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Abstract

Portable wireless ultrasound is emerging as a new ultrasound device due to the ad-

vantages such as small size, lightweight and affordable price. Its high portability allows

practitioners to make diagnostic and therapeutic decisions in real-time without having

to take the patients out of their environment. Recent portable ultrasound devices are

equipped with sophisticated processors and image processing algorithms providing high

image quality. Some of them are able to deliver multiple ultrasound modes including color

Doppler, echocardiography, and endovaginal examination. Nevertheless, they are still lack

of elastography functions due to the limitations in computational performance and data

transfer speed via wireless communication. In order to implement the elastography func-

tion in the wireless portable ultrasound devices, this thesis proposes a new strain estimation

method to significantly reduce the computation time and a compressive sensing framework

to minimize the data transfer size.

Firstly, a robust phase-based strain estimator (RPSE) is developed to overcome the

limited hardware performance of portable ultrasound. The RPSE is not only computa-

tionally efficient but also robust to variations of the speed of sound, sampling frequency

and pulse repetition. The RPSE has been compared with other representative strain es-

timators including time-delay, displacement-gradient, and conventional phase-based strain

estimators (TSE, DSE and PSE, respectively). It has been shown that the RPSE is su-

perior in several elastographic image quality measures, including signal-to-noise (SNRe)

and contrast-to-noise (CNRe), and the computational efficiency. The study indicates that

the RPSE method can deliver the acceptable level of elastography and fast computational

speed for the ultrasound echo data sets from the numerical and experimental phantoms.

According to the results from the numerical phantom experiment, RPSE can achieve high-

est values of SNRe and CNRe (around 5.22 and 47.62 dB) among all strain estimators

tested, and almost 100 times higher computational efficiency than TSE and DSE (around

0.06 vs. 5.76 seconds per frame for RPSE and TSE, respectively).

Secondly, as a means to reduce the large amount of ultrasound measurement data that

has to be transmitted via wireless communication, the compressive sensing (CS) framework

has been applied to elastography. The performance of CS is highly dependent on the
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selection of model basis to represent the sparse expansion as well as the reconstruction

algorithm to recover the original data from the compressed signal. Therefore, it is essential

to compose the optimal combination of model basis and reconstruction algorithm for CS

framework to achieve the best CS performance in terms of image quality and the maximum

data reduction. In this thesis, three model bases, discrete Fourier transform (FT), discrete

cosine transform (DCT), and wave atoms (WA), along with two reconstruction algorithms,

L1 minimization (L1) and Block sparse Bayesian learning (BSBL) are tested. Using B-mode

and elastogram images of simulated numerical phantoms, the quality of CS reconstruction is

assessed in terms of three image quality measures, mean absolute error (MAE), SNRe, and

CNRe, at varying data reduction (subsampling) rates. The results illustrate that BSBL-

based CS frameworks can generally deliver much higher image quality and subsampling rate

compared with L1-based ones. In particular, the CS frameworks adopting DCT and BSBL

offer the best CS performance. The results also suggests that the maximum subsampling

rates without causing image degradation are 40% for L1-based framework and 60% for

BSBL-based framework, respectively.

The contributions of this thesis help realize elastography functionality in portable ultra-

sound, thereby significantly expanding its utility. For example, the diagnosis of malignant

lesions, even when a patient cannot be moved to hospital immediately, is possible with

the portable ultrasound. Furthermore, the SPSE method and the CS framework can be

individually employed for the conventional ultrasound device as well as other telemedicine

applications, to enhance computational efficiency and image quality.
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Chapter 1

Introduction and Background

1.1 Elastography

Ultrasound elastography has emerged as a noninvasive screening modality to detect and

classify pathological lesions by visualizing mechanical properties of soft biological tissues.

Using the palpation principle that pathological lesions are stiffer than benign tissues under

compression [1] (Table 1.1), elastography facilitates precise detection of malignant lesions

in various soft biological tissues i.e., breast, prostate, thyroid, etc.

In 1991, Ophir et al. [2] introduced a compression elastography utilizing a comparison of

ultrasound radio-frequency data sets from a tissue before and after a modest compression.

The principle of the elastography is based on the stress-strain relationship under a simple

uniaxial (one-dimensional) displacement [3]. Figure 1.1 illustrates the typical ultrasound

elastography process. Biological tissues examined by the elastography are modeled as a

series of springs (Figure 1.1(a)). When an ultrasound probe is moved slightly up and

down (Figure 1.1(b)), deformation in the gray circle (hard spring) is relatively smaller

than those in the surrounding materials (soft spring). Due to the different deformations in

hard and soft tissues, displacements (shift of the spring) are induced in the tissues (Figure

1.1(c)). The displacements are estimated by comparing the echo data sets between pre-

and post-compression by using correlation methods (Figure 1.1(c), left). The strain is the
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slope of the displacement (Figure 1.1(c), middle), and the field of the strain is displayed as

color-coded strain map (Figure 1.1(c), right). This process is illustrated in Figure 1.1(c).

Since elastography can quantitatively visualize mechanical properties of soft biological

tissues, stiffness of the tissue measured by elastography can offer more accurate clinical

information than conventional manual palpation. Thus, elastography is popularly used as

a new screening method for detecting malignant lesions in breast [2, 4, 5, 6, 7, 8, 9] and

prostate [10, 11, 12], as well as for providing various clinical Information. It is also useful

to monitor thermal changes and ablation [13], to assess tendon motion [14], and to measure

the stiffness of muscle and tendon [15, 16]. The high resolution strain image generated by

elastography is called the elastograms [9]. The elastogram generally depicts the axial or

lateral strains that are useful in various clinical applications described above.

Table 1.1: Young’s modulus of breast tissue (unit: kPa)(Krouskop et al. 1998)

Breast Tissue Type
5% compression 20% compression

0.1 Hz 1.0 Hz 0.1 Hz 1.0 Hz

Normal tissue 18±7 19±7 20±8 20±6

Normal glandular tissue 28±14 33±11 48±15 57±19

Fibrous tissue 96±34 107±31 218±87 232±60

Ductal carcinoma in situ 22±8 25±4 291±67 301±58

Invasive and infiltrating ductal carcinoma 106±32 93±33 558±108 490±112

1.2 Portable Ultrasound

Recently, portable ultrasound is emerging as a new ultrasound device that is much smaller

and lighter than the conventional console style ultrasound machines (Figure 1.2). Its high

portability and durability allow practitioners to make diagnostic and therapeutic decisions

in real-time without having to take the patients out of their environment, which makes the

portable ultrasound an attractive medical modality particularly for harsh and remote sites

[17].
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Figure 1.1: Schematic of a typical elastography process
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In the early 1960s, the first direct contact ultrasound transducer was developed; how-

ever, it was difficult to maneuver into desirable views of the organ due to the rigid arm.

In the mid-1970s, this limitation was overcome by using transducers with flexible cable.

Later on real-time dynamic scanning was realized through the 1970s and the 1980s. More

compact, portable ultrasound machines were first introduced in the 1980s; however, they

were not adequate to be used in austere or remote environment. In February 1995, the

U.S. Defense Advanced Research Project Administration (DARPA) had launched a two-

year program to develop a highly portable ultrasound device for use on the battlefield

or in natural or man-made disasters to diagnose victims of severe trauma. Through this

program, SonoSight (now FUJIFILM SonoSite) and its research collaborators developed

a prototype of the first handheld ultrasound device for both medical field and military

purpose [18]. Until the late 1990s many other companies also began implementing general

purpose portable ultrasound devices.

The modern portable ultrasound devices and their weight are summarized in Table 1.2.

Typically the weight of portable ultrasound devices are under 2.7 kg, and they are often

the size of a laptop computer or smaller, or can be hand-carried to the patient’s beside

in or out of hospital environment. These lightweight units, therefore, now have attractive

uses in wide range including prehospital, austere and remote ultrasound. Prehospital

ultrasound has been being increasingly adopted in North America and around the world

with a continuously growing list of diagnostic applications [19]. The enhanced technology

enables prehospital professionals to answer focused clinical questions, which translate into

faster and more accurate diagnosis and care of patients presenting with time-sensitive

emergency conditions. In austere sites, ultrasound may be the only available imaging

modality; therefore, it can be used to rapidly assess patients during triage and evacuation

decision making. Ultrasound performs well in the diverse environments of space, swamp,

jungle, mountain, and desert [20]. Telemedicine is the most cutting edge applications of

portable ultrasound. In telemedicine, the obtained ultrasound images can be transmitted

via satellite and cellular transmission. This technology can be a powerful tool to increase

the expert’s efficiency because it delivers pictures, movies and other information to the

experts; thus, avoiding the need of bringing the expert to the information [17].
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Figure 1.2: A portable ultrasound with mobile phone (Sonon 300C, Healcerion Inc., Korea)
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Table 1.2: Portable ultrasound devices
Model Manufacturer Weight

SonoSite 180 FUJIFILM (Bothell, WA, USA) 2.4 kg

SonoSite 180PLUS FUJIFILM (Bothell, WA, USA) 2.4 kg

SonoSite Elite FUJIFILM (Bothell, WA, USA) 2.6 kg

SonoSite SonoHeart FUJIFILM (Bothell, WA, USA) 2.4 kg

Philips Optigo Philips (Andover, MA, USA) 3.4 kg

Agilent Optigo Philips (Andover, MA, USA) 2.5 kg

GE V Scan GE Healthcare (Little Chalfont, UK) 0.39 kg

Micros Q.V. Advanced Medical System (Banbury, UK) 0.9 kg

Primedic Handyscan Metrax GmbH (Rottweil,Germany) 2.2 kg

Esoate Tringa Linear VET Esoate (Genova,Italy) 0.8 kg

Sonon 300C Healcerion (Seoul, Korea) 0.39 kg
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1.3 Motivation and Challenges

Despite recent portable ultrasound devices capable of offering high image quality and

multiple ultrasound modes, none of them offers elastography function, mainly due to the

limitations of hardware performance and data transfer speed via wireless communication.

Particularly, a typical strain estimation process using signal correspondence function

and elastographic image processing requires high computational complexity, which is hard

to achieve in portable ultrasound devices. Note that conventional console style ultrasound

device performs the considerable amount of computation for elastography function using

its own hardware system that is specially designed to process the substantial data acquisi-

tion (i.e. 192 channels of echo data with 28 MHz sampling rate) and sophisticated image

processing procedures. However, portable ultrasound devices cannot carry out such data

processing computation using a dedicated computing hardware. To compensate for the

limited system performance insufficient for the sizable computation, portable ultrasound

devices utilize a wireless-connected mobile device or laptop computer. Although compu-

tation power of modern general purpose computers has been being increased rapidly, it

cannot be compared to that of dedicated hardware.

In addition, the wireless data transfer speed of the portable devices is insufficient to

deliver a large amount of raw ultrasound RF echo data set for the ultrasound elastog-

raphy computation. One of the reasons requiring large amount of data measurement in

conventional ultrasound is to illustrate more precise image for facilitating accurate medical

diagnosis. For that reason, ultrasound sampling rate of conventional ultrasound devices is

typically over 4 times larger than that of the minimum requirement by Shannon-Hartley

theorem: the sampling rate must be at least twice the maximum frequency presented in the

recorded signal. Note that the raw RF echo data for one B-mode image with 50 mm depth

has 128 A-lines × 1,819 samples at 28 MHz sampling rate. In that case, the transmitted

ultrasound data size is approximately over 14 Mbit/frame; thus, the wireless data commu-

nication speed using IEEE 802.11b/g/n protocol whose data transfer rate are 11, 54, 72

Mbit/s, respectively, might be insufficient to generate the real-time elastograms requiring

10 to 15 frame/sec.
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1.4 Thesis Contributions

The principal research objective is to accomplish the elastography function in the portable

ultrasound device without significantly improving or changing the hardware system. In do-

ing so, the thesis has developed a new computationally efficient strain estimation method

and proposed a feasible compressive sensing framework to reduce the data transfer size.

These new approaches are intended to overcome two challenges caused by high compu-

tational complexity of strain estimation algorithm and large amount of the ultrasound

data.

Specially, the thesis makes the following main contributions:

• Robust Phase-based Strain Estimation Algorithm

A new phase-based strain estimation that is computationally efficient and robust to

variations of speed of sound and sampling interval has been developed, implemented,

and tested. This is described in detail in Chapter 3 after a concise overview of the

current literature in Chapter 2.

• Compressive Sensing Framework for Elastography

A feasible compressive sensing framework to reduce the large amount of raw ultra-

sound echo data for elastography, has been proposed and tested. This is described

in detail in Chapter 5 after a concise overview of the current literature in Chapter 4.
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Chapter 2

Overview of Elastography

2.1 Ultrasound Imaging

General background on ultrasound imaging is introduced to help readers understand the

medical ultrasound imaging, before describing ultrasound elastography. Ultrasonics is the

science of elastic waves in solids, liquids, and gases which have high frequencies above 20

kHz (the nominal limit of human hearing). Ultrasonics has been applied to various fields

including industrial and medical applications. In industry, it is commonly used to detect

a defect which is either a discrete feature of an object such as a crack or a region of faulty

material [21]. Ultrasound medical imaging, generally called diagnostic sonography, is used

for evaluating the condition of internal organs and tissues, imaging internal body structures,

and measuring blood flow. In ultrasound medical imaging, the transmitted ultrasound

signals, ranging from 1 MHz to 18 MHz, generated by a ultrasonic transducer with multiple

piezoelectric elements are propagated into the image field. The echoes partially reflected by

the objects in the image field are received by the same ultrasound transducer. The received

acoustic echo signals are transformed back to electrical signals. After receiving the electrical

signals from the image field, several signal processing techniques including beamforming

filter, interpolation, log compression, contrast enhancement, speckle reduction are often

used to produce more clearer echo fields [22].

Ultrasound medical imaging offers several different types of images. B-mode ultrasound
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displays the acoustic impedance of a two-dimensional cross-section of tissue and is the

most commonly used operation mode. C-mode ultrasound (or color Doppler imaging)

combines anatomical information derived by ultrasonic pulse-echo techniques with velocity

information from ultrasonic Doppler techniques to generate color-coded maps of tissue

velocity superimposed on grey-scale image of tissue anatomy [23]. The most common use

of C-mode ultrasound is to visualize the movement of blood through the heart, arteries

and veins. M-mode ultrasound displays and records moving echoes from moving organs

such as heart. The motion of tissue can be interpreted in terms of myocardial and valvular

function. However, these kinds of ultrasound imaging could not provide a quantitative

imaging of strain and elastic modulus distribution in the image field that can be produced

by ultrasound elastography.

2.2 Strain estimation in elastography

Many strain estimation methods for elastography have been developed to assess map of

the strain distribution induced by an applied compression. Depending on signal sources for

correspondence function of each method, strain estimation methods in elastography can

be classified into three main categories: time-based, phase-based and displacement-based

estimators. These three major strain estimators are discussed in more detail in the following

sections. Fundamental mathematical operations that extract signal correspondence from

two signals, and displacement estimation techniques that find time delay or displacement

value from a pair of ultrasound echo signals are also further described in Appendix A and

B, respectively.

2.2.1 Time-based strain estimation

Time-based strain estimation methods (TSE) [2, 24], also called as time delay strain esti-

mator (TDE) is the process of determining the time shift between a reference signal and

delayed signal. In medical ultrasound, time delay estimation (TDE) is used in blood flow

estimation, tissue elasticity estimation, radiation force imaging, and a number of other
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algorithms. The process of time-delay estimation generally is concerned with the determi-

nation of the one-dimensional (1-D) shift between two 1-D signals, using pattern matching

algorithms such as normalized cross-correlation (NCC) [2, 24]. Sum-of-absolute differences

(SAD) [25], sum of squared differences (SSD) [26] and other various methods are also used

as a pattern matching algorithm to find the signal correspondence. Mathematical defini-

tions of NCC, SAD, and SSD are described in Appendix B.1. In elastography, the TDE

estimates the time delays between two data sets acquired at different time points, i.e. pre-

and post-compression radio frequency (RF) echo signals. Then, strains are calculated from

the time delays (Figure 2.1), i.e.

ε1 =
(t1b − t1a)− (t2b − t2a)

t1b − t1a
, (2.1)

where t1a and t1b are the arrival times of the pre-compression echoes from the two reference

windows (proximal and distal), respectively, and t2a and t2b are the arrival times of the

post-compression echoes from the same windows, respectively.

Figure 2.1: Principles of time-based strain estimation (TSE)

Since the RF signals received by transducer are not continuous but an array of pulses,
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TSE performance is limited fundamentally by the sampling interval. The time delay es-

timates will be quantified at this interval, resulting in estimator bias and variance that

are significantly higher than theoretically achievable limits. The impact of finite sam-

pling interval can be reduced by using signal interpolation before computing the signal

correspondence, or performing interpolation on the results from the signal correspondence

function. This approach, called sub-sample method, allows finer estimation of the true de-

lay in sub-sample precision [27] using various interpolation methods. Parabolic, cosine, and

spline fitting algorithms that use three nearest points for interpolation are generally used

for sub-sample methods [28]. More details regarding sub-sample methods will be described

in Section 2.3.1. However, the computational cost of sub-sample method in addition to

pattern matching algorithm can be significant.

Strain conversion methods in elastography are typically based on gradient estimation

[2, 29] or direct slope estimation such as least-squares methods [30]. In gradient-based

methods, strain is calculated as the local gradient of displacement estimates. The distance

between the samples used for estimating the gradient significantly affects the SNR of these

methods. Due to high sensitivity of noise in gradient operator, low-pass filtering such as

median filtering is usually carried out before computing gradients. On the other hand,

direct slope estimation methods (least-squares methods) estimate strain directly as the

slope of the displacement with respect to depth [3]; therefore, they are less sensitive to

noises.

Random noises in echo signals and the external forces nonuniformly transmitted to the

inside tissues degrades the performance of the time-based strain estimation. Particularly,

echo signal decorrelation is the major cause of the artifacts. The applied external force

causes the compressive deformation in the tissues. If the deformation is excessive and

the signals from the same region before and after the compression (signals in dotted box

in Figure 2.1(a)) do not show enough accordance, signal correspondence function fails to

match the pattern in pre- and post-compression data, and the decorrelation error occurs.

The relative displacement of scatterers in three dimensions due to the external compression

exacerbates decorrelation errors. To compensate for the degradation due to the echo signal

decorrelation, stretching/companding the post-compression signal is generally used [31].

These stretching/companding of the post-compression ultrasound echo signals can reduce
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the effects of the mechanical compression on the signal, thereby, significantly improve the

image quality of strain estimation for small strain (around 1%) [31, 32, 33].

Although the standard TSE methods have been commonly used in ultrasound strain

imaging, the massive computational load of the standard TSE is the major obstacle to

accomplish the ultrasound elastography in real time. This is caused by the high com-

putational load of the signal correspondence functions for finding time delay and signal

interpolation for the sub-sample. For real time elastography implementation based on

TSE methods, “Time domain cross correlation with prior estimates” (TDPE) [24] have

been developed to achieve the real-time elastography. In order to speed up computation,

TDPE uses previously calculated displacements of neighboring windows to guide the search

to a very small area. As a result, TDPE is much faster than the standard TSE method

and may be used for real time applications.

2.2.2 Displacement-based strain estimation

In displacement-based strain estimation method (DSE), strains are directly estimated in

spatial domain using ultrasound B-mode images, by applying digital image correlation

(DIC) technique [4, 5]. DIC is a non-contact optical sensing method mainly used for mea-

suring in-plane strain field [34]. DIC has also been applied to deformation in soft biological

tissues and biomaterials such as arterial tissues due to noncontact nature of testing protocol

[35]. As shown in Figure 2.2(a), DIC measures the displacement in compressed tissues from

a predefined search region between pairs of windowed ultrasonic B-mode images. A series

of ultrasonic B-mode images are taken by a conventional medical ultrasound scanner while

compressing the examined organ with an ultrasound probe or an external loading device.

Video signals from the ultrasound scanner can be transformed to B-mode image files that

are recorded on the computer. Spatial deformation between the pairs of B-mode images is

estimated by the DIC using a block-matching algorithm. One of the most common block-

matching algorithms is normalized cross correlation (NCC) algorithm [36], which estimates

the degree of similarity between two compared images. Let f(x, y) be the intensity value of

the M×N image f at the pixel (x, y) where x ∈ 0, . . . ,M − 1, y ∈ 0, . . . , N − 1. Similarly,

let g(x, y) be the intensity value of m× n reference template g where m ≤M and n ≤ N .
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The normalized cross correlation coefficient used for finding matches is given as:

NCC(u, v) =
Σx,y(f(x, y)− f̄u,v)(g(x− u, y − v)− ḡ)[

Σx,y(f(x, y)− f̄u,v)2Σx,y(g(x− u, y − v)− ḡ)2
]1/2 , (2.2)

where u ∈ 0, . . . ,M −m, v ∈ 0, . . . , N − n is the mean value of the reference template

g, and f̄ is the mean value of the image f in the region under g. However, NCC(u, v)

requires a significant amount of computation time that increases dramatically with the

size of sub-image. To reduce the computation time, the fast normalized cross-correlation

(FNCC) proposed by Lewis [37] is frequently adopted. The mathematical definition of

FNCC is provided in Appendix B.2.

Strains are estimated by taking the gradients of the displacements (Figure 2.2(b)):

ε1 =
(x1b − x1a)− (x2b − x2a)

x1b − x1a
, ε2 =

(y1b − y1a)− (y2b − y2a)
y1b − y1a

, (2.3)

where (x1a, y1a) and (x1b, y1b) are the coordinates of the proximal and distal windows in the

pre-compression image, respectively, and (x2a, y2a) and (x2b, y2b) are the coordinates of the

same windows in the post-compression image, respectively. Once strain field is obtained,

elastographic processing similar to TDE is performed to generate the elastograms [4]. The

accuracy of DIC is limited to the size of a pixel because its operation is based on digital

images composed of pixels. Furthermore, the signal noise is inevitable while acquiring

and transmitting the ultrasound signals. Thus, data reconstruction should be conducted

to enhance the quality of displacement and strain field. To overcome this, the penalized

least-square regression method has been proposed by [4, 5]. The main drawback of DSE lies

in the heavy computation load. To reduce the computation time, TDPE [24] or decoupled

cross-correlation (DCC) algorithm [38] have been proposed. However, their computation

speeds are still not fast enough to achieve real-time elastography.
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Figure 2.2: Principles of: (a) digital image correlation (DIC) for displacement estimation

and (b) displacement-based strain estimation method (DSE).
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2.2.3 Phase-based strain estimation

Doppler ultrasound has become indispensable as a noninvasive tool for the diagnosis and

management of cardiovascular disease [39]. Typical Doppler ultrasound instruments emit

a narrow-band radio frequency (RF) pulse and process the backscattered echoes by means

of phase quadrature demodulation, using the pulse’s central frequency as the reference

sinusoid, followed by integration over the extent of the range gate [40].

In phase-based strain estimation (PSE) methods, the strain can be obtained from the

measure of strain rate acquired by Doppler tissue imaging techniques, as temporal integra-

tion of the strain rate is equivalent to the spatial derivative of the velocity [41]. Utilizing

the velocity measures at each point in the region of interest, the amount of the deforma-

tion of tissues and the speed of the deformation caused by an applied external compression

can be estimated. Typically, the axial differentiation of velocity field is calculated by au-

tocorrelation algorithm [42] based on the assumption that the speed of sound, sampling

interval, and the pulse repetition period are the known constants. Assume that an ultra-

sonic transducer transmits waves toward an object moving at the instantaneous velocity

V as depicted in Figure 2.3. If a segment is defined as the region of axial length L0, and

the change in the length of the segment ∆L = TPR(V2 − V1) (Figure 2.3), the axial strain

from PSE is rewritten as:

ε =
TPR
L0

(V2 − V1), (2.4)

where Vi is the instantaneous velocity at both endpoints of the segment, and TPR is the

sampling interval along the frame, respectively.

Since temporal integration of the strain rate is equivalent to the spatial derivative of the

velocity, strain also can be obtained from the measure of strain rate acquired by Doppler

tissue imaging techniques [41]. Depending on the velocity measures at each point in region

of interest, amounts of the deformation of tissues and the speed of the deformation due to

an applied external compression can be estimated. In the phase-based strain estimation

(PSE) [42, 43, 44, 45, 46] methods, the axial differentiation of velocity field is typically

calculated by one-dimensional autocorrelation [43] or two-dimensional autocorrelation [42].
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Subsequently, gradient operators or least squares estimation methods are also utilized to

compute the strain values.

For implementing real-time elastography, the computational efficiency and the image

quality of such algorithms are considered as two important factors for choosing the feasible

algorithm. Because of the fast computation speed, many research groups have selected PSE

methods as a real time elastography algorithm. However, aliasing is the most problematic

issue of PSE methods. To avoid aliasing, several techniques have been developed. Phase

unwrapping methods [47] have been introduced to extend the aliasing limit from a quarter

to one-half of wavelength. Subsequently, “Phase Root Seeking” (PRS) [44] and “Combined

Autocorrelation Method” (CAM) [45] have also been proposed for the further improvement

of the limit. Using Newton iterations to find the zero-phase position from point to point,

PRS compensates the phase shift. CAM combines a phase seeking technique with the

envelope correlation coefficient to estimate the compensated phase shift. However, all

phase unwrapping methods commonly suffer from line errors called dropout [48] due to

dependency of the accuracy on the previous position’s phase shift estimation. “Angular

correlation method” (ACM) [46] which estimates each phase shift independently of other

positions has been developed as an improvement of the dropout error.

Figure 2.3: Principle of strain estimation in PSE.
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2.3 Sub-sample methods

2.3.1 Sub-sample Methods for 1D Time Domain

The sub-sample time delay estimation can be applied to the time delay measures to achieve

better accuracy by using interpolation methods. In this section, common 1D sub-sample

methods are briefly discussed to find the optimal time delay estimates .

Parabolic Fitting Method

Parabolic fitting method fits a second order polynomial of the form yc(x) = ax2 + bx + c

around the peak of the “correlation” function, yc(0), and its two neighbors yc(−1) and

yc(1). Given the peak and its two neighbors, the estimated sub-sample shift is defined as

[28]:

ξ̂parabolic =
yc(−1)− yc(1)

2(yc(−1)− 2yc(0) + yc(1))
. (2.5)

Despite its simple use and computational efficiency, parabolic fitting provides biased

estimates of time delays [28].

Figure 2.4: Principle of sub-sample methods using 3 points.
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Cosine Fitting Method

Cosine curves can be used to estimate the sub-sample time delay. Given the peak of

the “correlation” function, yc(0), and its two neighbors yc(−1) and yc(1), the estimated

sub-sample time delay is given by [28]:

ξ̂cosine = −βc
αc
, (2.6)

where αc and βc are coefficients defined as:

αc = arccos
yc(−1) + yc(1)

2yc(0)
,

βc = arctan
yc(−1)− yc(1)

2yc(0) sinα
.

(2.7)

This method produces relatively low bias and variance compared with parabolic fitting

method. However, signal aliasing exceeding the Nyquist limit and high computational cost

are the drawbacks of this method.

Spline Fitting Method

Spline fitting method fits between the data points from the pattern-matching function

curve using a smooth cubic function given by [28]:

yc(x) = ax3 + bx2 + cx+ d, (2.8)

where a, b, c and d are coefficients determined by the best fit to the pattern-matching

function. By searching the optimal value of x, the sub-sample time delay estimate will

be calculated. Although its computational cost is higher than parabolic interpolation, the

spline fitting method generates more accurate estimates.

2.3.2 Sub-sample Method for 2D Space

The accuracy of displacement estimates from digital image correlation (DIC) using the

2D image block matching algorithm is limited to the size of a pixel due to the intrinsic
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nature of discontinuities of digital envelope data. To overcome this problem, the sub-

sample algorithm based on the quadratic interpolation can be implemented [49]. By fitting

a second order polynomial to the optimal value of data correspondence and its neighbor

data and searching the local extremum of the polynomial, the two dimensional sub-sample

precision can be accomplished. Depending on the position of the local extremum, the

displacement estimation from the correlation function is optimized.

Assume Y is the second order polynomial fitted to the maximum value from the corre-

lation function and its 8 surrounding data. The second order polynomial is defined as:u−1,−1 u0,−1 u1,−1

u−1,0 u0,0 u1,0

u−1,1 u0,1 u1,1

 =

Y (−1,−1) Y (0,−1) Y (1,−1)

Y (−1, 0) Y (0, 0) Y (1, 0)

Y (−1, 1) Y (0, 1) Y (1, 1)

 , (2.9)

where Y (x, y) = A+Bx+ Cy +Dxy + Ex2 + Fy2.

For matrix form, Eq. (2.9) can be rewritten as:

u = φX

u−1,−1

u0,−1

u1,−1

u−1,0

u0,0

u1,0

u−1,1

u0,1

u1,1


=



1 −1 −1 1 1 1

1 −1 0 0 1 0

1 −1 1 −1 1 1

1 0 −1 0 0 1

1 0 0 0 0 0

1 0 1 0 0 1

1 1 −1 −1 1 1

1 1 0 0 1 0

1 1 1 1 1 1





A

B

C

D

E

F


.

(2.10)

The least square solution X can be solved by using pseudo-inverse matrix calculation.

X = (φTφ)−1φTu (2.11)

Differentiating the approximate Y with respect to x and y, the coordinates of the
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extremum are obtained through the partial derivatives:

∂Y

∂x
= B +Dyex + 2Exex = 0,

∂Y

∂y
= C +Dxex + 2Fyex = 0,

(2.12)

where xex and yex are the coordinates of the extremum.

2.4 Image Quality Measures

Varghese and Ophir [50, 51] was proposed the strain filter (SF) which characterizes the

elastographic system. The SF provides the range of strain by specifying the elastographic

image measures such as the elastographic signal-to-noise (SNRe), sensitivity, and the strain

dynamic range at a given resolution. The range of strain can be used as a performance

measure predicting the elastogram quality. The filtering process is performed in strain

domain, and then the qualified elastogram of a limited range is obtained. The range of

strain allowed by a SF process is often limited by the limitations of ultrasound acoustic

parameters, and the signal processing parameters [9].

Elastography can be typically evaluated using the elastographic signal-to-noise ratio

(SNRe) and contrast-to-noise ratio (CNRe) that are employed as metrics for the quality of

the elastograms. The elastographic SNRe identifies the quantitative measurement of the

accuracy and precision of the elastograms, and is defined as [52]

SNRe =
ms

σs
, (2.13)

where ms is the mean value of the strain, and σs is the standard deviation of the measured

strain. The trade-off between SNRe and resolution of all strains are illustrated in Figure

2.5(a).

By combining SF and the elastic contrast properties (CTE) of tissue, the CNRe can

be predicted (Figure 2.5(b)). The CNRe is an important parameter to determine the

detectability of a stiff lesion in elastograms and is defined as [52]
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CNRe =
2(mo −mi)

2

σ2
o + σ2

i

, (2.14)

where mi, mo, σ
2
i , and σ2

o are the mean and the variance values for the inside (subscript

i) and the outside (subscript o) of the lesion, respectively. The maximum CNRe implies

that the differences in mean strain values are large or the sums of variances of the strain

are small. Therefore, if modulus contrast is small, CNRe would be improved when strain

variances is small. In contrast, at high modulus, CNRe is improved when the difference of

strain means is large.

2.5 Elastographic Processing

Strain imaging is highly sensitive to even small deviations of the displacements and signal

noises in ultrasound data acquisition and transmission, and thus often fails to detect a

malignant region in tissue or depicts the low contrast images. Decorrelation error or called

false peak error showing large negative or positive values [24, 43] and the speckle noise

generated by small particles in the tissue or liquid which reflect ultrasonic wave [53] are

the major causes of the strain degradation in ultrasound elastography. In order to avoid the

false peaks and reduce the signal noise like speckle noise in ultrasound images, elastographic

processing or called post-processing methods are necessary so that ultrasound elastography

produces the high contrast strain images which facilitate the detection of malignant region.

A typical elastographic post-processing is comprised of statistical thresholding and

data smoothing processes [42]. In the statistical threshold process, the mean (µs) and

the standard deviation (σs) of a strain image are calculated and the strain magnitudes

are threshed to the range µs ± 3σs. First, false peak errors from the decorrelation can

be threshed through the statistical threshold process. Afterward, the data smoothing

processes [4, 42] using de-noising filters; i.e., median filter, Gaussian filter, Wiener filter,

and penalized least square regression are used to reduce the signal noises or to recover

the de-noising images. Median filter replacing a pixel value with the median of the pixel

in an mmed by nmed neighborhood of the pixel is widely used as a simple post-processing

technique [42].
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Figure 2.5: Three-dimensional typical appearance of SF: (a) trade-off between strain dy-

namic range, sensitivity, and SNRe, (b) plot of CNRe curves (Ophir et al. 1999).
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Chapter 3

Robust Phase-based Strain

Estimation

3.1 Introduction

Portable wireless ultrasound is recently emerging as a new ultrasound device due to its

unique advantages including small size, lightweight, wireless connectivity and affordability.

Modern portable ultrasound devices with sophisticated processors and image processing

algorithms offer high image quality and some of them provide multiple ultrasound modes

including color Doppler, echocardiography, and endovaginal examination. However, none

of the portable ultrasound devices provides elastography function due to the limitations

in computational performance and data transfer speed of wireless communication. Moti-

vated by potential demands of elastography in portable ultrasound, this research aims to

develop a suitable elastography method for portable ultrasound, called the robust phase-

based strain estimator (RPSE), that can achieve fast strain estimation, while not losing

elastogram quality. Performance and suitability of RPSE for portable ultrasound were

compared with time-delay strain estimator (TSE), phase-based strain estimator (PSE) and

displacement-gradient strain estimator (DSE) that are widely used in current ultrasound

elastography. Three types of raw RF data sets were used for the test: The first two sets

were generated from numerical phantoms composed by an open ultrasonic simulation code
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(Field II) and a commercial FEA (Abaqus). The last data set was acquired experimentally

with a commercial portable ultrasound device using a gelatin-based phantom containing

a stiff cylindrical inclusion in soft matrix. To assess image quality of elastograms, signal-

to-noise (SNRe) and contrast-to-noise (CNRe) ratios were measured on the elastograms

produced by the three strain estimators. The computational efficiency of each method was

also estimated and compared together.

3.2 Theory

3.2.1 Velocity Estimation

The fundamental Doppler equation expresses the frequency shift ∆f of acoustic energy

scattered from a target moving at some velocity V in terms of the frequency of the incident

wave fc, the speed of sound c in the propagation medium, and the angle θ between the

direction of motion and the direction of sound propagation as [54]

∆f = 2
fc
c
V cos θ. (3.1)

This implies that the frequency shift carries information about the axial velocity Va(=

V cos θ) of the moving reflector. If the axial velocity is sufficiently slower than speed of the

sound c in the propagation, the axial velocity can be obtained as

Va =
c

2

∆f

fc
. (3.2)

In the practice for elastography, the wave direction is usually identical to the moving

direction, so θ can be regarded as zero. Therefore, the axial velocity Va can be estimated

by determining only the frequency shift ∆f , while assuming that c and fc are known

and constant. Since this conventional Doppler method uses information from a relatively

narrow band of frequencies to measure the phase changes in the carrier frequency, it is also

called narrowband Doppler. However, due to stochastic nature of the RF signal, derived

Va usually exhibits large fluctuations [55].
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To reduce the variance of the velocity estimates, Wilson [56] proposed broadband pulsed

Doppler based on 2D fast Fourier transform by considering RF data as a 2D function of

depth and time. He showed that the 2D FFT of RF data from a moving target forms a

line whose slope is proportional to the target velocity. Loupas et al. [57, 58] extended

Wilson’s work to discrete limited-duration signals by examining the case of an ideal point

target. They showed that 2D spectrum of a discrete version of backscattered RF signal is

zero apart from a line passing though the origin of the 2D frequency plane with a slope

equal to [57]
F

f
=

2V

c

TPR
Ts

, (3.3)

where Ts and TPR are sampling interval and pulse repetition period (fast- and slow-time

sampling rates), respectively, and f and F are normalized RF and Doppler frequencies,

respectively. Expressed in absolute RF and Doppler frequencies (fRF = f/Ts and FD =

F/TPR), Eq. (3.3) becomes [57]
FD
fRF

=
2V

c
, (3.4)

which is the same as conventional narrowband Doppler equation. Eq. (3.4) also implies

that while the mean RF frequency fRF may fluctuate randomly, the corresponding mean

Doppler frequency FD tracks these fluctuations so that their ratio is always constant and

proportional to the mean axial velocity.

The frequency ratio in Eq. (3.3) can be estimated directly in the time domain by

evaluating the phase of autocorrelation function γ[m, k] at lags in fast-time (m = 1, k = 0)

and slow-time (m = 0, k = 1) axes as [58]

f =
1

2π
arctan

Im[γ(1, 0)]

Re[γ(1, 0)]
=

1

2π
arg γ[1, 0], (3.5)

F =
1

2π
arctan

Im[γ(0, 1)]

Re[γ(0, 1)]
=

1

2π
arg γ[0, 1], (3.6)

where the phase of autocorelation function γ[m, k] is further described in Appendix A.2. By

combining Eq. (3.3), (3.5) and (3.6), the mean velocity V evaluated by 2D autocorrelator

26



can be expressed as [42]

V =
c

2

Ts
TPR

arg γ[0, 1]

arg γ[1, 0]
=
c

2

Ts
TPR

Γ, (3.7)

where Γ = arg γ[1, 0]/ arg γ[0, 1].

3.2.2 Strain Estimation

The axial strain of a segment that has been deformed along loading direction is defined as

ε =
∆L

L
=
L− L0

L0

, (3.8)

where ∆L is the difference between the final length L and initial length L0 of the segment.

In elastography, it can be assumed that an ultrasonic transducer transmits waves toward

an object moving with an instantaneous velocity V as depicted in Figure 3.1. If a segment

is defined as the region of axial length L0, and the upper and the lower endpoints of the

segment are away from the transducer by the distance λ1 and λ2, respectively (Figure 3.1),

the echo delays from the upper and the lower endpoints at time T0 + TPR are

τ1 =
2(λ′1 − λ1)

c
and τ2 =

2(λ′2 − λ2)
c

, (3.9)

respectively. Since L0 = λ2−λ1 and L = λ′2−λ′1, the axial strain can be written with echo

delays by combining Eq. (3.8) and (3.9) as

ε =
c

2L0

(τ2 − τ1) =
c

2L0

∆τ. (3.10)

The change in the length of the segment ∆L = TPR(V2−V1) (Figure 3.1), so the echo delay

∆τ is related to the velocity as

∆τ =
2TPR
c

(V2 − V1). (3.11)

By substituting Eq. (3.11) into (3.10), the speed of sound c is canceled and the axial strain

can be rewritten as

ε =
TPR
L0

(V2 − V1), (3.12)
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Now let’s consider an axial segment along single scan line. If the segment is centered at

m depth samples with the upper and lower endpoints given by m1 = m − ∆m/2 and

m2 = m+ ∆m/2, the axial length of the segment is

L0 = ∆m
c

2
Ts, (3.13)

where the tunable parameter m controls the length of the axial length of the segment. By

substituting Eq. (3.13) into (3.12) and rewriting V1 and V2 using Eq. (3.7), the local axial

strain can be simplified as

ε =
TPR

∆m c
2
Ts

c

2

Ts
TPR

(Γ2 − Γ1) (3.14)

that can be further simplified as

ε =
Γ2 − Γ1

∆m
, (3.15)

where Γ1 and Γ2 are the 2D autocorrelation values at both endpoints of the segment.

Note that Eq. (3.15) contains only segment length ∆m and the phase angle Γ at the

upper and lower end points of the segment, thus it is not affected by sampling intervals

along depth (Ts) and frame (TPR). In portable ultrasound, sampling interval between

frames (pulse repetition period) is equivalent to data-dumping interval via Wi-Fi network;

therefore, it cannot be constant or stable as in console-style scanner. Eq. (3.15) indicates

that although data dumping interval fluctuates, strain estimation accuracy is not degraded

in the proposed RPSE method.

28



Figure 3.1: Principle of RPSE: ultrasonic transducer transmits waves toward a segment

(left). The lower (farthest away from the transducer) and upper endpoints of the segment

are moving with an instantaneous velocity V2 and V1, respectively (right). As a result, the

segment length L0 at t = T0 is changed to L at t = T0 + TPR.
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3.2.3 Least-Squares Strain Estimation

The local axial strain estimator in Eq. (3.15) only uses the autocorrelation samples at

the endpoints m1 and m2, which can cause strain estimate very sensitive to signal noise.

Assuming that the 2D autocorrelator Γ in Eq. (3.7) is linear along the depth within the

segment, where the segment is centered at depth m, then the autocorrelation relationship

can be rewritten as

Γ[m] = a ·m+ b, (3.16)

where the index m is a natural number restricted by m1 6 m 6 m2. The relationship

can be rewritten by the matrix form as Γ = A

[
a

b

]
. In case only the inaccurate (noisy)

measured vector Γ̂ is known and the true vector Γ is unknown, the sum of the squared

error between the linear model and the measured autocorrelation is minimized by the

least-squares method, and the minimized â can be regarded as the axial strain.

3.3 Methods

3.3.1 Numerical Phantom Data Sets

A numerical phantom of the size 40 × 50 × 10 mm3 with a stiff cylindrical inclusion (10

mm) in a soft matrix was modeled using commercial finite element analysis (FEA) code

(Abaqus/CAE 6.10) (Figure 3.2, left). The FEA model was meshed with approximately

427,000 3D quadratic tetrahedron elements and 77,000 nodes. The nodes in the FEA

model served as scatterers for reflecting ultrasound signal emitted from the numerical

ultrasound transducer; therefore, dense mesh was applied to acquire the acceptable level

of RF signals. The elastic modulus of the matrix and the inclusion was set to 20 kPa

and 100 kPa, respectively, mimicking a carcinoma in a breast tissue. Poisson’s ratio of

0.49 was applied to the whole phantom. The movement in the vertical direction at the

bottom of the phantom was constrained while 0.1% axial compressive strain was applied

to the top surface. 0.1% compression (0.05 mm, 0.11λ (wavelength)) was selected because
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it was within the correlation range of all strain estimators. The coordinate of each node

was saved to generate the deformation field data sets.

Field II code [59, 60], a MATLAB-based ultrasound simulation code, was used to add

random scatters to the nodal displacements and generate the corresponding pre- and post-

compression RF signal data from the numerical phantom (Figure 3.2, center). The am-

plitudes of the random scatters were kept constant throughout the phantom; thus the

inclusion could not be detected in the RF signal or B-mode image. In order to simulate

both the conventional and the portable ultrasound device, two kinds of linear probe were

virtually modeled by Field II. The first one was modeled to have 192 ultrasound elements

and 64 active elements to mimic conventional ultrasound device, while the other had 152

and 24 elements simulating portable ultrasound device. The numerical data sets acquired

by these virtual probes are called NP-64 and NP-24, respectively, in the rest of the paper.

Other acoustic parameters were set to the same values in both phantoms: the center fre-

quency of the transducer was placed at 3.5 MHz and the sampling rate of RF signals was

set to 28 MHz. The speed of sound through the phantom was set to 1540 m/s. In this set-

ting, Field II generated 128 simulated RF lines (A-lines) and each RF line contained 2,589

samples for the phantom depth. Acoustic parameters used in the numerical phantoms are

listed in Table 3.1.

Various strain estimation methods (RPSE, TSE, DSE and PSE) were applied to the

simulated RF data sets to estimate the strain fields (Figure 3.2, right). The differences

between the strain estimates and the true strains computed by the FEA were regarded as

estimation errors.
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Figure 3.2: Numerical phantom modeled by FEA and Field II code.
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Table 3.1: Acoustic parameters for numerical phantoms

NP-64 NP-24

Phantom size 40× 50× 10 mm3 40× 50× 10 mm3

Center frequency 3.5 MHz 3.5 MHz

Sampling frequency 28 MHz 28 MHz

Width 0.44 mm 0.44 mm

Height 5 mm 5 mm

Kerf 0.022 mm 0.022 mm

Number of elements 192 152

Transmit elements 64 24

Receive signals considered 128 128

Transmit/receive focus 50 mm 50 mm
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3.3.2 Gelatin-based Phantom Data Set

A gelatin-based phantom containing a stiffer cylindrical inclusion was fabricated to mimic a

carcinoma in a normal tissue [4]. Following the protocol in Madsen et al. [61], the inclusion

and the matrix were made with the same constituents to have the similar echogenicity, i.e.,

1 wt% agarose (J.T. Baker, NJ, USA), 2 wt% glutaraldehyde (Sigma-Aldrich, MO, USA),

5 wt% n-propanol (Fisher-Scientific, NJ, USA), gelatin (Fluka, Germany) (20 wt% and

5 wt% for inclusion and matrix, respectively), and distilled water (the remaining wt%).

Glutaraldehyde acted as a cross-linker resulting in a melting point of the materials in the

phantom in excess of 68 ◦C and n-propanol promoted dissolving of materials. In addition,

n-propanol and glutaraldehyde served as preservatives. The surrounding matrix was made

first to fabricate the phantom. After water was heated up to 85 ◦C, agarose, gelatin, and

n-propanol were added in order. After 3 minutes of solution time, glutaraldehyde was

kept at an elevated temperate for 4 more minutes. The resulting solution was poured into

a brick-shaped mold sized 90 mm (W) × 80 mm (D) × 140 mm (H) and kept at room

temperature for 48 h for gelatin. For the cylindrical inclusion, a pipe (outer diameter of

12.67 mm) was inserted in the mold before pouring the solution (Figure 3.3(a)). Then, one

side plate of the mold and the cylindrical pipe were taken out for preparing the inclusion

insert (Figure 3.3(b)). In the same manner, the solution with 20 wt% gelatin content was

prepared and poured into the cylindrical hole in the matrix gel when temperature decreased

to 40 ◦C (Figure 3.3(c)). Then, the phantom was wrapped by the plastic film to prevent

shrinkage and dehydration, and kept at room temperature for another 48 hours. To keep

the mechanical property of the phantom, the resulting phantom was recommended to store

in water and kept low temperature in a refrigerator. The fabricated phantom contained a

cylindrical inclusion (12 mm diameter) five times stiffer than surrounding matrix (47 ± 2

kPa vs. 9± 1 kPa).

A commercial portable ultrasound scanner, Sonon 300C (Healcerion Ltd., Korea) with

wireless connectivity via Wi-Fi IEEE 802.11 b/g/n, was used for the experiment on the

gelatin phantom. SononPlayer, the debugging software for developers, provided the func-

tions to record and export RF data of each ultrasound frame to a personal laptop computer

for post-processing. Each recording consisted of 128 channels RF data (A-lines), acquired
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using a 3.5 MHz convex probe with sampling frequency of 28 MHz.

Ultrasound RF data were acquired while the phantom was being compressed with a

portable ultrasound probe fixed to a TA micro test machine (TA.xt Plus, Stable Micro

Systems Ltd, UK) with a 5 kgf load cell (Figure 3.4). The portable ultrasound probe was

connected to the personal computer via wireless connection. For the data acquisition, the

portable ultrasound probe was moved downward to pre-compression position at which the

curved probe perfectly touched the surface of the phantom. Then the probe was moved

downward stepwise with the displacement at each step that is corresponding to 0.1% strain

increase in the phantom. An ultrasound frame was acquired in the computer via wireless

communication at each step. 0.1% strain (equivalent to 0.130 mm displacement) was chosen

as a step size, because the corresponding phase change (0.29λ (wavelength)) was within

the detectable limit of RPSE (0.5λ). This was repeated until 1% compressive strain was

reached in the phantom (total 11 frames).
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Figure 3.3: Schematic of phantom fabrication procedure: (a) 5% gelatin solution is poured

into the mold with the pipe insert to form the matrix; (b) After gelatin is set, one side plate

of mold and the insert are taken out; and (c) 20% gelatin solution containing is poured

into the empty hole to form the inclusion.
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Figure 3.4: Experiment setup for the elastographic phantom test using portable ultrasound.
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3.3.3 Implementation of Strain Estimators

TSE, PSE, RPSE and DSE were implemented using MATLAB (The MathWork Inc., MA,

USA) as conceptually illustrated in Figure 3.5. The algorithms for each strain estimator

are briefly described in this section.

TSE [2] was based on the time delay of raw RF signals (Figure 3.5(a)), which was found

by the correlation function as the peak of correlation between the pre- and post-compression

signals. Since FFT-based correlation is significantly faster and is also equivalent to linear

convolution, it was selected as the TSE algorithm. Window size for correlation was chosen

to be 45 samples (1.237 mm) for all data sets. In addition, sub-sample algorithm was

implemented to enhance the estimation accuracy by adopting cosine fitting method using

3 points adjacent maximum correlation point. Least-squares strain estimation was also

employed to compute the strain distribution that is the slope of fitted displacement curve.

For implementing PSE and RPSE, phase delay between a pair of ultrasound analytic

signals formed with the RF data and its Hilbert transform was first estimated (Figure

3.5(b) and (c)). Since each data frame of both numerical and gelatin phantom data sets was

acquired from time-independent systems (data was dumped at each displacement), pulse

repetition period (TPR) cannot be assigned as a constant value; thus the conventional PSE

method can not be implemented. For the comparison with other strain estimators, pulse

repetition periods of gelatin and numerical phantom were set to 11, 4 seconds, respectively,

which produced the similar scale of strain values to other methods. In RPSE (Figure

3.5(c)), strains were directly estimated using 2D autocorrelation (Eq. (3.15)). Phase

unwrapping function in MATLAB was performed to expand the phase limit of PSE and

RPSE up to a half wavelength (0.5λ) by preventing aliasing. Least-square method was

also utilized to compute the curve-fitted slope of phase delay and the corresponding strain

distribution.

Since DSE directly estimates displacement distribution from the spatial domain, the raw

RF data should be converted to B-mode image using Hilbert transform and log-compression

(Figure 3.5(d)). In addition, bi-interpolation was conducted to increase data resolution of

B-mode image because sampling interval in the axial direction is significantly higher than

that in the lateral direction (typically more than 10 times) [25]. A block matching algorithm
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based on 2D fast normalized cross-correlation (FNCC) calculated the displacements of the

selected grids in a pair of pre- and post-compression B-mode images. 2D sub-sample

method using a second order polynomial equation was used to enhance the accuracy of

the displacement estimate. Then the strain distributions can be estimated by finding the

2D gradient function from the displacement field. The detailed block matching algorithm

used in this study is provided in the reference [4]. The distances between grid points in

both lateral and axial directions were set to 15 and 60 pixels, respectively, considering

computation efficiency and image resolution. The side lengths of squared blocks centered

at grid points for both the pre- and post-compression B-mode images were 45 and 68 pixels,

respectively.
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Figure 3.5: Flow chart of strain estimators: (a) time-based strain estimator (TSE), (b)

phase-based strain estimator (PSE) (c) robust phase-based strain estimator (RPSE), and

(d) displacement-based strain estimator (DSE).
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3.4 Results and Discussion

RPSE, TSE, DSE and PSE were applied to the numerical data sets acquired from the

numerical phantoms with virtual probes and the experimental data sets from the gelatin

phantom with the portable ultrasound device. Displacement field and elastogram produced

by each estimator were investigated to evaluate their estimation accuracy. Computational

efficiency was also assessed by measuring the computation time spent by each algorithm

to generate elastograms.

3.4.1 Displacement Estimation

The displacement fields for two types of numerical data sets (NP-64 and NP-24) estimated

by RPSE, TSE, DSE and PSE are presented in Figure 3.6. The velocity fields by PSE

are scaled to match with displacement fields from the other methods. Although the fields

generated by RPSE (Figure 3.6(a) and 3.6(e)), TSE (Figure 3.6(b) and 3.6(f)) and PSE

(Figure 3.6(d) and 3.6(h)) look similar, the RPSE shows more delicate and smoother pat-

terns with less decorrelation errors than the others. On the other hand, DSE (Figure 3.6(c)

and 3.6(g)) cannot generate the right pattern and the field around the circular inclusion

is significantly mingled. No significant differences are found between the displacement

fields from NP-64 (virtually acquired by conventional ultrasound) and NP-24 (portable

ultrasound), but the ones for NP-24 (Figure 3.6(e)-(h)) show slightly lower resolutions and

more decorrelation errors than those for NP-64 (Figure 3.6(a)-(d)), due to less number of

active elements in portable ultrasound. The above results can be quantitatively represented

using the displacement plots measured along the vertical centerline across the displacement

fields (Figure 3.7). Note that the FEA plot was formed using the true data from FEA,

while the other plots were produced from the data in which slight random noises were

introduced by Field II. RPSE, TSE and PSE plots show relatively good agreement with

the FEA plot, with slight variations caused by the random noises. The DSE plot presents

the smoothest trend; however, it is deviated from the FEA plot in some regions. The

displacement plots from NP-64 (Figure 3.7(a)) and NP-24 (Figure 3.7(b)) show similar

trends over all, although slightly higher variations are observed in NP-24 plot.
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The displacement fields in the gelatin phantom were also analyzed (Figure 3.8). Since

the experimental data contained higher level of signal noises than the numerical data, the

estimated displacement fields are generally nosier and coarser than those for numerical

phantom. The displacement field generated by RPSE (Figure 3.8(a)) shows smooth and

continuous pattern and the inclusion in the center is discernable with smaller displacement

than the surrounding matrix at the same depth. Both TSE and PSE displacement field

(Figure 3.8(b) and 3.8(d)) poses similar behavior to RPSE field, but much noisier patterns

are observed. A short black line in the middle of the image indicates a spot where decor-

relation occurs. The result from DSE (Figure 3.8(c)) shows blurred and mingled pattern,

especially in the soft matrix region under the inclusion.

The above behaviors are also demonstrated by the displacement plots in Figure 3.8(e)

where RPSE and TSE generate similar plots except a local peak around the middle of the

depth in TSE. DSE plot is the smoothest, but slightly deviates from the others in some

regions, which is consistent with the trends observed in Figure 3.6. The displacement plot

for PSE converted from velocity shows much higher variations than the others, particularly

after 35mm depth.
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Figure 3.6: Displacement fields of NP-64 numerical phantom estimated by: (a) RPSE, (b)

TSE, (c) DSE, and (d) PSE; displacement fields of NP-24 estimated by (e) RPSE, (f) TSE,

(g) DSE and (h) PSE, respectively.
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Figure 3.7: Displacement plots along the vertical centerline of (a) NP-64 and (b) NP-24

estimated by FEA, RPSE, TSE, DSE and PSE, respectively.

44



5 10 15 20 25 30 35 40 45

Axial depth [mm]

-3

-2

-1

0

D
is

p
la

c
e

m
e

n
t

RPSE

TSE

DSE

PSE

Figure 3.8: Displacement field of the gelatin phantom estimated by: (a) RPSE, (b) TSE,

(c) DSE and (d) PSE, and (e) the displacement plots along the vertical centerline from

RPSE, TSE, DSE and PSE, respectively
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3.4.2 Elastograms

Elastograms depicting the axial strain fields generated by three different strain estima-

tors were presented in Figure 3.9. The elastograms from RPSE (Figure 3.9(a) and 3.9(e))

successfully describe the shape of the inclusion as a low strain region in the center. Fur-

thermore, the strains inside the inclusion and in the outer matrix are almost constant,

respectively, which is in accordance with the FEA result. The elastogram from NP-64

seems more delicate and smoother, but the one from NP-24 also demonstrates clearly dis-

cernable patterns. In TSE elastograms (Figure 3.9(b) and 3.9(f)), the inclusion is readily

detectable; however, the shape of the inclusion is distorted and the matrix strain is incon-

sistent and noisy. The elastogram from NP-64 (Figure 3.9(b)) shows reasonably preserved

pattern, but that from NP-24 (Figure 3.9(f)) is much more degraded, particularly in matrix

region. In DSE elastograms (Figure 3.9(c) and 3.9(g)), low strain region corresponding to

the inclusion is observed in the center, but the patterns are significantly dispersed and

degraded. PSE elastograms (Figure 3.9(d) and 3.9(h)) also show the existence of the in-

clusion; however, the shape of the inclusion and the matrix strain are much more distorted

and noisier than RPSE.

Strain plots along the vertical centerline of numerical phantoms (Figure 3.10) show the

comparison between the FEA results and those from three estimators. For NP-64 (Figure

3.10(a)), both RPSE and TSE plots show good agreement with the FEA plot, and clearly

indicate the existence of stiff inclusion in the depth between 15 mm to 25 mm. DSE plot is

over-smoothed, and the shape and size of the inclusion are hard to be identified. PSE plot

shows similar trend to FEA plot, however, it varies significantly within the inclusion and

in the matrix, particularly in the deep region between 30 mm and 35 mm depth. In the

strain plots of NP-24 in Figure 3.10(b), the plots from strain estimators present generally

large deviations from the FEA plot; RPSE plot still follows the true strain relatively well,

while large differences are found in TSE plot, particularly in the matrix region under the

inclusion. Over-smoothing is observed in DSE plot, with much more serious manner than

for that in Figure 3.10(a)), while PSE shows very noisy and degraded results.

As for the elastograms for gelatin phantom, RPSE (Figure 3.11(a)) describes the shape

of the inclusion relatively well. TSE also indicates the existence of the inclusion; however,
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the strain patterns are highly noisy and scattered both in the inclusion and in the sur-

rounding matrix. In DSE elastogram (Figure 3.11(c)), the shape of the inclusion is unclear

and dispersed; furthermore, there are many degraded spots in the surrounding matrix.

The elastogram from PSE (Figure 3.11(d)) fails to describe the inclusion and only shows

highly noisy pattern. In the strain plots along the vertical centerline (Figure 3.11(e)), the

strain levels inside the inclusion and the matrix are supposed to be constant, respectively;

however, both RPSE and TSE plots show significant variations. Since both plots present

similar trends, there is a possibility that gelatin phantom was not cured uniformly and

material properties were not homogeneous. Meanwhile, DSE plot also shows significant

variations in an over-smoothed manner compared to the other plots. PSE plot seems to

deviate from the trend of the other plots across the entire depth.
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Figure 3.9: Elastograms from NP-64 numerical phantom generated by: (a) RPSE, (b)

TSE, (c) DSE and (d) PSE; elastograms of NP-24 generated by: (e) RPSE, (f) TSE, (g)

DSE and (h) PSE, respectively.
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Figure 3.10: Strain plots along the vertical centerline of (a) NP-64 and (b) NP-24 estimated

by FEA, RPSE, TSE, DSE and PSE, respectively.
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Figure 3.11: Elastograms from the gelatin phantom generated by: (a) RPSE, (b) TSE, (c)

DSE and (d) PSE; (e) the strain plots along the vertical centerline estimated by RPSE,

TSE, DSE and PSE, respectively.
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3.4.3 Image Quality Measures

Two image quality measures, SNRe and CNRe, were evaluated on 11 frames of elastograms

produced by RPSE, TSE, DSE and PSE, as presented in Figure 3.12 using box plots.

Note that the width of the band plots along vertical direction represents the dispersion of

the measures over the frames. For NP-64 numerical phantom (Figure 3.12(a)), SNRe plot

associated with the RPSE elastograms yields the highest median of 6.15, but the dispersion

is the largest. The SNRe plot for TSE forms very narrow band with the medians of 4.93,

while that of DSE is slightly more dispersed and the median is around 3.1. The lowest SNRe

is delivered by PSE at around 2.5. In regard to CNRe plots, RPSE produces the highest

median of 53.52 dB followed by TSE (45.33 dB), PSE (34.87 dB) and DSE (30.1 dB). The

widths of the CNRe bands for RPSE, PSE and DSE are approximately the same, while that

of TSE is widely dispersed. Overall, RPSE shows the best SNRe and CNRe combination

with the highest median, while the repeatability over 11 frames is approximately the same.

For the elastograms of NP-24 (Figure 3.12(b)), the SNRe for RPSE also shows the

highest median at around 5.22 followed by TSE (3.27), DSE (2.74), and PSE (1.81). The

width of SNRe band is the narrowest for both RPSE and PSE and becomes wider in the

order of TSE and DSE. As for CNRe, PSE yields slightly higher median at around 49.14

than RPSE (47.62dB), followed by TSE (33.03 dB) and DSE (23.07 dB). In regard to the

dispersion of CNRe, RPSE shows the narrowest level and the others are almost same.

For the elastograms of gelatin phantom (Figure 3.12(c)), the SNRe for TSE shows

slightly higher median at around 4.61 than RPSE (4.39); however, its dispersion is larger

than that for RPSE. PSE produces the lowest SNRe (1.98) and DSE (3.88) shows the

largest dispersion. As for CNRe, both RPSE and TSE produce similar medians at around

40.65 dB and 40.44 dB, respectively, with almost equivalent band width. PSE produces

slightly lower CNRe (30.43 dB), while DSE is associated with the lowest median (16.77

dB) and much wider band width. Overall, both RPSE and TSE show similar level of image

qualities while RPSE demonstrates slightly better repeatability.

In conclusion, the results of image quality measures suggest that RPSE produces the

best elastogram from the numerical data sets; however, for the experimental data set from

gelatin phantom containing relatively high level of noise, RPSE and TSE shows similar
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performance, while PSE and DSE produces much lower SNRe and CNRe in all cases.
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Figure 3.12: SNRe and CNRe for the elastograms from: (a) NP-64, (b) NP-24, and (c) the

gelatin phantoms.
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3.4.4 Computational Efficiency

Since the correlation function for strain estimation imposes high computational load while

portable ultrasound device has limited resources, computational efficiency is one of the

critical factors in assessing the strain estimators for portable ultrasound. Computation

times were measured on a Windows 7 computer (2.3 GHz, i7-3610 CPU with 12 GB RAM,

ASUS-K55VD) using in-house developed MATLAB code.

Figure 3.13presents the computational times for the strain estimators to generate elas-

tograms from numerical and gelatin phantom data sets. Overall, both phase-based strain

estimation methods (RPSE and PSE) delivered much higher computational efficiency than

correlation-based methods (TSE and DSE) by a significant margin. In order to perform

the calculations for the strain estimation over 11 frames from NP-64 numerical data set

of the size 1600 (length) × 80 (scanline) per each frame (Figure 3.13(a)), RPSE and PSE

spent only 0.64 and 0.53 seconds, respectively, while 65.95 and 77.92 seconds were taken

by TSE and DSE, respectively. For each RF frame, RPSE and PSE recorded only 0.06 and

0.05 second computation times, while TSE and DSE spent around 6 and 8 seconds. Sim-

ilar amount of computation times were required for the elastogram from NP-24 phantom

(Figure 3.13(b)) by each method, with RPSE and PSE taking much less time (around 0.6

seconds) than TSE and DSE (63.57 and 85.56 seconds, respectively). The computations

of each frame were 0.06, 0.05, 5.78, and 7.78 seconds by RPSE, PSE, TSE, and DSE,

respectively.

The gelatin phantom data set is composed of 11 frames with each frame size of 2000

(length) × 66 (scanline). The computation of the whole frames took only 0.69 seconds

for RPSE and 0.59 seconds for PSE, while TSE and DSE recorded 66.25 and 99.46 sec-

onds, respectively. Both RPSE and PSE also show almost 100 times faster computational

performance than TSE and DSE in the strain estimation of each frame (0.06 seconds vs.

6.3∼7.68 seconds). Computation time for each frame using RPSE can be converted to 16.6

fps (frame per second) that can be regarded as quasi-real-time processing. This implies

that RPSE, without using C programming and MEX interface in MATLAB, may be an

efficient strain estimation algorithm for portable ultrasound, and although not as fast as

high-end console style ultrasound device implemented with dedicated hardware (around
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30 fps), RPSE running on a general personal computer have the potential to provide near-

real-time elastography.
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Figure 3.13: Computational times spent by RPSE, TSE and DSE methods for generating

the elastogram(s) from: (a) NP-64 numerical phantom, (b) NP-24 numerical phantom, and

(c) the gelatin phantom.
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3.4.5 Comparison of the Strain Estimators

Strengths and weaknesses of each strain estimator identified through the above evaluation

processes can be summarized as below. The strengths of RPSE lie in good accuracy of

elastogram, high computational efficiency, and easy parameter setting. As discussed above,

RPSE demonstrated the best image quality measures for numerical phantoms and the

faster computation speed than those of both TSE and DSE. Moreover, parameter setting

for RPSE is straightforward because it directly estimates the displacement from the phase

delay between a pair of RF data sets, and does not require any searching process. On the

other hand, RPSE has the phase limitation that it cannot estimate the displacement larger

than a half ultrasound wavelength. However when the frame rate of ultrasound devices

is over 15 fps, the displacement between consecutive frames in elastography practice is

mostly within this limitation. Therefore, the phase limitation of RPSE is not a significant

concern to implement the elastography in the portable US device. However, if the frame

rate is very low, or the movement of the target object is fast, this can cause a problem.

The strengths of TSE are decent accuracy of elastogram and the robustness in estimat-

ing the large displacement. Unlike the RPSE with phase limitation, TSE does not have

the displacement limitation because the correlation function finds the maximum correlation

value throughout the searching region of which the size can be easily adjusted to increase

the measurement range. However, due to the correlation algorithm involving intensive com-

putation, TSE requires higher computational cost and more sensitive parameter settings

than those for RPSE.

The benefit of DSE is that it uses B-mode images, and does not require raw RF data

sets. Since most of commercial US scanners provide B-mode images, DSE can be an afford-

able option to generate the elastograms from various types of medical imaging modalities.

However, the accuracy of DSE is relatively low and the computational cost is extremely

high due to its 2D block matching algorithm. Also, the parameter settings in DSE for its

2D correlation is very sensitive and requires multiple empirical trials to obtain acceptable

quality elastogram images.

The PSE demonstrates the best computational efficiency among all methods tested.

However PSE delivers the highest error levels (lowest SNRe values) because it is sensitive
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to the variation of acoustic parameters. Moreover, PSE cannot be directly applied to the

current portable ultrasound device, because pulse repetition period, an essential parameter

for velocity estimation, is not constant, but varies with data size and communication

environment.

3.5 Conclusion

In order to overcome the limited computational performance of portable ultrasound device

in realizing elastography function, a robust phase-based strain estimator (RPSE) which is

independent of the speed of sound, sampling frequency and pulse repetition period was pro-

posed. Through the comparative study with other representative strain estimation meth-

ods including time-delay and displacement-gradient strain estimators, it was found that

the RPSE method can deliver the acceptable level of elastography in terms of elastogram

quality and computational efficiency. For the numerical phantom data, RPSE showed the

best SNRe and CNEe values than the other methods. TSE also generated decent quality

of elastograms; however, due to its high sensitivity to signal noise, estimated strain values

were locally deviated from the true strains estimated by FEA. As for the experimental

data set from the gelatin phantom, RPSE and TSE demonstrated similar performance,

while PSE and DSE delivered much worse SNRe and CNRe levels in all cases, respectively.

One of the greatest strength of RPSE lies in the computational efficiency; it demonstrated

almost 100 times faster computation speed than TSE and DSE in strain estimation. Al-

though PSE can perform the computation almost the same as or even faster than RPSE,

its accuracy is much lower than RPSE. The results suggest that the RPSE be a suitable

algorithm to perform real-time elastography processing for portable ultrasound. However,

RPSE has the limited displacement range between the frames, corresponding to a half

ultrasound wavelength; thus, it may not be an optimum strain estimator for fast-moving

tissues.
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Chapter 4

Overview of Compressive Sensing

4.1 Compressive Sensing

Shannon-Nyquist theorem, also known as the sampling theorem, has had a great impact

on digital signal processing field [62, 63, 64]. This theorem plays a major role in offering

the minimal frequency required to sample and reconstruct a continuous-time signal (often

called analog signal) in the digital signal processing. In other words, the sampling theorem

provides a fundamental bridge between analog signals and digital signals in order to fully

recover the analog signals. Based on Shannon-Nyquist theorem, an analog band-limited

signal can be fully reconstructed from its samples if the sampling rate is greater than

twice the maximum frequency presented in the recorded signal, the so called Nyquist

rate [65]. Furthermore, the digital signal processing following Nyquist rate has entirely

replaced analog signal processing methods and offered high fidelity, inexpensive, and robust

measurement system.

With recent incredible advance of digital technology demonstrating high density im-

ages, the sampling rate of the digital signal processing required to compute, record, and

communicate the considerable amount of data have significantly increased. Moreover, the

cost of the digital signal processing in many emerging digital applications has become ex-

tremely expensive. Also, the digital signal processing following the conventional Nyquist
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rate [65] is often unable to create high fidelity for the large data in recent emerging appli-

cations. Lossy compression, a data encoding method, has been used to reduce data size for

recording, processing, and communicating signal. Since lossy compression preserves only

the large coefficients of a signal, certain level of fidelity loss would be inevitable. The pro-

cess used in lossy compression is also called sparse signal approximation, and this concept

is most commonly used in common compression standards for multimedia data such as

JPEG, JPEG2000, MPEG, and others [66]. Although lossy compression enables to reduce

storage space, computation times, and communication load, the acquisition process should

satisfy the conventional sampling requirement according to Nyquist sampling rate.

Recently compressive sensing (CS) theory [67, 68] has been rigorously studied as a

means to break the conventional Nyquist sampling rate and thus can significantly de-

cease the amount of measurement signals without remarkably sacrificing signal quality.

According to CS theory, discrete signals admitting a sparse representation in the domain

of an adequate linear transform can be significantly compressed from far fewer samples

and then be recovered accurately through the use of reconstruction methods. With the

obvious benefit of data reduction, CS theory has been typically exploited for the medical

imaging applications where the numerous amounts of signal processing are required. For

example, dynamic magnetic resonance imaging (MRI) [69, 70, 71], computed tomography

(CT) [72] and photoacoustic tomography (PAT) [73] are the most representative CS ap-

plications. The performances of a CS framework such as compression rate and fidelity

would vary relying on its signal sparsity and reconstruction algorithm. Thus, the optimal

CS performances are achieved by selecting the adequate sparse representation basis and

reconstruction algorithm, and implementing the best combination of them. CS model basis

showing a sufficient sparse representation of a signal has been well researched, and based

on early results [74, 67, 75, 76], a unique solution for the specific signal reconstruction

problem can be provided by selecting a suitable CS model basis. Solution of a optimiza-

tion problem maximizing the sparsity of the measurement signal has been often exploited

to reconstruct the original signal. In early researches, convex optimization algorithm such

as L1 minimization [74, 75, 76] and greedy methods [77, 78] are popularly used as a de-

terministic reconstruction method. Recently, the CS reconstruction problem has been also

represented as a stochastic algorithm using Bayesian rule [79, 80].
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4.2 Sparsity Representation

Sparsity in CS exploits the idea that the information rate of an analog signal may be

much smaller than suggested by its bandwidth, or that a number of non-zero signal in a

digital measurement signal is incomparably smaller than its signal length [68]. Therefore,

many natural signals could be represented as a concise linear transform when expressed

in the appropriate basis, in the sense that the natural signals are usually significantly

compressible.

Mathematically, CS enables the reconstruction of a signal x ∈ Rn with sparse represen-

tations from a small number of physical measurements y ∈ Rm,m � n. The compressed

measurement data y is acquired using the so-called sensing basis Φ, thus it can be expressed:

y = Φx, (4.1)

where Φ is an m×n matrix. Random Gaussian ensemble or Bernoulli matrices, which are

highly incoherent to the sparse representation achieved by basis matrix Ψ, are often used

as a sensing basis Φ which is designed such that compressible signals x can be recovered

exactly from the compressed data y.

As mentioned, most natural signals have concise representations when expressed in

a convenient basis and the natural signals are generally considerably compressible [68].

Consider any signal x ∈ Rn that can be represented in some model basis Ψ (where Ψ

is an n × n matrix with Ψ1, . . . ,Ψn as column), which can be an orthonormal basis, a

Fourier transform basis, or other basis depending on the measurement signal. The sparse

representation of signal x is:

x =
n∑
i

viΨi = Ψv, (4.2)

where v is an n × 1 column vector and x and v are the same representation of a signal

with x in the time domain and v in the Ψ domain. In the sparse representation, v has

only k < m � n non-zero coefficients (so-called k-sparse) and the signal x is a linear

combination of just k basis vectors. When using a random matrix as the sensing matrix

Ψ, CS can closely reconstruct the k-sparse vector x ∈ Rn with high probability with just
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m ≥ k log n
k

random measurement. By combining Eq. (4.1) and (4.2), the measurements

can be written as:

y = ΦΨv = Av, (4.3)

where A is an m × n full rank matrix (the m rows of A are independent), and obeys the

so-called restricted isometry property (RIP) which proves the general robustness of CS as

a sufficient condition [68]. The isometry constant δk of a matrix A as the smallest number

is defined as:

(1− δk) ‖v‖2l2 ≤ ‖Av‖
2
l2
≤ (1 + δk) ‖v‖2l2 , for each k = 1, 2, . . . . (4.4)

The sufficient condition (RIP) guarantees that the solution of ‖Av‖2l2 (signal energy) in

Eq. (4.4) is bounded between an upper bound and a lower bound. When A satisfies the

RIP condition, A approximately preserves the Euclidean length of k-sparse signals. This

property implies that k-sparse vectors cannot be in the null space of matrix A. To reach the

maximum incoherence between Φ and Ψ, both sensing matrix Φ and model basis Ψ should

be chosen carefully, so that the sparse representation by the model basis Ψ achieves the

minimum k-sparse vectors. Schematic diagram of the typical compressive sensing sampling

processes using random Gaussian sensing matrix Φ and discrete cosine transform matrix

Ψ is illustrated in Fig 4.1.

4.3 Compressive Sensing Reconstruction Methods

Two classes of the optimization algorithms have been mainly employed to reconstruct the

optimal values of sparse signal v in Eq. (4.3). The first one uses deterministic optimiza-

tion algorithms including L1 minimization (L1) algorithms [74, 75, 76], and another uses

stochastic algorithms using the Bayesian learning framework, such as block sparse Bayesian

learning (BSBL) [79, 81].

The deterministic optimization algorithms using convex optimization or Greedy meth-

ods have been used in early researches [74, 67, 75, 76]. Candès et al. [82] proposed `0 norm

as a good sparsity operator for solving the following `0-minimization problem:

v̂ = arg min
v∈Rn
‖v‖`0 subject to y = Av. (4.5)
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The `0-minimization problem in Eq. (4.5) produces a unique solution for the sparse signal

v if A is a proper over-complete orthogonal basis [75]. Unfortunately, computational cost

of solving Eq. (4.5) is extremely expensive because the solution would require searching

among all possible combinations of columns of A (so called non-deterministic polynomial

time (NP) hard). Using sub-optimal greedy algorithm [83], this solution also has been

solved by successively adding non-zero components to a sparse approximation of v.

A basis pursuit (BP) problem, also called L1 minimization, which exploits `1 norm

[84, 85], was proposed to solve the following modified optimization problem:

v̂ = arg min
v∈Rn
‖v‖`1 subject to y = Av. (4.6)

The L1 minimization based on BP optimization problem provides a significant advantage.

Unlike `p norm (0 < p < 1 that is non-convex), the `1 norm is a convex function offering a

global minimum. Compared to exact sparse solutions based on `0 norm, L1 minimization

problem is much simpler problem. Using the RIP condition, the equivalence of optimization

algorithms based on both `0 and `1 has been proved in [85] and then CS reconstruction

algorithm based on L1 minimization is popularly used as the standard CS reconstruction

algorithm.

On the other hand, the unknown sparse signal v can also be reconstructed by exploiting

the principle of Bayesian inference as a stochastic algorithm. In the stochastic approach,

a priori probability density functions (pdf’s) are associated with each of the unknown

variables v, and the Bayes law is used to find the posteriori probability to be maximized,

such that:

p(v|y) ∝ p(y|v)p(v), (4.7)

where p(y|v) represents the likelihood and p(v) contains prior information about the un-

known sparse v. Assume that the A matrix is known and the noise z is approximated by

an additive Gaussian noise with zero mean and unknown variance σ2. Then the sparse

coefficients v and the noise variance σ2 are the quantities of CS estimate based on Bayesian

framework. The associated Gaussian likelihood model is given by [81]:

p(y|v, σ2) = (πσ2)−n exp

(
− 1

σ2
‖y − Av‖2l2

)
. (4.8)

63



By introducing an a priori on the coefficients to be recovered p0(v), the sparsity model

is modeled as follows:

p0(v) ∝ exp (‖v‖l0). (4.9)

This Bayesian approach converts the CS reconstruction problem recovering the sparse

coefficients of v into a Bayesian linear-regression problem with the prior constraint which

v is sparse.

Recently, “Block Sparse Bayesian learning” (BSBL) algorithms have been proposed to

further improve reconstruction performance of wireless electrocardiogram (ECG) applica-

tions [79, 86]. By exploring and exploiting the intra-block correlation that correlates the

entries in each block, the recovery performance of BSBL was greatly improved compared

to other methods ignoring the intra-block correlation.

4.4 Evaluation Metrics for CS

To quantify the compression rate, the subsampling rate (SR) is defined as

SR% =
(

1− m

n

)
× 100, (4.10)

where n and m are the number of the original and undersampled measurements, respec-

tively.

The accuracy of the B-mode and elastograms images from CS reconstruction are quan-

tified by comparing them with the images from the original data through the mean absolute

error (MAE) given by

MAE =
1

n

n∑
i=1

|Ioi − Iri|, (4.11)

where n is the total number of the image data, and Ioi and Iri are the intensities of both

original and reconstructed images, respectively.

As previously described in Section 2.4, the elastographic image quality measures in-

cluding SNRe and CNRe are also used to evaluate image quality of the elastograms recon-

structed by a CS framework.
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Figure 4.1: Compressive sensing sampling processes with random Gaussian matrix Φ and

discrete cosine transform matrix Ψ. The sparse vector v is sparse with k = 4. The four

columns corresponding to non-zero value ki are highlighted on matrix A = ΦΨ and the

compressed measurement vector y ∈ Rm�n is a linear combination of these four columns.
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Chapter 5

Compressive Sensing for

Elastography

5.1 Introduction

Insufficient data transfer speed of the wireless portable ultrasound device is one of chal-

lenges that make the portable devices difficult to achieve the elastography functionality

as described in Section 1.3. Recently compressive sensing (CS) theory has been actively

studied, as a means to overcome the limitation of the conventional Nyquist rate [65, 62, 63]

by leveraging the inherent compressibility of most natural signals to allow recovery from far

fewer measurements than the Nyquist rate would suggest. CS allows significant reduction

of the measurement data, and thus of time for signal processing and data communication

while maintaining output signal quality. Moreover, CS can reduce image artifacts and

noise power when using the same number of measurements. Given all the benefits of CS,

I hypothesize that CS could be a feasible solution to overcome the limitations of portable

ultrasound in realizing elastography function. On the other hand, CS construction imposes

a new computational load to the paired computing device (lab top or tablet PC); however,

I also hypothesize that with the increase of computing power of such devices, the benefits

of CS outweigh the disadvantages. Although medical imaging is one of areas can benefit

from CS, the adoption of CS in ultrasound imaging is relatively new [80]. Also, most of
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the related studies have been focusing on conventional pulse-echo B-mode imaging or sug-

gesting several random sampling strategies [79]. To the best of author’s knowledge, none

of them has attempted to apply CS to elastography, particularly for portable ultrasound

where the reduction of measurement data to be transferred through wireless communica-

tion is crucial. Therefore, the objective of this section is to examine the feasibility of CS for

elastography and to find the most efficient CS framework for implementing elastography

function on portable ultrasound. Since the CS framework can also be used for B-mode

reconstruction using sub-sampled RF data for reducing wireless communication data, the

performance of the frameworks for reconstruction of B-mode images is also investigated.

It needs to be mentioned that the quality of CS reconstruction highly depends on both

the reconstruction algorithms and the sparsity of the signal representation. Therefore, this

study includes composing various CS frameworks associated with different model bases and

reconstruction algorithms and assessing the quality of the B-mode images and elastograms

from the RF data sub-sampled and reconstructed by each framework.

5.2 CS Frameworks

CS framework applied to portable ultrasound device in this research follows the procedure

as illustrated in Figure 5.1. First, a pair of original RF data sets from CS sampling are

collected and compressed by the portable US device (Figure 5.1, above). The undersampled

(compressed) RF data sets are then transmitted to a laptop or mobile device through

the Wi-Fi network established between them. The laptop computer (or mobile device)

recovers the compressed data sets using a CS reconstruction algorithm, and then generates

the elastogram using the RPSE method which is described in the Section 3.2 (Figure 5.1,

bottom).
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Figure 5.1: Schematic of the CS procedure for generating elastogram in portable US device
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5.2.1 Model Bases for CS sampling

CS performance strongly depends on signal sparsity representation in the reconstruction

model basis Ψ [81]; however, since the raw RF data in ultrasound shows an oscillatory

pattern, it is not trivial to find the adequate sparsity representation with any basis. In CS,

discrete Fourier transform (FT), discrete cosine transform (DCT), and wavelets have been

often considered as candidates for signal sparsity representation. When natural signals are

represented in FT or DCT domain, most of FT or DCT coefficients are zero or small enough

to consider zero values. Therefore, both FT and DCT model bases are often considered

as a signal sparsity representation in the conventional CS framework. If a natural signal

is spare in FT domain, the FT model basis is an n × n orthogonal matrix whose sparse

representation in frequency domain is given by

vFT (u) = FT [x(t)] =
√
n
n−1∑
t=1

x(t)e−i2πut/n, 0 ≤ t, u ≤ n− 1, (5.1)

FT sparse signals are only those which are superpositions of sinusoids with frequencies

appearing in the lattice of those in FT [87]. In addition, DCT, the most widely used

transform for image and video compression systems, is another preferred tool for CS sparse

representation. The DCT model basis [88] is also an n×n orthogonal matrix whose sparse

representation in cosine transform domain is given by

vDCT (u) = DCT [x(t)] ,

=

√
1

n
, u = 0,

=

√
2

n

n−1∑
t=1

x(t) cos
π(2t+ 1)u

2n
, 1 ≤ u ≤ n− 1,

(5.2)

where the function x(t) is the value of t−th samples of input signals, and the function

v(u), the coefficients of this linear combination, represents DCT coefficients which are the

real-valued unlike FT coefficients.

Wave atoms transform (WA), proposed by Demanent and Ying [89], represents the

time-dependent Green’s function and enables to provide a tight frame of multiscale, di-

rectional wave packets obeying a parabolic balance between oscillations and support size,
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namely wavelength ∼ (diameter)2 [90]. In other words, the WA offers the exact relation-

ship between the directional wavelets and the Gabor transform which is a special case of

the short-time Fourier transform. The name “wave atoms” comes from the property of the

transform which also provides an optimally sparse representation of wave propagators [90].

In order to classify various wave-packet transforms as phase-space tiling, two parameters

should suffice to index a lot of known wave packet architectures: α to index multiscale

nature of the transforms, from 0 (uniform) to 1 (dyadic); and β to indicate the wave

packet’s directional selectivity, from 0 (best selectivity) to 1 (poor selectivity).In wave

atoms, both α and β are defined to be 0.5 [89].

In 1D WA, f(x) and f(ω) are considered as a 1D Fourier transform pair, where x and ω

correspond to the coordinates in the time domain and the frequency domain, respectively.

ϕµ(x) denotes the wave atoms, where µ = (j,m, n) and the integer-valued j,m, n indicate

scale, wave number, and location, respectively. Then the indexed point (xµ, ωµ) in phase

domain is [89, 90]

xµ = 2−jm,ωµ = π2jn. (5.3)

The elements of a frame of wave packets ϕµ are called wave atoms when

|ϕ̂(ω)| ≤ CM2−j(1 + 2−j|ω − ωµ|)−M + CM2−j(1 + 2−j|ω + ωµ|)−M , for all M > 0, (5.4)

and

|ϕ(x)| ≤ CM2j(1 + 2j|x− xµ|)−M for all M > 0. (5.5)

Generally, wavelets provide a multiscale representation that indexed by scale and lo-

cation. Similarly, WA produces a multiscale transform with frame elements indexed by

scale, location, and orientation parameters. Among the multiscale feature in WA, the

index parameter for orientation is useful for adapting to arbitrary local directions of oscil-

latory patterns [80]. Meanwhile, DCT expresses a finite sequence of data points in terms

of a sum of cosine functions (real-valued) oscillating at different frequencies, while FT

represents scaled-and-shifted complex vectors in the frequency domain.

In the CS frameworks, reconstruction performance of the CS adopting WA, DCT, and

FT model bases were compared to find a relevant sparse representation of the raw RF data
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in ultrasound. Since the elastogram used in this study depicts the axial strain field, each

basis function is applied to one-dimensional RF signal, and then the measurement signal

x is converted to the sparse representation v in the Ψ domain as described in Eq. (4.2).

For WA model base, the WA package based on [89] was employed to conduct the forward

and inverse WA transform. For DCT and FT, one-dimensional built-in function sets in

MATLAB were utilized, with the signal segment size set to 256 for all model bases.

5.2.2 CS Reconstruction Methods

The simulated RF data sets produced from the numerical elastography phantom were sub-

sampled by removing 10%-80% of the original samples using a uniform random law. For

example, 70% subsampling rate means that 70% of the of the original samples are removed

and only 30% are are maintained in the compressed vector y. CS reconstruction was then

performed on the sub-sampled RF data by solving the CS minimization problem in Eq.

(5.6). Two types of optimization algorithms were adopted: L1 and BSBL.

L1 based reconstruction

In practical applications, the physical measurements are often corrupted by noise and the

measurements with additive noise are rewritten as:

y = Av + z, (5.6)

where z is a unknown error term and bounds the amount of noise in the data (‖z‖l2 ≤ ε).

In order to recover sparse data v in Eq. (5.6), L1 minimization problem in Eq. (4.6) is

recasted as [68, 91]:

P : v̂ = arg min
v∈Rn
‖v‖l1 subject to ‖y − Av‖l2 ≤ ε. (5.7)

The L1 minimization problem with error terms in Eq. (5.7) is often called as the LASSO

[92]. In solving Eq. (5.7), a sparse reconstruction algorithm estimates the optimal values

of v in Eq. (5.6), and then the measurement signal x can be converted from Eq. (4.2).
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Dantzig selector [93] or a combinatorial optimization algorithm proposed by Haupt and

Nowak [94] can be used to solve the L1 minimization problem Eq. (5.7) and can produce

provable results if the noise is Gaussian with bounded variance. In the L1 experiments

using the l1-Magic package [91], the accuracy threshold ε, signal segment size, and the

number of maximum iteration were set to 0.003, 256, and 50, respectively.

Bayesian Learning based reconstruction

CS based on block sparse Bayesian learning (BSBL) framework have been proposed to fur-

ther improve reconstruction performance of wireless electrocardiogram (ECG) applications

[79, 86]. By employing the BSBL framework, the abnormal signal can be partitioned into a

concatenation on non-overlapping blocks. Consider a sparse signal v which can be viewed

as a concatenation of a number of blocks, such that [95]:

v = [v1, . . . , vd1︸ ︷︷ ︸
vT
1

, . . . , vdg−1+1, . . . , vdg︸ ︷︷ ︸
vT
g

]T , (5.8)

where vi ∈ Rdi , and di (i = 1, , g) are not necessarily identical. Among these blocks, only a

few blocks in the signal structure are non-zero, a signal with this structure can be a block

sparse signal.

In the BSBL framework, each block vi ∈ Rdi is assumed to meet a parameterized

multivariate Gaussian distribution [95]:

p(vi; γi,Bi) ∼ N (0, γiBi), i = 1, . . . , g, (5.9)

with the unknown parameters γi and Bi. The first parameter γi controls the sparsity of

each block in the signal v. When γi=0, the corresponding block becomes zero and most γi

tends to be zero during the learning sequence. It ends up encouraging the better sparsity at

the block level because most of signals tend to be zero and to remain a few non-zero values.

Bi ∈ Rdi×di is a positive definite matrix, capturing the intra-block correlation structure of

the corresponding block i. With the assumption that blocks are mutually uncorrelated, the

prior of v is p(vi; {γi,Bi}i) ∼ N (0,Σ0), where Σ0 is a block-diagonal matrix of γiBi. The

approach also assumed that the noise vector follows a multivariate Gaussian distribution,
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namely p(z, σ2) ∼ N (0, σ2I). By applying Bayes’ rule, the posterior density of v is given

by [95]:

p(v|y, σ2, {γi,Bi}gi=1) ∼ N (µv,Σv), (5.10)

with the mean and co-variance given by:

µv = Σ0A
T (σ2I + AΣ0A

T )−1y

Σv = (Σ−10 +
1

σ2
ATA)−1.

(5.11)

Once the parameters σ2, {γi,Bi}gi=1 are estimated by the Type II maximum likelihood

procedure [95], the maximum a posteriori (MAP) of v, denoted by v̂, can be directly

obtained from the mean of the posterior, i.e., v̂ = µv. Several algorithms [89, 57] have been

derived to reconstruct v.

In this work, the bound-optimization based block spare Bayesian learning (BSBL-BO)

[95] is selected to show the CS reconstruction performance in generating elastography

for portable ultrasound. In the BSBL-BO, the reconstruction of non-sparse signals is

accomplished by setting a γi-pruning the threshold to a small value. The threshold value

is used to prune out small γi during iterations of the algorithm. In the BSBL experiments

using the BSBL-BO package [95], the segment length and block size, the accuracy threshold

ε, and the maximum iteration were set to 256, 12, 108 and 7, respectively.

5.3 Numerical Phantoms

Numerical phantoms were developed to perform the virtual ultrasound experiment to eval-

uate the performance of various CS frameworks on image reconstruction. Two types of

numerical phantoms were modeled: echoic and elastography phantoms.

5.3.1 Echoic Phantom

An echoic phantom contains arrays of hyperechoic and hypoechoic inclusions [80] to assess

the performance of CS on the recovery of B-mode images. Using Field II [59, 60], an
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open-source MATLAB-based ultrasound simulation code, RF signals from a numerical

phantom of size 50× 10× 55 mm3 were simulated. A 192-element linear array probe with

the center frequency 3.5 MHz was modeled to generate the regular ultrasound B-mode

images. The numerical phantom was composed of a total of 100,000 point scatterers, four

hyperechoic, and four hypoechoic inclusions of the diameter of 6 mm. The hyperechoic

inclusions mimicked the malignant tumour with round hyperdensities (BiRads 4 or 5),

while hypoechoic inclusions simulated benign cysts filled with liquid without any scatterers

(BiRads 1 or 2). The standard deviation of the scatterers’ amplitude distribution inside

the hyperechoic inclusions was ten times that of the background. The spatial distribution

of the scatterers in the hyperechoic inclusions and the background was modeled as uniform,

and the amplitude of these regions followed a zero mean Gaussian distribution, respectively.

5.3.2 Elastographic Phantom

An elastography phantom was constructed by combining a finite element analysis (FEA)

model and Field II code. Using commercial FEA code (Abaqus/CAE 6.10) (Figure 5.2,

upper left), a linear elastic phantom of the size 40×50×10 mm3 was modeled to have a stiff

cylindrical inclusion (10 mm) in the soft matrix. To acquire the acceptable level of ultra-

sound echo signal, the FEA model was meshed with approximately 427,000 3D quadratic

tetrahedron elements and 77,000 nodes. The elastic moduli of the matrix and the inclusion

were set to 20 kPa and 100 kPa, respectively, mimicking a carcinoma in breast tissue. Pois-

son’s ratio of 0.49 was applied to the whole phantom. The vertical movement of the bottom

surface of the phantom was constrained while 0.1% axial compressive strain was applied

to the top surface. The coordinates of each node were determined and recorded by FEA

as the deformation field data sets. Then Field II code was used to add random scatterers

to the nodal displacements and generate the corresponding pre- and post-deformation RF

signal data (Figure 5.2, upper center). The amplitudes of the random scatterers were kept

constant throughout the phantom, thus the inclusion could not be detected in the RF sig-

nal or in the B-mode image. In order to simulate the portable ultrasound device, a linear

probe having 152 ultrasound elements and 24 active elements was virtually modeled with

Field II. The center frequency of the transducer was placed at 3.5 MHz and the sampling
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rate of RF signals was set to 28 MHz. The speed of sound through the phantom was

set to 1,540 m/s. With this setting, Field II generated 128 simulated RF lines (A-lines)

with each line containing 2,589 samples across the phantom depth. Parameters for both

echoic and elastography phantoms are listed in Table 5.1. The robust phase-based strain

estimator (RPSE) was applied to the RF data sets from CS reconstruction (Figure 5.2,

upper and lower right) and the strain fields were estimated from the reconstructed RF

dataset (Figure 5.2, lower center). The differences between the strain estimates and the

true strains computed by the FEM were regarded as estimation errors (Figure 5.2, lower

left).
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Figure 5.2: Schematic of the procedure to construct a virtual elastograpy phantom and to

produce elastogram from the undersampled RF data of the phantom using CS reconstruc-

tion.
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Table 5.1: Acoustic parameters for numerical phantoms

Parameter Echoic phantom Elastography phantom

Phantom size 50× 10× 55 mm3 40× 50× 10 mm3

Center frequency 3.5 MHz 3.5 MHz

Sampling frequency 28 MHz 28 MHz

Width 0.44 mm 0.44 mm

Height 5 mm 5 mm

Kerf 0.022 mm 0.022 mm

Number of elements 192 152

Transmit elements 64 24

Receive signals considered 128 128

Transmit/receive focus 50 mm 50 mm
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5.4 Results and Discussion

5.4.1 Evaluation of B-mode reconstruction

B-mode images the produced by various CS frameworks formed by combining one of the

two reconstruction algorithms (L1 and BSBL) and one of three model bases (FT, DCT and

WA), respectively, were evaluated as shown in Figure 5.3 and 5.4 to demonstrate the general

CS application in medical ultrasound. To compare the quality of reconstructed B-mode

images, I selected a 50% subsampling rate in all cases when generating the elastograms.

As for the echoic phantom containing four hyper- and hypoechoic inclusions (Figure

5.3), both L1 (Figure 5.3(a)) and BSBL (Figure 5.3(b)) algorithms were able to recover

the detailed patterns of the phantom, and their hyper- and hypoechoic inclusions are

clearly discernable, except the framework combining L1 with FT basis (L1-FT). Among

the B-mode images reconstructed by L1 (Figure 5.3(a)), both L1-DCT and L1-WA show

comparable image quality and similar MAE values of 0.082. L1-FT produces the lowest

image quality with the highest MAE value (0.242). Hyper- and hypoechoic inclusions on

L1-FT image are blurred and dispersed, which make them difficult to discern. On the other

hand, B-mode images reconstructed by BSBL present better image quality and lower MAE

than those by L1, as shown in Figure 5.3(b). BSBL-DCT produces the lowest MAE of

0.022, while the MAEs of BSBL-FT and BSBL-WA are slightly higher at 0.029 and 0.037,

respectively.

B-mode images of the elastography phantom containing a stiff inclusion from various

CS frameworks are shown in Figure 5.4. Since the standard deviation of the scatterers’

amplitude distribution is the same as that of background, the inclusion is not visible on

the B-mode images. Among the B-mode images reconstructed by L1 (Figure 5.4(a)), both

L1-DCT and L1-WA are associated with the same level of MAE at 0.066, whereas L1-FT

yields the highest MAE of 0.111 with unexpected vertical black patterns appearing on

the reconstructed image. Meanwhile, B-mode images reconstructed by the BSBL (Figure

5.4(b)) preserve the patterns intact with excellent accordance with the original image.

Comparing MAE values associated with the same model bases, BSBL-based frameworks

yield much lower values than L1-based ones. Among the BSBL images in Figure 5.4(b),
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BSBL-FT is associated with the lowest MAE of 0.017, followed by BSBL-DCT and BSBL-

WA with the MAE of 0.022 and 0.034, respectively.

Plots of MAE values for various CS frameworks are presented in Figure 5.5 as a function

of removed data (subsampling rate) from 10% to 80%. Quite consistently, the errors

increase with the number of samples removed, for all CS frameworks. For the echoic

phantom (Figure 5.5(a)), the MAE values increase linearly until 50% subsampling for all

model bases, and then rapidly rise, except for L1-FT, which shows a linear trend with much

higher error than the other two bases. It is also notable that BSBL-based frameworks yield

lower MAE values than L1-based ones with little variation between model bases, which

is consistent with the trends in B-mode images (Figure 5.3 and 5.4). The MAE plots for

L1-DCT and L1-WA are almost equivalent, while all BSBL-based plots agree well with

each other. In case of the elastography phantom (Figure 5.5(b)), the trends of MAE are

similar to those of the echoic phantom, apart from L1-FT which is still higher than the

others, but follows much closer trend than that in echoic phantom. Overall MAE values

associated with BSBL-based frameworks are lower than those of L1-based ones with little

variation across model bases.
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Figure 5.3: B-mode images of the echoic phantom containing hyper- and hypo- echoic

inclusions produced from the original data and the reconstructed data by (a) L1-based and

(b) BSBL-based CS reconstruction frameworks, combined with FT, DCT, and WA model

bases, respectively. Data were reconstructed using 50% subsampling.
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Figure 5.4: B-mode images of the elastography phantom produced from the original data

and the reconstructed data by (a) the L1-based and (b) the BSBL-based based CS recon-

struction frameworks, combined with FT, DCT, and WA model bases, respectively. Data

were reconstructed using 50% subsampling.
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Figure 5.5: MAE plots associated with various CS frameworks as functions of subsampling

rate, measured on: (a) the echoic phantom, (b) the elastography phantom.
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5.4.2 Evaluation of Elastographic Phantom

By applying the RPSE method to the RF data of elastography phantom from CS recon-

struction, elastograms are generated to describe the strain fields under compressive defor-

mation. Image quality of the elastograms from various CS frameworks are comparatively

investigated.

The elastograms from L1-based frameworks for the subsampling rate from 30% to 50%

are compared in Figure 5.6. The elastograms for all bases for 30% subsampling rate preserve

the original patterns very well, and the stiff inclusion in the center is clearly discernable.

At 40% subsampling rate (Figure 5.6(b)), both L1-DCT and L1-WA elastograms still show

discernable inclusion and consistent matrix strain which are close to the original image,

while degradations in the inclusion and the matrix start occurring in L1-FT elastogram.

When the subsampling rate is increased to 50% (Figure 5.6(c)) the shapes of the stiff

inclusion for all three bases are hardly discernable and the strain fields in the matrix show

inconsistent and locally varying behavior. Over all, L1-DCT and L1-WA preserve the strain

patterns of similar quality until 40%, while L1-FT tends to lose the patterns much earlier

than the others. From the observation, 40% subsampling rate seems to be the threshold

compression ratio to effectively detect the inclusion for the elastograms from L1-based CS

frameworks.

Strain values measured along the vertical centerline across the L1-based elastograms

are plotted in Figure 5.7. The strain fields for three bases over the subsampling rate

from 30% to 50% are compared with the strains from the FEA as a ground truth. At

30% subsampling rate (Figure 5.7(a)), both plots from L1-DCT and L1-WA show good

agreement with the FEA strains. For 40% (Figure 5.7(b)), L1-DCT and L1-WA still follow

the trend of FEA, but the strains start oscillating both in the inclusion and the matrix

where strains are regarded as constant. The oscillations in these regions are significantly

amplified with further increase of subsampling rate (Figure 5.7(c)). Beyond 50%, the

strain plots become too noisy to identify the shape of the inclusion, which also indicates

that sampling rate around 40% should be the threshold for L1-based CS frameworks.

The elastograms from BSBL-based CS frameworks over the subsampling rate from

50% to 70% are presented in Figure 5.8. At 50% subsampling rate (Figure 5.8(a)), all
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elastograms preserve the patterns superbly; they are almost equivalent to the original

elastogram and accurately depict strain distribution in the inclusion and the matrix. At

60%, the inclusion is still discernable, regardless of slight strain degradation particularly in

BSBL-WA (Figure 5.8(b)). Beyond 70% subsampling rate, all elastograms are significantly

degraded and the original strain patterns are lost almost completely as shown in Figure

5.8(c). Qualitative observation suggests that BSBL-DCT elastograms best agree with the

original ones, particularly for 50% and 60% subsampling rate.

The strain plots along the vertical centerline across the BSBL-based elastograms are

presented in Figure 5.9. The strain plots for all three bases show excellent agreement

with the ground truth (FEA results) for 50% subsampling rate (Figure 5.9(a)). With the

increase of subsampling rate, reconstructed strain plots start to show oscillating behavior

(Figure 5.9(b)). Eventually, all strain plots lose the track of the ground truth beyond 70%

subsampling rate, as shown in Figure 5.9(c). It can be summarized that that BLBL-based

CS reconstruction is highly reliable until 50%, and produces the acceptable elastograms

up to 60% subsampling rate, for all three bases tested. Furthermore, the qualities of

elastograms from BSBL-based CS frameworks are far less influenced by the model bases

than those from L1-based ones.
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Figure 5.6: Elastograms of elastography phantom computed from the original data and

from various CS reconstruction frameworks for the subsampling rate of: (a) 30%, (b) 40%,

and (c) 50%.
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Figure 5.7: Strain values measured along the vertical centerline across the elastograms

computed from the L1-based CS reconstruction frameworks for the subsampling rate of:

(a) 30%, (b) 40%, (c) 50%. The FEA plots are the ground truth.
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Figure 5.8: Elastograms of the elastography phantom computed from the original data and

from the BSBL-based CS reconstruction frameworks for the subsampling rate of: (a) 30%,

(b) 40%, and (c) 50%.
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Figure 5.9: Strain values measured along the vertical centerline across the elastograms

computed from the BSBL-based CS reconstruction frameworks for the subsampling rate

of: (a) 50%, (b) 60%, (c) 70%.
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5.4.3 Evaluation of Image Quality Measures

Image qualities of the elastograms are evaluated with three image quality measures (MAE,

SNRe, and CNRe) to determine the optimal CS scheme for generating the ultrasound

elastograms. All the image measures are collected over the subsampling rate from 10% to

80%.

The MAE plots of elastograms (Figure 5.10) from various CS frameworks are compared

with the reference strain error (black solid line) that corresponds to 15% of the applied

strain (0.1%). The reference error plays as the error criterion based on the observation

that MAE plots rise rapidly once they reach this level. Since MAE can be regarded as a

monotonic function of subsampling rate, the threshold subsampling rate of each framework

is estimated from the intersection between the MAE and the error criterion.

Among the MAE plots for L1-based frameworks (dashed lines in Figure 5.10), the L1-FT

yields the highest error level and intersects the error criterion at around 33% subsampling

rate, while L1-DCT and L1-WA are slowly increasing until 40% subsampling rate from

which they start rising rapidly. Overall, among L1-based frameworks, L1-WA presents the

best result until it reaches the error criterion.

All BSBL-based CS frameworks generate similar level of MAE lower than error criterion

until 50%, regardless of associated model bases. Threshold subsampling rate is identified

to be around 60% for BSBL-WA and BSBL-FT and around 63% for BSBL-DCT. The

comparison between L1- and BSLB-based plots in Figure 5.10 suggest that BSBL-based

CS frameworks yield more reliable results than L1-based ones. Particularly BSBL-DCT

yields the lowest error level over the subsampling range tested.

The elastographic SNRe and CNRe identifying the precision and the discernibility of

the elastograms are quantified in Figure 5.11. All SNRe plots in Figure 5.11(a) present

slowly decreasing trend at first, but start to drop rapidly with increase of subsampling rate.

BSBL-based frameworks yield higher SNRe than L1-based ones across all subsampling

range tested. In Figure 5.11(b), CNRe plots from CS frameworks are almost equivalent to

those from original elastogram (meaning excellent discernibility) in low subsampling range;

however, they start to drop rapidly with increase of subsampling rate. Over all, both SNRe
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and CNRe plots from BSBL-based frameworks present higher values than those from L1-

based ones over the entire subsampling range. Furthermore, results from BSBL-based

frameworks are less influenced by the model bases because its block-wise approach might

maximize the signal sparsity of ultrasound echo signal. All the image quality measures

(MAE, SNRe, and CNRe) imply that the feasible level of the subsampling rate without

significant loss of patterns is 40% for L1-based and 60% for BSBL-based frameworks,

respectively.

Computation times of the CS reconstruction methods were also measured on a Win-

dows 10 computer (2.3MHz, i7-3670 CPU with 12 GB RAM, ASUS-K55VD) using the

in-house developed MATLAB code. Overall, L1-WA showed the fastest computation time

(16.732 seconds) while L1-FT spent 105.909 seconds due to the calculation of its complex

array. On the other hand, BSBL-based frameworks presented relatively similar computa-

tion times among different bases. BSBL-WA took only 38.454 seconds, while BSBL-DCT

and BSBL-FT recorded 41.864 and 55.479 seconds, respectively. As for the number of

average iterations, L1-FT recorded 42.61, while L1-DCT and L1-WA took 12.95 and 12.73

iterations, respectively. For the BSBL-based frameworks, all methods required around 7

iterations. Threshold subsampling rates and the corresponding MAEs, SNRe, CNRe, and

computation times for different CS frameworks are summarized in Table 5.2.
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Figure 5.10: MAE of the elastograms as a function of subsampling rate. The error is

computed on the elastograms produced from the various CS reconstruction frameworks.

Reference error is 15% of the applied strain.
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Figure 5.11: (a) SNRe and (b) CNRe of the elastograms as a function of subsampling rate.

The image quality measures are computed on the elastograms produced from the original

data and from various CS reconstruction frameworks.
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Table 5.2: Image quality measures (MAE, SNRe, CNRe), CPU time, and average number of

iteration at the threshold subsampling rate (SR) associated with various CS reconstruction

frameworks.
CS CS Threshold MAE SNRe CNRe CPU Avg.

Reconstruction model basis SR(%) (dB) (sec) iteration

L1 FT 40 1.899e-4 2.052 34.564 105.91 42.61

L1 DCT 40 1.312e-4 3.754 39.694 28.492 12.95

L1 WA 40 1.216e-4 3.817 42.474 16.731 12.73

BSBL FT 60 1.369e-4 3.534 43.489 55.479 7

BSBL DCT 60 9.538e-5 3.455 42.839 41.864 7

BSBL WA 60 1.681e-4 3.045 44.391 38.454 7
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5.5 Conclusion

Large amount of ultrasound echo data to be transferred through wireless communication is

one of the major limitations in implementing ultrasound elastography function on portable

ultrasound. As a means to reduce the size of the measurement data, this thesis addresses

the feasibility of applying compressive sensing (CS) method to elastography. Since CS

reconstruction performance is highly affected by the model basis representing the sparse

expansion of the data, as well as reconstruction algorithm to solve the minimization prob-

lem, three bases, discrete Fourier transform (FT), discrete cosine transform (DCT), and

the recently introduced wave atoms (WA), and two reconstruction algorithms, L1 mini-

mization (L1) and Block sparse Bayesian learning (BSBL) were tested to find the most

feasible CS framework.

The quality of the reconstructions was quantified using the B-mode and elastogram

images of simulated numerical phantoms through three image quality measures, mean

absolute error (MAE), signal-to-noise ratio (SNRe) and contrast-to-noise ratio (CNRe) at

varying subsampling rates. The results indicate that BSBL-based CS frameworks generally

delivered the superior performance to L1-based ones. Particularly, the CS framework

adopting BSBL-DCT combination yielded the lowest MAE and the highest SNRe and

CNRe among all combinations, and achieved the optimal CS reconstruction framework for

producing elastograms in the portable ultrasound device. The results also suggest that the

maximum data reduction (subsampling) rate for generating discernible elastograms is 60%

for BSBL-DCT framework.
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Chapter 6

Summary of Contributions and

Future Work

6.1 Summary of Contributions

The limitations of computational performance and data transfer speed via wireless com-

munication are two major obstacles to realizing the elastography functionality in wireless

portable ultrasound device. In this work, two research approaches seeking for the feasible

solutions for realizing the elastography functionality in the portable ultrasound device have

been performed to overcome the obstacles.

A new robust phase-based strain estimator (RPSE), which is computationally efficient

and robust to the variations of ultrasound measurement parameters, has been proposed

as an optimum strain estimator which is suitable for the portable ultrasound with limited

computational performance. The image quality and computational efficiency of RPSE

have been evaluated by performing the comparative study with other representative strain

estimators. The results suggest that the RPSE can produce comparable and/or superior

level of elastography to other strain estimators, as described in Chapter 3. Since the

ultrasound measurement parameters including speed of sound, sampling intervals along

depth and frame slightly vary during the ultrasound RF signal acquisition and affect the
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accuracy of elastography, the robustness of the RPSE to the measurement parameters is

particularly beneficial to the implementation of the elastography function in the portable

device.

As a solution to reduce the size of ultrasound echo data transferred via wireless commu-

nication, the feasibility of applying compressive sensing (CS) method to elastography has

been considered. This thesis has proposed and tested various CS frameworks consisting

of three different model bases and two kinds of reconstruction algorithms. In terms of

three image quality measures (MAE, SNRe, and CNRe), CS reconstruction performances

of both B-mode and elastogram images have been evaluated as described in Chapter 5.

Evaluation results have showed that BSBL-based CS frameworks generally deliver the bet-

ter image quality and higher subsampling rate compared to L1-based ones. Particularly,

the CS framework adopting BSBL-DCT combination has showed the best CS performance

among all tested combinations. The results also have suggested that the maximum data

reduction (subsampling) rates which can reasonably preserve the strain value are 40% for

L1-based framework and 60 % for BSBL-based framework, respectively.

It can be concluded that the RPSE algorithm can substantially reduce the computation

load and time and should be the best fit for portable ultrasound elastography, while CS

method adopting BSBL-DCT framework can minimize the data transfer load and of great

help to achieve real-time portable ultrasound elastography.

6.2 Future Work

6.2.1 RPSE with an Advanced Phase Unwrapping Method

Although RPSE uses phase unwrapping function in MATLAB, it still has the limited dis-

placement range between the frames, corresponding to a half ultrasound wavelength; thus,

it may not be an optimum strain estimator for fast-moving tissues. In addition, most phase-

based strain estimators are suffering from line errors called dropout because the phase shift

estimation of current point relies on the accuracy of the previous point’s estimation. Con-

sequently, an entire line on strain map can be easily corrupted by an error at the previous
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point in the line. As described in the Section 2.2.3, several studies [46, 96] have been

introduced to expand the displacement range and remove the line errors. By developing

or adopting more advanced and accurate advance phase unwrapping method, RPSE can

further improve its accuracy and displacement bandwidth without much computational

overhead.

6.2.2 Real-time CS Framework

Currently the computation for CS reconstruction is so heavy that real-time processing is

difficult to be achieved. Improving the algorithm for efficient and fast computation is es-

sential for the application of CS to portable ultrasound. CS real-time implementation may

be achieved by using a better computation framework such as a GPU’s parallel comput-

ing methods or a C++ code implementation. Another important improvement involves

investigating other reconstruction algorithms and model bases, specifically adapted to ul-

trasound RF data. Such improvement would make it possible to build an even sparser

representation than current BSBL-DCT combination, thus allows better reconstruction for

a given subsampling rate.
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Appendix A

Mathematical Operations

A.1 Correlation and Convolution

Correlation and convolution are basic operations to extract information from two functions

or signals. The correlation of continuous functions f and g is defined by

f ◦ g(x) =

∫ ∞
−∞

f(p)g(x+ p)dp, (A.1)

whereas the convolution is defined by

f ∗ g(x) =

∫ ∞
−∞

f(p)g(x− p)dp. (A.2)

For discrete data sets, correlation is the process of moving a filter mask over the data

set and computing the sum of products at each location. The mechanics of convolution are

the same, except that the filter is first rotated by 180◦. For the data set g of size M ×N ,

correlation with a filter f of size m× n is given by

h(x, y) = f ◦ g =

m−1
2∑

s=−m−1
2

n−1
2∑

t=−n−1
2

f(s, t)g(x+ s, y + t), (A.3)

where x and y varied so that in f visits every point in g.
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Correlation is useful in comparing two deterministic signals and it provides a measure

of similarity between the first signal and a time-delayed version of the second signal (or

the first signal). Figure A.1 illustrates the correlation using a 3 × 3 filter. At any point

(x, y) in the data set, the correlation, h(x, y), of the filter is the sum of the products of the

filter and the data set encompassed by the filter. The location where maximum correlation

value is produced is where the highest similarity occurs.

Figure A.1: Calculation mechanism of correlation and convolution

In a same manner, the convolution of f and g is given by

p(x, y) = f ∗ g =

m−1
2∑

s=−m−1
2

n−1
2∑

t=−n−1
2

f(s, t)g(x− s, y − t), (A.4)

where the minus signs of the right flip g (i.e. rotate it by 180). Flipping and shifting f

instead of g produces the same result, as shown in Figure A.1. As with correlation, this is

evaluated for all values of x and y so that every element of f visits every point in g.
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A.2 Autocorrelation

Autocorrelation is the cross-correlation of a signal with itself at different points in time.

Autocorrelation describes the similarity of coherence between the given function or the

signal and its delayed or its advanced version. The autocorrelation function of an aperiodic

signal x(t) is defined by [97]

γ(τ) =

∫ ∞
−∞

x(t)x(t+ τ)dt =

∫ ∞
−∞

x(t)x(t− τ)dt = x(t) ∗ x(t− τ). (A.5)

For a complex signal x(t), the autocorrelation is defined by [98]

γ(τ) =

∫ ∞
−∞

x(t)x∗(t+ τ)dt =

∫ ∞
−∞

x(t)x∗(t− τ)dt, (A.6)

where x∗ denotes the complex conjugate. If {x(t)}N−1t=0 is a periodic signal, the autocorre-

lation can be written as

γ(τ) =
N−1∑
t=0

x(t)x∗(t+ τ). (A.7)

For a periodic array x(m,n) with 0 ≤ m ≤M − 1 and 0 ≤ n ≤ N − 1, the autocorrelation

is the M ×N matrix given by

γ(τx, τy) =
M−1∑
m=0

N−1∑
n=0

x(m,n)x∗(m+ τx, n+ τy). (A.8)

In this thesis, ultrasound radio-frequency (RF) data acquired from the ultrasound probe

is assumed a two dimensional matrix with M depth samples and N adjacent lateral scan

lines in a time-series with K ”slow time” frames. Each ultrasound data set can be rep-

resented by the cordinates [m,n, k] in time-space. Following the notation of Loupas. et

al [57], M and K specify the ”range gate length”, the number of depth samples, and the

”ensemble length”, the number of pulse transmissions, respectively. In the same manner,

the term lateral gate length will be defined as N .

The RF data from the set of 2D frames are represented as a real, discrete three dimen-

sional signal, and it will be expressed x[m,n, k], where m, n, k are the depth index, the beam
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number and the frame number of a single data set. A set of K matrices X0, X1, · · · , XK−1

with M rows and N columns is represented as Xframe given by [42]:

X0 =


x[0, 0, 0] x[0, 1, 0] · · · x[0, N − 1, 0]

x[1, 0, 0] x[1, 1, 0] · · · x[1, N − 1, 0]
...

...
. . .

...

x[M − 1, 0, 0] x[M − 1, 1, 0] · · · x[M − 1, N − 1, 0]


...

XK−1 =


x[0, 0, K − 1] x[0, 1, K − 1] · · · x[0, N − 1, K − 1]

x[1, 0, K − 1] x[1, 1, K − 1] · · · x[1, N − 1, K − 1]
...

...
. . .

...

x[M − 1, 0, K − 1] x[M − 1, 1, K − 1] · · · x[M − 1, N − 1, K − 1]



(A.9)

The autocorrelation function between the pre- and post-frame of ultrasound RF data

is defined as [42]:

γ(m, k) =
M−m−1∑
u=0

N−1∑
v=0

K−k−1∑
w=0

x+[u, v, w]x∗+[u+m, v, w + k], (A.10)

where x+ is the analytical signal along the axial dimension which is a complex-valued

function that has no negative frequency components, and defined as:

x+[m,n, k] = x[m,n, k] + j ·H{x[m,n, k]}, (A.11)

where H{x[m,n, k]} is the Hilbert transform.
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Appendix B

Displacement Estimation Techniques

B.1 Correspondence Functions for 1D Displacement

Estimation

Signal correspondence functions can be used to determine the time delay (or shift) between

a given pair of the ultrasonic data. Afterward the time delay estimate can be converted

to the displacement occurred while capturing ultrasonic data. In this section, the most

common signal correspondence functions for estimating 1D displacement from the time

delay between two 1D RF signals is briefly discussed.

Normalized Cross Correlation

A normalized cross correlation (NCC) between a pair of windowed time-segments is uti-

lized for calculating time delays following compression. Given a pair of pre- and post-

compression signals (s1 and s2), the normalized cross correlation is defined as [28]:

NCC12(τ) =

∑T/2
i=−T/2 s1(i)s2(i+ τ)√∑T/2

i=−T/2 s
2
1(i)

∑T/2
i=−T/2 s

2
2(i+ τ)

, (B.1)
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where T represents the kernel window length. NCC includes the energy of both signal

pairs in its mathematical formulation. Therefore, NCC compensates for local variations

in the mean and standard deviation of the signals [99]. As a result, NCC can produce

robust and accurate delay estimates. However, high computational cost of this algorithm

is a significant drawback for implementing real-time estimator.

Sum Absolute Difference

Sum of absolute differences (SAD) is one of the simplest similarity measures which is

computed by subtracting signals, aggregating the absolute differences within the kernel

window, and optimizing the summed value by the winner-take-all (WTA) strategy. If the

reference and the delayed signals exactly match, the resultant will be zero. Time delay

estimate is obtained using the value for which the SAD is a minimum. SAD for a given

pair of pre- and post-compression signals (s1 and s2) is defined as [25]:

SAD12(τ) =

T/2∑
i=−T/2

|s1(i)− s2(i+ τ)|. (B.2)

Sum Squared Differences

In sum of squared differences (SSD), the differences between a given pair of signals are

squared and summed within a kernel window. Afterward, like SAD the sum of squared

differences is optimized by WTA strategy. SSD based estimator has a higher computational

complexity compared to SAD based estimator due to numerous multiplication operations

involved. SSD for given a pair of pre- and post-compression signals (s1 and s2) is defined

as [28]:

SSD12(τ) =

T/2∑
i=−T/2

(s1(i)− s2(i+ τ))2. (B.3)

Since both SAD and SSD based time delay estimators do not compensate for local vari-

ations in the mean and variance of the signals, these estimators typically result in lower

SNR than cross-correlation based time delay estimation.
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FFT-based Correlation

Signal correspondence can be also estimated by calculating an analytical correlation func-

tion in the frequency domain. Fast Fourier Transform (FFT)-based correlation estimates

a phase and a group delay. The phase and group delays are summed algebraically to yield

a continuous time delay estimate. Periodic discrete cross-correlation for a periodic signal

with a period of Np samples is defined as:

sc12(n) =

Np∑
k=1

s1(k)s2(k + n), (B.4)

where s1 and s2 are pre- and post-compression signals in discrete-time domain, respectively,

and n is the lag between the signals. Using the FFT, circular convolution can be carried

out more efficiently, especially for large Np [100]:

SC12(n) = S1(n)S2(n), (B.5)

where SC12, S1, and S2 are the Discrete Fourier Transforms of sc12, s1 and s2.

B.2 Fast Normalized Cross-Correlation for 2D

Signal correspondence between two 2D data can be estimated directly from 2D domain by

applying digital image correlation method to a pair of ultrasound B-mode images. Digital

image correlation method uses 2D normalized cross correlation (NCC) as a block matching

algorithm.

Normalized cross correlation (NCC) yields a value of 1 when two data sets are exactly

matched and a value close to 0 when no match is made. Mathematically, NCC with data

shift τ is defined as:

NCC12(τ) =

∑N−1
i=0 (s1(i)− s̄1)(s2(i+ τ)− s̄2)√∑N−1

i=0 (s1(i)− s̄1)2
∑N−1

i=0 (s2(i+ τ)− s̄2)2
, (B.6)

where s̄1 and s̄2 are the mean of s1 and s2, respectively.
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Heavy computation load of NCC is always problematic. Fast normalized cross corre-

lation (FNCC) adopting the sum table method in computation was proposed to relieve

the heavy computation of NCC [37]. In FNCC, sum table is the pre-calculated look-up

table over the whole region of function s2, and is refered to whenever a local sum is calcu-

lated. Looking into the numerator and the second half of the denominator of Eq. (B.6),

respectively, we have,

N−1∑
i=0

(s1(i)− s̄1)(s2(i+ τ)− s̄2) =
N−1∑
i=0

s1(i)s2(i+ τ)− s̄1
N−1∑
i=0

s2(i+ τ), (B.7)

N−1∑
i=0

(s2(i+ τ)− s̄2)2 =
N−1∑
i=0

s2(i+ τ)2 − 1

N

(
N−1∑
i=0

s2(i+ τ)

)2

. (B.8)

Local sum of s2 and s22 for each n can be computed by using the sum table which is pre-

calculated look-up table and is referred to each moment local sum is calculated. Comparing

to NCC which calculates local sum for every n, FNCC can save huge computational resource

and time.

The concepts of FNCC can be expanded to 2D function. B-mode images and data

frames from RF signals are usually expressed positive 2D matrix. Applying the above

algorithms one can track points of interest by searching the optimal cross-correlation value

effectively while sliding latter images over the previous image with high efficiency.
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