any planar U1E U1V morph of this gadget, segment m1 and
m2 morph after segment z and before segments x1 and x2 respectively. That is because
regardless of the true/false (right/left) valuation of the Boolean segments x1 and x2, seg-
ments m1 and m2 in their initial configuration conflict with the planar morph of x1 and
x2 respectively. If we denote this partial ordering with “<” symbol, we have z < m1 < x1
and z < m2 < x2. Also, if Boolean segment z morphs through the right side, we will have
m < z with the same reasoning. Boolean segment m morphs either through its top or bot-
tom, so we will have d1 < m or d2 < m. Thus, either d1 < m < z < x1 or d2 < m < z < x2
is true in a planar U1E U1V morph. If the first one holds (d1 < x1), it means that when
x1 is going to morph its left side is occupied with segment d1 in its final configuration.
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Therefore, x1 may only morph through the right side. It is symmetric for d2 and x2, so at
least one of the x1 and x2 morphs through the right side.

Lemma 8.19. In the gadget shown in Figure 8.13, any true/false valuation of Boolean
gadgets x1 and x2 that satisfies x1 ∨ x2 , can be a part of a planar U1E U1V morph when
the Boolean segment z has true value (morphs through its right-side).

Proof. In the valuation that satisfies x1 ∨ x2, if x1 has true value we can morph segment
d1 first. Symmetrically, if x2 has true value we can morph d2 first. Now Boolean segment
m has at least one of the top or bottom areas free to morph (depending on which d1 or
d2 or both have morphed already). After segment m morphs, segment z is free to morph
through the right side. Then, both segments m1 and m2 morph. Now, segments x1 and
x2 morph according to their valuation. If one of the Boolean segments x1 and x2 has to
morph through the left side, the corresponding d1 or d2 segments has not morphed yet and
will morph last.

In Figure 8.14 we show how to construct a clause gadget by cascading two of the OR
gadgets. The following Lemmas 8.20 and 8.21 prove that this clause gadget works.

𝑏 𝑦

𝑧

𝑥1

𝑥2

𝑥3

𝑚

𝑚1

𝑑1

𝑑𝑦

𝑚𝑦

𝑚′
𝑚2

𝑑2

𝑑3𝑚3

Figure 8.14: U1E U1V morph clause gadget: In any planar U1E U1V morph x1 ∨ x2 ∨ x3
is always true.
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Lemma 8.20. In any planar U1E U1V morph of the gadget shown in Figure 8.14, at least
one of the Boolean gadgets x1 , x2 , and x3 morphs through its right-side (takes true value).

Proof. The clause gadget shown in Figure 8.14 is a cascade of two OR gadgets and a little
segment b added in the left triangle of Boolean segment z. Boolean segment z may only
morph through the right side, because the segment b blocks its left side area permanently.
Then, one of the Boolean segments x1 and y must morph through the right side as we
proved in Lemma 8.18. If y has true value with the same reasoning at least one of the
Boolean segments x1 and x2 morphs through the right side.

Lemma 8.21. In the gadget shown in Figure 8.14, any valuation that satisfies x1∨x2∨x3
can be part of a planar U1E U1V morph for the entire gadget.

Proof. If in the given valuation, y = x2 ∨ x3 is true, then a planar U1E U1V morph is to
morph z, x1 and y according to the scenario shown in the proof of Lemma 8.19. In the
suggested scenario in Lemma 8.19 when y (x2 in Lemma 8.19) morphs, my has already
morphed, so the OR gadget that consists of y, x2 and x3 will be clear of extra segments
and with the same scenario the entire OR gadget may successfully morph. Otherwise, if
y is false (both x2 and x3 are false), x1 is true. Therefore, d1 may morph first. Then, the
segment m morphs through its top side. Then, after the morph of Boolean segment z,
segments m1 and my morph. After the morph of m1, Boolean segment x1 is free to morph
through the right side. After the morph of my, Boolean segment y is free to morph through
the left side. Then, segments m2 and m3 may morph, and enable Boolean segments x2 and
x3 to morph through either side (actually left side because we assumed y is false). Finally,
segments d2, d3, and m′ morph.

In the next section, we show how the clause gadgets are connected to their variables
and what the entire construction looks like. To do that we need to show how to copy
the valuation of a variable and spread it into all its appearances in the clauses using wire
gadgets.

Copy and Wire Gadgets

Figure 8.15 shows an AND gadget that will be used as the core of the variable gadget in
planar U1E U1V morphing to copy the valuation of each variable in a 3-SAT problem to
all its appearances in the clauses. Lemma 8.22 explains how this gadget works.
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𝑧 𝑥1

𝑥2

Figure 8.15: AND-gate in a planar U1E U1V morph that is used as the core of variable
gadgets in the construction (in rotated form) and copies the true value of a Boolean segment
z into all Boolean segments xi.

Lemma 8.22. In the gadget shown in Figure 8.15, if segment z is true (morphs through
its right side) in a planar U1E U1V morph, then all variables xi (x1 and x2 in this figure)
are true (morph through the right side).

Proof. Boolean segment z morphs through the right side, so to preserve planarity the top
segments between z and the xi’s must morph before z. These segments will block the
left side of the corresponding xi’s, so all xi’s must morph through their right sides. The
bottom segments between the xi’s and z prevents xi’s from morphing before segment z. If
a segment xi morphs through the left side before segment z morphs, the bottom segment
should have morphed and blocked the right side of segment z.

The two segments connecting each Boolean segment xi to the Boolean segment z in the
AND-gate can be replaced by the chain of segments (wire gadget) shown in Figure 8.16(a).
Using this wire gadget, a Boolean segment can be copied and propagated to different areas
of the plane where the clauses are located.

In the chain of segments shown in Figure 8.16(a), each element of the chain morphs
after the next element, so when segment x morphs, segment y has already morphed. Sim-
ilar to the wire gadgets in previous sections, the wire gadget may bend or pass through
narrower parts by adjusting the element angles and sizes. It is enough to make the initial
configuration of each element of the chain overlap with the morphing quadrilateral of the
previous element of the chain. Figure 8.16(b) shows how the wire gadget is symbolized for
simplicity.

Now we have all the materials to construct a morph instance corresponding to an
instance of the monotone planar 3-SAT problem. Each variable vi in this construction is a
rotated Boolean segment which is connected from the top side to all the clauses with vi as
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𝑥

𝑦

(a)

𝑥

𝑦

(b)

Figure 8.16: A chain of segments works as a wire. The last element y always morphs before
the first element x in a planar U1E U1V morph.

a literal using AND-gates and from the bottom side to all the clauses with ¬vi as a literal.
See Figure 8.17 for an example.

Proof of Theorem 8.17

In this section we complete the reduction from the monotone planar 3-SAT problem to
the planar U1E U1V morphing problem by showing that any solution to an instance of
the monotone planar 3-SAT problem is equivalent to an instance of the planar U1E U1V
morph problem and vice versa. For an instance I of the monotone 3-SAT problem let
M denote the morphing instance as constructed above. We prove through the following
two lemmas that I is satisfiable if and only if M has a U1E U1V morph that preserves
planarity.

Lemma 8.23. If M has a planar U1E U1V morph, then I is satisfiable.

Proof. In a planar U1E U1V morph of M , each Boolean segment vi morphs either through
the top or the bottom side. We construct a valuation V of the variables based on how vi
morphs. For each vi, assign vi true value if the Boolean segment vi morphs through the
bottom side. Otherwise, assign vi false value. We then prove that the valuation V satisfies
I.

According to Lemma 8.20 all the clauses are satisfied in a planar U1E U1V morph.
Now we only need to show that the values of the literals in all clauses are compatible
with the valuation V . The pair of wires that connects each literal in the top (positive)
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clause

clause

𝑣1 𝑣2 𝑣3 𝑣4

Figure 8.17: The full construction of a monotone planar 3-SAT instance (v1 ∨ v2 ∨ v4) ∧
(v2 ∨ v3 ∨ v4)∧ (¬v1 ∨¬v2 ∨¬v3). The first clause is shown with all details and the others
are shown with a box.

clauses to the corresponding variable guarantees by Lemma 8.22 that if the literal in the
clause is true, the corresponding variable morphs through the bottom side and has true
value in valuation V . This also holds for the false variables symmetrically. The satisfied
literals in the bottom (negative) clauses force the corresponding variable gadgets to morph
through the top side. Therefore, a planar U1E U1V morph of this construction represents
a valuation that satisfies I.

Lemma 8.24. If I is satisfiable, then M has a planar U1E U1V morph.

Proof. Assume that a valuation V satisfies I. For each Boolean segment vi in M if the
variable vi in V is true we morph the Boolean segment vi through the bottom side. Other-
wise, if the variable vi in V is false, we morph the Boolean segment vi through the top side.
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In order to do that, the bottom side of all true vi’s and the top side of all false vi’s must
be cleared first. Thus, one of each such pairs of the wires connecting variables and the
literals in the clauses must morph and the other wire in the pair must wait. Now all the
Boolean segments vi morph according to the valuation, and the other wires in all pairs of
wires can morph now. The wires that morphed in the first round block the right side of the
negation of corresponding literals, preventing them from having true values in the clauses.
However, there still exists a planar U1E U1V morph for M because all clauses have at
least one true literal and according to Lemma 8.21 there is a planar U1E U1V morph for
the clause corresponding to any satisfying valuation of the literals. After morphing all the
clauses (or any time in the middle of that if needed) we can morph the remaining wires.

Lemma 8.25 will complete the proof of Theorem 8.17 by showing that the reduction
can be done in polynomial time. The proof is similar to the case of planar U1V morphing
in Lemma 8.11.

Lemma 8.25. The construction of the planar SL-morphing instance M from a planar
monotone 3-SAT instance I takes polynomial time.

Proof. The planar SL-morphing instance M consists of clause gadgets, variable gadgets,
and wire gadgets connecting the variables to all their appearances in clauses. Similar to
the case of planar SL-morph, the complexity of drawing each clause gadget is constant and
it can lie on a constant-size grid; say a k × k grid. Each variable gadget may have O(n)
segments (depending on the number of clauses that have the variable) and can lie on a
k × nk grid.

The number of segments in wire gadget in planar U1E U1V morphing only depends on
the number of bends, because the number of segments in each bend and in each straight
part of the wire are constant. See Figure 8.18.

Now we take a rectilinear representation of the planar monotone 3-SAT instance I as
shown in Figure 7.5. Observe that this drawing lies on an O(n) × O(n) grid where n is
the number of clauses and variables in I. We can expand this grid by a factor of nk and
thicken every edge to a constant width strip. Now we replace each variable and clause node
with the corresponding gadget and replace each edge by a wire made of switches. Note
that each edge has O(1) bends in the original rectilinear representation and so the number
of segments needed for each wire is O(1).
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(a) (b)

Figure 8.18: (a) U1E U1V wire gadget in bends; (b) U1E U1V wire gadget in straight
parts
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Chapter 9

Straight-Line Morphing: Conclusions
and Open Problems

Straight-line morphing as defined in this thesis can model non-rigid transformation, as
well as all translations and some rotations in 2D space. However, like any other continuous
planar morphing in 2D, straight-line morphing may not perform mirroring. Our research
on this problem, which includes studying different settings of the problem and also looking
at some simplified versions, shows that testing the existence of a planar straight-line morph
is a hard problem.

There are many related open problems on straight-line morphing. Some are as follows:

1. How hard is the planar straight-line morphing problem for disjoint segments, cycles,
or paths? We proved that the planar straight line morphing problem for disjoint
segments is NP-hard. However, we still do not know if it is in NP or maybe belongs
to a harder class of problems such as PSPACE-hard.

2. How hard is the convex morphing problem (the simplified version of the problem
when all morphing quadrilaterals are convex) for disjoint segments, cycles, or paths?
For the case of cycles and paths we conjecture that the necessary condition for convex
morphing discussed in Section 7.4.1 is sufficient; see Conjecture 7.17. However, it is
not proved yet.

3. We showed in this thesis that some discrete versions of straight-line morphing are
NP-complete for a set of disjoint segments. However, we do not know if they can be
solved in polynomial time for cycles or paths.
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4. How hard is 1V SL-morphing? Among the simplified versions of SL-morphing we still
do not know anything about the version when only one vertex moves at a time. We
conjecture that 1V SL-morphing is equivalent to the original SL-morphing because
if we do not have degeneracy in the input we can always take tiny 1V steps.

5. Are SL-morphs equivalent to piece-wise linear morphs? We conjecture that they are
equivalent; see Conjecture 6.6. In other words, if there is a planar SL-morph there
always exists a piece-wise linear planar SL-morph.

We can also go forward and define new versions of morphing. One direction is to make
straight-line morphing more visualizable. Sometimes it is desirable not only to preserve
planarity, but also to preserve the global structure of the graph as much as possible. We
may formalize this parameter as the maximum distance from each configuration during the
morph to the most similar configuration that occurs during a linear morph. We can then
try to minimize this distance through the entire morph.

Although vertex/edge coincidence is not allowed in the SL-morphing definition, the
result might not satisfactorily preserve the global structure of the graph because of ver-
tices/edges that move very close together and form sharp angles. Then, another criterion
would be to prohibit vertices/edges from moving close to each other, thus preventing the
formation of sharp angles.

Another direction is to achieve a nice morph by allowing a few (constantly many)
bends in the vertex trajectories, allowing a few crossings per segment through the morph,
or letting vertices move a bit out of their standard trajectories. These variations might
make the problem easier in two ways. First, it might be easier to develop an efficient
algorithm with these relaxations. Second, it leads to a more powerful morphing definition
that can model more transformations of the graphs.
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