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Abstract 

Advanced High Strength Steels with a high manganese content offer an exceptional balance of 

strength and ductility. However, the occurrence of segregation in these steels, particularly at the 

centerline, leads to quality control issues in continuous casting. Segregation, which is a non-uniform 

distribution of manganese in the as-cast structure, originates during solidification. Moreover, segregation 

of manganese during the continuous casting process can lead to the formation of detrimental martensite 

bands in subsequent manufacturing operations. 

 

Traditionally, macro segregation, which occurs over large distances, has been measured using 

etching techniques that provide qualitative insights. As the attention on high Mn Advanced High Strength 

steels is increasing, it is imperative to develop more effective and quantitative methods of measurements. 

From literature, it is known that segregation is largely influenced by casting parameters such as casting 

speed and superheat. These parameters have a significant effect on the development and size of equiaxed 

and columnar zones in the as-cast structure.   

 

This research investigates the effects of casting parameters such as the casting speed and 

superheat, nominal manganese concentration, and spatial orientation on the macro segregation present in 

as-cast Dual Phase 600 steels. A new analysis technique, using micro X-ray fluorescence, was used to 

quantitatively measure manganese macro segregation in industrially cast steels and create metrics to 

assess the macro segregation in the as-cast structure. This technique was validated against a current 

quantitative method.  

 

To assess centerline segregation, four different metrics, using two distinct methods, were 

developed in this thesis. Each metric measures segregation in different ways, and ranges from calculating 

arithmetic means to determining segregation spatial sizes. The developed metrics shed light on the spatial 

behavior of manganese segregation as a function of the selected casting conditions and nominal 

manganese compositions.  
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Chapter 1: Introduction 

Presently, a significant interest has been expressed by the steel industry for the development of the 

next generation of high manganese, Mn, Advanced High Strength Steels, AHSS [1] [2] [3] [4] [5]. AHSS 

products meet the competitive requirements for excellent combinations of mechanical properties such as 

strength, formability, etc. [5].  

 

AHSS steels comprise of complex, multiple constituents which provide a blend of strength and 

ductility. Phases such as martensite, bainite and ultrafine grained ferrite provide high strength, while 

constituents such as austenite and ferrite promote high ductility [5]. The type of microstructure present 

and final mechanical properties relies on the specific grade of AHSS and processing routes taken. Figure 

1 shows an overview of the tensile strengths and elongation of current AHSS grades, compared to 

conventional steel grades. The mechanical properties of AHSS steels are heavily influenced by the overall 

Mn composition. Traditionally, Mn is used in steels for the stabilization of sulphur, solid solution 

strengthening and avoidance of hot shortness [6]. However, Mn is also known to be an austenite stabilizer 

[7] [6] [8] [9] [10] [11]. This alloying effect of Mn is used extensively in AHSS grades to obtain a mix of 

strength and ductility [6]. Thus, Mn is an important alloying element for the design of AHSS grades. The 

effects of Mn as an alloying element, and the consequences surrounding its addition will be explored in 

later chapters. 

 

 

Figure 1: Comparison of tensile strength and elongation of AHSS grades [5] 
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As seen in Figure 1, mild steels such as Interstitial Free, IF, steels, have low strength and high 

formability. IF steels contain low amounts of carbon, resulting in lower strength, and yet, they were once 

the leading material used in vehicle bodies. On the other hand, high strength low alloy, HSLA, steels offer 

higher tensile strengths. This is due to the addition of micro alloying elements such as titanium, 

vanadium, niobium, etc. However, as seen in Figure 1, this increase in strength compromises elongation 

significantly. HSLA was one of the first high strength steels used in the automotive industry. However, 

due to the better combination of strength and elongation, AHSS grades such as Dual Phase, DP, steels are 

replacing HSLA grades in energy absorbing areas [12] [13] [14].  

 

DP steel microstructures mainly comprise of ferrite and martensite, as shown in Figure 2, with 

small amounts of retained austenite and bainite [15]. The final microstructure is dependent on the 

processing routes taken such as hot rolling, cold rolling, and hot dip galvanized [5]. Improved strength 

and formability, good weldability, easy processing and availability are some of the many benefits offered 

by DP steels. Thus, there is an interest in producing DP steels with superior mechanical properties [5]. DP 

steels are currently the primary AHSS grades being utilized in the automotive industry [5] [4].  

 

 

Figure 2: Micrograph of a DP steel microstructure [15] 

 

Strength in DP steels is controlled by the volume fraction of martensite, which is typically around 

10 to 40% [5] [15]. Additionally, the size and distribution of martensite influences the amount of ductility 
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[5] [15]. The addition of Mn helps produce martensite upon cooling. A summary of the main alloying 

elements and their effects are shown in the Table 1 below [15].   

Table 1: Effect of common alloying elements in DP grades [15]  

Alloying Element Effect 

C (0.06 – 0.15%) • Stabilizes austenite 

• Strengthens martensite 

• Determines phase distribution 

Mn (1.5 – 2.5%) • Stabilizes austenite 

• Strengthens ferrite solid solutioning 

• Retards ferrite formation 

Si • Promotes ferritic transformation 

Cr, Mo (up to 4%) • Stabilizes austenite 

• Retards formation of pearlite and bainite 

V (up to 0.06%) • Stabilizes austenite 

• Strengthens precipitation 

• Refines microstructure 

Nb (up to 0.04%) • Stabilizes austenite 

• Reduces Ms temperature 

• Refines microstructure and promotes 

transformation of non-recrystallized austenite 

to ferrite 

 

 

Another AHSS grade, call Transformation-Induced Plasticity, TRIP, steels also make use of high 

Mn contents [4]. TRIP steels have multi-phase microstructures, with retained austenite, ferrite, bainite and 

martensite. During deformation, the applied strain or stress can induce transformations in the retained 

austenite, leading to the formation of martensite. This results in higher ductility [15] [16].  TRIP steels 

typically contain up to 15 to 20 Mn weight percent, wt%. A second group of high Mn steels, known as 
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Twinning Induced Plasticity, TWIP, contains above 25 Mn wt%, to obtain high ductility with the use of 

extensive mechanical twinning [16].  

 

It is well known that mechanical properties are greatly affected by the processing routes and 

parameters that were applied to the material. DP, TRIP and TWIP steels undergo numerous processes, 

starting from continuous casting, to hot or cold rolling to hot galvanizing. For all grades, numerous 

technological issues, which begins with continuous casting, have hindered the use of high Mn contents, 

despite the benefits [3]. More specifically, during continuous casting, macro and micro segregation of Mn 

occurs as the solidification process ensues. This results in local inhomogeneities of Mn in the solidified 

as-cast structure and affects microstructural development and mechanical properties during subsequent 

forming operations [4]. The control of segregation will improve quality control in current AHSS grades 

and pave the path for practical casting and steelmaking of higher Mn AHSS grades. In addition to 

segregation, other difficulties include the susceptibility to tear or high cracking during solidification, 

effects of aluminum interaction with mold powder, and effects of alloying elements such as aluminum, 

manganese and silicon on solidification characteristics [17] [18].  

 

1.1 Motivation 

 

As mentioned, the segregation of Mn during continuous casting has hindered the production and 

development of AHSS grades. The aim to enhance quality control on current AHSS grades and widen the 

scope to casting AHSS grades with much larger Mn contents led to the realization that a better 

understanding of Mn macro segregation in the as-cast structure is required to fully understand and control 

the casting of these steels.  

 

A comprehensive analysis on the effects of various factors such as slab spatial orientation, casting 

parameters and nominal Mn composition on the as-cast structure is thus required. This understanding will 

provide a means of enhancing quality control during and after casting. It will also lay the foundation for 

subsequent examinations related to the formation of martensite bands and their implications on the 

mechanical properties and quality of AHSS steels during and after forming processes such as hot and cold 

rolling. 

 



 

 5 

 

1.2 Scope and Outline of Thesis 

 

This thesis will focus on the quantitative measurement of Mn segregation and the development 

and assessment of metrics to observe the effects of slab spatial orientation, casting parameters and 

nominal Mn compositions on Mn macro segregation in the as-cast structure of DP steels.  

 

Results from this thesis can be used by in the steel making industry and the broader steel research 

community to better understand and quantify factors affecting macro segregation and improve castability 

of high Mn AHSS grades.   
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Chapter 2: Literature Review 

2.1 Continuous Casting 

 

Continuous casting is a widely used commercial steelmaking process through which a majority of 

the 750 million tons of annual steel produced worldwide is created [19]. The implementation of this 

process was advised in 1856 by Henry Bessemer. During the 1930s and 1940s, this type of casting was 

used for nonferrous material, and then in the 1960s, its application was extended to steels. Continuous 

casting provided several benefits over traditional ingot casting methods, including improvements in steel 

quality, through-puts, energy usage and manpower [20].  

 

The principle governing continuous casting is relatively simple. A schematic of the commonly 

used vertical curved caster and the overall process is shown in Figure 3.  

 

 

Figure 3: Schematic of a continuous casting process [19] 
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Liquid steel, heated above the liquidus temperature, is tapped in to a ladle from an electric or 

basic oxygen furnace [21]. A turret then rotates the ladle and transfers the liquid from the ladle to the 

tundish. A nozzle at the bottom of the ladle is opened to allow the molten steel to enter the tundish. This 

submerged entry nozzle controls the flow rate as the liquid fills one or multiple water-cooled copper 

molds. Once in the mold, solidification first begins at the mold and metal interface. The liquid then 

solidifies against the mold walls to form a solid shell [20] [21]. The solidification process will be 

explained in the following section. A schematic of the complex and intricate phenomena that occur in the 

melt as it begins to solidify, is shown in Figure 4. 

 

 

Figure 4: Schematic of in-mold phenomena [19] 
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The mold’s main function is to form a solid shell that can contain the still liquid core once it is 

withdrawn. Cool water within the molds is used to transfer heat away from the liquid, aiding in the 

process of solidification [20] [21]. A few key factors to monitor in the mold are, shell shape and 

thickness, temperature distribution, and internal and surface quality to minimize non-metallic inclusions 

and, porosity [19].  

 

When the solid shell has reached an appropriate thickness, the shell is gradually removed from 

the mold and guided through a curved arrangement of support rolls. It is then cooled by spraying water 

and air in between supporting rolls while being aligned horizontally. After the center has fully solidified, 

the strand is then torch cut into, depending on the size and shape, slabs, billets or blooms [20] [21]. See 

Figure 5. 

 

 

Figure 5: Dimensions of slabs, blooms and billets [22] 

 

2.2 Solidification during Continuous Casting 

 

Crystallization begins with the formation of large amounts of stable nuclei and the removal of 

latent heat and superheat. These two conditions are met at the liquid and metal interface. A series of 

small, equiaxed grains form at this interface, and create the chill zone. As the steel solidifies, latent heat is 

released in to the surrounding melt, leading to a decrease in undercooling and a reduction of rapid grain 

growth. Eventually, fractions of the small equiaxed grains which have favorable growth axis begin to 

grow outward from the chill zone and in the opposite direction of heat flow. This leads to the formation of 

columnar grains. The columnar zone ends when the temperature of the adjacent fluid increases 
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sufficiently due to the release of latent heat. Next, larger equiaxed grains form in the central region [23] 

[24]. A schematic of the different grain zones is shown in Figure 6.  

 

 

Figure 6: Grain structure after solidification [25] 

 

Akin to most commercial steels, both equiaxed and columnar zones are dendritic. The word 

dendrite is derived from the Greek word for tree, and evidently it is named appropriately as its structure is 

tree-like. Dendrites grow opposite to the direction of heat flow and typically consists of primary, 

secondary and even tertiary arms. The surface energy in most metals is anisotropic and favors growth in 

specific direction. Thus, dendritic growth is encouraged. The driving force for dendritic growth, and 

hence the growth of equiaxed and columnar zones, is the undercooling of the melt. As the undercooling 

increases, the Gibbs free energy difference between liquid and solid state increases as well, making it 

favorable for solidification and the formation of equiaxed and columnar zones [24] [25].  
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2.3 Segregation and Casting 

 

The solidification process during continuous casting causes macroscopic and microscopic 

segregation of elements [7]. This segregation leads to a non-uniform distribution of elements in the as-

cast steel.  

 

Macroscopic segregation refers to non-uniform chemical composition of elements over a 

macroscopic distance [26]. It is seen most prevalently at the centerline of as-cast steels [7]. Macroscopic 

segregation is primarily caused by mass flow of the solute rich liquid away from the growing 

solidification front [27]. Mass movement can be caused by convection forces, the motion of the liquid 

during pouring, and gravitational forces on growing crystals [27]. The macroscopic level of this type of 

segregation makes it impossible to obtain chemical homogeneity despite extended heat treatments [26]. 

 

Microscopic segregation occurs in between dendrites as liquid steel solidifies. During 

solidification, columnar dendrites grow outward from the chill zone, and eject solutes in to the liquid 

portion, as shown in Figure 7.  

 

Figure 7: Schematic of dendritic solidification. The dark regions have higher solute concentrations [7] 
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The size of columnar zones, more specifically, the secondary dendrite arm spacing, largely 

controls the amount of micro segregation present at the end of the solidification process [7]. The ejection 

of solutes in to the liquid is driven by equilibrium partitioning of elements within the liquid and solid 

phase field. Equilibrium partitioning constants, k, of several elements are shown in Table 2. 

 

Table 2: Equilibrium Partition Ratios for Various Elements in Steel [7] 

Element k 

P 0.14 

Nb 0.23 

Cr 0.33 

Mn 0.71 

Ni 0.83 

 

 

Solutes with low k values tend to segregate more. However, the concentration of the solute also 

plays a vital role. From Table 2, it appears that in alloy steels with phosphor and manganese, phosphor 

solutes will segregate more than manganese solutes. Yet, in most low carbon alloy steels, the 

concentration of manganese is much greater than phosphor. Hence, regardless of a low k value, 

manganese tends to segregate the most [7]. 

 

2.4 Key Casting Parameters 

 

Controlling the size of the columnar zone can greatly affect the amount of segregation, especially 

at the centerline [26]. To suppress the growth of the columnar zone, it is necessary that a sufficient 

amount of equiaxed crystals are present ahead of the columnar front. Contrary to columnar dendrites, 

equiaxed crystals eject solutes uniformly within the mushy zone, resulting in a significant reduction in 

segregation [26] [28]. Casting parameters such as low superheats, and slow casting speeds, along with the 

addition of electromagnetic stirring have been investigated to accelerate the columnar to equiaxed zone 

transition [7] [26] [29].  
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It is well established in literature that low superheats can help reduce centerline segregation [28]. 

Less segregation occurs if there are more equiaxed grains present, as opposed to columnar grains. Newly 

nucleated crystals can develop to become equiaxed grains if the liquid surrounding them is at a 

temperature that is lower than the melting temperature [28]. At low superheats, the crystals can sink down 

the mold and become deposited in front of the columnar grain front. This results in a smaller columnar 

zone. At high superheats, fewer nuclei are seen due to the higher temperature of the surrounding bulk 

liquid. Thus, a larger columnar grain section is seen, resulting in a larger level of segregation [28]. 

However, one of the major issues with using low superheats is nozzle clogging [29]. The effectiveness of 

in-mold electromagnetic stirring has been correlated to its ability to remove superheat and allow for a 

larger quantity of equiaxed crystals [28]. 

 

Casting speed is another well-known casting parameter that can affect segregation during 

continuous casting. Increasing the casting speed reduces the amount of time in the mold, and thereby 

limiting the amount of heat transfer occurring and the solidification rate. This reduction of in-mold time 

leads to a longer time required for the removal of superheat. This in turn delays the nucleation and growth 

of equiaxed crystals, which plays a vital role in arresting the columnar growth front. Furthermore, it is 

also imperative to acknowledge the effect of casting speed on the solid shell thickness below the mold. 

The solid shell must be stable enough to prevent break-outs and withstand bulging [27]. Bulging can also 

result in an increase of macro segregation. During bulging a weak solid shell expands, and causes the 

solute rich interdendritic liquid to be drawn to the center because of ferrostatic forces. The solute rich 

liquid cools within the center, and results in centerline macro segregation. Bulging may occur if the 

support rolls are too far apart, and is promoted at higher casting speeds due to a weaker solid shell after 

the mold [27]. Other machine factors that can affect bulging are improper roll alignment, improper roll 

pitch, etc. [30]. 

2.5 Current macro segregation evaluation techniques 

 

Currently, segregation investigation in the as-cast structure is predominantly qualitative. These 

techniques typically comprise of an initial visual inspection of a macro etched surface, followed by the 

application of internal rating systems, applied on digital images of the macrostructure. Macrostructures 

are typically revealed using chemical etchants such as sulphur or Baumann prints, Oberhoffer reagent and 
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hydrochloric acid [26] [31] [32]. The results from initial inspections, etching treatments, image quality, 

and subsequent severity ratings differ not just from one steelmaker to another, but it also varies from plant 

to plant. Thus, current practices lead to labor intensive procedures, limitations on sample sizes and more 

importantly, introduces subjectivity in quality control. Likewise, qualitative techniques offer no numerical 

insights into the segregation. 

 

In response to this lack of standardization and data collection, efforts have been made to shift 

towards more quantitative methods of assessing segregation. Studies have investigated segregation using 

quantitative methods such as Optical Electron Spectroscopy, OES, Energy Dispersive x-ray, Electron 

Probe Micro Analysis, and X-ray fluorescence, XRF [26] [33] [34] [2] [35]. However, a comprehensive 

characterization of the as-cast structure of DP steels and a corresponding assessment of macro segregation 

at the centerline has yet to be undertaken.  

2.6 Effect of Manganese in Dual Phase Steels 

 

As an alloying element, Mn stabilizes austenite by lowering the Ar3 temperature at which austenite 

transforms to ferrite upon cooling [7] [8] [9] [10] [11]. Steels with segregation often have lean and rich 

areas of local Mn concentrations [7]. Solute rich regions have a lower Ar3 temperature than solute lean 

regions [7]. Upon cooling, ferrite first forms in the low solute areas of austenite, causing carbon to be 

ejected in to the rich solute areas [7]. These rich Mn areas eventually form pearlite, and upon accelerated 

cooling, martensite and bainite, as shown in Figure 8 [7] [9] [10]. 
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Figure 8: a. Microstructure of the as-received steel b. Mn concentration map where the Mn concentration is 

greater in the regions indicated by white ovals [9] 

 

Mn also inhibits carbon activity in austenite, and thereby trapping carbon in Mn rich zones [7] 

[11]. 

 

2.7 Segregation and Hot Rolling 

 

Although the origin of chemical segregation is from solidification, hot rolling and heat treatments 

cause further chemical partitioning during diffusion controlled solid state transformations [7].  

Furthermore, deformation during hot rolling aligns solute lean and rich zones into bands parallel to the 

rolling direction. This produces alternating bands of high and low concentrations of various solute 

elements. Thus, the combined segregation from solidification and solid-state phase transformations lead 

to banded structures in semi-finished and finished steel products [7]. 

 

Studies reveal that long holding times and high temperatures are needed to reduce, or eliminate 

micro segregation. Substitutional elements with low diffusion coefficients, such as Mn, react slowly to the 

homogenizing effects of hot rolling. Therefore, the holding times and temperatures found in these studies 

are incompatible with modern steel mill productivity [7]. 

 

The underlying cause of banding can be primarily attributed to the residual interdendritic micro 

and larger scale macro segregation, and can be controlled during the casting process [7]. The 
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microstructural appearance of banding, in the form of equilibrium and non-equilibrium constituents, can 

be controlled through hot rolling parameters such as cooling rate, coiling temperature, deformation strain, 

finish roll temperature, inter-critical annealing temp, etc. [7]. 

 

2.7.1 Martensite Banding 

 

Banding is a phenomenon present in all types of steels, to some degree [7]. In most low carbon 

alloy steels, it is evident primarily in the form of ferrite and pearlite. Within DP steels, banding is seen in 

the form of ferrite and bainite, pearlite and/or martensite. Moreover, in DP steels, martensite is present as 

bands in the centerline, as opposed to the preferred randomly dispersed islands, as shown in Figure 9. 

  

 

Figure 9: Martensite bands seen in DP 780 on a longitudinal cross section at the center [36] 

 

Martensite morphology and distribution has a significant effect on accumulated damage on semi-

finished and finished steel products, and is seen as a precursor to potential failure [37] [38]. Steels with 

martensite banding present in the centerline have been found to exhibit faster damage growth [37]. 

Furthermore, highly banded structures are unfavorable for steel products which will be subject to thermal 

cycles because the strain anisotropy from heating and cooling transformations may induce stress fields 

[38]. Therefore, banding prevention can greatly improve mechanical properties of semi-finished and 

finished steel products.  
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Banding typically appears in the microstructure after forming operations such as hot or cold 

rolling. However, the underlying cause of banding can be primarily attributed to residual Mn micro and 

macro segregation, and can be controlled during the casting process [7].   
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Chapter 3: Experimental Methodology 

The primary experimental method applied in this thesis is Micro X-Ray Fluorescence 

Spectroscopy, MXRF. The following section outlines the sampling process, includes a background on the 

principles governing MXRF and describes the validation work that was completed for the MXRF device. 

 

3.1 Sample Selection and Extraction   

 

A total of twenty-four samples, casted using a range of casting speed, Vc and superheat, ΔT, were 

extracted from industrial, continuously casted DP600 slabs. The chemical composition is shown in Table 

3. 

 

Table 3: Typical DP600 alloy chemistry 

Element C Mn P S Si Cr Ti N Al 

Weight Percentage [wt%] 0.10 1.51 0.01 0.00 0.17 0.21 0.02 0.00 0.05 

 

 

A combination of high and low ΔT, and high, medium and low Vc were selected to provide 

variations in the casting parameters and are shown in Table 4. 

 

Table 4: Variation in Vc and ΔT 

Slab Number Vc ΔT Vc [m/s] ΔT [OC] 

1 Low Low 0.8 23 

2 Low High 0.8 35 

3 Medium Low 1 26 

4 Medium High 1.1 35 

5 High Low 1.3 29 

6 High High 1.2 37 
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Four samples were extracted from each slab; Sample A and B were taken along the slab length, 

while Sample C and D were taken along the slab width. These samples were 0.5 meters, m, apart from 

one another. All sample were taken at steady state. The extraction process is outlined in Figure 10.  

  

 

Figure 10: MXRF sample locations with respect to original steel slab 

 

Additional DP600 alloy slabs, with 1.85 nominal Mn wt% (medium Vc and low ΔT) and 2.1 

nominal Mn wt% (high Vc and high ΔT), were also examined. Samples from these slabs were extracted 

in the same manner as shown in Figure 10. 

 

3.2 X-Ray Fluorescence Spectroscopy 

 

In X-Ray Fluorescence Spectroscopy, XRF, samples are irradiated with high energy X-rays. The 

incident X-rays tend to have sufficient energy to expel electrons from one of the atom’s inner, lower 

energy orbital shells. To regain stability, the atom replenishes the vacant electron spot with an electron 

from a higher energy orbital shells. The selected electron then moves to a lower energy shell orbital and 

releases a fluorescent X-ray. This fluorescent X-ray is equal to the difference in energy between the two 

quantum states, and is characteristic to each element. The fluorescent X-rays result in characteristic lines 
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in the X-ray emission spectrum. Thus, the measurement and identification of all fluorescent X-rays 

provides quantitative and qualitative insights in to the elements that are present within irradiated samples. 

This is the foundation of XRF analysis [39] [40]. 

 

There are two detection systems that are general used to measure the fluorescent X-rays, 

Wavelength Dispersive Detection, WDXRF, and Energy Dispersive Detection, EDXRF. WDXRF uses a 

single crystal or multilayer optic to select and diffract narrow X-ray energy ranges which can correspond 

to fluorescent X-rays of elements. This offers great signal to background ratio, leading to high elemental 

sensitivity [40]. On the other hand, EDXRF simultaneously detects a wider range of X-ray energies. A 

distinct EDXRF technique makes use of poly-capillary optics to focus incident beams ranging in 

diameters from micrometers to millimeters, allowing for smaller sections to be analyzed [39]. A 

schematic highlighting the main components of typical x-ray spectroscopy is shown in Figure 11. 

 

 

Figure 11: Schematic of main components in x-ray spectroscopy [39] 

 

3.2.1 Micro X-Ray Fluorescence Experimental Device 

 

The experiments were conducted using a bench-top EDX MXRF device, located at Arcelor-

Mittal Dofasco’s Research and Development Laboratory in Hamilton, Canada. Generally, benchtop 

devices comprise of a chamber with a xyz stage, an excitation source and a silicon-drift detector. These 

devices are also connected to an in-built software which provides data acquisition and spectral processing 
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for single point, line and area scans. The area scanned for this thesis is shown in Figure 12. Key scan 

parameters consisted of a 50 micrometer spot size, a dwell time of 3000 milliseconds, ms, and a spatial 

resolution of 1 millimeter, mm.   

 

 

Figure 12: Schematic of scan area (red square box) and dimensional specifications 

 

A preliminary parametric study was conducted to validate this device and method, and select an 

appropriate dwell time for the experiments. Dwell time refers to the time, typically in milliseconds, that 

the incoming x-rays are held per pixel. Using a pixel size or spatial resolution of 1 mm, multiple scans 

using the MXRF equipment were conducted on OES samples with known Mn compositions. The 

following dwell times were tested: 1050 ms, 1650 ms, 3000 ms and 6000 ms. Due to the keen interest on 

macro segregation, a coarse spatial resolution of 1 mm was selected. Some studies, which have used XRF 

to investigate macro segregation have used much coarser resolutions [33] [34]. The results are presented 

in Figure 13.  
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Figure 13: Effect of dwell time on Mn wt% detection 

 

The MXRF scans consistently reported values similar to the OES standards, attaining 

measurements with a 1 percent error. Moreover, it was found that a dwell time of 3000 ms was a suitable 

parameter. This dwell time provided a great balance between accuracy in measurement, variation in 

dataset and total scan time. As seen in Figure 14 and Figure 15, a 3000 ms dwell time reported Mn wt% 

values with more accuracy at the higher Mn wt%. The samples used for the thesis had a Mn wt% closer to 

Standard 2 than to Standard 1, and thus, making this dwell time an appropriate parameter. Furthermore, 

the 3000 ms dwell time showed the least amount of variability, as evident in Figure 14 and Figure 15.  
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Figure 14: Frequency distributions of centerline data at different dwell times for Standard 1 

 

 

Figure 15: Frequency distributions of centerline data at different dwell times for Standard 2 
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As the dwell time increased, a slimmer distribution, i.e. less noise, was found. Moreover, from 

Figure 15, the interquartile range, which is a measure of spread in boxplots, reveals values that also 

decreased as dwell time increased. A smaller variation in the dataset is better suited to reliably and 

consistently detect a range of low, mid and high Mn wt%, making it beneficial for detection of centerline 

macro segregation. Both 3000 ms and 6000 ms dwell times provided a smaller spread, and yet, it was 

evident that the interquartile range of the higher dwell times, 3000 ms and 6000 ms, were similar to one 

another. In addition, the 3000 ms dwell time allowed for a reasonable scan time of 4 hours per sample, as 

opposed to 8 hours per sample. Hence, a dwell time of 3000 ms was selected.   

 

To further gauge the reliability of the selected dwell time and MXRF method, a repeatability test 

was also conducted. A fixed area of 15 by 15 mm was scanned three times successively for both 

standards. The findings are presented in Figure 16. 

 

 

Figure 16: Repeatability results for 3000 ms on Standard 1 and 2 

 

The findings show that there is negligible variation in measurements taken by the MXRF 

equipment, under the same conditions. Standard 2 reported consistent mean Mn wt% measurements and 

spread, in between repeats.  
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Chapter 4: Results and Discussions 

4.1 Typical Measured Data (Centerline and Far Field)  

 

MXRF techniques have three common modes of measurements, single point, line and area scans [39]. 

Single point scans, as evident by its name, scan small spots on the sample that are akin to the laser spot 

size, and return the intensity count and corresponding wt% of the element of interest. Line scans provide 

one dimensional arrays of data at numerous points that are equally set apart. Area scans operate in a 

similar fashion, except in two dimensions instead [39]. A schematic of the three modes are shown in 

Figure 17. 

 

 

Figure 17: Schematic of three major modes of measurements available in MXRF systems 

 

As mentioned in 3.1, 60 mm by 60 mm area scans were conducted on the as-cast samples. The area 

included both the centerline and the far field, and its size and location was fixed for each sample. Figure 

18 shows a subset (5 mm by 60 mm) of the larger dataset (60 mm by 60 mm) from a 1 mm spatial 

resolution scan. Typically, raw data comes in the form of elemental intensity counts and wt%. However, 

for confidentiality purposes, all raw data was normalized using an average from a 60 mm by 10 mm area 

in the far field, prior to any analysis.  

 



 

 25 

The experimental data was manipulated in numerous ways to reveal and analyze Mn macro 

segregation in both the centerline and far field of the as-cast structure.  

 

 

Figure 18: Example of a subset of normalized data 

 

4.1.1 Comparison to a current technique 

 

Figure 19 displays a comparison between a conventional macro etched surface, and a quantitative 

examination using an element composition map. This comparison illustrates the MXRF technique’s 

ability to effectively reveal the Mn variation in the as-cast structure, and more specifically in this case, at 

the centerline.  
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Figure 19: A comparison between current qualitative methods and quantitative method using the 

experimental data; surface etched using an ammonium cupric chloride after annealing; 1.5 Mn wt% and 

High Vc and High ΔT 

 

As mentioned, the prime focus of the thesis was to assess segregation. The first step to accomplish 

this lies in the creation and observation of element composition maps. As shown in Figure 19, these maps 

reveal the encompassing segregation in a visual, yet quantitative manner. 

 

In the process of assessing segregation, the composition maps provide a quick look at the overall 

scanned area and highlight any abnormalities. Abnormalities could be present in the form of manganese 

sulfide inclusions and in the quality of the segregation or scan. All these factors can potentially influence 

subsequent analysis. As shown by the V segregation in Figure 19, segregation at the centerline may be 

nonlinear. This nonlinearity is the result of instantaneous changes in casting conditions. Thus, the 

composition maps provide a rapid means of observing the scanned surface for any oddities prior to the 

application of the various metrics presented in this thesis. 
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4.2 Centerline 

4.2.1 Metrics Overview 

 

As mentioned previously, the focus of this thesis is to develop quantitative ways to reveal and assess 

Mn macro segregation at the centerline and far field of as-cast structures. To achieve this, an emphasis 

was placed on generating an array of numerical metrics. A description of each of the four metrics is 

provided in Table 5. Each metric is uniquely defined and developed.  

 

Table 5: Overview of Metrics A – D to evaulate centreline segregation 

Metric Description 

A – Band 

Thickness 

This metric assesses the band thickness, which refers 

to the portion of Mn segregation at the centerline. Note 

that centerline segregation occurs along the entire 

width of the 1 m wide slab. Thus, the band thickness, 

and not area, was chosen. 

B – Average of 

Normalized Mn 

This metric evaluates the arithmetic average of the 

normalized Mn values in the identified segregation 

region. The segregation region is defined using a 1, 2, 

3 or 4 value system.  

C – Maximum and 

90th Percentile of 

Normalized Mn 

This metric evaluates the maximum and 90th percentile 

of the normalized Mn values in the segregation band. 

D – Area 

Percentage 

This metric focuses on the percentage of area that is 

found to contain specific levels of segregation, given a 

fixed, 60 by 10 mm, area. 
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4.2.2 Metric Development 

 

Two separate mathematical methods, Method 1 and Method 2, were used to develop Metrics A – 

D. The following section describes the creation of these two methods, and the subsequent metrics. 

 

4.2.2.1 Method 1 

 

Method 1 analyses the experimental data through measurements of central tendency such as the 

arithmetic means or averages. This method relies on segregation profiles, similar to the one shown in 

Figure 20, to develop Metrics A and C.  

 

 

Figure 20: Comparison between an element composition map and the corresponding segregation profile 

 

Segregation profiles are a numerical representation of the Mn variation in the scanned area. These 

profiles are essentially a consolidation of expansive data into singular values. The profiles were created 

by calculating and plotting an average of the normalized values for each row of data. See Figure 21. There 
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is a total of 59 normalized values per row, and there are 59 rows in total. This corresponds to the 60 mm 

by 60 mm scanned area. 

 

Figure 21: Creation of segregation profile; red dash line indicates Row 4 while blue dash line locates Row 58; 

Note that standard deviation error bars have been excluded for clarity purposes 

 

Subsequently, Metrics A and C can be calculated from the centerline of the segregation profile. 

See Figure 22. As the centerline of the as-cast structure is approached, all segregation profiles reveal a 

pattern; the normalized values reach a minimum, then a maximum, and finally another minimum, before 

returning to unity. This pattern is a characteristic feature present in all scanned samples. Thus, Metric A, 

or the band thickness, was equated to be the spatial difference between the two minima. The centerline of 

the segregation profile is also used to evaluate Metric C, which is both the maximum and 90th percentile 

of the normalized Mn values. The maximum value, although an indicator of the level of Mn present, is a 

singular value which overlooks the presence of a range of medium to high Mn values in the segregated 

region. Thus, in addition to the maximum, the 90th percentile was also considered. The 90th percentile is 

the value that is greater than or equal to 90% of the measurements in the frequency distribution [41]. All 

average values in the segregation band was rearranged in ascending and then the top 10% was removed, 

revealing the 90th percentile. Essentially, this is the value that 90% of the data points are smaller than and 

10% of data points are larger than. Examining this value decreases errors that are associated with using 

discrete measurements as standards for comparison. 
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Figure 22: Development of Metrics A and C 

 

4.2.2.2 Method 2 

 

Method 2 analyzes distinct normalized Mn values at the centerline. In a fixed, 10 by 60 mm area 

which contains the centerline, the segregated Mn is highlighted by filtering the experimental data. Each 

discrete data point was filtered by checking to see if it was greater than unity, indicating a higher level of 

Mn or segregation by the following factors, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1 and 1.2. Unity is 

defined as the far field average (over a 10 mm by 60 mm area) specific to each normalized dataset and is 

akin to the nominal Mn composition.   

 

After filtration, the segregated portion, within the 10 by 60 mm fixed area, needed to be 

identified. This was done by implementing a value system, which identifies the beginning and end of 

segregated areas. The value system cycles through each row of data and counts the total number of data 

points found to be greater than the specified factor. The system will then identify the start and beginning 

of the segregation by comparing the total number of counts per row to the selected value, which ranges 

from one to four. For example, using a 3 value system and a factor of 1.03, a segregated area would begin 

when a total of three normalized values in a row of data are filtered to be greater than 1.03. Similarly, the 
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segregated area would also end when three normalized values in a row of data are found to be greater than 

1.03. This process is shown in Figure 23.  

 

 

Figure 23: Example of a 3 value system 

 

If, from one row to another, there are discontinuities in the filtered data i.e. a total count of zero, 

then the beginning and/or end of the segregated area is automatically delegated to the row with the 

selected value system, in this case three, prior to the discontinuity. See Figure 23. Once the experimental 

data is filtered using the appropriate factor and the segregated portion is identified using the optimal value 

system, Metrics A, B and D can be established.  

 

Metric A, or the band thickness, is simply the spatial difference between the start and end of the 

segregation. Metric B calculates the arithmetic average of the normalized Mn values in the identified 

segregation section. Metric D calculates the percentage of the fixed area of 10 by 60 mm that contains 

normalized values that are greater than the selected factor.  

 

4.2.3 Effects of Spatial Orientation 

 

As mentioned in 3.1, four samples, A, B, C and D, were extracted per casting condition. These 

samples were taken to reveal the differences in segregation along the slab length and width. 

 

The results using Method 1 and Metric A (band thickness) and C (maximum and 90th percentile) 

are shown in Figure 24. 
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Figure 24: Metrics A and C as a function of spatial orientation for a High Vc and High ΔT condition 

 

Figure 24a reveals that from sample to sample, the band thickness and corresponding two sigma 

standard deviations are comparable to one another. This trend is found in all six casting conditions. See 

Appendix A. Likewise, Figure 24b and c shows that the maximums and 90th percentiles are also alike, in 

between samples. Once again, this trend is seen for all casting conditions. See Appendix A. Thus, using 

Method 1 and Metrics A and C, it was found that samples which were taken 0.5 m apart in the slab width 

and length have minimal differences in centerline macro segregation.  

 

The results using Method 2 and Metric A (band thickness), B (average of the normalized Mn) and 

D (area %) are shown in Figure 25.  
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Figure 25: Metrics A, B and D as a function of spatial orientation for a High Vc and High ΔT casting 

condition; Metric A and B uses a 1.09x filter and 3 value system 

 

Figure 25 reveals that from sample to sample, all three metrics appear unresponsive to the 

changes in segregation as the spatial orientation varies. This trend is found in all six casting conditions. 

See Appendix A. Hence, using Metrics A, B and D, it was found that samples which were taken 0.5 m 

apart in the slab width and length have little differences in centerline macro segregation.  

 

4.2.4 Effect of Casting Speed 

 

Due to the similarities in the band thickness, maximum and 90th percentiles (Method 1) between 

Samples A to D, an arithmetic average of each was used as representatives for each casting condition. 

Metrics A, as a function of the casting speed, is plotted in Figure 26.  
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Figure 26: Metric A as a function of casting speed for 1.5 Mn wt% for a. a high ΔT and b. a low ΔT 

 

Figure 26 reveals that the band thickness and corresponding two sigma standard deviations are 

consistent between samples from different casting speeds. This suggests that this metric is not a strong 

function of the tested ranges of casting speeds. 

 

Moreover, as shown in Figure 27, the maximums and 90th percentiles also appear to be constant 

amidst the varied casting speeds. However, the maximum values for the low superheat conditions were 

found to have larger two sigma standard deviations than the high superheat conditions.   

 

 

Figure 27: Metric C as a function of casting speed for 1.5 Mn wt% a. Maximum normalized Mn for a high ΔT 

b. Maximum normalized Mn for a low ΔT c. 90th Percentile for a high ΔT d. 90th percentile for a low ΔT 
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Overall, both Metrics A (band thickness) and C (maximum and 90th percentile), using Method 1, 

appear to be insensitive to changes in macro segregation within samples from the tested casting speeds.  

 

Non-parametric statistical tests were used conducted to verify the statistical significance of the 

results. All centerline data was found to be have a positively skewed distribution, as shown in Figure 28. 

  

 

Figure 28: Frequency distribution of normalized Mn at centerline of Sample A with High Vc and High ΔT 

casting condition 

 

Although t-tests and ANOVA tests are quite robust, alternative non-parametric tests such as 

Kruksal-Wallis and Mann-Whitney test were conducted instead. A summary of the p-values for Method 1 

and Metrics A and C is shown in Table 6. 

 

.  
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Table 6: P values for statistical tests (1.5 Mn wt%) 

Test Type Casting Conditions Metric p - value 

Kruksal - Wallis Vc -  High vs Medium vs Low 

ΔT - High 

A – Band Thickness 0.997 

C – Maximum 0.632 

C – 90th Percentile 0.563 

Vc -  High vs Medium vs Low 

ΔT - Low 

A – Band Thickness 0.999 

C – Maximum 0.159 

C – 90th Percentile 0.056 

 

The p-values, which were all found to be above 0.05, reveal that the results from Method 1 and 

Metrics A and C are statistically insignificant from condition to condition. This further verifies the 

indifference of Metrics A and C to the changes in segregation regarding the selected casting speeds. 

 

Figure 29 plots the results for varying casting speed using Method 2 and Metric A. Once again, 

no statistically significant trend is found amongst the tested casting speeds. See Appendix B for results 

regarding the remaining factors and value systems. 
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Figure 29: Metric A as a function of casting speed for 1.5 Mn wt% using a 3 value system 

 

Method 2 and Metric B was also used to assess segregation between high, medium and low 

casting speeds. The results were plotted in Figure 30 and reveal no statistically significant trend as the 

casting speed varied. See Appendix B. 

 

 

Figure 30: Metric B as a function of casting speed for 1.5 Mn wt% using factors 1.03x, 1.06x, 1.09x and a 3 

value system 



 

 38 

Likewise, Metric D (area percentage), as a function of varying casting speeds, is shown in Figure 

31. 

 

 

Figure 31: Metric D as a function of casting speed for 1.5 Mn wt% using factors 1.03x, 1.06x, 1.09x 

 

The plots reveal that the percentage of area which contains normalized values greater than 1.03, 

1.06 and 1.09, remains constant. Comparable results are seen for the remaining factors and can be found 

in Appendix B. Thus, Method D appears to be indifferent to the tested casting speeds as well.  

 

The results using both Methods 1 and 2, and all four metrics (A, B, C and D) are not in 

accordance to literature. Typically, increasing the casting speed reduces the amount of time in the mold, 

which in turn, minimizes the amount of heat transfer that occurs and as well as the solidification rate. 

Reduction of in-mold time results in the slower removal of superheat. This delays the nucleation and 

growth of equiaxed crystals, which play a vital role in arresting the columnar growth front. Since 

columnar dendrites eject solutes in a non-uniform manner, this increases the level of segregation during 

solidification [26] [28]. Furthermore, the casting speed also influences the solid shell thickness below the 

mold. The solid shell must be stable enough to withstand bulging [27]. Bulging can increase the level of 

macro segregation present. Expansions in weak shells cause solute rich interdendritic liquid to be drawn 

towards the center because of ferrostatic forces [27]. Thus, increasing Vc negatively affects segregation. 

Yet, the results, with regards to the effects of Vc, do not align with literature. 
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4.2.5 Effect of Superheat 

 

Due to the similarities in Method 1 and the band thickness, maximum and 90th percentiles 

between Samples A to D, an arithmetic average of each was used as representatives for each casting 

condition. Metrics A and C, as a function of the superheat, is plotted in Figure 32. 

 

 

Figure 32: Method 1 and Metrics A and C as a function of superheat for 1.5 Mn wt% 

 

 Metric A reveals that the band thickness and two sigma standard deviations from a high 

to low superheat, at each casting speed, do not differ significantly. Similar results are seen for the 

maximum and 90th percentiles as well. However, low superheat conditions were found to have larger 

deviations than their counterparts. Overall, both Metrics A (band thickness) and C (maximum and 90th 

percentile), using Method 1, appear to be indifferent to changes in segregation within samples from the 

tested superheats.  
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A summary of the p-values for Method 1 and Metrics A and C is shown in Table 7. 

  

Table 7: P values for statistical tests on superheat results (1.5 Mn wt%) 

Test Type Casting Conditions Metric p - value 

Mann - Whitney 

 

Vc -  High 

ΔT – High vs Low 

A – Band Thickness 0.500 

C – Maximum 0.386 

C – 90th Percentile 0.876 

Vc -  Medium 

ΔT – High vs Low 

A – Band Thickness 0.500 

C – Maximum 0.614 

C – 90th Percentile 0.876 

Vc -  Low 

ΔT – High vs Low 

A – Band Thickness 0.718 

C – Maximum 0.614 

C – 90th Percentile 0.614 

 

Similar to the casting speed, all p-values were found to be above 0.05. Thus, the results from 

Method 1 and Metrics A and C are statistically insignificant from condition to condition. This further 

confirms the indifference of Method 1 and Metrics A and C to the changes in macro segregation 

regarding the selected superheats. 

 

A comparison using Method 2 and Metric A (band thickness) for factors 1.03, 1.06 and 1.09 and 

the 2 and 3 value system is plotted in Figure 33 for low and high superheats. 
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Figure 33: Metric A as a function of superheat for 1.5 Mn wt% using factors 1.03x, 1.06x, 1.09x and 2 and 3 

value systems 

 

From Figure 33, there is no evidence of a statistically significant trend as the superheat varies. For 

results regarding the full spectrum of factors and value systems, see Appendix C. 

 

Metric B (average of normalized Mn) was also used to assess segregation between low and high 

superheat. The results were plotted in Figure 34. It is evident that the average normalized Mn remains 

consistent as superheat varies.  
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Figure 34: Metric B as a function of superheat for 1.5 Mn wt% using factors 1.03x,1.06x, 1.09x and 2 and 3 

value systems 
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Method D (area %), as a function of superheat, is shown in Figure 35. 

 

 

Figure 35: Metric D as a function of superheat for 1.5 Mn wt% using factors 1.03x, 1.06x, 1.09x  

 

The plots reveal that the percentage of area which contains normalized values greater than 1.03, 

1.06 and 1.06, remains constant. Similar results are seen for the remaining factors and can be found in 

Appendix C. Thus, Method D appears to be insensitive to the tested superheats. 

  

Contrary to the results, as the superheat varied, a prominent difference in all metrics using both 

methods was anticipated. From literature, the superheat affects segregation via the size of columnar 

zones, making it a key factor to control during solidification. Columnar zones can greatly affect the 

amount of segregation present, especially at the centerline [26] [28]. Growth of columnar zones can be 

suppressed by ensuring that a sufficient amount of equiaxed crystals are present ahead of the columnar 
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front. As mentioned before, contrary to columnar dendrites, equiaxed crystals eject solutes uniformly 

within the mushy zone, which results in a significant reduction in segregation [26] [28]. Low superheats 

enable more equiaxed crystals to survive, sink down the mold and become deposited in front of the 

columnar grain front, resulting in smaller columnar zones and smaller levels of segregation [28]. On the 

other hand, high superheats minimize the amount of equiaxed crystals, due to the higher temperature of 

the surrounding bulk liquid. Therefore, larger columnar sections are formed, resulting in larger levels of 

segregation [28]. However, no correlation was found between the tested ΔT and developed metrics.   

 

4.2.6 Effect of Nominal Mn Composition 

 

The effects of varying nominal Mn composition on segregation, using Method 1 and Metric A 

and C, are plotted in Figure 36 and Figure 37. 

 

Figure 36: Metrics A and C as a function of 1.5 and 1.85 Mn wt% 
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Figure 37: Metrics A and C as a function of 1.5 and 2.1 Mn wt% 

 

The results reveal that a nominal Mn composition of 2.1 wt% has a smaller variation in band 

thickness than a 1.5 wt% nominal composition. On the other hand, the band thickness and two sigma 

standard deviations for 1.85 Mn wt% were found to be more consistent with the lower composition. 

Similarly, Metric C reveals that the maximum and 90th percentiles of all three nominal compositions are 

consistent.   

 

The p-values, shown in Table 8, reveal that the results from Metrics A and C are statistically 

insignificant as the nominal composition varies.  
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Table 8: P values for statistical tests (1.5 vs 1.85 vs 2.1 Mn wt%) 

Test Type Casting Conditions 
Nominal Mn 

Composition [wt%] 
Metric p - value 

Mann - Whitney 

Vc -  Medium 

ΔT - Low 

1.5 vs 1.85 A – Band Thickness 0.332 

C – Maximum 0.614 

C – 90th Percentile 0.807 

Vc -  High 

ΔT - High 

 

1.5 vs 2.1 A – Band Thickness 0.074 

C – Maximum 0.282 

C – 90th Percentile 0.193 

 

A comparison between samples containing 1.5, 1.85 and 2.1 nominal Mn wt% composition, using 

Method 2 and Metric A (band thickness) and B (average of normalized Mn) is shown in Figure 38 and 

Figure 39. The remaining factors can be found in Appendix D. Both metrics appear to be unresponsive to 

changes in macro segregation as the nominal Mn composition varied. No distinct pattern emerged as the 

experimental data of samples from each nominal Mn composition was filtered and assessed.   
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Figure 38: Metric A as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using a 3 value system 
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Figure 39: Metric B as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using factors 

1.03x,1.06x, 1.09x and a 3 value system 

 

A comparison was done using Metric D (area %) as well and is shown in Figure 40. The 

remaining factors can be found in Appendix D. Metric D seems to be indifferent to the change in nominal 

Mn composition as well.  
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Figure 40: Metric D as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using factors 1.03x, 

1.06x, 1.09x 

  

4.3 Far Field  

4.3.1 Metric Overview 

 

The far field was also investigated for traces of macro segregation. As mentioned before, 

martensite bands appear in the far field as well, and more specifically, at the quarter thickness. One of the 

simplest ways to examine this is by analyzing an average of the normalized Mn in a fixed area in the FF, 

for Samples A to D and per slab condition. Normalized Mn values, within a 60 by 40 mm fixed area, as 
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shown by the red box in Figure 41, were averaged and plotted as a function of the spatial orientation, 

casting parameters and nominal Mn compositions.  

 

 

Figure 41: Fixed area used to calculate far field average  

 

4.3.2 Effect of Spatial Orientation 

 

Figure 42 plots the averages from Samples A to D at one casting condition. The results show that 

each average is close to unity and the corresponding two sigma standard deviations are relatively low and 

consistent in between samples. This trend is seen for all six conditions. See Appendix E. 

 

 

Figure 42: Far field average of the normalized Mn as a function of spatial orientation for a High Vc and High 

ΔT casting condition 
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These results indicate that regardless of the spatial orientation, the average normalized Mn, and 

hence the amount of macro segregation at the far field, is considerably low and similar in between 

samples that are 0.5 meter apart in the slab length and width direction. 

  

4.3.3 Effect of Casting Speed 

 

Due to the similarities in the average normalized Mn values from Samples A to D, an average of 

the four sample was taken to compare between casting conditions. Figure 43 plots the effect of casting 

speed on macro segregation in the far field.  

 

 

Figure 43: Effect of Vc in the far field for a. a high ΔT b. a low ΔT  

 

The average normalized Mn in the far field remains essentially the same as the casting speed 

changes. At both superheats, the medium casting speed was found to have somewhat larger two sigma 

standard deviations. However, the scale of this deviation is insignificant. This reveals that macro 

segregation in the far field is largely unaffected by the tested casting speeds and applied metric. 

 

4.3.4 Effect of Superheat 

 

Figure 44 plots the effect of superheat on macro segregation in the far field. 
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Figure 44: Effect of ΔT in the far field 

 

Similarly, the average normalized Mn in the far field remains the same as the superheat changes. 

This reveals that macro segregation in the far field is largely unaffected by the tested superheat and 

applied metric. 

 

4.3.5 Effect of Nominal Mn Composition 

 

Figure 45 plots the effect of nominal Mn composition on the average normalized Mn values in the 

far field. 

 

 

Figure 45: Effect of Nominal Mn composition in the far field 
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 Figure 45 reveals that macro segregation in the far field in not significantly affected by a change in 

nominal Mn composition, at the selected casting conditions. Although results regarding the 2.1 Mn wt% 

samples were found to have a much larger two sigma standard deviation, the scale of it is not substantial 

enough to corroborate differences. Thus, this metric reveals that macro segregation in the far field is 

largely unaffected by the chosen nominal Mn compositions and their corresponding casting conditions.  

 

4.4 Factors to Consider 

4.4.1 Centerline 

 

At first glance, the lack of responsiveness of Metrics A – D on the centerline, using both methods, 

could be due to various reasons, which includes selection of alloy, casting parameter and experimental 

parameters, and metric development. The DP alloy chosen for inspection has a nominal Mn composition 

of 1.5 wt%. This composition may be too low to create significant macro segregation differences at the 

centerline. However, as seen in section 4.2.6, nominal compositions of 1.85 and 2.1 Mn wt% also showed 

limited sensitivity to changes in macro segregation as a function of the four metrics. Thus, the nominal 

composition may not be the issue. However, one can argue that without analyzing a full spectrum of Vc 

and ΔT for slabs with nominal compositions of 1.85 and 2.1 Mn wt%, it is premature to suggest that alloy 

selection did not play a role in the results. 

 

With regards to the experimental parameters, the spatial resolution and dwell time can strongly 

influence the quality of the experimental data obtained, and hence, affect the subsequent application of 

the metrics. It is well known that a longer dwell time will improve data quality while a finer spatial 

resolution will increase the amount of data obtained. In five out of twenty-four scans, it was evident that a 

finer resolution scan was required for more details at the centerline. An example of supplementary 

scanning with a finer spatial resolution is shown Figure 46. 
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Figure 46: Comparison between 1 mm and 0.5 mm spatial resolutions 

 

A comparison of the two frequency distributions is shown in Figure 47. 

 

Figure 47: An overlap of centerline frequency distributions of 1 and 0.5 mm spatial resolution scans of 

Sample A with High Vc and high ΔT casting condition 
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However, a comparison between results from Method 1 and Metrics A and C for both spatial 

resolutions reveal that the band thickness, maximum and 90th percentiles do not differ drastically from 

one resolution to another. See Figure 48. 

 

 

Figure 48: Comparison of a. Metric A b. Metric C for Sample A with High Vc and High ΔT casting condition 

 

From Figure 48, it is evident that Metric A (band thickness) remains the same, while the 

maximum shows a negligible increase of 1% from a 1 mm to 0.5 mm spatial resolution.  

 

Furthermore, a quantitative analysis using Method 2 and Metrics A, B and D revealed that the 

band thickness, average of normalized Mn and area percent also do not change radically. See Figure 49. 
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Figure 49: Metric A on 1 mm and 0.5 mm spatial resolution scans 

 

From Figure 49, Figure 50 and Figure 51, it is evident that Metric A (band thickness), B (average 

of normalized Mn) and D (area percent) continues to be similar in between the two datasets. Refer to 

Appendix F for all the factors and value system results. Metric D reveals slightly larger area percentages 

for the finer resolution scans at all factors and value systems. This is expected because a 0.5 mm scan 

generates twice as much data as the 1 mm scans, hence leading to larger results regarding Metric D. 

Hence, experimental parameters such as spatial resolution may not have had a significant effect on the 

insensitivity of the metrics to the changes in segregation.  
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Figure 50: Metric B on 1 mm and 0.5 mm spatial resolution scans 
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Figure 51: Metric D on 1 mm and 0.5 mm spatial resolution scans 

 

To diversify the metrics explored, four different metrics, using two separate methods, were 

developed. However, the metrics and methods yielded unresponsive results. Yet, there are several 

advantages and disadvantages of using Methods 1 and 2. Method 1 focuses on consolidating the 

experimental data by identifying an arithmetic mean. The arithmetic mean is a common measure of 

central tendency. One of the advantages of using the arithmetic mean, and thus, Method 1, is that any 

metric using this method can be easily calculated. Moreover, fluctuations in arithmetic means are minimal 

for repeated samples from the same population i.e. slab condition. Averages are a convenient means of 
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summarizing large amounts of data in to singular values and highlight variability around this value from 

within the original dataset. Thus, the segregation profiles, and corresponding Metrics A and C, can be 

used for comparison purposes in a simplistic manner. However, there are some limitations associated with 

using this measurement. Firstly, this measurement is effective for normally distributed datasets. 

Skewness, such as the one seen in the centerline frequency distribution in Figure 28, renders the 

arithmetic mean less effective. Additionally, using a mean to summarize a large amount of data into a 

single value can also wash out any sensitivities in the dataset, and hence lead to a lack of results.  

 

Furthermore, the arithmetic average is extremely sensitive to extreme or dispersed values. Metrics 

A and C both take an average of four samples per slab condition. For instance, one slab condition may 

report a larger range of band thicknesses, which may contain outliers. An average of this dataset would 

grossly amplify this larger range and lead to skewed results, even with the initial screening via the 

element composition maps.   

 

On the other hand, Method 2 does not use an arithmetic average, and instead allows for a wide 

range of factors and value system that can be used to filter and assess the dataset. This customizable 

aspect of Method 2 could be a benefit, as it provides freedom to investigators, whether they be academic 

researchers or casting engineers, to select according to their purposes. However, an abundance of choice 

is not necessarily the most advantageous. Within the range of factors, 1.03 may be too small to filter out 

less segregated areas at the centerline, while 1.1 or 1.2 may be too large and results in over screening. See 

Figure 52. 
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Figure 52: Metric A using 4 value system and 1.03x, 1.06x and 1.2x factors 

 

Similarly, the 1 value system may too flexible, and thus making it more difficult to detect the start 

and end of centerline segregation areas, and the 4 value system may be too stringent, resulting in an 

incorrect assessment. See Figure 53. 
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Figure 53: Metric A using 1 vs 4 value system using a 1.09x factor 

 

Thus, a larger, more customizable range of choices is beneficial, but also allows more room for 

errors in judgements. 

 

In addition to alloy selection, experimental parameters and metric development, the outcome of 

the results are also due to the chosen casting conditions. It is possible that, from a quantitative point of 

view, the selected Vc and ΔT were within a range of condition that do not produce a large enough 

difference in macro segregation. Although the Vc and ΔT were categorized using three and two levels 

respectively, these conditions do not differ from one another by large degrees. See Table 4. The chosen 

casting parameters fall within ranges that have been previously studied, albeit the alloy within this study 

had a nominal composition of 1.9 Mn wt% [36]. However, it is crucial to note the qualitative nature in 

which the centerline segregation was judged within the study. To develop new quantitative metrics with 

the aim of effectively assess centerline macro segregation, perhaps extreme casting conditions needs to be 

analyzed initially. Afterwards, once the relationship between casting parameters and the degree of 

segregation is more clearly enumerated, the metrics can be fitted to more practical industrial conditions.  

 

Regardless, whether individually or in combination, several reasons for the lack of sensitivity of 

the developed metrics have been acknowledged. 
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4.4.2 Far Field 

 

Although micro segregation was not investigated in this thesis, it is important to recognize that 

martensite bands are influenced by both macro and micro segregation. Using the experimental data, one 

potential way of investigating this is by focusing on the segregation profiles. These profiles spatially 

graph the Mn variation in the far field and the centerline, as shown in Figure 54.  

 

 

Figure 54: Segregation profile for medium casting speed and high superheat condition 

 

Typically, the largest peak is found at the centerline and it corresponds to macro segregation. 

However, the plot also reveals smaller, yet prominent peaks within the far field. These peaks could 

potentially be related to micro segregation. Further analysis on the interval in between these peaks and 

their amplitudes could potentially be correlated to the thickness of the bands or the distance in between 

them. Thus, the experimental data also has prospect of characterizing both macro and micro segregation 

in the as-cast structure, prior to the formation of martensite bands. 
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Chapter 5: Conclusions and Recommendations 

Mn macro segregation in the far field and centerline of the as-cast surface of DP 600 was 

examined as a function of slab spatial orientation, casting parameters and nominal Mn compositions. The 

experimental technique used, MXRF, was a departure from predominantly qualitative practices. Major 

conclusions are as follows: 

1. The MXRF technique was used to successfully reveal and quantify macro segregation at the 

centerline and far field.   

2. A dwell time of 3000 ms and spatial resolution of 1 mm were found to be suitable 

experimental parameters to reveal and detect Mn macro segregation in the as-cast structure. 

3. The normalized experimental data provided numerous means to analyze centerline Mn 

distributions, leading to the development of two distinct methods. Method 1, which 

represented the datasets using a measurement of central tendency, the arithmetic average, was 

more predisposed to diminish sensitivities, yet, provided a more simplistic approach. On the 

other hand, Method 2 provided robustness and customization.  

4. Using these two methods, four different metrics were created and their responsiveness to the 

change in centerline macro segregation as a function of spatial orientation, casting parameters 

and nominal compositions, were investigated. It was found that all metrics were insensitive to 

the variation in centerline macro segregation. Various factors, starting from alloy selection to 

metric development may have contributed to the overall insensitivity. In hopes of acquiring 

more severe macro segregation and the subsequent development of efficient metrics, it is 

recommended to choose more extreme casting conditions. 

5. Far field macro segregation investigations revealed that as a function of spatial orientation, 

casting parameters and nominal compositions, Mn distribution was homogenous. From the 

analysis, segments of micro segregation were primitively identified. It is suggested that these 

regions could potentially lead to the formation of martensite bands and thus, more detailed 

analysis is advised. 

6. Overall, the techniques developed and results obtained in this thesis opens a gateway that will 

lead to a shift from existing qualitative practices to more quantitative and standardized 

approaches of assessing Mn macro segregation in the as-cast structure of AHSS. 
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Appendix A: Effect of Spatial Orientation on CL Segregation 

 

Figure 55: Method 1 and Metrics A and C as a function of spatial orientation for a High Vc and 

Low ΔT condition 
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Figure 56: Method 1 and Metrics A and C as a function of spatial orientation for a Medium Vc and 

High ΔT condition 

 

Figure 57: Method 1 and Metrics A and C as a function of spatial orientation for a Medium Vc and 

Low ΔT condition 
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Figure 58: Method 1 and Metrics A and C as a function of spatial orientation for a Low Vc and 

High ΔT condition 

 

Figure 59: Method 1 and Metrics A and C as a function of spatial orientation for a Low Vc and 

Low ΔT condition 
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Figure 60: Method 2 and Metric A as a function of spatial orientation for five casting conditions 

using 1.09x and a 3 value system 
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Figure 61: Metric B as a function of spatial orientation for five casting conditions using 1.09x and a 

3 value system 
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Figure 62: Metric D as a function of spatial orientation for five casting conditions using 1.09x 
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Appendix B: Effect of Casting Speed on CL Segregation 

 

Figure 63: Method 2 and Metric A as a function of casting speed for 1.5 Mn wt% using factors 

1.03x, 1.06x, 1.09x and a 1 value system 

 

 

Figure 64: Method 2 and Metric A as a function of casting speed for 1.5 Mn wt% using factors 

1.03x, 1.06x, 1.09x and a 2 value system 
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Figure 65: Method 2 and Metric A as a function of casting speed for 1.5 Mn wt% using factors 

1.03x, 1.06x, 1.09x and a 4 value system 

 

 

Figure 66: Metric B as a function of casting speed for 1.5 Mn wt% using factors 1.03x, 1.06x, 1.09x 

and a 1 value system 
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Figure 67: Metric B as a function of casting speed for 1.5 Mn wt% using factors 1.03x, 1.06x, 1.09x 

and a 2 value system 

 

 

Figure 68: Metric B as a function of casting speed for 1.5 Mn wt% using factors 1.03x, 1.06x, 1.09x 

and a 4 value system 
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Figure 69: Metric B as a function of casting speed for 1.5 Mn wt% using factors 1.04x, 1.05x, 1.07x 

and a 1 value system 

 

 

Figure 70: Metric B as a function of casting speed for 1.5 Mn wt% using factors 1.04x, 1.05x, 1.07x 

and a 2 value system 
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Figure 71: Metric B as a function of casting speed for 1.5 Mn wt% using factors 1.04x, 1.05x, 1.07x 

and a 3 value system 

 

 

Figure 72: Metric B as a function of casting speed for 1.5 Mn wt% using factors 1.04x, 1.05x, 1.07x 

and a 4 value system 
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Figure 73: Metric B as a function of casting speed for 1.5 Mn wt% using factors 1.08x, 1.1x, 1.2x 

and a 1 value system 

 

 

Figure 74: Metric B as a function of casting speed for 1.5 Mn wt% using factors 1.08x, 1.1x, 1.2x 

and a 2 value system 
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Figure 75: Metric B as a function of casting speed for 1.5 Mn wt% using factors 1.08x, 1.1x, 1.2x 

and a 3 value system 

 

 

Figure 76: Metric B as a function of casting speed for 1.5 Mn wt% using factors 1.08x, 1.1x, 1.2x 

and a 4 value system 
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Figure 77: Metric D as a function of casting speed for 1.5 Mn wt% using factors 1.04x, 1.05x and 

1.07x 

 

 

Figure 78: Metric D as a function of casting speed for 1.5 Mn wt% using factors 1.08x, 1.1x and 

1.2x 
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Appendix C: Effect of Superheat on CL Segregation 

 

Figure 79: Method 2 and Metric A as a function of superheat for 1.5 Mn wt% using factors 1.03x, 

1.06x, 1.09x and 1 and 4 value systems 
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Figure 80: Method 2 and Metric A as a function of superheat for 1.5 Mn wt% using factors 1.04x, 

1.05x, 1.07x and 1 and 4 value systems 
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Figure 81: Method 2 and Metric A as a function of superheat for 1.5 Mn wt% using factors 1.04x, 

1.05x, 1.07x and 2 and 3 value systems 
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Figure 82: Method 2 and Metric A as a function of superheat for 1.5 Mn wt% using factors 1.08x, 

1.1x, 1.2x and 1 and 4 value systems 



 

 86 

 

Figure 83: Method 2 and Metric A as a function of superheat for 1.5 Mn wt% using factors 1.08x, 

1.1x, 1.2x and 2 and 3 value systems 
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Figure 84: Metric B as a function of superheat for 1.5 Mn wt% using factors 1.03x, 1.06x, 1.09x and 

1 and 4 value systems 



 

 88 

 

Figure 85: Metric B as a function of superheat for 1.5 Mn wt% using factors 1.04x, 1.05x, 1.07x and 

1 and 4 value systems 
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Figure 86: Metric B as a function of superheat for 1.5 Mn wt% using factors 1.04x, 1.05x, 1.07x and 

2 and 3 value systems 
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Figure 87: Metric B as a function of superheat for 1.5 Mn wt% using factors 1.08x, 1.1x, 1.2x and 1 

and 4 values 
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Figure 88: Metric B as a function of superheat for 1.5 Mn wt% using factors 1.08x, 1.1x, 1.2x and 2 

and 3 values 
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Figure 89: Metric D as a function of superheat for 1.5 Mn wt% using factors 1.04x, 1.05x, 1.07x, 

1.08x, 1.1x and 1.2x 
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Appendix D: Effect of Nominal Mn Composition on CL Segregation  

 

 

Figure 90: Metric A as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using factors 

1.03x, 1.06x and 1.09x and a 1 value system 
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Figure 91: Metric A as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using factors 

1.03x, 1.06x and 1.09x and a 2 value system 
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Figure 92: Metric A as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using factors 

1.03x, 1.06x and 1.09x and a 4 value system 
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Figure 93: Metric A as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using factors 

1.04x, 1.05x and 1.07x and a 1 value system 
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Figure 94: Metric A as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using factors 

1.04x, 1.05x and 1.07x and a 2 value system 
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Figure 95: Metric A as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using factors 

1.04x, 1.05x and 1.07x and a 3 value system 
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Figure 96: Metric A as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using factors 

1.04x, 1.05x and 1.07x and a 4 value system 
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Figure 97: Metric B as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using factors 

1.03x, 1.06x and 1.09x and a 1 value system 
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Figure 98: Metric B as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using factors 

1.03x, 1.06x and 1.09x and a 2 value system 
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Figure 99: Metric B as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using factors 

1.03x, 1.06x and 1.09x and a 4 value system 
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Figure 100: Metric B as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using 

factors 1.04x, 1.05x and 1.07x and a 1 value system 
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Figure 101: Metric B as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using 

factors 1.04x, 1.05x and 1.07x and a 2 value system 
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Figure 102: Metric B as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using 

factors 1.04x, 1.05x and 1.07x and a 3 value system 
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Figure 103: Metric B as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using 

factors 1.04x, 1.05x and 1.07x and a 4 value system 
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Figure 104: Metric B as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using 

factors 1.08x, 1.1x and 1.2x and a 1 value system 
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Figure 105: Metric B as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using 

factors 1.08x, 1.1x and 1.2x and a 2 value system 
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Figure 106: Metric B as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using 

factors 1.08x, 1.1x and 1.2x and a 3 value system 
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Figure 107: Metric B as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using 

factors 1.08x, 1.1x and 1.2x and a 4 value system 
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Figure 108: Metric D as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using 

factors 1.04x, 1.05x, 1.07x 
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Figure 109: Metric D as a function of nominal composition of 1.5, 1.85 and 2.1 Mn wt% using 

factors 1.08x, 1.1x, 1.2x 

 



 

 113 

Appendix E: Effect of Spatial Orientation on FF Segregation 

 

 

Figure 110: Far field average of the normalized Mn as a function of spatial orientation for 1.5 Mn 

wt% 
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Figure 111: A comparison of the far field average as a function of spatial orientation for 1.5, 1.85 

and 2.1 Mn wt% 
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Appendix F: Extended Factors to Consider 

 

Figure 112: Metric A using 1 mm and 0.5 mm spatial resolution scans with factors 1.03x, 1.06x, 

1.09x and 1 and 4 value system 
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Figure 113: Metric B using 1 mm and 0.5 mm spatial resolution scans with factors 1.03x, 1.06x, 

1.09x and 1 and 4 value system 
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Figure 114: Method 2 and Metric A as a function of superheat for 1.5 Mn wt% using factors 1.03x, 

1.06x, 1.09x and 1 and 4 value systems 
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Figure 115: Method 2 and Metric A as a function of superheat for 1.5 Mn wt% using factors 1.04x, 

1.05x, 1.07x and 1 and 4 value systems 
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Figure 116: Method 2 and Metric A as a function of superheat for 1.5 Mn wt% using factors 1.04x, 

1.05x, 1.07x and 2 and 3 value systems 
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Figure 117: Method 2 and Metric A as a function of superheat for 1.5 Mn wt% using factors 1.08x, 

1.1x, 1.2x and 1 and 4 value systems 
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Figure 118: Method 2 and Metric A as a function of superheat for 1.5 Mn wt% using factors 1.08x, 

1.1x, 1.2x and 2 and 3 value systems 
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Figure 119: Metric B as a function of superheat for 1.5 Mn wt% using factors 1.03x, 1.06x, 1.09x 

and 1 and 4 value systems 
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Figure 120: Metric B as a function of superheat for 1.5 Mn wt% using factors 1.04x, 1.05x, 1.07x 

and 1 and 4 value systems 
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Figure 121: Metric B as a function of superheat for 1.5 Mn wt% using factors 1.04x, 1.05x, 1.07x 

and 2 and 3 value systems 
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Figure 122: Metric B as a function of superheat for 1.5 Mn wt% using factors 1.08x, 1.1x, 1.2x and 

1 and 4 values 
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Figure 123: Metric B as a function of superheat for 1.5 Mn wt% using factors 1.08x, 1.1x, 1.2x and 

2 and 3 values 
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Figure 124 Metric D as a function of superheat for 1.5 Mn wt% using factors 1.04x, 1.05x, 1.07x, 

1.08x, 1.1x and 1.2x 

 

 


