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The quotient complexity, also known as state complexity, of a regular language is the
number of distinct left quotients of the language. The quotient complexity of an operation
is the maximal quotient complexity of the language resulting from the operation, as a
function of the quotient complexities of the operands. The class of star-free languages is
the smallest class containing the finite languages and closed under boolean operations
and concatenation. We prove that the tight bounds on the quotient complexities of
union, intersection, difference, symmetric difference, concatenation and star for star-
free languages are the same as those for regular languages, with some small exceptions,
whereas 2n − 1 is a lower bound for reversal.
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1. Introduction

The class of regular languages can be defined as the smallest class containing the

finite languages and closed under union, concatenation and star. Since regular lan-

guages are also closed under complementation, one can redefine them as the smallest

class containing the finite languages and closed under boolean operations, concate-

nation and star. In this new formulation, a natural question is that of the gener-

alized star height of a regular language, which is the minimum number of nested

stars required to define the language when boolean operations are allowed. It is

not clear who first considered the problem of generalized star height, but Mc-

Naughton and Papert reported in their 1971 monograph [13] that this problem

had been open “for many years”. There exist regular languages of star height 0

and 1, but it is not even known whether there exists a language of star height 2.

See http://liafa.jussieu.fr/~jep/Problemes/starheight.html.

We consider regular languages of star height 0, which are also called star-free.

In 1965, Schützenberger proved [16] that a language is star-free if and only if its

syntactic monoid is group-free, that is, has only trivial subgroups. An equivalent

condition is that the minimal deterministic automaton of a star-free language is
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permutation-free, in the sense that no input word can perform a permutation of

any non-empty subset S of the set of states, unless that permutation is the identity

mapping. Another point of view is that these automata are counter-free, since they

cannot count modulo any integer greater than 1. They can, however, count to a

threshold, that is, 0, 1, . . . , n − 2, and (n − 1 or more). Such automata are called

aperiodic, and this is the term that we use.

The state complexity of a regular language [18] is the number of states in the min-

imal deterministic finite automaton accepting that language. We prefer the equiva-

lent concept of quotient complexity [1], which is the number of distinct left quotients

of the language, because quotient complexity is a language-theoretic concept. The

quotient complexity of an operation in a subclass of regular languages is the maximal

quotient complexity of the language resulting from the operation, as a function of

the quotient complexities of the operands, when they range over all the languages in

the subclass. The complexities of basic operations in the class of regular languages

were studied by Maslov [12] and Yu, Zhuang and Salomaa [19].

The complexities of operations were also considered in several subclasses of

regular languages: unary [15, 19], finite [6, 18], ideal [3], closed [5], prefix-free [10],

suffix-free [9], bifix-, factor-, and subword-free [4], and convex [2]. The complexity of

operations can be significantly lower in a subclass of regular languages than in the

general case. We prove that this is not the case for star-free languages, which meet

the bounds for regular languages, with small exceptions. These results parallel those

of Holzer, Kutrib and Meckel [11] who proved in 2011 that, in most cases, exactly

the same tight state complexity bounds are reached by operations on aperiodic

nondeterministic finite automata (NFA’s) as on general NFA’s.

In Section 2 we define our terminology and notation. Boolean operations, con-

catenation, star, and reversal are studied in Sections 3–6, respectively. Unary lan-

guages are treated in Section 7, and Section 8 concludes the paper.

2. Terminology and Notation

For general background on regular languages we refer the reader to [17]. If Σ is a

finite non-empty alphabet, then Σ∗ is the set of all words over this alphabet, with

ε as the empty word. For w ∈ Σ∗, a ∈ Σ, let |w| be the length of w, and |w|a, the

number of a’s in w. A language is any subset of Σ∗.

The following are set operations on languages: complement (L = Σ∗ \L), union

(K∪L), intersection (K∩L), difference (K \L), and symmetric difference (K⊕L).

We also use product, also called (con)catenation (KL = {w ∈ Σ∗ | w = uv, u ∈

K, v ∈ L}) and star (K∗ =
⋃

i>0 Ki). The reverse wR of a word w ∈ Σ∗ is defined

by: εR = ε, and (wa)R = awR. The reverse of a language L is LR = {wR | w ∈ L}.

Regular languages are the smallest class of languages containing the finite lan-

guages and closed under boolean operations, product and star. Star-free languages

are the languages one can construct from finite languages using only boolean opera-

tions and concatenation. Some examples of star-free languages are the empty set ∅,
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Σ∗ = ∅, {b}∗ = Σ∗{a}Σ∗ = ∅{a}∅ over Σ = {a, b}, and {a}{a}∗ = ε over Σ = {a}.

We do not write such expressions for star-free languages, but denote them using

the usual notation of regular expressions.

The (left) quotient of a language L by a word w is defined as Lw = {x ∈ Σ∗ |

wx ∈ L}. The number of distinct quotients of a language is called its quotient

complexity and is denoted by κ(L). A quotient Lw is final if ε ∈ Lw; otherwise it is

non-final.

A deterministic finite automaton (DFA) is a quintuple D = (Q, Σ, δ, q0, F ),

where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → Q is the

transition function, q0 is the initial state, and F ⊆ Q is the set of final states. As

usual, the transition function is extended to Q × Σ∗. A DFA D accepts w ∈ Σ∗ if

δ(q0, w) ∈ F , and the language accepted by D is L(D). The language of a state q

of D is the language Lq accepted by the automaton (Q, Σ, δ, q, F ). If the language

of a state is empty, that state is empty.

The quotient DFA of a regular language L is D = (Q, Σ, δ, q0, F ), where Q =

{Lw | w ∈ Σ∗}, δ(Lw, a) = Lwa, q0 = Lε = L, and F = {Lw | Lw is final}. Since

this is the minimal DFA accepting L, the quotient complexity of L is equal to the

state complexity of L, and we call it simply complexity.

A transformation of a set S = {1, . . . , n} is a mapping

t =

(

1 2 · · · n − 1 n

i1 i2 · · · in−1 in

)

,

where ik ∈ S for 1 6 k 6 n. Each word in Σ∗ performs a transformation of the set

Q of states of a DFA D. A DFA is aperiodic if no word performs a permutation,

other than the identity permutation, of a non-empty subset of Q. Since testing if a

DFA is aperiodic is PSPACE-complete [7], we use a subclass of aperiodic automata.

Without loss of generality, we assume that Q = {1, . . . , n}. A transformation is

non-decreasing if j < k implies ij 6 ik. Such a transformation cannot have a non-

trivial permutation, and the composition of non-decreasing transformations is non-

decreasing. Hence a DFA with non-decreasing input transformations is aperiodic.

A nondeterministic finite automaton (NFA) is defined as a quintuple N =

(Q, Σ, η, I, F ), where Q, Σ, and F are as in a DFA, η : Q × Σ → 2Q is the tran-

sition function and I ⊆ Q is the set of initial states. If η also allows ε, that is,

η : Q × (Σ ∪ {ε}) → 2Q, we call N an ε-NFA.

3. Boolean Operations

We now consider the quotient complexity of union, intersection, symmetric differ-

ence, and difference in the class of star-free languages. The upper bound for these

four operations in the class of regular languages is mn [1, 12, 19].

Theorem 1. Given m, n > 1, for each of the operations union, intersection, sym-

metric difference, and difference, there exist binary star-free languages K and L

with quotient complexities m and n, respectively, that meet the bound mn.
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Fig. 1. Witnesses K and L for union with m = 4 and n = 5.

a

a

b b b b

a, b

1, 1 b1, 2 1, 3 1, 4 1, 5

2, 1 2, 2 2, 3 2, 4 2, 5

3, 1 3, 2 3, 3 3, 4 3, 5

4, 1 4, 2 4, 3 4, 4 4, 5

a a a a

a a a a a

a a a a a

b b

b b b b

b b b

b

b

bb

b

a a a

Fig. 2. Quotient automaton of K ∪ L.

Proof. Let Σ = {a, b}. We examine union first. For m = 1, let K = ∅ and let L be

any binary star-free language with κ(L) = n. Then κ(K ∪ L) = κ(L) = n = mn.

Similarly, if n = 1, let L = ∅ and let K be any binary star-free language with

κ(K) = m. Then κ(K ∪ L) = mn.

For m, n > 2, let K = (b∗a)m−2b∗ = {w ∈ Σ∗ | |w|a = m − 2}, and L =

(a∗b)n−2a∗ = {w ∈ Σ∗ | |w|b = n − 2}; then κ(K) = m and κ(L) = n, and both

K and L are star-free since their quotient DFA’s are non-decreasing. The quotient

DFA’s of K and L are in Fig. 1 for m = 4 and n = 5, and their direct product for

K ∪ L, in Fig. 2.

Let M = K ∪ L, and consider the quotients of M by the mn words aibj, i =

0, . . . , m − 1, and j = 0, . . . , n − 1; these quotients Maibj correspond to states

(i + 1, j + 1) in the direct-product automaton for M . We begin with the non-final

quotients of M . First, Mam−1bn−1 = ∅, and all the other quotients are non-empty.

Next, if i < m−2 and j < n−2 (rows 1 to m−2, columns 1 to n−2), then the pair

(am−2−i, bn−2−j) of non-empty words belongs to Maibj and to no other non-final

quotient. If i < m− 2, then Maibn−1 (rows 1 to m− 2, column n) contains am−2−i,

but has no words from b∗. If j < n− 2, then Mam−1bj (row m, columns 1 to n − 2)

contains bn−2−j, but has no words from a∗. So all non-final quotients are distinct.

Now turn to the final quotients. For i, k 6 m − 2, quotient Maibn−2 (rows 1

to m − 1, column n − 1) contains bam−2−i, and this word is not contained in any
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other quotient Makbn−2 with k 6= i, and Mam−1bn−2 has no words from ba∗. Thus

all the quotients in column n− 1 are distinct. For j, ℓ 6 n− 2, Mam−2bj (row m− 1,

columns 1 to n − 1) contains abn−2−j, and this word is not contained in any other

quotient Mam−2bℓ with ℓ 6= j, and Mam−2bn−1 has no words from ab∗. Thus all the

quotients in row m− 1 are distinct. Excluding Mam−2bn−2 , each quotient in column

n − 1 contains a but not b, each quotient in row m − 1 contains b but not a, and

Mam−2bn−2 contains both a and b. Hence all final quotients are distinct, and our

claim holds for union.

For difference, we can use K and L, where K and L meet the bound mn for

union, because κ(K \ L) = κ(K ∩ L) = κ(K ∩ L) = κ(K ∪ L).

For intersection, it was shown in [3] that the languages K = (b∗a)m−1Σ∗ =

{w ∈ Σ∗ | |w|a > m − 1} and L = (a∗b)n−1Σ∗ = {w ∈ Σ∗ | |w|b > n − 1} meet

the bound mn. Since both languages are star-free, our claim holds for intersection.

These languages also meet the bound mn for symmetric difference [3].

4. Product

The tight bound for product of regular languages [12, 19] is (m − 1)2n + 2n−1. We

show that this bound can be met by star-free languages, with some exceptions.

In subset constructions, we use the notation S
w

−→ T to mean that subset S

under input word w moves to subset T .

Theorem 2. Given m > 1, n > 3, there exist quaternary star-free languages K

and L with quotient complexities m and n, respectively, such that κ(KL) = (m −

1)2n + 2n−1.

Proof. The languages that meet the bound are defined by their quotient DFA’s:

The quotient DFA for K is DK = (QK , Σ, δK , q0, FK), where QK =

{q1, q2, . . . , qm}, Σ = {a, b, c, d}, q0 = q1, FK = {qm}, and

δK(qi, a) = qi+1 for i = 1, . . . , m − 1, δK(qm, a) = qm,

δK(qi, b) = qi−1 for i = 2, . . . , m, δK(q1, b) = q1,

δK(qi, c) = qi for i = 1, . . . , m,

δK(qi, d) = qm for i = 1, . . . , m.

The quotient DFA for L is DL = (QL, Σ, δL, p0, FL), where QL = {1, 2, . . . , n},

Σ = {a, b, c, d}, p0 = 1, FL = {n− 1}, and

δL(i, c) = i + 1 for i = 1, . . . , n − 1, δL(n, c) = n,

δL(i, d) = i − 1 for i = 2, . . . , n, δL(1, d) = 1,

δL(i, a) = i + 1 for i = 2, . . . , n − 1, δL(1, a) = 1, δL(n, a) = n,

δL(i, b) = i for i = 1, . . . , n.

The automaton DK for m = 4 is shown in Fig. 3, where the transition labeled ε

should be ignored for now. The automaton DL for n = 5 is also shown in Fig. 3.
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Fig. 3. ε-NFA N of KL.

Now we construct an ε-NFA which accepts the language KL, as illustrated in

Fig. 3. The transition labeled ε is introduced and q4 is made a non-final state. Here

the only initial state is q1, the set of final states is {4}, and the transitions are as

shown in the figure.

Next, we need to find the minimal DFA DKL accepting the language KL. This

is done by carrying out a subset construction on the ε-NFA N ; it will be shown

that (m − 1)2n + 2n−1 subsets of states of N are reachable from the set {q1} of

initial states of N , and that these subsets are pairwise distinguishable. This will

imply that DKL has at least (m−1)2n +2n−1 distinct states. Since it is known that

DKL cannot have more than that many states [12, 19], the quotient complexity of

L is precisely (m − 1)2n + 2n−1.

Our first task is to show the reachability of the required number of states. The

following notation will be used. For 1 6 sk 6 n − 1, S = {s1, . . . , sk}, s1 < s2 <

· · · < sk, with s1, s2, . . . , sk ∈ QL, and 0 6 x 6 n − sk, denote (s1 + x, . . . , sk + x)

by S+x. Similarly, for 2 6 s1 6 n, and 0 6 x 6 s1 − 1, denote (s1 − x, . . . , sk − x)

by S−x.

We first show by induction on the size of S that all (m − 1)2n−1 subsets of the

form {qi} ∪ S, where qi ∈ QK , qi 6= qm, and S ⊆ QL \ {1}, are reachable.

When S = ∅, the set {qi} is reached by ai−1, for i = 1, . . . , m− 1. Now suppose

we want to reach {qi} ∪ T , where i 6= m, T = {s0, s1, . . . , sk}, k > 0, and 1 <

s0 < s1 < · · · < sk. Let S = {s1, . . . , sk}; by the induction assumption, {qi} ∪ S

is reachable. Then {qi} ∪ S
ds0−1

−→ {qm, 1} ∪ S−(s0−1)
bm−i

−→ {qi, 1} ∪ S−(s0−1)
cs0−1

−→

{qi} ∪ {s0} ∪ S = {qi} ∪ T . Thus {qi} ∪ T is also reachable.

Next, we prove that the 2n−1 subsets of the form {qm, 1} ∪ S, where S is any

subset of QL \ {1}, are reachable. If m = 1, then {q1, 1} is the initial subset. Let

S and T be as above. Then {q1, 1} ∪ S
ds0−1

−→ {q1, 1} ∪ S−(s0−1)
c

−→ {q1, 1} ∪ {2} ∪

S−(s0−2)
as0−2

−→ {q1, 1} ∪ {s0} ∪ S = {q1, 1} ∪ T .

If m > 2, there are two cases. If 2 6∈ S, then start with {q1}∪S, which has already

been shown to be reachable. We then have {q1}∪S
d

−→ {qm, 1}∪S−1
a

−→ {qm, 1}∪S.

If 2 ∈ S, then start with {q1}∪S\{2}. Now {q1}∪S\{2}
d

−→ {qm, 1}∪(S\{2})−1
c

−→

6
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{qm, 1} ∪ {2} ∪ (S \ {2}) = {qm, 1} ∪ S.

Finally, we show that the (m − 1)2n−1 subsets of the form {qi, 1} ∪ S, where

i < m, and S ⊆ QL \ {1} are reachable. We have {qm, 1} ∪ S
bm−i

−→ {qi, 1} ∪ S.

In summary, (m − 1)2n + 2n−1 different subsets are reachable. We now prove

that all these subsets are pairwise distinguishable.

For 1 6 k 6 n − 1, state k of QL accepts the word wk = cn−1−k, and state n

accepts the word wn = d; moreover, each of these words wh is accepted by only

that one state h of QL, and none of these words is accepted by state qi, if i 6= m.

Hence, if h is in S \ T or in T \ S, then S and T are distinguished by wh.

First, let 1 6 i 6 j < m, and consider {qi} ∪ S and {qj} ∪ T , where S, T ⊆ QL,

and S and T differ by state h. Then {qi} ∪ S and {qj} ∪ T are distinguished by

wh. Next, let 1 6 i < j < m and take {qi} ∪ S and {qj} ∪ S, where S ⊆ QL. First

apply c; then we reach {qi} ∪R and {qj} ∪ R, where 1 6∈ R. Then {qj} ∪R accepts

am−jcn−2, whereas {qi} ∪ R rejects this word.

Second, suppose S, T ⊆ QL \{1} and S and T differ by state h; then {qm, 1}∪S

and {qm, 1} ∪ T are distinguished by wh.

Third, consider {qi} ∪ S, where S ⊆ QL and {qm, 1} ∪ T , where T ⊆ QL \ {1}

and i < m. Then cn−1 is accepted by {qm, 1} ∪ T but not by {qi} ∪ S.

Since all reachable sets are pairwise distinguishable, the bound is met.

Corollary 3. Given n > 1, there exists a ternary star-free language L with quotient

complexity n such that κ(Σ∗L) = 2n−1.

Proof. If K = Σ∗, the DFA DK has one state, which is both initial and final. Now

b is not needed in the proofs of reachability and distinguishability.

A right (left) ideal [3] is a language L satisfying L = LΣ∗ (L = Σ∗L). If M =

KΣ∗ (M = Σ∗K), then M is the right (left) ideal generated by K. Corollary 3

shows that the bound 2n−1 on the quotient complexity of the left ideal generated

by a regular language can also be met by a star-free language.

If n = 1 in Theorem 2, then either KL = ∅ and κ(KL) = 1, or KL = KΣ∗

is the right ideal generated by K. In the second case, it is known [19] that m is a

tight bound for κ(KΣ∗), and that the language am−1a∗ is a witness [3]. Since that

witness is star-free, the general bound holds also for star-free languages.

The case m > 2 and n = 2 remains. For m = n = 2, the best bound for

product of regular languages is 6, whereas it is 4 for star-free languages. This was

verified with the GAP package Automata [8] by enumerating all products of 2-state

aperiodic automata.

There are only three types of inputs possible for a 2-state aperiodic DFA: the

input that takes both states to state 1, the input that takes both states to state 2,

and the identity input. If 1 is the final state, then subsets {1} and {1, 2} are not

distinguishable. Therefore a non-final quotient of DK can appear with only three

subsets of quotients of DL in the DFA of KL instead of 22 = 4, and a final quotient,

7
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only with one subset instead of two. The complexity is maximized when there is only

one final quotient of K. Hence κ(KL) 6 (m−1)3+1 = 3m−2. If 2 is the final state,

then {2} and {1, 2} are not distinguishable. Hence κ(KL) 6 (m− 1)3+2 = 3m− 1

in this case.

Theorem 4. Given m > 2, there exist ternary star-free languages K and L with

quotient complexities m and 2, respectively, such that κ(KL) = 3m − 2.

Proof. Let DK(a, b, c) be the DFA in the proof of Theorem 2 restricted to input

alphabet {a, b, c}. Let DL = ({1, 2}, {a, b, c}, δ, 1, {1}), where

δL(i, a) = i for i = 1, 2,

δL(i, b) = 1 for i = 1, 2,

δL(i, c) = 2 for i = 1, 2.

For i 6= m, subset {qi} is reached by ai−1, {qi}∪ {1}, by am−1bm−i, and {qi}∪ {2},

by am−1bm−ic. Finally, {qm} ∪ {1} is reached by am−1. This gives 3m− 2 subsets.

For i 6= m, {qi} accepts no words from b∗, {qi} ∪ {1} accepts ε, and {qi} ∪ {2}

accepts b but not ε. Hence subsets {qi} ∪ S and {qi} ∪ T with i 6= m, S, T ∈

{∅, {1}, {2}}, and S 6= T , are distinguishable. Next, {qi} ∪ S and {qj} ∪ S with

i < j < m are distinguished by cam−j. Also, {qi} and {qi} ∪ {2} are distinguished

from {qm} ∪ {1} by ε, and {qi} ∪ {1} from {qm} ∪ {1} by c. Therefore all 3m − 2

subsets are distinguishable.

We do not know whether the bound 3m − 1 can be reached. However, we have

verified with GAP that it cannot be reached if m = 2.

5. Star

The following DFA plays a key part in finding bounds on the quotient com-

plexities of stars of star-free languages. Let n > 3, and Dn = Dn(a, b, c, d) =

(Q, {a, b, c, d}, δ, 1, {n− 1}), where Q = {1, 2, . . . , n} and

δ(i, a) = i + 1 for i = 1, . . . , n − 1, δ(n, a) = n,

δ(i, b) = i − 1 for i = 2, . . . , n, δ(1, b) = 1,

δ(i, c) = i − 1 for i = 2, . . . , n − 1, δ(1, c) = 1, δ(n, c) = n,

δ(i, d) = n for i = 1, . . . , n.

Since all the inputs perform non-decreasing transformations, Dn is aperiodic.

In Fig. 4, if we ignore state 0 and its outgoing transitions, and also the ε tran-

sition, and use state 1 as the initial state, then the figure shows the minimal au-

tomaton D7(a, b, c, d) of a star-free language L. After state 0, transitions from state

0, and the ε transition are added, the figure depicts the ε-NFA of L∗.

8
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Fig. 4. ε-NFA N of L
∗, κ(L) = 7. Transitions under d (not shown) are all to state 7.

We first study Dn(a, b), the restriction of Dn(a, b, c, d) to the alphabet {a, b}. We

now show that Dn(a, b) is minimal. For 1 6 i 6 n − 2, only state i accepts an−1−i,

and only state n accepts b. Hence all the non-final states are distinguishable. Since

there is only one final state, there is nothing further to prove.

DFA Dn(a, b) with final state changed to n has been studied in detail by Mc-

Naughton and Papert [13] (p. 27), who showed that the language accepted by

Dn(a, b) is not locally testable, and derived a star-free expression for it. For our

version with final state n− 1, the language accepted by D3 can be described by the

regular expression: (b ∪ a(aa∗b)∗b)∗a(aa∗b)∗.

Lemma 5. If n > 3, and L is the star-free language accepted by Dn(a, b), then

κ(L∗) = 2n−1 + 2n−3 − 1.

Proof. Consider the subsets of {0} ∪ Q in the subset construction of the DFA for

L∗. Since 0 can only appear in {0}, the remaining reachable subsets are subsets of Q.

The empty subset cannot be reached because there is a transition from each state

under every letter. Since state n − 1 cannot occur without state 1, we eliminate

2n−2 subsets. Because state n − 1 always appears with state 1, and state n can

only be reached from state n − 1 by a, the subset {n} first appears with state

2, and afterwards, always with a state from {1, . . . , n − 1}; hence {n} cannot be

reached. Also, 1 and n cannot appear together without n − 1, because n cannot

be reached by b, and 1 cannot be reached by a without including n − 1. This

eliminates another 2n−3 subsets. So 1 + 2n−2 + 1 + 2n−3 subsets are unreachable,

and κ(L∗) 6 2n + 1 − (2n−2 + 2n−3 + 2) = 2n−1 + 2n−3 − 1.

Now turn to the reachable subsets, and note that subsets {0} and {1} are reached

by ε and b, respectively.

First, let P = {S ⊆ {2, . . . , n − 2} | S 6= ∅}. All singleton sets {i} ∈ P are

reached by ai−1 from {1}. Now let S = {s1, . . . , sk}, T = {s0, s1, . . . , sk}, where

0 < k, 1 < s0 < s1 < · · · < sk < n− 1, and h = n− 1− sk; then S
ah

→ {1}∪ S+h
bh

→

{1} ∪ S
bs0−1

→ {1} ∪ S−(s0−1)
as0−1

→ {s0} ∪ S. Thus any T ∈ P can be reached from a

smaller S ∈ P, and so all subsets in P are reachable.

Second, let Q = {{1}∪S | S ∈ P}; then S
ahbh

→ {1}∪S, as above, and all subsets

in Q are reachable.

Third, let R = {{1, n − 1} ∪ S | S = ∅ or S ∈ P}. If S = ∅, then {1, n − 1}

9
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is reachable from {1} by an−2. Now suppose S ∈ P is not empty. If i ∈ S, then

{i}
an−1−i

→ {1, n − 1}
ai−1

→ {i, n}. So S
an−2

→ {n} ∪ S. Now, if sk = n − 2, then

{n} ∪ S
a
→ {1, n − 1, n} ∪ S+1

b
→ {1, n − 1} ∪ S. If sk < n − 2, then {n} ∪ S

a
→

{n} ∪ S+1
b
→ {1, n − 1} ∪ S. In either case, S

an−1b
→ {1, n − 1} ∪ S, and all 2n−3

subsets in R are reachable.

Fourth, let S = {{n}∪T | T ∈ P∪R}. We have shown that S
an−2

→ {n}∪S, if S ∈

P. Since also {1, n−1}
an−2

→ {1, n−1, n}, we have {1, n−1}∪S
an−2

→ {1, n−1, n}∪S.

Hence all 2n−2 − 1 subsets {n} ∪ T in S are reachable.

Altogether, 2n−1 + 2n−3 − 1 subsets are reachable. It remains to be shown that

all the reachable subsets are pairwise distinguishable. State 0 does not accept ab,

while n − 1 accepts it. Each state i with 1 6 i 6 n − 2 accepts an−1−i and each of

these words is accepted by only that one state, and n accepts b. So any two subsets

S and T 6= S considered above are distinguishable.

Theorem 6. For n > 2, there exists a quaternary star-free language L with κ(L) =

n such that κ(L∗) = 2n−1 + 2n−2. For n = 1, the tight upper bound is 2.

Proof. For n = 1, there are only two languages, ∅ and Σ∗, and both are star-free.

We have κ(∅∗) = 2, and κ((Σ∗)∗) = 1. For n = 2, there are two star-free unary

languages, ε and aa∗, and the bound cannot be met if |Σ| = 1. If Σ = {a, b}, then

b∗aΣ∗ meets the bound 3. For n = 3, we analyzed all 3-state aperiodic automata

using GAP. The bound 6 is met by D3(a, b, c, d) defined above, and bounds 5 and 4

are met by D3(a, b, c) and D3(a, b), respectively. These bounds cannot be improved.

We now turn to the general case. We will show that the following sets of states

are reachable in the nondeterministic automaton N (see Fig. 4) from the initial state

0: the set {0}, all subsets of Q containing {1, n − 1}, and all non-empty subsets of

Q\ {n−1}. By Lemma 5, we can reach all these subsets by words in {a, b}∗, except

{n} and the subsets of Q \ {n − 1} containing {1, n}.

We have {1, n − 1}
a
→ {2, n}

c
→ {1, n}; hence {1, n} is reachable. Now consider

{n}∪S, where S = {s1, s2, . . . , sk} ∈ P. Let h = n− 1− sk; then using ah we move

to {1, n} ∪ S+h, and by ch we reach T = {1, n} ∪ S. Since {n} ∪ S is reachable by

Lemma 5, T is also reachable. Thus we can reach all the subsets of Q \ {n − 1}

containing {1, n} by words in {a, b, c}∗. The only set missing now is {n}, and it is

reached by d.

In Lemma 5, we have already shown that any two subsets S, T ⊆ Q such that

T 6= S are distinguishable by words in {a, b}∗.

Table 1 summarizes our results for the quotient complexity of L∗ in case L

is star-free. For unary languages, see Section 7. The figures in boldface type are

known to be tight upper bounds. For n = 4, we analyzed all 4-state automata

with non-decreasing input transformations. Automata D4(a, b, c, d), D4(a, b, c), and

D4(a, b) meet the bounds 12, 11, and 9, respectively. The bounds 11 and 9 cannot
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be improved in the class of automata with non-decreasing input transformations.

For the rest, the bounds for |Σ| = 3 and |Σ| = 2 are met by Dn(a, b, c), and Dn(a, b),

respectively.

Table 1. Quotient complexities for stars of star-free languages.

n 1 2 3 4 5 6 7 8 · · ·

|Σ| = 1 2 2 3 4 5 7 13 21 · · · n2 − 7n + 13

|Σ| = 2 − 3 4 9 19 39 79 159 · · · 2n−1 + 2n−3 − 1

|Σ| = 3 − − 5 11 23 47 95 191 · · · 2n−1 + 2n−2 − 1

|Σ| = 4 − − 6 12 24 48 96 192 · · · 2n−1 + 2n−2

6. Reversal

For regular languages, it was shown by Mirkin [14] in 1966 that the tight bound for

reversal is 2n. One easily verifies that this bound 4 cannot be met for n = 2; there

are only three inputs possible, the permutation of the two states being forbidden.

For n = 3, we have enumerated all the DFA’s with non-decreasing transformations,

and none of them meets the bound 8 for reversal. In general, we conjecture that the

bound 2n cannot be met by a star-free language. However, the bound 2n − 1 can

be met by such a language over an alphabet of n − 1 letters, as we now show.

Theorem 7. For each n > 1, there exists a star-free language L with quotient

complexity n such that κ(LR) = 2n − 1. For n = 1, the bound is met if |Σ| > 1, for

n = 2, if |Σ| > 2, and for n > 3, if |Σ| > n − 1.

Proof. For n = 1 and Σ = {a}, a∗ is a witness. For n = 2 and Σ = {a, b}, Σ∗a is

a witness. We have verified using GAP that all star-free languages L with n = 2

satisfy κ(LR) 6 3; hence this bound cannot be increased.

Now let n > 3, and let Dn = (Q, Σ, δ, 1, E), where Q = {1, 2, . . . , n}, Σ =

{a, b, c3, . . . , cn−1}, E = {i ∈ Q | i is even}, and

δ(i, a) = i + 1 for i = 1, . . . , n − 1, δ(n, a) = n,

δ(i, b) = i − 1 for i = 2, . . . , n, δ(1, b) = 1,

δ(i, cj) = i for i 6= j, δ(j, cj) = j − 1 for j = 3, . . . , n − 1.

Since all the inputs perform non-decreasing transformations, Dn is aperiodic. Fig-

ure 5 shows the NFA N which is the reverse of DFA D7.

Assume initially that n is odd. Let S = {s1, . . . , sk} be a subset of Q, and let

1 6 s1 < · · · < sk 6 n. Then NFA N has the following properties:

11
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b
1 2 3 4 5 6

a, c3, c4, c5, c6

7

c3, c4, c5, c6
c4, c5, c6

c3, c5, c6
c3, c4, c6

c3, c4, c5b, c3, c4, c5, c6

b b, c3

a a a a a a

b, c4 b, c5 b, c6

Fig. 5. NFA N of LR, n odd.

P1 If 3 6 j 6 n − 1, j ∈ S and j − 1 6∈ S, then input cj deletes state j from S

without changing any of the other states.

P2 If 3 6 j 6 n− 1, j 6∈ S, and j − 1 ∈ S, then input cj adds state j to S without

changing any of the other states.

We now examine the sets of reachable states in N . The set O of all the odd

states cannot be reached. For suppose that it is reached from some set S. If it is

reached by a, then S must be a subset of E ∪ {n}. However, the successor under a

of such a set S also contains n − 1 if it contains n. If we use b, then S must be a

subset of E ∪ {1}. But then the successor of S also contains 2 if it contains 1. If we

use ci with i odd, then S must be a subset of O \ {i}, and S must also have i − 1.

But then the successor of S also contains i − 1, which is even, if it contains i. If we

use ci with i even, then we also get i.

If n = 3, there are no ci inputs. Set {2} is initial, {1} can be reached by a and

{3} by b. We can get ∅ by aa, {1, 2} and {2, 3} by ab and ba, respectively, and

{1, 2, 3} by abb. Set {1, 3} is unreachable. So assume n > 5.

Let M = S \ {1, n} be the set of middle states. First consider subsets S of M . If

2 ∈ S, start with E = {2, 4, . . . , n− 1}. By using inputs ci, delete n− 1 or not, add

n − 2 or not, etc., until we reach 2, which cannot be removed by any ci. If 2 6∈ S,

then S−(s1−2) has 2, is a subset of M , and so is reachable; then S is reached by

bs1−2 from S−(s1−2).

Second, consider subsets S of Q containing 1 but not n. If 2 ∈ S, start with E

and apply ab to reach {1} ∪ E. Each state in E, except 2, is without a predecessor

in {1} ∪ E. Hence, by using inputs ci, we can construct any such S. If 2 6∈ S, start

with E and apply a to reach O \{n}, where O of all the odd states. By using inputs

ci, we can construct any such set S.

Third, examine subsets S of Q containing n but not 1. If 2 ∈ S, start with E

and apply b to reach E+1 = {3, 5, . . . , n} = O\{1}, and then apply a to get E∪{n}.

Construct any such set S using inputs ci. If 2 6∈ S, then S is a subset of {3, . . . , n}

containing n. Since the set S−1 is a subset of M , it is reachable; then S is reached

by b from S−1.

Finally, consider subsets S containing both 1 and n. Apply baab to E to reach

{1, n} ∪ E. From this set we can reach any set containing {1, 2, n}.

Now assume that 2 6∈ S. We now show that {i} ∪ O is reachable for every even

i > 2 in Q. Apply baa to E to reach {n−1}∪O. If i = n−1, we are done; otherwise,
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delete n− 2 and n− 1 by cn−2 and cn−1 in that order. Then insert n− 3 and n− 2

by cn−3 and cn−2 in that order. If i = n − 3, we are done; otherwise, continue in

this fashion. If we reach {3, 4, 5}, then i = 4, and the process stops.

If n = 5, then we can reach {1, 3, 4, 5}. From {1, 3, 4, 5} we can get {1, 5},

{1, 4, 5}, and {1, 3, 4, 5}. We are missing only {1, 3, 5}, which is unreachable.

If n > 7, from {n − 1} ∪ O we can reach by ci inputs all the subsets containing

{1, n} but not {2}, except those subsets containing n− 2 without n− 1. From now

on, we are interested only in the missing subsets, which are with {1, n}, without 2,

and have n − 2 without n − 1. Then take {n − 3} ∪ O. From here we can reach all

subsets containing {1, n − 2, n} without {2, n − 1}, except those containing n − 4

without n − 3. If n = 7, then n − 4 = 3, and we are missing only {1, 3, 5, 7}, which

is unreachable.

Continuing in this fashion, we can reach all the subsets containing {1, n} but not

2, except O. Together with the case where 2 ∈ S, we have all the states containing

{1, n}, except O.

a, c3, c4, c5

1 2 3 4 5 6
b b, c3

a a a a a

b, c4 b, c5 b

c3, c4, c5 c3, c5 c3, c4c4, c5b, c3, c4, c5

Fig. 6. NFA N of LR, n even.

The case where n is even is similar. The NFA N is shown in Fig. 6 for n = 6.

By an argument similar to that for n odd, O cannot be reached.

Any subset of M = Q \ {1, n} can be reached as follows. If 2 ∈ S, apply b to E

to get O \ {1}, and then a to get to E \ {n}. Now any subset of M containing 2 can

be reached by inputs ci. If 2 6∈ S, then any subset of M \ {2} can be reached from

O \ {1} by inputs ci.

Second, consider subsets S of Q containing 1 but not n. If 2 ∈ S, start with E

and apply ba to reach E \ {n}. Then apply ab to get E \ {n}∪ {1}. Now any subset

of {1} ∪ M containing {1, 2} can be reached by inputs ci. If 2 6∈ S, start with E

and apply baa to reach O \ {n−1}. By using inputs ci, we can construct any subset

S of {1} ∪ M containing 1 and not 2, except the subsets that have {n − 3, n − 1}

without n− 2. In case n = 4, we can reach {1, 2}, {1, 2, 3}, and {1}, but not {1, 3}.

From now on, we are interested only in the missing subsets. As in the odd case,

we can get subsets containing {n − 3, n − 1} without n − 2 by deleting n − 3 and

n−2, adding n−4, and re-inserting n−3. Now we are unable to reach states having

{n−5, n−3} without n−4. We verify that {i}∪O is reachable for every even i with

4 6 i 6 n − 2, and continue as in the odd case. We can keep moving this problem

to the left, until we reach {3, 4, 5}. Then state 4 cannot be removed because O is

13
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not reachable.

Third, examine subsets S of Q containing n but not 1. If 2 ∈ S, all such subsets

are reachable by inputs ci from E. If 2 6∈ S, then S is a subset of {3, . . . , n}

containing n. Since S−1 is a subset of M , it is reachable; then S is reached by b

from S−1.

Finally, consider subsets S containing both 1 and n. If 2 ∈ S, apply ab to reach

{1}∪E. From here we can reach any set containing {1, 2, n} by inputs ci. If 2 6∈ S,

we reach O ∪ {n} from E by a. From here we can reach any set containing {1, n}

but not 2 by inputs ci.

We still need to verify that all the reachable subsets are pairwise distinguishable.

State i, and only state i, accepts ai−1. Hence, if S, T ⊆ Q and S and T differ by

state i, then they are distinguishable by ai−1.

7. Unary Languages

The case of unary languages is special. For regular unary languages, the tight bounds

for each boolean operation K ◦ L, product KL, star L∗, and reversal LR are mn,

mn, n2 − 2n + 2, and n, respectively [19]. With the exception of the bound for

reversal, these bounds cannot be met by star-free unary languages.

Theorem 8. Given m, n > 1, let K and L be unary star-free languages with quo-

tient complexities m and n, respectively.

1. For each boolean operation ◦, κ(K ◦ L) 6 max(m, n) and the bound is tight.

2. For product, κ(KL) 6 m + n − 1, and the bound is tight.

3. For the star, the tight bound is

κ(L∗) 6











2, if n = 1;

n, if 2 6 n 6 5;

n2 − 7n + 13, otherwise .

4. For reversal, κ(LR) = n.

Proof. If a unary star-free language L is finite and κ(L) = n, its longest word has

length n − 2; if it is infinite, the longest word not in L has length n − 2.

1. One verifies that κ(K ◦L) 6 max(m, n). The witness languages are K = am−2

and L = an−2 for union and symmetric difference, K ′ = am−1a∗ and L′ = an−1a∗

for intersection, and K ′ and L′ for difference, since K ′ \ L′ = K ′ ∩ L′.

2. One verifies that κ(KL) 6 m + n − 1, and K = am−1a∗ and L = an−1a∗ are

witnesses.

3. If L is infinite, then L ⊇ an−1a∗, and L∗ ⊇ an−1a∗; hence κ(L∗) 6 n. For n =

1, 2, 3, 4, 5, the bounds actually met in the infinite case are 1, 1, 3, 4, 5, respectively.

If L is finite, it must contain an−2, and if it has a, then κ(L∗) = 1. The tight bounds

for finite unary star-free languages are 2, 2, 1, 2, 3, respectively. Hence the tight

bounds for all unary star-free languages for the first five values of n are 2, 2, 3, 4,

5, and the witnesses are ∅, ε, a2a∗, a3a∗, and a4a∗, respectively.
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It was shown in [6] that for a finite unary language L, κ(L∗) 6 n2 − 7n + 13 for

n > 5. For n > 6, this bound applies here, and a witness is an−3 ∪ an−2.

4. For unary languages, we have LR = L; hence κ(LR) = κ(L).

8. Conclusions

We have shown that all the commonly used regular operations in the class of star-

free languages meet the quotient complexity bounds of arbitrary regular languages.

The only exceptions are in the product for n = 2, reversal, and operations on unary

languages.
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