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Abstract 

High resolution land cover and land use classifications have applications in many fields of study 

such as land use and cover change, carbon storage measurements and environmental impact 

assessments. The wide range of available imagery at different spatial resolutions, potential 

thematic classes, and classification methods introduces the problem of understanding how each 

aspect affects accuracy. This study investigates how these three aspects affect the results of land 

cover classification. Results show that the maximum likelihood classifier was able to produce the 

most consistent results with the highest average accuracy (82.9%). Classifiers were able to identify 

a spatial resolution for each thematic resolution that achieved a distinctly higher overall accuracy. 

In addition, the effects of different land cover classifications as input to an object-based 

classification of land use at the parcel scale were evaluated. Results showed that land use 

classification requires higher resolution imagery to obtain satisfactory results than what is required 

for land cover classification. Also, the highest accuracy land cover classification did not produce 

the highest accuracy for land use, where a higher number of thematic classes performs better than 

fewer thematic classes. The highest accuracy LC classification by MLC with 8 classes occurred at 

640 cm and achieved an overall accuracy of 83.3%. The highest accuracy LU classification was 

produced by the 80 cm LC with 8 classes and achieved an overall accuracy of 88.0%. Aside from 

the produced land cover and land use classifications, this study produces a lookup table in the form 

of multiple graphs for future research to reference when selecting imagery and determining 

thematic classes and classification methods. 
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1. Chapter 1: Land Cover and Land Use Classification 

1.1 Introduction 

Land cover (LC) is the biophysical characteristics of the land surface, which includes both natural 

and anthropogenic features (Brown, Robinson, French, & Reed, 2013). Land use (LU) can be 

defined as the human use of the biophysical assets of the land (Cihlar & Jansen, 2001). The 

composition of LC typically varies by land use (Robinson et al. 2013) and the composition and 

configuration of LC can be used as predictors of LU when classifying using remote sensing.  

Depending on the typology of LU classes, multiple LU classes may have similar LC 

compositions and a single LU class can have large variation in the composition of LC found within. 

The presence and amount of each LC class in a LU class will be typically more similar within a 

local region (e.g. Verburg et al. 2000) and may vary among regions. This can be observed when 

comparing a residential subdivision on the periphery of Toronto, Canada, to a residential 

subdivision on the periphery of Shanghai, China, since local governments may have different 

restrictions on building regulations, or social differences which may influence a land owner’s 

decision to change his/her land cover, such as building a pool (He et al. 2013). LC composition 

within a LU may also vary over time due to many factors including vegetation growth and human 

modifications (Huang et al. 2014). The spatial and temporal change in LU and LC is referred to as 

land use and cover change (LUCC). 

To model and determine LUCC for purposes such as carbon budgeting or land-use 

planning, both LC and LU data need to be acquired. Although LC and LU data are primarily 

created from the classification of readily available remote sensing data, there is a chronic lack of 

usable LC and LU data for reasons such as costly production and little high resolution imagery 

with large extents (Verburg et al., 2011). LC and LU data needs to be temporally, spatially, and 

thematically consistent for effective LUCC analysis (Verburg et al., 2011) and can be classified 

by many different methods. Class definitions of LC and LU can be inconsistent across individuals 

and organizations (Cihlar & Jansen, 2001). LC class definition is difficult mainly due to the 

constant variation over space and the presence of multiple LC classes in the same pixel such as 
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trees overhanging a road or the edge of a roof passing through a pixel. LC can also be difficult to 

classify due to fuzzy borders between non-anthropogenic classes, such as the transition area 

between two different forest types. 

Three dimensions of LC and LU classification are investigated in this study. The first is 

the spatial resolution of the imagery and data products. This is defined in this study by the pixel 

size of the data, or the size of the polygons if considering vector data. The second dimension is the 

thematic resolution of the classes being used to define the landscape. A higher thematic resolution, 

similar to higher spatial resolution, has more classes describing the same landscape while a low 

thematic resolution has fewer classes. The last dimension being investigated is the method used 

for classification. This can be divided into unsupervised and supervised classifiers, and pixel-based 

and object-based classifiers as defined later in this paper. Although there are more dimensions of 

LC and LU classification such as spectral and temporal resolutions, only the three listed are being 

investigated. 

 

1.2 Literature Review 

An investigation into 70 articles published within the International Journal of Remote Sensing was 

conducted on studies performing LU classification and identifying the comparisons of three 

identified dimensions (i.e., spatial, thematic, classification method). Articles were selected by first 

using the search term: “land use classification” and then the first 70 articles (see Appendix A), 

sorted (by the journal’s website) in order of relevancy on October 6th 2016, and were reviewed. Of 

the reviewed articles, none compared classification results with different thematic resolutions, 21 

used at least two different classification methodologies and seven included the results of 

classifications that had a minimum of two spatial resolutions. None of the articles studied more 

than one of the three identified dimensions. The International Journal of Remote Sensing was 

selected because of its focus on how the imagery is processed instead of journals such as Remote 

Sensing which seemed to focus more on the topic of the study using remote sensing. The total of 

70 articles was selected because there were too many articles to review all of them. After 

approximately 50 articles there was a noticeable decrease in the relevancy of each new article due 

to the studies simply using LU classification data instead of creating LU classifications. 
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1.2.1 Thematic Inconsistency in Land Use Classifications 

A common problem among the 70 articles was the mix of LC and LU classes. In many 

classification schemes, there were LU classes in a LC classification and LC classes in a LU 

classification (Table 1). Thematic consistency across datasets is an important issue for global 

change studies (Verburg et al., 2011) and remote sensing specialists often consider LC and LU 

interchangeable (Barnsley, Møller-Jansen, & Barr, 2001). However, the mixing of LC into LU 

classifications not only causes confusion when using LU data, but also creates datasets that may 

have difficulty integrating with other projects due to the improper classes. If a class is labeled 

“water” or similar, it is considered LU as there is often no LU class which better describes a 

waterbody. For example, in a project by Man (2015) classifying urban LU, 5 of the 15 classes are 

actually LC classes, with one of the LU classes being water (Table 1). These data may not be 

usable in a model which requires LU input unless prior modifications are done. Additionally, this 

mixing of LC and LU may prevent the data from being usable in projects such as LU change or 

carbon flux estimates. 

Table 1: Land use classifications with land cover classes included used by the first 25 

papers found in the search. Papers omitted from the 25 papers either stated the 

classification was a mix or did not have any land cover classes. 

 

Paper # of LC classes # of LU classes 

(Horgan, Glasbey, Soria, & Gozalo, 1992) 3 3 

(Schneider, Buhk, & Ammer, 1999) 7 5 

(El-Magd & Tanton, 2003) 5 6 

(Broek, Smith, Toet, Smith, & Land, 2004) 3 2 

(Özkan & Erbek, 2005) 7 5 

(Frey, Rigo, & Parlow, 2007) 4 7 

(Ashish, Mcclendon, & Hoogenboom, 2009) 6 1 

(Man, Dong, & Guo, 2015) 5 10 

 

 The mixing of LC into a LU classification can have benefits and disadvantages. The main 

benefit is to assist in describing low resolution imagery when the resolution is too coarse to 
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accurately determine the true land use (e.g. Özkan & Erbek 2005). Özkan uses several LC classes 

in a LU classification on the relatively coarse resolution imagery obtained from Landsat. Assigning 

a LC class may not represent the LU as desired, it may add information that can be used to assume 

LU in future models and calculations.  

Mixing LC into LU classifications also creates problems when using the data in future 

applications such as carbon stock analysis. Don et al (2011) uses LU to determine changes in soil 

organic carbon between different natural and agricultural LU types. Having LU and not LC is 

important in their calculations because similar LC may occur in many different LU classes. For 

example, two of their classes are “cropland” and “grassland”. Both of these classes may have 

similar LC classes at certain times of the year. If the LC class “grass” was used in their dataset 

instead of “cropland” and “grassland” the use would not be known at certain times of the year and 

therefore the amount of soil organic carbon may not be accurately measurable. 

Modelling LU change is also effected by thematic consistency. Many studies which use 

models or simulations to predict LU change use datasets with purely LU classifications (e.g., 

Hamers & Piek, 2012; Kelley & Evans, 2011; Martinuzzi et al., 2015). This is needed to show the 

change from one LU class to another. If a LC class was used in the datasets their model would not 

be able to predict its change without altering the model to accommodate for LC classes. Studies 

like these that model LU exclusively need thematic consistency within their LU datasets as pointed 

out by Verburg et al (2011). 

To address this issue in consistency the Anderson (1976) classification was created to 

standardize LU and LC classes across classifications made from a variety of imagery and data 

sources. A lingering problem with Anderson’s classification scheme is that it is a mix of LC and 

LU. Anderson’s first two levels of classification were designed for coarser resolution imagery with 

Landsat being used for the first level and scales of 1:80,000 or less being used for the second level. 

The third and fourth levels are designed for finer resolution imagery with scales of 1:80,000 and 

finer, which is similar to the imagery used in this study. At these finer levels the classification 

represents detailed LU more exclusively and no longer have LC classes. For example, instead of 

“urban or built-up land” in level I, there are classes such as “residential” in level II, and “single 

family units” in level III.  
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1.2.2 Land Cover Classification 

LC can be classified from satellite and aerial images (Table 2) by a variety of different methods 

(Table 3). These methods can be described by the type of classification (i.e., per-pixel or object 

based, although manual digitization is also possible) and the amount of user input (e.g., training 

data, manual classification, and class descriptions).  

Table 2: Data Used in Land Cover and Land Use Classification by a Selection of Reviewed 

Papers 

Unsupervised classifiers do not require the user to define what comprises a class (Imani et 

al. 2014; Jiang et al. 2012) or the number of classes to be identified (Li et al. 2014). Unsupervised 

classifiers are generally not used as they do not achieve high accuracy in most scenarios (Li et al. 

2014). Unsupervised classifiers excel when classifying LC classes which have drastic differences 

in spectral signature (Li et al., 2014; Singh et al., 2013) for example, water and impervious 

surfaces. When a large spectral difference is present, no training is needed for the classifier, which 

greatly reduces the processing time. To determine what each identified class represents, the user 

needs to compare the classes to the original image and assign a name (Li et al. 2014). An example 

of an effective unsupervised classification may be to automatically classify impervious surfaces in 
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a landscape for urbanization monitoring due to the large spectral difference between vegetation 

and impervious surfaces such as concrete. 

In contrast to unsupervised classifiers, supervised classifiers require more human input to 

create class definitions for an image. Supervised classifiers use manually defined training samples 

to classify an image (Jiang et al., 2012; Shao & Lunetta, 2012). A commonly used supervised 

classifier is the Maximum Likelihood Classifier (MLC) (Table 3). MLC uses training samples to 

create probability curves in multidimensional space which contains the likelihood of a pixel 

belonging to each of the included classes. When a pixel is being classified, it is compared to its 

location in the multidimensional space and is assigned to the class which has the highest likelihood 

of being true. In general, the MLC performs consistently well across imaging platforms (e.g., 

Landsat, SPOT-5, aerial) and spatial resolutions, although it is not guaranteed to be the most 

accurate supervised classifier under all conditions (Li et al. 2014). Performing well at large spatial 

extents results in requiring fewer sets of training samples due to the fewer classifications 

performed. Some advantages to MLC is that it is easy to use, well defined, and has been accessible 

to researchers for many years (e.g. Reddy and Reddy 1996; Memarian et al. 2013). The high 

accessibility of MLC gives a benefit of being well known by many researchers and used in many 

studies, allowing new results of MLC to be compared against many studies. MLC is common in 

many software packages such as ArcGIS, ENVI, and PCI Geomatica, and requires little user 

training to use. A disadvantage to MLC is the assumption that the data is normally distributed 

while the class definitions may not be normally distributed. For example, if the class of “trees” is 

being used, and includes both deciduous and coniferous trees in the spring, the data will have two 

peaks in the distribution and will not be normal. Other available classifiers include the Support 

Vector Machine classifier (SVM) (Marconcini et al. 2014) and the Spectral Angle Mapper (SAM). 

While these two have the potential to outperform MLC, it has been shown that they perform poorly 

when classifying multiple urban LU classes (Li et al. 2014). 
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Table 3: Classification Methods Used by Selected Papers 
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One factor which limits the accuracy of all supervised image classifiers is the quality of 

training samples (Van Niel et al. 2005). If too few samples are taken, the accuracy can be poor (Li 

et al. 2014). The general rule for the recommended number of training samples is between 10n and 

30n for each class, where n represents the number of image bands used in the classification (Van 

Niel et al. 2005; Park and Stenstrom 2008). However, it has been shown that only 2n to 4n training 

samples may be required to achieve 95% of the accuracy obtained using the recommended number 

of training samples (Van Niel et al. 2005). Other research confirms similar results, with some 

saying a maximum of 10n training samples is needed for MLC (Piper 1992). These findings show 

that the accuracy only marginally improves when the number of training samples increases from 

10n towards 30n (Piper 1992). 

One issue with relying on only a pixel’s value to classify LC is the presence of mixed pixels 

(Lu et al., 2004). Mixed pixels contain multiple LC classes within the single pixel, which results 
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in the pixel value not fully representing any of the desired classes (Lu et al., 2004; Shao & Lunetta, 

2012). Increasing the resolution of the image can reduce the number and impact of mixed pixels 

on an image, (Lu et al., 2004) but it may also increase pixel value variation within classes. 

Object-based image analysis (OBIA) can be used as an alternative to per-pixel classifiers 

to account for the increased variation within classes (Memarian et al., 2013). An OBIA approach 

is partially insulated from the effects of mixed pixels as it uses groups of pixels, called objects, to 

perform the classification. Homogenous areas are extracted from the imagery by the OBIA to form 

the objects. These objects are classified based on spatial attributes such as shape and size, and the 

distribution of spectral signatures within the object (Lu et al., 2004; Memarian et al., 2013). The 

use of objects reduces the impact of mixed pixels as they represent a small proportion of the group 

of pixels of which they comprise and therefore have very little impact on the object’s attributes. 

Once a number of objects have been identified, a number of classification techniques, often similar 

to the per-pixel techniques (e.g., MLC and SVM) can be used to assign classes to objects.  

1.2.3 Land Use Classification 

Remote sensing is only capable of capturing the matter which physically resides on the surface of 

the earth (i.e., LC) and cannot measure LU directly. Although there is no simple one-to-one 

mapping between LC and LU, a prediction of LU can be derived from the patterns found in LC. 

Since multiple LU types can be found in the same location (i.e., a forest being protected for 

conservation can also be a recreational area) ancillary data is required in addition to the imagery. 

These data can be combined and classified with OBIA into homogeneous regions of LU (Lackner 

& Conway, 2008). The homogeneous regions of LU can be determined through analyzing the 

imagery through OBIA, but this usually requires expensive software and hardware with large 

amounts of processing power and time (Lackner & Conway, 2008). A much simpler and faster 

source of obtaining homogenous regions of LU is using ownership parcels, which will typically 

only contain one LU (Hu and Wang 2013; Lackner & Conway, 2008).  

Two of the object-based classifiers within eCognition are decision tree and random forest 

(Trimble, 2015). The decision tree and random forest classifiers are similar. The decision tree 

analyzes the sample data for threshold values within a single variable to create subgroups of objects 

that are more similar to each other than to objects in other subgroups (Tehrany et al. 2013; Trimble 
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2015). This is done again for each of the subgroups using any of the available variables to further 

segment the data until only subgroups of homogenous LU classes are created, or there are no more 

identifiable thresholds. When displayed in a logic diagram, the sets of decisions for each threshold 

resembles a tree (Figure 1). The tree is then applied to the entire dataset to classify every object. 

The random forest classifier uses a similar process to the decision-tree classifier, however, 

a random forest classifier creates multiple decision trees using random subsets of the sample data 

(C. Li et al., 2014; Trimble, 2015). The collection of trees created represents the forest referred to 

in the name “random forest” (Figure 1). Each object is then analyzed by each tree in the forest the 

most common LU class determined by the collection of trees in the forest is assigned to the parcel. 

The decision trees can analyze any variable which can be represented in an attribute table, such as 

the composition of LC classes within the object or shape characteristics (eg. Hu & Wang, 2013). 

LU can also be automatically classified directly from imagery, but often results in a lower 

thematic resolution than OBIA. Per-pixel classifiers, such as the MLC, are reported to produce 

low resolution LU classifications due to relying solely on pixel reflectance values (Memarian et 

al., 2013). The imagery used for direct LU classification often has a low-to-medium resolution of 

15 m to 30 m, and includes at least the visible and near-infrared bands (e.g. Wentz et al. 2008). It 

is possible to increase the accuracy by manually classifying difficult classes such as public 

Figure 1: Left: Decision Tree; Right: Random Forest 
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institutions, mines and golf courses (Wentz et al., 2008). An example of automatic LU 

classification directly from imagery is a study conducted in the Amazon using Landsat TM images 

(Lu et al., 2004). This study claimed to achieve a highly accurate classification (86.6%), although 

many spectrally similar classes were merged to avoid classification confusion. An example is the 

“bare land” class, which included urban areas, roads and bare soil, which can be difficult to 

distinguish apart, yet are significantly different in use. 

The three core concepts identified during litterature review which affect image 

classification for LC and LU are the thematic resolution, spatial resolution and classifier used. 

Thematic resolution defines what features in the images will be classified while spatial resolution 

defines the scale at which the features will be classified. The classification method determines the 

algorithms used to both train the classifier and to apply the classification to the image. In this study 

these three concepts are compared against each other to determine their affects on the accuracy of 

the resulting classifcation. To compare each of these concepts a combinatorial study was 

completed which classified imagery into LC with multiple thematic and spatial resolutions for 

multiple classifiers. These LC classifications for the best classifier were then used to classify LU 

at the parcel scale. The results are compared in terms of overall accuracy, and the type of confusion 

between classes and its amplitude for all combinations.  

 

1.3 Overview of Thesis and Methods 

This thesis aims to answer two research questions: “what combination of spatial, thematic, and 

classification methods produce the highest LC and LU accuracy?” and “what is the relationship 

between LC and LU?” The objective of completing this research is to better understand the 

relationship between spatial resolution, thematic resolution, and classification method and LC and 

LU classification accuracy. This will be achieved through three goals: 1) determine the optimal 

combination of spatial resolution, thematic resolution, and classification method for the 

classification of LC and LU; 2) examine the effect of spatial resolution, thematic resolution and 

classification method on the accuracy of LC classification; and 3) examine the effect of spatial 

resolution, thematic resolution and classification method of LC classification on the accuracy of 

object-based LU classification when LC is used as an input with property parcel data. 
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The general structure of the methods follows the diagram in Figure 2. The diagram is 

repeated for each LC classifier. First, the imagery is resampled into eight different pixel sizes. 

Then each pixel size is classified into four different sets of LC classes, or Thematic Typology, by 

the current classifier. The resulting 32 LC classifications then have their accuracy assessed by the 

four sets of samples created for this step, one for each Thematic Typology. Parallel to this, 20 of 

the 32 LC classifications which fall into the spatial resolution limits are classified for LU by the 

OBIA classifier. The reason behind these limits are explained in section 2.3.4 in Chapter 2. Similar 

to LC, the 20 LU classifications are assessed for accuracy using the LU samples created for this 

step. This is then repeated for all remaining LC classifiers. 

 

Figure 2: Process flow diagram of the methods used in this thesis for each LC classifier 

 

 The four pixel based LC classifiers being used are ISODATA, MLC, SVM, and SAM, 

although ISODATA did not provide usable results. ISODATA is the only usupervised classifier 

of the four, while the rest are supervised. It assess the pixel values in the imagery to find distinct 

groups of pixel values which should represent unique classes. Each pixel is assigned to the most 

similar group of pixel values. MLC used training samples to determine the probability of each 

combination of pixel values belonging to each defined class. During classification, each pixel is 

assigned the most likely class for its combination of band values. SVM creates a hyperplane 
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through the data which best divides two classes based off training data. During classification each 

pixel is assigned to a class based off which section of the space it is in. For more than two classes 

a pairwise classification is performed by the classifier. SAM uses the spectral angles between the 

training data and the unclassified data to assign the class which with the lowest spectral angle. 

These four classifiers were chosen to represent several general types of classifiers. 

ISODATA was selected to represent the unsupervised classifiers, SVM was selected to represent 

the machine learning classifiers, SAM was selected to represent the hyperspectral classifiers and 

MLC was selected as it was the most common classifier in the reviewed literature. Although many 

classifiers exist in many categories, these four were readily available and the author believe they 

represent a large portion of per-pixel classifiers.  
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2. Chapter 2: Quantifying the Effects of Thematic Resolution, Spatial 

Resolution, and Classification Methods on Land Cover and Land Use 

Classification Accuracy 

2.1 Introduction 

Land use and cover change (LUCC) is the second greatest source of anthropogenic greenhouse 

gases, accounting for 12% to 20% of annual emissions (Don et al. 2011), and historically ~30% of 

all emissions (Sundquist, 1993). The impacts of LUCC can be identified from the global 

environment down to local regions (Don et al., 2011). These changes are visible in many areas 

such as protected areas where it may impact the available habitat (Martinuzzi et al., 2015) or alter 

the carbon storage of the region, both of which contribute to global greenhouse gases. Because of 

the impacts of LUCC, it is important to monitor and model land cover (LC) and land use (LU) 

patterns to estimate greenhouse gas emissions and for the protection of the natural environment 

from anthropogenic damages such as pollution (Jiang et al., 2012). 

Driven partly by increasing global population, LUCC occurs to meet increasing resource 

requirements (Ren et al., 2011) such as food, building materials, and building space. For example, 

as urbanization occurs and cities need to accommodate higher populations they tend to expand. 

The expansion may be vertical through the building of apartments or condominiums, horizontally, 

through the creation of residential suburban landscapes, or by decreasing living space which 

increases population density. Horizontal expansion of cities commonly transforms agricultural and 

forested lands to urban lands (Hamers & Piek, 2012). A decrease in agricultural land may then 

force other non-agricultural and natural lands to be converted into agricultural land if agriculture 

yield density does not increase (Pearson & Brown, 2013). 

Due to the heterogeneity of economic, environmental and social drivers of LUCC acting 

over space and time, the outcome of LUCC may also vary. For example, the amount of change in 

agricultural area and urban area in one region differ from other regions (Haas et al. 2015). This 

difference may be caused by many different drivers such as different rates of population growth, 

agricultural practices or government influences. Due in part to these differences, specific case 

studies and models are often created to accurately measure, monitor, predict or use LUCC (e.g., 
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Luus, Robinson, & Deadman, 2011; Derek T. Robinson et al., 2013). If a general LUCC model or 

method is used it may miss drivers of LUCC which are specific to the system under study and may 

produce inaccurate results.  

Typically, LUCC is measured and monitored using data acquired through remotely sensed 

imagery obtained from satellite or airborne platforms. While research using LC and LU 

classification has occurred for decades with great success, there has been relatively few 

comparative analyses that evaluate the effects of spatial resolution, thematic resolution, and 

classification method in combination on classification accuracy. Instead where comparisons have 

been made they have focused on classification method comparison at specific spatial and thematic 

resolutions. (e.g., Gong & Howarth, 1992; Man et al., 2015; Novack, Kux, Feitosa, & Costa, 2014). 

The comparison of  spatial resolution or thematic resolution are less common and are secondary 

to the research problem (e.g., Banzhaf, Grescho, & Kindler, 2009; Royer, Charbonneau, & Bonn, 

1988). To the best of the authors knowledge, no research has combined at least two of these three 

attributes of LU classification to determine the optimal combination. The optimal combination is 

being determined because determining the ideal combination would require many more 

combinations to be compared to find the best possible combination. Knowing the predicted optimal 

combination of these attributes will allow a researcher to pick spatial and thematic resolutions and 

classification method which will produce an expected outcome within the project requirements.  

Satellite and aerial images show LC through picture element (i.e., pixel) values 

representing the spectral reflectance of the surface of the Earth within the area represented by the 

pixel. Several different image classifiers can be used to determine which user specified LC class 

represents each pixel. Multiple factors affect which LC classes can be used, such as the physical 

location represented in the image and the spatial resolution. Different areas such as urban or rural 

will require different LC classes to accurately describe what is observed in the image. Also, as the 

pixel size increases, the LC classes must become more general as they will begin to represent 

groups of features since the features themselves are smaller than the pixel (creating a one-to-many 

relationship). For example, the creation of a class for residential buildings comprising a sloped, 

shingled roof, may be appropriate with a pixel size of 20 cm but the building may not be observable 

with a pixel size of 30 m, where “low density impervious surfaces” or “high density impervious 

surfaces” may be more appropriate LC classes.  
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Complementing what physically resides on the surface of the earth (i.e., LC) are the 

activities of humans at a given location (i.e., LU). Unlike LC classification, classifying LU directly 

from a remotely sensed image is difficult. Instead LC is typically used as an input in the 

classification of LU (Lackner & Conway, 2008). Classifying LU is typically more difficult than 

classifying LC because standard classes are not as well defined in literature compared to LC classes 

(Lackner & Conway, 2008) and contributes to multiple LU types potentially describing the same 

area. Boundaries to represent LU can be determined by several methods of segmentation.  

Imagery can be manually segmented by interpreting the imagery to estimate the borders of 

each LU. Automatically segmenting the imagery can be done using parcel (property boundary) 

information to avoid some of the difficulties of manually determining these boundaries (Lackner 

& Conway, 2008). There are several challenges of determining LU boundaries which manual 

segmentation or parcel segmentation does not address. Neither method fully eliminates the 

problem of multiple LU types occurring simultaneously, although this issue will be reduced.  

Another challenge is finding LU boundaries where no visible boundaries exist. Parcel 

segmentation solves more of this issue than manual segmentation but neither fully solve the 

problem. If there is no fence, road, hedgerow, or other visible boundary an estimation must be 

made. The lack of a visible boundary also suggests that there may be a transition zone where LU 

from either side of the boundary may be applicable. Multiple LU may also appear identical, or 

near to identical, such as protected forests and forests for lumber or recreation. 

The LC composition within parcels can be used to predict which LU class is most 

representative (Hu and Wang, 2013). The parcel size and LC composition are two of the many 

variables available for LU classification, but many other parcel spatial properties can be calculated 

and used within software packages (e.g. Trimble 2015). Ideally urban parcels will have one LU as 

the owners will be regulated through zoning and by-laws. This restriction forces parcels to be 

similar to other parcels of the same LU. For example, two parcels used for residential purposes 

should appear more similar to each other than to a parcel used for commercial purposes. This is 

because of the amounts of the composing LC classes will be similar. Residential parcels will have 

a house and likely also have a front and/or back yard and a parking area such as a driveway. 

Although urban core properties may lose their yards or parking spaces, they will always have a 

house.  
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Commercial properties also share similarities in that they all comprise a building to conduct 

business and typically a parking area. Similar to residential properties, commercial properties may 

lose their parking areas if located in an urban centre as visitors will either park underground, in 

public lots, use public transportation, or arrive on foot or bicycle. Patterns in LC such as the 

examples provided along with the aforementioned spatial properties of a parcel can be used 

together to determine which LU type to classify the entire parcel. 

Some LU classes have similar LC compositions, such as commercial and industrial, and 

can be more difficult to differentiate (Lackner & Conway, 2008; Park & Stenstrom, 2008). Similar 

LU classes may be easy to distinguish by human, but computers have a difficult time and need to 

use optical patterns (i.e., imagery) and ancillary data to determine the LU class. Using parcels, or 

other methods of segmentation to determine LU boundaries, allows for more information to be 

used in the classification than simply assigning LC classes to LU classes (Jiao et al. 2012) or using 

LC patterns alone. Although similar LU classes may be easier to classify with the incorporation of 

additional data into the classification process, they typically have a lower accuracy than spectrally 

and LC-pattern distinct classes. 

The presented research uses a systematic approach to LC and LU classification to evaluate 

“what combination of spatial, thematic, and classification methods produce the highest LC and LU 

accuracy?” and “what is the relationship between LC and LU?” By answering these questions, the 

presented research 1) contributes to the literature by defining a relationship between LC and LU 

accuracy and spatial and thematic resolution, and classification methods; 2) creates a methodology 

to determine optimal combination of resolutions to produce the highest accuracy LU; and 3) 

produces a novel data set for a region lacking detailed LC and LU data. 

 

2.2 Methods 

2.2.1 Data 

Airborne remotely-sensed imagery was acquired from the Southwestern Ontario Orthoimagery 

Project (SWOOP) for 2010. The imagery has a resolution of 20 cm and has three visible bands and 
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one near-infrared band. The SWOOP imagery covers Southwestern Ontario during April and May, 

which is the leaf-off period of the year for this region. The leaf-off period is prior to bud break and 

leaf growth and after snow melt. Grasses for lawns, winter crops, and coniferous trees or shrubs 

are the only sources of green vegetation in the imagery. The SWOOP imagery was selected for 

multiple reasons. The imagery contains no cloud cover which guarantees complete coverage of the 

study area. The small pixel size also allows for resampling to larger pixel sizes without using 

alternative sensors such as Landsat or Sentinel. The SWOOP imagery also was calibrated before 

distribution, decreasing the amount of preprocessing required. Together these two reasons help to 

ensure that the results can be duplicated for other study areas within the SWOOP extent for 

multiple years. 

Parcel boundary data for 2010 was acquired from Teranet to define regions of 

homogeneous LU. Due to privacy issues and the proprietary nature (cost and sharing agreements) 

of the data, acquired parcel data are void of attribute information such as ownership or land use 

zoning information. Although zoning information could be collected from alternate sources, using 

only parcel boundary data increases the replicability of this study. 

Although some LC and LU products do exist for Southwestern Ontario, they either have 

low resolution or classification inconsistencies and inaccuracies. Three available datasets for 

Southwestern Ontario include two Agriculture and Agri-Food Canada (AAFC) datasets mapping 

LC and a product from DMTI Spatial Inc. (DMTI) mapping LU. The first AAFC LC classification 

was created for 1990, 2000 and 2010 with low spatial (30 m) and thematic resolutions (e.g. only 

two urban LC classes representing roads and urban). A second AAFC dataset created in 2011 for 

Ontario, has only one class which represents both urban areas and roads, 48 classes for natural 

features such as water, trees and crop types, and a 30 m spatial resolution.  

The company DMTI created a dataset for Southwestern Ontario which classifies parcels 

for LU in 2002 and 2007. Although the spatial resolution of this dataset is sufficient to accurately 

display urban areas, the thematic resolution could be improved. The classification only includes 

one residential class and does not have a class to solely represent roads. The road class in the DMTI 

dataset is a separate classification which overlaps with the main classification. The DMTI data are 

not consistent over time and use different classification methods. Furthermore, there exists parcel 

omissions from the LU classification where they are classed as “not mapped”. Issues similar to 
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those found in both the AAFC and DMTI datasets are also found in other datasets for Southwestern 

Ontario to various degrees. There exists a need for a standard and justified methodology to classify 

LC and LU to make a series of datasets which can be used for LUCC studies. 

2.2.2 Training and Accuracy Sample Selection 

For classifier training and accuracy assessment of LC, multiple sets of sample data are required. 

A per-pixel classification of LC requires two sample datasets (one for training and one for accuracy 

assessment) with the number of sample sites being at least ten times the number of image bands 

used (Park & Stenstrom, 2008; Piper, 1992; Van Niel et al., 2005), with each sample incorporating 

as many pixels as possible. All sample sites are located in the middle of homogenous segments of 

known LC classes to avoid mixed pixels with larger pixel sizes.  

The classes used consist of four Thematic Typologies where each one is an aggregated 

version of the previous, finer resolution, Thematic Typology. Aggregation is used to define more 

coarse typologies instead of collecting new samples to avoid bias due to training sample selection. 

Another set of training data are created the LU classification. The LU sample sites have only one 

Thematic Typology and use property parcels as the LU boundaries with approximately the same 

number of samples per class as the LC sample sites. Some LC and LU classes were not able to 

achieve the desired number of sample sites. This is due to these classes not having acceptable 

sample sites occurring at a high enough frequency to collect more without sampling the entire 

population. These classes become apparent during the collection of training sites when it becomes 

difficult to find new suitable sites and the existing site appear to represent the population rather 

than a sample.  A suitable site can be described as large enough that it will still be visible at coarser 

resolutions. Additionally, it is far enough from the edges that there will be as few mixed pixels as 

possible at the coarser resolutions. Some LU classes have more samples because they represent 

large portions of the landscape and require more samples to account for their increased 

representation. 

To reduce error, spatially diverse training and accuracy sites are selected within the region. 

Samples for each class are selected from a variety of areas to attempt to prevent any neighborhood 

of specific building age or household income level from being neither under represented nor over 

represented. This process was done by finishing one class before moving to the next, and finishing 
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all of the training samples before selecting the accuracy samples. Completing the whole class at 

once was done to ensure there was no accidential overlap to prevent a neighborhood or subdivison 

from being over represented. Finishing the training sample creation before starting the creation of 

accuracy samples was done to separate the same classes within each sample to further prevent 

selection bias. The samples being used for accuracy assessment of LC and LU classifications were 

completed before the classification was conducted to avoid any bias. 

Two other methods of sample selection were considered. Using randomly placed points 

(e.g. Hu et al., 2013) was initially considered but not used because several classes in both LC and 

LU would have a very high chance of being missed. For example, two of the LC classes “water” 

and “shadow” and two of the LU classes “low density residential” and “under development” would 

need special attention to ensure samples were collected. Another method which was considered 

was to use transects across the study area (Tenenbaum, Yang, & Zhou, 2011) and classify all LC 

or LU touching these lines. This method was attempted but implementation required an exended 

amount of time and it was difficult to identify an unbiased approach that captures the desired 

classification classes. 

2.2.3 Study Area 

The Region of Waterloo was chosen as a study area to determine the optimal methods which can 

be applied to the entire area of Southwestern Ontario (Figure 3) in the future. The Region of 

Waterloo has been chosen because the region contains a variety of LC and LU which is found 

throughout Southwestern Ontario. Kitchener, Waterloo and Cambridge are the only three cities 

within the region, and contain almost all the urban LC and LU classes which are found in 

Southwestern Ontario. Each city contains a downtown core with multiple types of residential (e.g. 

high and medium density) and commercial (e.g. single store and malls) properties, as well as 

suburban sprawl. The surrounding rural areas contain similar LC and LU to most of Southwestern 

Ontario, including many different types of agriculture and contain several lakes and conservation 

areas.  
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2.2.4 Land Cover Classification 

Classification of LC was performed using SWOOP imagery and manually collected training 

samples. Several classification attributes were modified and tested in the study area to determine 

the optimal settings for the specific datasets. These attributes include image resolution, 

classification techniques, and class resolution. Conducting these tests identify the trade-offs among 

the attributes and inform the choice of a final classification approach. This classification approach 

can be used in the future to classify the entire dataset to obtain the LC for all of Southwestern 

Ontario. 

Four pixel-based classification techniques were applied, which included one unsupervised 

classifier (Iterative Self-Organizing Data Analysis Technique, ISODATA) and three supervised 

(Maximum Likelihood Classifier, MLC; Support Vector Machine, SVM; Spectral Angle Mapper, 

Figure 3: Study Area in Southwestern Ontario, Canada 
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SAM, classifiers. The best of these classifiers was then chosen to be compared against an object-

based image analysis classification using a random forest classifier.  

The classifiers for LC were partially processed in ArcMap using plugins from the software 

called ENVI. The ISODATA classifier was run with various settings in an attempt to create an 

accurate result. None of the results were usable and accuracy was not able to be confidently 

assessed. MLC was used with no thresholding to guarantee all pixels receive a value. SAM was 

also used without any thresholding for the same reasons. The results from SVM were processed 

by ArcMap’s built-in classifiers and the recommended default settings were used. 

Each of the four pixel-based classifiers was used to create 32 LC classifications by 

classifying the data at eight spatial resolutions and four thematic resolutions (Table 4). The first 

spatial resolution is the original imagery resolution of 20 cm, with coarser resolutions derived by 

degrading the original resolution by a factor of two, up to 25.6 m (i.e., 20, 40, 80, 160, 320, 640, 

1280, and 2560 cm). The spatial resolutions were created by aggregating pixels and assigning a 

value based on cubic resampling prior to classification. Using a factor of two ensured four whole 

cells from the previous resolution were used and to reduce the amount of images needed to reach 

2560 cm. The upper limit of 2560 cm was chosen, to coincide with the freely available Landsat 

imagery for comparison by other project team members. To reduce the misclassifications caused 

by noise or static in the imagery, a majority filter is applied after classification. The majority filter 

takes each pixel with the eight surrounding pixels and reclassifies the original pixel to the most 

common value of the nine pixels. 

In addition to testing the spatial resolution on land-cover and land-use classification, the 

thematic resolution was investigated by altering the number of LC classes. Four typologies of LC 

classes were tested with each subsequent typology becoming more general through aggregating 

previous similar classes (Table 4). Each set of LC thematic typologies and spatial resolutions was 

used to classify LU to determine the optimal combination of thematic and spatial resolution of LC 

classification to use as input to the LU classification. Due to the imagery available and the 

automatic classification of the imagery, Anderson’s classification is being used as a template to 

guide the selection of classes in this thesis (see Appendix B). This will allow the classification to 

be compared to other studies which also use Anderson’s classification as guide for their classes. 
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Table 4: LC Thematic Typologies and Hierarchy 

 

In addition to testing the spatial resolution on land-cover and land-use classification, the 

thematic resolution was investigated by altering the number of LC classes. Four typologies of LC 

classes were tested with each subsequent typology becoming more general through aggregating 

previous similar classes (Table 4). Each set of LC thematic typologies and spatial resolutions was 

used to classify LU to determine the optimal combination of thematic and spatial resolution of LC 

classification to use as input to the LU classification. Due to the imagery available and the 

automatic classification of the imagery, Anderson’s classification is being used as a template to 

guide the selection of classes in this thesis (see Appendix B). This will allow the classification to 

be compared to other studies which also use Anderson’s classification as guide for their classes. 

In addition to the per-pixel classification of LC, object-based image analysis (OBIA) was 

also used to classify LC by objects. Objects are groups of pixels which attempt to represent feature 

visible in imagery such as a patch of grass, a roof, or a tree. In large features several objects may 

be required for complete coverage. Software is needed to determine which pixels belong to the 

same object through a process called segmentation. Each object is then assigned to a class by a 

trained classifier. This was done using OBIA software (eCognition) on SWOOP imagery 

resampled to 80 cm with the highest thematic resolution. Higher resolutions were not possible due 

to not being able to process the larger file size. This can be attributed to both the hardware and the 

software. If four times the RAM was available the process could possibly be completed in a 

reasonable amount of time (less than a two weeks). It would be possible however with the current 

hardware, except it would take an unreasonable amount of time. Classification of the 40 cm 

imagery was attempted but after a three week processing time it crashed. During this time it did 

Typology # 1 2 3 4 
C

la
ss

es
 

Water Water Water Water 

Shadow Shadow Shadow Shadow 

Grassland/Pasture/ 

Maintained Lawn Green Vegetation Green Vegetation 
Pervious 

Surfaces 
Coniferous 

Deciduous Brown Vegetation 

and Soil 

Brown Vegetation 

and Soil Cropland and Bare Soil 

Pitched Roofs Pitched Roofs 
Impervious 

Surfaces 

Impervious 

Surfaces 
Pavement/ 

Flat Roofs 

Pavement/Flat 

Roofs 

# of Classes 8 6 5 4 



23 

 

not pass the first step, which is the segmentation process and it is estimated that it would have 

taken another 3 weeks or more to finish. When the 20 cm imagery was attempted it gave an error 

explaining there was not enough available disk space for temporary files, which would have 

reached an estimated minimum of 2 TB or more on a single drive when the computer had 

approximately 0.5 TB of free space on the required drive.  Although the image could be divided 

into tiles, the creation and use of tiles presents two isses. First, the division creates edge effects at 

the borders which could cause reduced accuracy through misclassification errors. Second, the 

training data for each class were created to be distributed around the entire study area to not under 

or over represent any one area. With a set of image tiles, large portions of training data will be 

absent from individual tiles and they will not be comparable to the rest of the study area. 

While images with a coarser spatial resolution could be classified, each new spatial 

resolution used in an OBIA process requires an entirely new set of segmentation and classification 

rules to be created. This would introduce more variability between the classifications and 

differences could not be solely explained by the change in spatial resolution. The same requirement 

for rule generation occurs with a change in thematic resolution. Therefore, for consistency, the 

same training and accuracy samples were retained and used for both pixel-based and object-based 

classifiers. The training sample data was applied by classifying all objects which interesected the 

training samples to form the training objects. These training objects were then used as the sample 

data to train the classifier. The training objects were then overwritten when the classifier was 

applied. The overwrite allows for the correction of objects which represent other classes but were 

erroneously included in the training data due to a small intersection with the training samples. 

Major misclassification were reduced using the object relationships derived by eCognition. 

Relationships were used instead of pixel values or textures when creating the process to increase 

the probability that it will work in other areas with different imagery with little to no modification 

to the process. If an object belonging to specific classes was completely surrounded by only one 

other class it was treated as a misclassification and reclassified (Table 5). Three classes, 

“residential roof”, “pavement/flat roof” and “shadow” were manually selected to have this fix 

applied. These classes were chosen to avoid reclassifying as many correct classifications as 

possible. Houses in the study area should not fall within the reclassification for several reasons. 

First, houses have a driveway or sidewalk represented by “pavement/flat roof” which is next to the 
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building and would break any of the conditions above. Houses also cast shadows which could also 

break the conditions above. A similar concept can be applied to “pavement/flat roof”. This LC 

class is found on surfaces such as roads, sidewalks, driveways, parking lots, apartment buildings 

and stores. In all of these cases they are either connected to more paved area or follow the same 

principles as houses. In addition, “shadow” was only reclassified as “water” to account for deep 

pits in rivers and streams which appeared dark. These deep pits are dark mostly because they have 

a shadow, but the surface of the water was considered more important. There are very few cases 

where this process would have negative effects. A small shed represented by only one object of a 

few pixels in the middle of a homogenous area with no path leading to it and does not cast a visible 

shadow may be reclassified. Alternatively a paved surface in a field such as a helipad may be 

misclassified if only represented by a single obeject. Neither of these cases were found in the study 

area, although it is noted that they may be possible.  

Table 5: OBIA Land Cover Reclassifications 

Original Land Cover Class Surrounding Land Cover Classes 

“residential roof” All except “pavement/flat roof” 

and “shadow” 

 

“pavement/flat roof” “deciduous”, “coniferous”, or 

“bare ground and soil” 

 

“shadow” “water” 

 

2.2.5 Land Use Classification 

LU was classified by using the LC classification and parcel data in an OBIA. OBIA was used 

instead of per-pixel techniques since a single LU can be composed of many different LC classes. 

For example, a residential property will contain a house, yards and a driveway. This requires a 

group of pixels to be used in the classification to include these components. The parcels will be 

used as the objects instead of identifying objects separately within the LC classification.  

While it is possible, depending on the typology used, to identify multiple LU types for a 

given location or property parcel, each parcel often represents a single LU and provides a minimum 

resolution for classifying LU (Lackner & Conway, 2008). Many LU and LC decisions are made 

at the parcel resolution (Robinson, 2012), either by the parcel owners changing what the parcel is 
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used for as a whole or by the local government setting restrictions on what a parcel or group of 

parcels can be used for. It is possible for there to be multiple LU types within a single parcel such 

as a building with a store on the ground level and residential apartments on the upper floors. The 

LU classification method used was a random forest classifier, which is built into and applied using 

the eCognition OBIA software package (Trimble, 2015).  
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Table 6: LU Classes and Definitions 

LU Class Definition 

Low Density 

Residential 

Single family housing on large properties (>2000 m2) which are typically 

on the fringe of urban areas, or beside natural areas such as rivers and 

lakes. Easily identifiable by the presence of side yards in many cases. 

Medium Density 

Residential 

Typically, a single family in a detached house, although it includes 

townhouses where units are not stacked vertically. 

High Density 

Residential 

Parcels where residential units are stacked vertically such as apartment or 

condo buildings. 

Commercial 

Parcels with a primary use of conducting business including small stores, 

shopping malls, and offices. With the exception of garden and landscaping 

stores, no outdoor storage facilities are present. 

Industrial 
Parcels used to manufacture products and contains an outdoor storage 

facility.  

Institutional Parcels which contain schools and hospitals, manually classified. 

Transportation 
Roads, railways, along with the boulevards, sidewalks and other 

surrounding features included in the right of way. 

Protected Areas 

and Recreation 
Parks and natural areas which can be either forested or grassy. 

Agriculture 
Parcels used primarily for cropland and pastures used to produce food for 

humans and animals. May contain a farm house and barns. 

Water 

Parcels where water features occupy a large percentage of the area, such as 

a recreation area focused around a lake, or a river. Small water features 

may be superseded by other land uses if they are not large enough. 

Under 

Development 

Areas of land where construction is underway at the time of the image. 

These parcels may become any land use found in urban areas including 

protected areas and recreation in the case of a suburban park. 

* for a detailed description of LU classes see Appendix C 
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2.2.6 Analysis 

Three forms of accuracy were used to assess the results of the classifications and are depicted 

through confusion matrices. The confusion matrix was chosen as it contains all the forms of 

accuracy reporting noticed in the reviewed literature. For every classification result a confusion 

matrix was made which shows the overall accuracy, user’s accuracies and producer’s accuracies. 

The confusion matrix was chosen as it shows how much confusion occurs among the classes. To 

relate all of the matrices, many with different numbers of classes, overall accuracy is used. Overall 

accuracy allows this study to be compared to other studies. The user’s and producer’s accuracies 

are included to help condense the information within confusion matrices to understand the 

accuracy of each class. 

 

2.3 Results 

2.3.1 Overview of LC Results 

In total 129 LC classifications were created spanning multiple spatial and thematic resolutions and 

multiple classifiers. Four example classifications, one for each Thematic Typology, have been 

extracted and shown in Figure 4 for the MLC classifier at 20cm for an urban neighborhood near 

downtown Kitchener, Ontario. In all typologies, both “water” and “shadow” appear and all 

shadows and the pool on the right side of the image remain somewhat consistent throughout each 

reduction of thematic resolution. 

In Thematic Typology 1 and 2, the combination of “grass” and “coniferous” into “green 

vegetation” can be observed when looking into the backyards of the block in the centre of Figure 

3. In Thematic Typology 1 these two classes show the variation of vegetation in the backyards 

which is currently green, as opposed to Thematic Typology 2 which generalizes them into one 

class. Between these two typologies “cropland and soil” and “deciduous” are merged together into 

“brown vegetation and soil”.  The largest differences between these are that Thematic Typology 1 

shows many deciduous trees growing on the properties and dust and dirt on the road is classified 
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separately. In Thematic Typology 2 the trees and dirt covered road appear the same, making it 

difficult to determine if the road is dirty or simply has overhanging trees.  

 The transition to Thematic Typology 3 from 2 merges the classes “pitched roofs” and 

“pavement/flat roofs” into “impervious surfaces”. This reduces the ability to distinguish houses 

from their driveways, sidewalks, patios and roads, as well as buildings with flat roofs. This is 

important when trying to determine the size or type of building on a property and will have a 

greater effect during the classification of LU. 

 Moving to Thematic Typology 4 merges “green vegetation” and “brown vegetation” from 

Thematic Typology 3 into “pervious surfaces”. These two classes represent the only classes which 

Figure 4: Samples of the four thematic typologies for the 2010 imagery at 20cm 



29 

 

have the ability to absorb precipitation without the use of constructed drainage systems such as 

storm drains used to drain water from impervious surfaces. All the vegetation and bare ground is 

merged into this class which removes all detail from the natural features of the images.  

2.3.2 Pixel-Based LC Accuracy 

Overall, MLC provided the highest average accuracy of all classifications evaluated, average 

accuracy of each thematic resolution and average accuracy of each spatial resolution (see 

Appendix D). On average, MLC achieved an average classification accuracy of 82.9% across all 

classifications while SVM and SAM achieved average accuracies of 76.6% and 63.8% 

respectively. For six of the eight spatial resolutions and all the thematic resolutions MLC recorded 

the highest average accuracy. SVM only had a higher average accuracy at 640 and 2560 cm, 

beating MLC by 0.9% and 0.5% respectively. In seven of the eight spatial resolutions MLC also 

achieved the highest maximum classification accuracy (maximum overall accuracy achieved by 

any of the classifications at each resolution by the classifier). In all classifications with a pixel size 

of 640 cm or smaller, MLC achieved at least 80% accuracy, while none of the other classifiers 

were able to do this.  

Behind MLC was SVM, recording the highest maximum classification accuracy for 

Thematic Typologies 1, 2, and 3, with 85.4%, 88.2%, and 88.7% (all at 640 cm). This beat MLC’s 

maximum classification accuracies of 83.3% (640 cm), 87.7% (640 cm), and 87.2% (320 cm) for 

Thematic Typologies 1, 2, and 3 respectively. In Thematic Typology 4 MLC achieved the highest 

maximum accuracy by 5.6% with 91.6% (320 cm) versus SVM’s 86.0% (160 cm). Achieving the 

lowest accuracy in every category was SAM, which had its highest classification accuracy in 

Thematic Typology 3 at 160 cm, achieving 77.6%. 

The two spatial resolutions where SVM was able to achieve a higher average accuracy than 

MLC were both past the point in which the features being classified can be observed. The average 

accuracy for MLC had already begun to decease before 640 cm while SVM had 640 as its highest 

average accuracy. Although SVM had the highest average accuracy for 640 cm with 86.7%, it was 

still not higher than the average accuracy MLC achieved at 320 cm with 87.2%. The other spatial 

resolution that MLC was lower than SVM was at 2560 cm, however both classifiers were 
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dramatically decreasing in accuracy and both classifiers were below 70% average accuracy (MLC: 

67.7%, SVM: 68.2%). 

Since MLC on average performed best overall, it was used for all future steps in this study. 

Several trends were observed in the single classification accuracies of MLC. As spatial resolution 

becomes coarser accuracy increases until it’s peak is reached and then accuracy decreases (Figure 

5). The decrease in accuracy found in the presented study occurs approximately when the pixels 

become as large as houses and trees, and the pixels begin to become extremely mixed with the 

surroundings (see Appendix E). Of 30 houses samples, one from each neighborhood identified, 

the average size was 122 square meters. While trees were difficult to measure due to the blurry 

edges with other trees and their shadows, they were usually smaller than the houses. A 640 cm 

pixel has an area of 40.96 square meters while a 1280 cm pixel has an area of 163.84 square meters. 

Between 640 cm and 1280 cm is where the decrease in accuracy begins. Four of the eight classes 

in Thematic Typology 1 represent features the size of houses and trees (“residential roofs”, 

“coniferous”, “deciduous” and “shadow”) and an additional two classes represent features which 

when in an urban setting are either similar in size to houses or have a similar width (“pavement/flat 

roof” and “grass”). Since a majority of the image features are classified as these six classes the 

overall accuracy drops when they are mixed with other land cover classes.  

In the first five spatial resolutions, the classification accuracy is inversely related to 

thematic resolution as it is increasing as the thematic resolution decreases (Figure 5). After these 

spatial resolutions, the pattern becomes weaker as the classification struggles with the large pixels 

sizes. This pattern in thematic resolution is caused by the generalization of the classes. As the 

spectrally similar classes are merged to form fewer classes and confusion between them has fewer 

chances to occur and is more difficult as the classes are more spectrally distinct. 
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The confusion between the classes can show how the accuracy varies for each class. In 

Thematic Typology 1 at 20 cm “grass” and “coniferous” are often confused, with “grass” being 

misclassified as “coniferous” 37.7% of the time and “coniferous” being misclassified as “grass” 

20.7% of the time (Table 7). These two classes were merged in Thematic Typology 2 due to this 

foreseen confusion, which increased both the producer’s and user’s accuracies (see Appendix F). 

Although “deciduous” and “bare ground and soil” were not highly confused, they were also 

merged as they both appear brown in the imagery. These classes were merged before the results 

were known and it was predicted that they would have higher levels of confusion. These four 

classes are also thematically similar as they both represent pervious LC classes. 

Two of the highest confused classes were also merged between Typology 2 and 3 (see 

Appendix F). The two classes “pitched roof” and “pavement/flat roof” were merged as they are 

the only two impervious surfaces in the classification except for “shadow” which could be hiding 

both impervious and pervious surfaces. This merge is what also causes the drop in overall accuracy 

between Thematic Typology 2 and 3. The confusion matrices show that in Thematic Typology 2 

both classes are also confused with “brown vegetation and soil”. This confusion exists because 

many roofs are brown and appear similar to dirt or deciduous trees, and dirty pavement can appear 

similar to dry soil. In Thematic Typology 2 at 20 cm “pitched roof” and “pavement/flat roof” have 

a combined misclassification of 11.0% with “brown vegetation and soil” while “impervious 

Figure 5: Accuracy of LC for the 2010 imagery 
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surfaces” in Thematic Typology 3 at 20cm has a misclassification of 27.5% with “brown 

vegetation and soil”. This misclassification in Thematic Typology 3 at 20 cm accounts for more 

than half of the total confusion for this combination of spatial and thematic resolution. Which a 

similar pattern exists for all the other spatial resolutions for Thematic Typology 3, only 20 cm has 

this misclassification accounting for over half the total confusion.  

One class remained consistently highly accurate, which was “water” (see Appendix F). It 

had a producer’s accuracy of at or near 100% and a user’s accuracy over 99% in all combinations 

of spatial and thematic resolutions. Water is one of the only blue features in the image, and 

although it is often cloudy with suspended sediment, it is still spectrally different than any other 

class, especially in the near-infrared band. When only considering the red, green, and blue bands 

“water” and “shadow” often appear dark due to light penetrating the water or reflecting in a 

different direction than the sensor, and shadows not receiving much light by definition. In the 

infrared band water in the image appears much darker than the shadows. 

Table 7: Confusion matrix for 2010 LC Thematic Typology 1 at 20cm, MLC 
Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 C. 7 C. 8 Total User’s (%) 

C
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C. 1 12472 0 0 0 24 4138 0 0 16634 75.0 

C. 2 0 13994 2448 0 70 0 554 200 17266 81.0 

C. 3 0 1606 14918 0 893 0 1513 5 18936 78.8 

C. 4 0 43 0 20001 1 0 0 14 20059 99.7 

C. 5 8 780 65 0 18004 36 337 184 19414 92.7 

C. 6 7563 0 0 0 186 15824 0 1289 24863 63.6 

C. 7 0 2210 2580 0 666 0 17632 0 23087 76.4 

C. 8 0 1393 6 2 161 16 0 4310 5887 73.2 

Total 20044 20025 20017 20004 20006 20014 20036 6006   

Producer’s (%) 62.2 69.9 74.5 ~100.0 90.0 79.1 88.0 71.8 Overall: 80.2% 
           

 Legend  

C. 1 Grass C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Deciduous C. 6 Coniferous 

C. 7 Bare Ground and Soil C. 8 Shadow 

 

2.3.3 Object-Based LC accuracy 

Using an 80 cm spatial resolution, the object-based classification of LC achieved an overall 

accuracy of 96.7% (Figure 6, Table 8). All classes achieved a producer’s accuracy of over 90% 
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with the exception of “residential roofs”. Similarly, with the exception of “deciduous”, all classes 

achieve a user’s accuracy of over 90%. The biggest misclassification from 9.7% (1949 m2) of the 

“residential roof” pixels being classified as “deciduous”. 

 Both “residential roof” and “deciduous” are often confused partially because they are often 

located beside each other. In the urban areas, it was noticed that most vegetation is either grass or 

deciduous trees and bushes. In many cases there were trees overhanging part of a roof, which may 

hide the edge of the roof. When the roof is a brown shingled roof the object may expand into the 

tree as it does not see the edge of the roof, and potentially onto the lawn (Figure 6). The 

segmentation process requires a form of hard edge to determine the edge of the image features. 

Without this hard edge, the objects will grow until they reach their maximum size, covering 

multiple LC classes. When this happens, the object can be classified as “pitched roof”, 

“deciduous”, or in some rarer cases “grass” and one part of the object is guaranteed to be classified 

incorrectly. 

  

Additionally, it was noticed that the measured accuracy, using the same sample data as the 

other classification methods, may be higher than the absolute accuracy. Misclassified objects, 

Figure 6: Example of an object covering a roof, tree, and lawn at 80 cm 
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mainly as “pitched roof”, were noticed in transition areas which were not included in the sample 

data due to belonging to multiple classes (Figure 7). These transition areas often were not between 

“pitched roof” and another class, meaning the “pitched roof” class could not be correct. This also 

occurred most often in transition areas including deciduous trees and bare agricultural fields as 

both are brown, similar to brown shingles on a residential roof.  

Table 8: Confusion matrix for 2010 LC, Thematic Typology 1 at 80 cm, classified by OBIA 
Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 C. 7 C. 8 Total User’s (%) 
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C. 1 20032 34 0 0 26 96 0 0 20188 99.2 

C. 2 0 16484 86 0 38 3 0 0 16612 99.2 

C. 3 0 291 19755 0 0 0 333 8 20187 96.9 

C. 4 0 90 0 20006 0 0 0 0 20097 99.6 

C. 5 0 1949 135 0 19952 0 420 0 22456 88.8 

C. 6 0 75 0 0 0 19862 0 0 19937 99.6 

C. 7 0 560 0 0 0 0 19276 0 19836 97.2 

C. 8 0 548 0 0 4 66 0 5997 6616 90.6 

Total 20032 20031 19976 20006 20021 20027 20030 6005   

Producer’s (%) 100.0 82.3 98.9 100.0 99.7 99.2 96.2 99.9 Overall: 96.7% 
           

 Legend  

C. 1 Grass C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Deciduous C. 6 Coniferous 

C. 7 Bare Ground and Soil C. 8 Shadow 

 

Figure 7: Example of “pitched roof” (red) occurring along a hedge row of a deciduous 

hedge (green) in a field (orange) and along the driveway (grey) of the farm house 
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2.3.4 Object-Based LU accuracy – pixel-based input 

The LU classification with the highest overall accuracy (88%) came from the random forest 

classifier using the LC Thematic Typology 1 at an 80 cm spatial resolution (e.g., Figure 8, Figure 

9, and Table 9). The classifications with 80 cm and 160 cm pixel size also achieved the highest 

average accuracy with a tie at 85.9%. The classifications which used Thematic Typology 1 as the 

input also achieved the highest average accuracy with 87.0% with Thematic Typology 2 a close 

second at 86.5%. Overall the object-based LU classification accuracy was similar across all 

classifications with the highest classification of 88% at 80 cm with Thematic Typology 1 only 

10.2% higher than the lowest classification of 77.8% at 640 cm with Thematic Typology 4. 

The 20 cm resolution LC data was omitted due to the large number of pixels not being able 

to be segmented due to hardware and software restrictions. The two coarsest resolutions were 

omitted due to pixel sizes becoming too large for the parcels. For example, 71% (out of 120397) 

of medium density residential parcels in the study area were smaller in area than four 1280 cm 

pixels or one 2560 cm pixel. In addition, eCognition first aligns the parcel boundaries to match the 

image resolution and the parcel boundaries differ substantially from the original parcels (Figure 

10). The effects of parcel rasterization can be observed at resolutions finer than the 1280 cm pixel 

size. After their maximum accuracy occurring at 80cm Thematic Typologies 1, 2, and 4 all 

experience a downwards trends in accuracy as the pixels become larger.  

 

Figure 8: Example of LU Classification, 80 cm input with Thematic Typology 1 
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The general trends of the LU accuracy show that decreasing the thematic resolution of the 

input LC decreases classification accuracy (Figure 9). This trend becomes exaggerated at coarser 

spatial resolutions as the difference between the highest and lowest classification accuracy 

increases from 3.9% at 40 cm to 7.4% at 640 cm. This increase in difference is mainly caused by 

the larger decrease in accuracy of Thematic Typology 4 where it was 5.6% lower than its maximum 

accuracy. In comparison, at 640 cm Thematic Typology 1 is only 2.8% lower than its highest 

accuracy. 

 “Commercial” and “industrial” are the two classes with the most confusion, whereby 20 

of the 100 “commercial” parcels are classified as “industrial” and 21 out of 100 “industrial” parcels 

are incorrectly classified as “commercial”. “Water” is also confused with protected areas and 

recreation, although the opposite confusion does not occur frequently. This may be due to the 

amount of shoreline or other land included in “water” parcels. An example of the LU classification 

can be seen in Figure 8. 

 

 

Figure 9: Accuracy of LU classification for the 2010 imagery 
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Table 9: Confusion Matrix for 2010 LU, 80cm, Thematic Typology 1 

 

Sample Data Classes (# of parcels) 

 
 C. 1 C. 2 C. 3 C. 4 C. 5 C. 7 C. 8 C. 9 C. 10 C. 11 Total User’s (%) 
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 C. 1 92 0 3 0 5 0 8 0 0 0 108 85.2 

C. 2 0 100 0 0 0 0 0 0 0 0 100 100.0 

C. 3 7 0 77 3 5 1 1 0 0 0 97 79.4 

C. 4 0 0 10 72 20 0 0 0 0 0 102 70.6 

C. 5 0 0 9 21 68 0 0 0 0 0 98 69.4 

C. 7 0 0 1 0 0 99 0 0 0 0 100 99.0 

C. 8 1 0 0 0 0 0 141 5 7 0 154 91.6 

C. 9 0 0 0 1 2 0 0 120 1 0 124 96.8 

C. 10 0 0 0 0 0 0 0 0 17 0 17 100.0 

C. 11 0 0 0 0 0 0 0 0 0 50 50 100.0 

Total 100 100 100 100 100 100 150 125 25 50   

Producer’s (%) 92.0 100.0 77.0 72.0 68.0 99.0 94.0 96.0 68.0 100.0 Overall: 88.0% 

             

Legend 

C. 1 Low Density Residential C. 2 Medium Density Residential 

C. 3 High Density Residential C. 4 Commercial 

C. 5 Industrial C. 6 Institution – manually classified, omitted from matrix 

C. 7 Transportation C. 8 Protected Areas and Recreation 

C. 9 Agriculture C. 10 Water 

C. 11 Under Development   

Figure 10: Example showing parcel rasterization at 40 cm and 640 cm 
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2.3.5 Object-Based LU accuracy – object-based input 

The overall accuracy of LU classified from the LC created by OBIA through eCognition achieved 

an accuracy of 82% (Table 10). Similar patterns are found in the confusion matrix when compared 

to the LU classified from the pixel-based LC but with an increase in error. The most notable 

increase in error is “protected forest and recreation” being misclassified as “low density 

residential” in 25 of the sample parcels. The classification accuracy when object-based LC is used 

is lower than all but two of the classifications when pixel-based LC input is used. It is also 6% 

lower than the maximum overall accuracy when pixel-based LC input is used. Several of the 

common misclassifications are expected, including the confusion “commercial” and “industrial”. 

These two classes both have similar traits such as a large building with a flat roof and potentially 

large parking lots. The main difference is the outdoor storage areas found on “industrial” 

properties. Not all “industrial” properties will have a significant outdoor storage area. Some 

“commercial” properties will have an area that appears similar to a storage area when classified, 

such as an area of bare ground or sparse trees. 

The “water” class was also not able to achieve a very high producer’s accuracy, which was 

not expected. This was because it was rare for a parcel to only be water, and usually included some 

sort of recreation area or housing area. In many cases, classifying “water” as “protected areas and 

recreation” is not a large error. Many recreational areas include a water feature such as a pond or 

a stream. In many “water” parcels which are not limited to the river banks or lake shores they can 

be considered recreation depending on the user’s point of view, making this misclassification have 

a smaller effect than it appears to have.  

 Many of the classes in this LU classification have very little confusion. For example, 

“medium density residential” received an almost perfect 100% in both producer’s and user’s 

accuracies. The only misclassification was one “under development” parcel which will be a 

“medium density residential” property when construction has finished. Another class, 

“agriculture” also performed very well. This class has one of the largest observed parcel sizes with 

only “protected areas and recreation” having a similar size. When these two are similar it is a 

simple distinction as one is covered in trees and the other is either bare ground or grass.  
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Table 10: Confusion Matrix for 80cm LU, Thematic Typology 1, OBIA LC Input 

 

 

 

 

 

 

 

 

 

 

2.4 Discussion 

2.4.1 Pixel-Based Land Cover Classification 

LC accuracy attained in the presented research exhibited expected outcomes along the evaluated 

spatial and thematic resolution gradients tested. As the spatial resolution increased, accuracy also 

increased. This can be attributed to the reduction of noise and other abnormalities through the 

generalization of pixel values. However, the reported LC accuracy declines in the fine spatial 

resolutions. This was determined to be caused by the size of the structures being classified. The 

first decrease in accuracy occurs at 640 cm, which is the resolution which houses cannot be 

identified (see Appendix E). This decrease in accuracy is amplified at the lower resolutions as the 

pixel size becomes larger than features such as roads and commercial buildings. As predicted, 

decreasing thematic resolution also increases accuracy due to the generalization and merging of 

LC classes. As LC classes, such as “grass” and “coniferous” merge, any pixels previously confused 

between the two classes are now correct. The more general class definition also increases the 

Sample Data Classes (# of parcels) 

 
 C. 1 C. 2 C. 3 C. 4 C. 5 C. 7 C. 8 C. 9 C. 10 C. 11 Total User’s (%) 

C
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d

 R
es

u
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 C. 1 84 0 8 2 14 0 25 0 1 0 134 62.7 

C. 2 0 100 0 0 0 0 0 0 0 1 101 99.0 

C. 3 5 0 71 4 9 0 1 0 0 0 90 78.9 

C. 4 3 0 11 67 20 1 0 0 0 0 102 65.7 

C. 5 2 0 6 25 55 0 0 0 1 1 90 61.1 

C. 7 0 0 2 0 0 98 0 0 1 0 101 97.0 

C. 8 5 0 2 0 0 1 121 4 8 0 141 85.8 

C. 9 0 0 0 1 2 0 1 121 0 0 125 96.8 

C. 10 1 0 0 1 0 0 2 0 14 0 18 77.8 

C. 11 0 0 0 0 0 0 0 0 0 48 48 100.0 

Total 100 100 100 100 100 100 150 125 25 50   

Producer’s (%) 84.0 100.0 71.0 67.0 55.0 98.0 80.7 96.8 56.0 96.0 Overall: 82.0% 

             

Legend 

C. 1 Low Density Residential C. 2 Medium Density Residential 

C. 3 High Density Residential C. 4 Commercial 

C. 5 Industrial C. 6 Institution – manually classified, omitted from matrix 

C. 7 Transportation C. 8 Protected Areas and Recreation 

C. 9 Agriculture C. 10 Water 

C. 11 Under Development   
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likelihood that a previously uncertain pixel will now belong to the correct class by giving less strict 

limits to accepted values.   

Common LC class confusion in the first Thematic Typology occurs between “grass” and 

“coniferous”, “pitched roof” and “bare ground and soil”, and “shadow” and “coniferous”. “Grass” 

and “coniferous” are confused with each other because they both are green vegetation at the time 

of imagery aquisition. “Pitched roof” and “bare ground and soil” also appear similar in the imagery 

as roofs in the region are generally made of shingles which are covered in crushed rock. “Shadow” 

is often confused as “coniferous”, however the opposite confusion is not as common. Due to the 

cone shaped trees, there are many small shadows in coniferous forests in the area, and therefore 

become part of the “coniferous” class. The more general thematic typologies show similar 

confusions for the classes, with the exception of “green vegetation” which combines “grass” and 

“coniferous”. 

Knowing and understanding the range and pattern of classification accuracy for LC is 

important for many fields such as global carbon modelling and LUCC analysis. In areas where 

very high resolution aerial imagery is not available, medium resolution satellite imagery may be 

used. The resolution of the imagery can be used to determine the thematic resolution which 

performs best. For example, if a satellite provides a resolution closest to 640 cm, Thematic 

Typology 2 should be avoided because Thematic Typology 1 has a higher accuracy and a finer 

thematic resolution. The decision between Thematic Typologies 1, 3, and 4 would depend on the 

required accuracy and thematic resolution thresholds. Alternatively, if funding partners or project 

requirements demand an overall accuracy above 85% for Thematic Typology 2, and assuming 

higher resolution imagery is more expensive, it would be possible to pick the cheapest imagery 

which has a high chance of meeting the demands. In this example, it could be predicted that 320 

cm is the coarsest imagery which can achieve the goal (Figure 5), reducing the funding needed if 

the 80 cm imagery was used instead.  

2.4.2 Object-Based Land Cover Classification 

The results of the object-based LC classification were more accurate than Lackner and Conway 

(2008) who used a PAN sharpened IKONOS image with a spatial resolution of 1 m and 17 thematic 

classes and achieved 73% accuracy. Lackner has a similar resolution to the 80 cm used in this 
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study but has more than twice the classes. Lackner’s classification also used ancillary road network 

data in the classification of the image. Lackner’s study area was predominantly urban, with very 

little rural area (10 fields which may potentially be agricultural) although more urban thematic 

classes were used. This focus on urban areas means that their study is not applicable at the regional 

scale. They reported that their accuracy increases to 77% when the building classes are combined. 

After examining the examples of their results, they seem to have a large amount of noise, 

potentially from using smaller objects. Lackner and Conway may also not have used any tools to 

clean up the data such as searching for objects representing noise and reclassifying them to their 

proper class. 

The LC classified by eCognition using OBIA had a higher accuracy than any of the pixel-

based classifications in this study. For the same spatial and thematic resolution, OBIA produced a 

higher accuracy by 14.4% (from 82.3% to 96.7%). Two notable differences exist between the 

confusion matricies for these two classifications. Using OBIA reduces the misclassification of 

“grass” as “coniferous ” to zero, while in the pixel-based classifier misclassified 39% of the 

“grass”. The opposite misclassification of “coniferous” classified as “grass” was also reduced to 

0.4% from 13.5%. This improvement is caused by the additional attributes available to the 

classifier by using objects. Areas such as lawns or fields will have relatively compact objects which 

can be distinguised from the less compact objects found in forests or single trees. In the forests 

and single trees, the objects have a larger number of edges caused by shadows and different types 

of trees which may define the object boundaries. This will also cause the objects to be smaller 

which makes the classification easier. 

The second major difference in the classifications is the misclassification of “shadow” as 

“coniferous ”. OBIA had very few “shadow” samples classified as “coniferous ” while pixel-based 

had 22% of the sample pixels classified as “coniferous”. Although there was an increase in 

opposite misclassification, it is still very low with pixel-based only having 0.04% misclassification 

and OBIA having 0.3% misclassification. In the coniferous forests found in the study area, the 

cone shaped trees cast shadows on the lower parts of the trees behind them. This creates random 

patches of “shadow” and “coniferous” when observed from above, such as in the imagery. Objects 

are able to follow the boundaries between trees and shadows in coniferous forests (e.g. Hernando, 

Tiede, Albrecht, & Lang, 2012) and each object can be classified seperately. In comparison, the 
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pixel-based classifier only considers the pixel value, making the borders difficult to classify when 

neither class is fully represented. When using OBIA, the difficult borders are divided into different 

objects which gives them the same class as the whole object. This reduces the uncertainty of these 

border pixels and reduces the misclassification. 

2.4.3 Object-Based Land Use Classification 

The relationship between LU classification accuracy and input resolution shows a similar trend to 

the one identified in LC. As the resolution decreases, in this case, the input LC data to the OBIA 

LU classifier, the accuracy initially increases and then decreases. This is due to the number of 

pixels which occupy a single parcel and the segmentation process. Although the parcels are used 

as the guide for segmentation, the final objects must follow the edges of the pixels. At the finer 

resolutions, this does not pose a problem, as it simply makes the borders of the parcels slightly 

rough due to the large number of pixels, similar to a straight line being represented on a television. 

At the lower resolutions, the parcel objects resemble the actual parcel less, which distorts many of 

the spatial patterns available to be used in the classification (Figure 10). These lower resolutions 

also provide fewer pixels for the classifier to use to determine the LU class. Resolutions with pixel 

sizes greater than 640cm were excluded due to the identified loss of accuracy in the input LC. 

Also, at these resolutions, many parcels were occupied by only a segment of a single pixel of LC 

and could not be represented in the software.  

The native resolution of 20 cm was omitted due to computer random access memory 

(RAM) limitations. For the entire imagery to be processed at once at the native resolution, an 

estimated 256 GB of RAM may be able to work, but 512 GB would be ideal. Obtaining the required 

motherboard, processor and RAM registered dual-inline memory modules (RDIMMs) to make 

this possible in a desktop computer would be cost prohibitive. These highly speciallized computers 

were not used as it would make this study very difficult to reproduce. It is also unknown if 

eCognition would be able to process such a large amount of data.  

The relationship between number of classes and the accuracy of LU is the reverse of the 

relationship for LC. As the number of LC classes in the input  data decreases, the accuracy also 

decreases. This is due to the decreased amount of information available in fewer classes. As fewer 
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LC classes are used to represent the region, there are fewer classes available for LU classification. 

This reduces the possibility for patterns in LC to emerge and aid in the prediction of LU.  

Although all the classifications had an overall accuracy within a range of only 10.2% there 

are still patterns which can be observed which are helpful to future studies of LUCC. The results 

show that although a high spatial resolution is needed to classify at the parcel scale, the very high 

resolution imagery does not perform as well as the slightly lower resolution imagery. Even if the 

20 cm imagery is available, it should be resampled to approximately 80 cm to achieve the best 

results. This range of accuracy values can also be used to reinforce the need of high resolution 

imagery. If the only imagery available for a study is 640 cm, it can be observed that obtaining 

higher resolution imagery would be beneficial to the project, and would not be a waste of resources. 

Alternatively, the accuracy ranges in this study could be used to justify the current imagery is 

acceptable as the high resolution imagery will not increase accuracy enough to spend resources 

aquiring new imagery.   

2.4.4 Object-Based Land Use Classification with Object-Based Land Cover as Input 

Using the same methods, training samples and accuracy samples to classify and assess LU from 

LC created from OBIA produced lower accuracy results than the pixel based LC. This decrease in 

accuracy may be due to the generalization of the LC by the objects. This generalization may reduce 

the amount of information available to the classifier to make decisions on class membership. The 

LC objects will merge very small features into larger ones during segmentation. This creates a 

clean classifcation with many of the small patches overlooked. Although this works well for LC, 

these small objects will add a lot of information which can be used in the classification of LU. 

These small objects may be classified differently in the pixel-based classification than they would 

be in the object-based classification. For example, a small patch of dry grass in a agricultural area 

may be classified as “bare ground” in the pixel-based classifier but is merged into the surrounding 

“grass” object in the object-based classification. Similarly a patch of very green grass on a 

manicured lawn in a residential area may be classified as “coniferous” in the pixel-base 

classification but “grass” in the object-based classification. This increased variation in the pixel-

based classification may lower the LC classification accuracy but provide more information to the 

LU classification, increasing the classification accuracy.  
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The patterns in the confusion matrix for the LU classified from pixel-based and object-

based LC data are very similar. In both scenarios, “commercial” and “industrial” are the two most 

confused classes, “protected forest and recreation” is misclassified with “low density residential” 

and “commercial” is misclassified with “low density residential”. It is hypothesized that the 

common patterns is due to the high accuracy in both input datasets. With both input datasets having 

high accuracy, many of the same patterns will be visible because they naturally occuring in the 

landscape. The difference may then be caused by the misclassifications corrected by the 

generalization of objects as previously mentioned.  

For the purposes of LC classification, OBIA is a worthy expenditure, as it drastically 

increases accuracy. If LU is the desired product, OBIA should be skipped for LC classification as 

it produces lower accuracy than using the pixel-based LC classification. To achieve higher 

accuracy using OBIA for both LC and LU  to match the other methods in this study, a greater 

investment of time and computing resources would be needed. This is needed to tailor the LU 

classification methods to the OBIA input data. The use of OBIA for both LC and LU also decreases 

capability to expand the same methods to new datsets and regions by requiring more human 

involvment in creating rulesets for each new dataset and region. In the current state with pixel-

based LC classification and object-based LU classification, only sample data need to be produced 

to use the methods with new datasets or in new regions. 

The combination of thematic and spatial resolution of LC classification which produced 

the highest accuracy LU classification is Thematic Typology 1 at a spatial resolution of 80 cm. At 

this point, the spatial resolution is matching the size of some features in the image while still having 

a large number of pixels within each parcel. The large number of pixels, with all the LC classes 

present, allows for more information to be used in the classification of LU. This large amount of 

information is important as the spatial and thematic resolutions in this combination do not produce 

the highest accuracy of LC. To achieve the highest accuracy LC without changing thematic 

resolution, spatial resolution would need to be decreased to a pixel size of 160 cm, although this 

reduces LU accuracy. 

Finding this combination of resolutions is an important step. In many studies, the native 

spatial resolution of the image is used with an arbitrary number of thematic classes without 
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questioning if the data could be resampled, or thematic classes modified to produce a higher 

classification accuracy in the next product.  

2.5 Conclusions 

Spatial and thematic resolution is a property of all image classifications. Understanding this core 

part of image classification is important to maximize the accuracy of classification that may be 

performed and to assess and evaluate the trade-off in accuracy among different data and 

classification approaches. While a study may be restricted by funding, available imagery, 

requested classes and minimum accuracy levels, this study can assist in determining the exact 

methods and data to use. The results presented demonstrate how different classifiers, spatial 

resolutions and thematic resolutions effect the overall accuracy of a classified image. When a 

decision is needed to pick from two available imagery sources, this lookup table can be used to 

ensure the proper source is selected. When LC or LU classes are being determined before 

conducting field sampling, this lookup table can be referenced.  

This study can also be used as a benchmark for image classification. If a similar study is 

being conducted and the accuracy is different than what was achieved here, the reseachers can 

investigate the reasons behind the difference. This does not mean this study definitively achieved 

the highest accuracy possible for each combination, simply that it has consolidated the results of 

96 LC and 32 LU classification results into one location for the purposes of comparison.  

This study has allowed for the future comparison of Southwestern Ontario with regions 

which have had similar studies conducted such as Michigan (Huang et al. 2014; Robinson 2012), 

Indiana (Kelley & Evans, 2011). This available comparison is important to analyze how LUCC is 

different across various regions and climates. 
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3. Chapter 3: Context and Future Direction 

3.1 Implications 

This study has produced three beneficial products which were not previously available for the 

Region of Waterloo, and can be expanded to Southwestern Ontario. The first product is the 

relationships between LC and LU for the Region of Waterloo and Southwestern Ontario in general. 

This is important for a variety of reasons such as understanding the preferences of homeowners 

and land developers in terms of how properties are developed. It can also be used for understanding 

carbon storage and emissions by LU class. The second benefit produced by this study is the ability 

for future studies to use the data. For example, the LC can be used for research in areas such as 

urban planning (Memarian et al., 2013) and the LU can also be used for urban planning, carbon 

storage calculations (Park & Stenstrom, 2008) and market and populations growth and dynamics  

(He et al., 2013). The third products are the LC and LU datasets. These data are unique to the 

region and allow for the future studies and applications to be done. 

 

3.2 Challenges and Opportunities 

There are many challenges which can decrease the usefulness or accuracy of image classifications 

and models. Poor data quantity and quality limits the accuracy of many studies. In this study, the 

2010 SWOOP imagery was used as it includes an infrared band. An earlier SWOOP product which 

was acquired in 2006 however does not contain the infrared band. This imagery was classified 

alongside this thesis and did not achieve an accuracy as high as the 2010 imagery with the infrared 

band. The use of parcels in OBIA can increase the accuracy between LC and LU as can be seen 

for the 80 cm image with Thematic Typology 1. Applied to the 2006 imagery this could account 

for much of the lost information from not having an infrared band and produce a high quality LU 

product. 

The focus on the specific study area reduces the usability of identical methods and identical 

parameters on other areas, such as Asia or Europe. This is due to the change in the effect of LU 
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predictors and LUCC drivers over space. The framework of this study allows the research to be 

replicated for alternate regions and the results from this study would provide a comparison for the 

new region. In some cases new classes may be needed for potentially both LC and LU. For 

example, a mountainous region may need the added classes of “bare rock” or “snow” for LC and 

“uninhabited mountainous” for LU to accommodate for the difference in landscapes. 

There is a possibility that increasing the number of LC classes could increase the accuracy 

more in this study. Because the most accurate combination included the Thematic Typology with 

the most classes, it is not possible to definitively conclude that number of classes in Thematic 

Typology 1 is optimal. Including more classes introduces another issue as there are few LC classes 

not included in Thematic Typology 1, and new classes would have large thematic and spectral 

overlap with the existing classes. When determining which classes to use, the landscape was 

studied through the imagery to determine all the possible LC classes. This list of LC classes was 

used as Thematic Typology 1. If more classes were to be added, they would be very difficult to 

train into the classifier. New classes would need to be formed through the division of previous 

classes. Different types of roofing materials or different types of trees could be identified but would 

likely not produce significantly better results. 

The use of parcels representing sets of pixels also introduces the modifiable areal unit 

problem (MAUP). For example, if a farmer has forest covering half the property, the forest may 

be lost in the classification. If several neighboring farms all have a portion of the same forest, the 

forested area could be larger than any one of the farm’s agricultural area, although it will be 

ignored. Although census dissemination areas could be used, the same issue would be present as 

it is the same concept except with large polygons. Using the LC dataset in combination with the 

LU dataset can avoid some of this problem by being able to represent sub-parcel compositions of 

LC. The distribution of the LC within the LU would not be distributed throughout the parcel, but 

could simply be represented in table form. These values can either be calculated from the LC map 

if it is the original LU, or from regional averages for similar LU types and parcel sizes. Using this 

method would allow for general assessments of the region to be conducted on the final results of 

the model. 

The previous example is also a case for mixed use parcels. Similar to mixed pixels, mixed 

parcels are parcels which are being used for two or more LU types. An additional example is found 
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in the urban core where it is very common to have business located on the bottom floor of buildings 

with residential apartments above. This could create inaccurate reports of residences or business 

in an area, depending on which class they are labelled as. To avoid this issue, a LU class could be 

used to represent these areas which would mitigate some of the effect. 

 

3.3 Future Directions 

3.3.1 Land Cover Analysis within Parcels 

The results and methods from this study can be applied to the analysis of LC within parcels. This 

type of analysis can compare LC composition across the different parcel sizes (e.g., Robinson, 

2012) and over time (e.g., Huang et al., 2014). Combined with their physical properties and 

relationships with other parcels, these LC patterns can be used to determine many environmental 

processes and attributes such as carbon storage (e.g., Huang et al., 2014). Since these studies are 

analyzing LC composition within parcels, the LC data must be of a high enough spatial resolution 

that it can show variation among parcels. If the spatial resolution is too coarse, parcels may only 

be represented by a few pixels and will not be able to have accurate patterns calculated.  

The widely available LC data tends to be derived from freely available satellite imagery 

such as Landsat. The moderate-to-coarse spatial resolution of Landsat, MODIS, and other satellite 

platforms allows those satellites to cover a larger area in the same time as finer resolution 

platforms. Parcel LC composition requires finer spatial resolution than platforms such as Landsat 

due to a vast majority of the residential parcels being approximately the same size as a single pixel. 

As the spatial resolution becomes finer the imagery will generally become less widely available 

either due to platform coverage or cost. As this happens the LC classifications will become more 

specific to the project. This reduces the standardization in thematic resolution across LC 

classifications. Although this allows the LC classes to be tailored to the project, it reduces the 

comparability with other similar projects. If LC composition projects can be compared against 

each other, they can be used to determine how patterns change over space and time to better 

understand the environmental factors being investigated.  
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In addition, the parcel data required to perform an analysis of LC composition is required. 

Wealthy countries can produce parcel data fairly easily while some poorer nations, or nations with 

less urban structure, may lack the resources to produce parcel data. Although methods could be 

produced to automatically create parcel data through image interpretation, they would be 

estimations of the parcels and would not represent the actual ownership of the land. This produced 

data may be usable for measuring the occurrence of LU change, but since it has been created from 

patterns in the imagery and LC, it would not be suitable to study LC composition. Parcels could 

be created by manually digitizing imagery, however this could be a long process and may be 

difficult in poor areas such as urban slums. 

Assuming parcel data is available, two solutions can be done to increase the comparability 

of projects. The first solution is to increase the availability of high resolution imagery. Although 

this is not a realistic solution, it would allow for large regions to have LC and LU classified from 

the same image platform from around the same time period. This study could be used to help make 

this solution a reality in two ways. The first would be to inform the government or organization 

funding the new platforms select the appropriate spatial resolution. The maximum pixel size can 

be determined through the LU classification accuracy report. For example, if at least 86% overall 

accuracy is required, 320 cm would be the largest the pixels can be from the selected spatial 

resolutions. This would just be the maximum pixel size and other factors may reduce this size. The 

second way would be to inform the researchers conducting their projects on which spatial 

resolution to choose. Either way would increase the comparability of projects by increasing their 

similarity in spatial resolution. 

The second solution is to increase the standardization in thematic resolution. Increasing the 

standardization will make studies more comparable through describing the same types of patterns. 

This study can help this solution by showing what accuracy each Thematic Typology reaches for 

the available spatial resolutions. Although the exact classes used in this study may not be used, the 

approximate resolution can be used to create a new Thematic Typology standard. The Thematic 

Typologies in this study could also be used to compare accuracies of projects. For example, if 

project one uses Thematic Typology 1, and project two uses Thematic Typology 2, their accuracies 

could still be compared. This study could show that for the specific spatial resolution of the 

projects, the accuracy of project one is equivalent to that of project two if they had both used the 
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same Thematic Typology. Increasing the standardization of thematic resolution or introducing a 

method to compare accuracies would both increase the overall comparability of LC composition 

studies. 

3.3.2 Agent-Based Modelling 

Another field which may benefit from this study is agent-based modelling (ABM), specifically for 

LUCC. In an ABM, the agents are pieces of programming which act independently of each other 

to make changes to the data it is given, following a set of rules. The agents can be viewed as 

characters in a role playing video game (Barnaud, Le Page, Dumrongrojwatthana, & Trébuil, 

2013), each within a general class (e.g. a knight or archer in a fantasy video game) which defines 

the set of attributes which will influence the agent’s actions. Each agent in the ABM must belong 

to one of the agent classes. The class defines what role the agent has in the model, and 

subsequently, the actions available to it (Murray-Rust, Robinson, Guillem, Karali, & Rounsevell, 

2014). For example, in a LUCC ABM, one agent may be in a land developer class. A land 

developer may have an action which changes the LU to one with a higher level of anthropogenic 

disturbance, such as forest to agriculture, or agriculture to residential. The land developer class 

may be part of a group of anthropogenic classes which contains agent types which simulate human 

interactions with the environment. These roles and actions are defined by the ABM developer 

(Brown & Xie, 2006; Li, Colson, Lejeune, Speybroeck, & Vanwambeke, 2015), and are influenced 

by the observed patterns of historical change. 

Although an ABM could be designed to work at any scale, an ABM which simulates LUCC 

in a single city or region typically operates at a fine resolution. This applies mainly to spatial 

resolution of LC and LU, while thematic resolution relies more on the desired product of the model. 

Coarse spatial resolution LC and LU data will not be able to represent a single household or city 

block which can be represented by finer resolutions, although the specific resolution used by an 

ABM will depend on the available data, the requirements of the topic being modelled, and the 

desired computational performance of the model. A model performing the same computations on 

coarse data, in theory, will be faster for the same spatial extent than if fine data were used. An 

ABM could theoretically be developed that modelled both regional and local LUCC. This would 

need both coarse data and fine data to be available for the entire study area. 
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There are very few ABMs which have been specifically designed to model LUCC in 

Canada. Although generic models may be capable of this, they have not been designed for drivers 

which may be different in Canada than in other regions of the world. Searches for “ABM land use 

“Canada”” in both Scopus and Google Scholar result in very few relevant papers or books. Scopus 

only gives one result, a book on ecosystem services, focusing on Europe. Google Scholar produced 

9870 results and only one of the first 100 developed an ABM for use in an area of Canada (e.g. 

Jjumba & Dragićević, 2012). Many of the results of the search that developed an ABM of any kind 

focused on a small region or city. This requires fine resolution input data from either fine resolution 

imagery classified for LC or LU, or from city parcel data.  

This study provides the necessary LC and LU classifications to develop LUCC models for 

the Region of Waterloo. This study also provides a methodology to create similar LC and LU 

classifications from existing data for Southwestern Ontario, including a few extra counties 

collected in SWOOP. In addition to the 2010 data used in this study, data is also available for 2006 

and 2015. For both these years the LC and LU for the Region of Waterloo has been classified. 

These three years of data can be used in calibration and validation of a LUCC ABM. With another 

dataset expected to be collected by SWOOP in the upcoming years, this methodology can be 

applied in the future to the data. This will allow a model created today to predict the future and 

have it validated within the lifetime of the project. 

This study also provides many resolutions of data, both spatial and thematic. This will 

allow for a multi-resolution ABM to be created. A multi-resolution ABM will be able to predict 

regional scale change across Southwestern Ontario which can then be used in the local scale 

change predictions. For example, if the model shows that at the regional scale a town or city should 

grow by X number of people, it can then determine how the town or city will grow by adding X 

number of people to the local scale predictions. The multiple resolutions of the LC and LU data 

will also allow for multiple LUCC ABMs to be created to examine the effect of resolution on the 

performance and accuracy of the models.  

3.3.3 Global Land Cover and Land Use Datasets 

There are many LC and LU datasets which have global or regional extents. These datasets have 

been derived from global satellite imagery such as Landsat, Moderate Resolution Imaging 
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Spectroradiometer (MODIS), or Advanced Very High Resolution Radiometer (AVHRR). Landsat 

has the highest spatial resolution of 30 m (USGS, 2016), MODIS has spatial resolutions of 500 m 

and 1000 m (Nishihama, Wolfe, Solomon, & Patt, 1997),  and AVHRR has a spatial resolution of 

1.09 km (NOAA/NESDIS, 2014). The low spatial resolution of these products limits their use for 

LC and LU classification within small regions. Landsat’s spatial resolution of 30 m is similar to 

the highest pixel size in this study (25.6 m). This shows that this data would not produce accurate 

LC classifications and would not be usable for LU classifications given the methods in this study. 

If a regional municipality was conducting a LC or LU analysis of their region, they would not be 

able to use any of the global data products simply due to the spatial resolution. 

The thematic resolution of LC products derived from these platforms can be similar to what 

was used in Thematic Typology 1 of this study. For example, the LC dataset provided by MODIS 

contains 17 classes of which the three anthropogenic classes are urban and built-up, croplands, and 

cropland/natural vegetation mosaic and the rest are natural classes (Friedl et al., 2010). The 

classification contains more classes than Thematic Typology 1 due to the spatial extent of the data 

containing more LC classes. The one exception to this is that the dataset uses types of forests 

instead of types of trees like in Thematic Typology 1. This is necessary due to the large pixel size 

combining many trees into one pixel. The one class which is not represented in some way in the 

MODIS dataset is “shadow”. This is to be expected as the shadows cast by buildings and trees are 

much smaller than the pixels and the features casting the shadows will me a majority of the pixel. 

The “shadow” class was only necessary in this study due to the fine resolution imagery having 

pixels small enough to accurately depict the shadows.  

  

3.4 Conclusions 

Through answering the first research question “what combination of spatial, thematic, and 

classification methods produce the highest LC and LU accuracy?”, it has been determined that out 

of the parameters examined, MLC is on average the best classifier to use to classify LC. The best 

combinations of spatial and thematic resolution within MLC are 160 cm and 640 cm for Thematic 

Typology 1, 160 cm for Thematic Typology 2, 320 cm for Thematic Typology 3, and 320 cm for 

Thematic Typology 4. The results showed that a mid-range spatial resolution outperformed the 
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very fine and very coarse resolutions and that coarser thematic resolutions increase accuracy. 

These relationships are useful to understand as it allows a researcher to select the appropriate 

imagery for their study. Not only can this increase the accuracy of the generated products, but it 

can also save time and resources spent on imagery which may not improve the results. The results 

also showed that the optimal resolution of LC classification to use as input to the LU classification 

was Thematic Typology 1 with 80 cm pixels. While this combination did not perform highly in 

the LC classification, it outperformed all other combinations.  

Answering the second research question “what is the relationship between LC and LU?” 

shows that a finer pixel size than that of the optimal LC classification is needed for the LU 

classification. Also, the finer the LC thematic resolution the higher the LU classification accuracy. 

This study shows that an intermediate LC product requires higher spatial and thematic resolution 

than a final LC product. The accuracy of the intermediate LC classification is lower than the 

accuracy achieved when the LC classification is the final product desired. This is important as it 

means that both accuracy and resolution need to be considered together when creating or selecting 

an intermediate product. Neither one can be the only attribute used in determining the product to 

use. This also means that when a commercial LC classification is acquired for LU classification, 

it will likely underperform compared to a custom LC classification from the same imagery. 
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Appendix B 

Comparison of Land Cover Classes to the National Land Cover Database 

2011 (Based off Anderson’s 1976 Classification) 
NLCD2011 This Study Reasoning 

Open Water 

 

Water 

 

Perfect Match 

 

Perennial ice and snow 

 

None 

 

Does not exist in study 

area 

 

Developed, open space 

 

Grass 

 

Parks and fields in 

developed areas 

 

Developed Low Intensity 

Developed Medium Intensity 

Developed High Intensity 

 

Residential Roof 

Flat Roofs and Paved Surfaces 

Grass 

Deciduous 

Coniferous 

Water 

Shadow 

NLCD2011 was created 

for a much lower 

resolution and therefore 

needed to be split into 

the components 

 

Barren land Bare ground Barren land is land 

without vegetation 

 

Deciduous forest Deciduous Good match, modified 

for higher resolution 

 

Evergreen Forest Coniferous Good match, modified 

for higher resolution 

 

Mixed forest None The high resolution of 

this study makes this 

class obsolete 

 

Dwarf Scrub None Only found in northern 

latitudes 

 

Shrub/scrub None Does not exist in study 

area 

 

Grassland/herbaceous Grass Completely fits within 

this class 

 

Sedge/Herbaceous None Only found in northern 

latitudes 

 

Litchens None Only found in northern 

latitudes 

 

Moss None Only found in northern 

latitudes 
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Pasture/Hay Grass 

Bare Ground 

Fields are either bare or 

have light crop cover at 

the time of the imagery 

 

Cultivated Crops Grass 

Bare Ground 

Fields are either bare or 

have light crop cover at 

the time of the imagery 

 

Woody Wetlands Water 

Deciduous 

Coniferous 

At high resolution the 

distinct parts can be 

identified 

 

Emergent Herbaceous Wetlands Water 

Deciduous 

Coniferous 

At high resolution the 

distinct parts can be 

identified 
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Appendix C 

Manual Land Use Classification of Parcels in the Region of Waterloo 

# Name Classification description based on perceived uses and services 

1 Low Density 

Residential 

Parcels which appear to contain a single dwelling for a single family on a large 

property. These parcels typically appear outside the urban core in suburbs or rural 

areas. While houses tend to be larger than medium density residential, it is not a 

requirement for the classification. 

 

2 Medium Density 

Residential 

Average sized parcels containing a single dwelling for a single family, which may 

or may not be attached to adjacent dwellings. This class contains the majority of 

residential parcels within subdivisions and the urban core. In most parcels, the 

house and driveway cover most or all of the width of the parcels, with yards in the 

front and back. 

 

3 High Density 

Residential 

Parcels containing buildings with multiple dwellings or units, and therefore 

multiple families within the parcel. Typically in two forms, apartment or condo 

buildings, and townhouses where one parcel contains multiple units. Parcels may 

contain green space and parking lots in addition to the buildings. 

 

4 Commercial Parcels containing business where customers visit to obtain products and services, 

or office buildings which may not receive customers. Larger parcels, such as malls 

or box stores, will contain large parking lots for customers. These parcels do not 

contain large outdoor storage areas, although garden and home improvement stores 

may have some outdoor storage. 

 

5 Industrial Parcels which contain a business with an outdoor storage area such as a factory or 

a car scrapyard. These business typically do not receive customers although there 

may be parking lots for employees and areas for incoming materials and outgoing 

products. 

 

6 Institutional Manually classified parcels for schools (private and public) and hospitals. Schools 

and hospitals can appear as a variety of classes but provide different services from 

these misclassifications (e.g. Commercial or Protected Areas and Recreation). 

Manually classifying these parcels allows for them to be included in the landscape 

without large amounts of misclassification. 

 

7 Transportation Parcels which represent roads and railways. These parcels often include the 

boulevard and sidewalks. Highway interchange parcels include all the land which 

is owned and managed by the managing government. 

 

8 Protected Areas 

and Recreation 

Areas which have a primary purpose of recreation, such as parks, or protected areas 

such as forests. Commercial forests and private forests are included in this class as 

they appear very similar, or even identical to the natural forests.  

 

9 Agriculture Parcels which are primarily used for raw food production. This includes fields for 

crops and pastures. Some parcels will have barns and/or a farm house, while others 

may have neither. Parcels may also include a portion which is forested, sometimes 

referred to as “the back forty”. 

 

10 Water Parcels which have a main purpose of outlining waterbodies such as rivers. Lakes 

are included when the lake occupies a majority of the parcel. The rest of the parcel 



70 

 

may include sections which would otherwise be classified as Protected Areas and 

Recreation. 

 

11 Under Development Properties where construction has not been completed and no residents or business 

has moved in. These parcels may become many different classes when complete, 

but the class cannot be guaranteed at the time of the imagery. Depending on the 

progress of a development project, residential areas and big box stores or shopping 

complexes may appear similar as the area is represented by only a single parcel. 

 

 

 

Clarifications Between Similar Land Use Classes 
First Class Second Class Problem Solution 

Low 

Density 

Residential 

Medium 

Density 

Residential 

Parcel size is a 

continuous variable and 

it is difficult to define 

the exact separation 

between the two 

classes. 

In many cases where there is confusion, the house is 

the same size as the surrounding properties which are 

either low or medium density and is a similar distance 

from the road. The parcel in question will usually 

have its additional size added through its backyard. If 

the backyard visually occupies two thirds of the 

property, it can be easily called low density, if less, 

medium density. If the parcel has a backyard smaller 

than two thirds, but the front yard and house are large, 

then it can also be classified as low density. If an 

absolute value of size is needed, 2000m2 should be 

used as the minimum size for Low Density 

Residential. 

 

Low 

Density 

Residential 

Protected 

Areas and 

Recreation 

Household in a large 

parcel is surrounded 

forest or green land 

with no appearance of 

backyard/garden. 

If size of the house and the maintained portion of the 

property is very small compared to the area of the 

forest, the parcel should be classified as Protected 

Areas and Recreation. If the house and the maintained 

portion of the property is a significant portion of the 

parcel, it should be classified as Low Density 

Residential. 

    

Medium 

Density 

Residential 

Under 

Development 

A house is visible in the 

parcel that is under 

development 

If there is a completed house with grass on the 

property it should be considered complete and 

classified as Medium Density Residential. If the 

house does not appear complete or there is no grass 

where there should be, it should be classified as 

Under Development. 
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Exemptions and Special Cases in Land Use Classification 
Example Class Reasoning 

Airport Commercial Airports provide services similar to Commercial parcels, where 

people are constantly visiting the parcel. Visually they are 

similar as they both include large paved areas such as parking 

lots and a large building. 

 

Fire stations Commercial Although functionally different from Commercial parcels, they 

are very similar in the imagery. 

 

Graveyard Protected Areas and 

Recreation 

Graveyards and cemeteries are visually similar to parks, where 

there are paths for people to walk and grass fields. The only 

visual difference is that there are pieces of stone (headstones) 

scattered across the fields and there is no sports equipment. 

 

Water Tower Protected Areas and 

Recreation 

Water towers can be visually similar to parks as they can have 

large grassy areas surrounding the tower. If the water tower is in 

a parcel without much grassed area, it may be classified as 

Commercial instead. 

 

Commercial 

Forest – Post-

Harvest 

 

Various If the harvested forest appears to be converted into agriculture, 

classify as Agriculture. If it shows signs of urban development, 

it should be classified as Under Development. If it appears to be 

replanted and is still being used as a commercial forest, classify 

as Protected Areas and Recreation. 

 

Catwalk Transportation The paths between houses, or catwalks, are similar to roads, 

although a little smaller. A path through a park or green space 

would not be considered transportation.  

 

Walking paths  Protected Areas and 

Recreation 

Walking paths in the area can often be found under large 

electrical transmission lines. The transmission lines and towers 

account for a small portion of the parcel, and therefore simply 

appear as grassy corridors through subdivisions, similar to 

parks. 

 

Church Commercial Churches are visibly similar to Commercial parcels because 

they are a building which has a parking lot and some property. 

Functionally they are also similar as people will visit a church 

for a relatively short period of time, similar to a business. 

 

Artifacts  N/A The parcel data is not perfect and has artifacts from either 

previous versions, or mistakes during creation. Some artifacts 

have little impact on the data, while others have large impacts. 

The most frequent example is a single parcel being divided into 

multiple parcels by the artifacts. 

 

Artifacts – Splits N/A When a parcel is divided by artifacts all segments should be 

classified as the original type if suitable. If a segment can 

clearly be classified as another land use type it should be done. 

For example, if a Low Density Residential parcel is divided into 

three pieces, two covering the house and one covering a forest at 

the back of the property, the two on the house should be Low 

Density Residential and the one on the forest should be 

Protected Areas and Recreation. 
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Artifacts - 

Slivers 

N/A Another form of artifact is a sliver. These sliver parcels are very 

thin and long. Examples can be a few centimeters wide but 

almost a kilometer long. Sliver parcels should be ignored and 

not classified if noticed. 

 

Mixed Parcels N/A Occasionally parcels will contain multiple land use types other 

than the previously mentioned scenarios. For example a parcel 

may contain a house and land on one half and part of a 

waterbody on the other half. In these scenarios where there is no 

clear majority of land use type the following order of priority 

should be used: Medium Density Residential > High Density 

Residential > Low Density Residential > Commercial > 

Industrial > Institution > Transportation > Under Development 

> Agriculture > Protected Areas and Recreation > Water 

 

Future 

Development 

N/A In the scenarios where parcels have been created but no 

development has begun, classify the parcel based on the 

currently present land use type. If the imagery shows evidence 

of development, then classify as Under Development. 
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Appendix D 

Land cover classification accuracy for all spatial and thematic resolutions are displayed in the 

graphs following graphs for the different classification algorithms. The ISODATA unsupervised 

classifier is not shown as reliable results were not attainable as many of the automatically created 

classes could not be merged into any one of the existing classes. 

 

Accuracy of LC for the 2010 imagery - MLC 

 

Accuracy of LC for the 2010 imagery - SVM 
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Accuracy of LC for the 2010 imagery - SAM 
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Appendix E 

    

20 cm 40 cm 80 cm 160 cm 

    

320 cm 640 cm 1280 cm 2560 cm 

True colour samples of the 2010 imagery resampled to the required resolutions 
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Appendix F 

Confusion matrix for 2010 LC Thematic Typology 1 at 20cm, MLC 

 

Confusion matrix for 2010 LC Thematic Typology 2 at 20cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 Total User’s (%) 

C
la

ss
if

ie
d

 R
e
su

lt
 C

la
ss

es
 

C. 1 40019 0 0 0 1936 1173 43128 92.8 

C. 2 0 14734 2524 0 1314 239 18812 78.3 

C. 3 1 1647 15251 0 4842 10 21752 70.1 

C. 4 0 42 0 20001 2 14 20060 99.7 

C. 5 10 2179 2233 0 31024 4 35450 87.5 

C. 6 28 1423 9 2 923 4562 6946 65.7 

Total 40057 20027 20017 20003 40041 6003   

Producer’s (%) 99.9 73.6 76.2 ~100.0 77.5 76.0 Overall: 85.9% 
           

 Legend  

C. 1 Green Vegetation C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Brown Vegetation and Soil C. 6 Shadow 

 

 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 C. 7 C. 8 Total User’s (%) 

C
la

ss
if

ie
d

 R
e
su

lt
 C

la
ss

es
 

C. 1 12472 0 0 0 24 4138 0 0 16634 75.0 

C. 2 0 13994 2448 0 70 0 554 200 17266 81.0 

C. 3 0 1606 14918 0 893 0 1513 5 18936 78.8 

C. 4 0 43 0 20001 1 0 0 14 20059 99.7 

C. 5 8 780 65 0 18004 36 337 184 19414 92.7 

C. 6 7563 0 0 0 186 15824 0 1289 24863 63.6 

C. 7 0 2210 2580 0 666 0 17632 0 23087 76.4 

C. 8 0 1393 6 2 161 16 0 4310 5887 73.2 

Total 20044 20025 20017 20004 20006 20014 20036 6006   

Producer’s (%) 62.2 69.9 74.5 ~100.0 90.0 79.1 88.0 71.8 Overall: 80.2% 
           

 Legend  

C. 1 Grass C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Deciduous C. 6 Coniferous 

C. 7 Bare Ground and Soil C. 8 Shadow 
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Confusion matrix for 2010 LC Thematic Typology 3 at 20cm, MLC 

Sample Data Classes (m2) 

  
C. 1 C. 2 C. 3 C. 4 C. 5 Total 

User’s 

(%) 

C
la

ss
if

ie
d

 R
e
su

lt
 C

la
ss

es
 

C. 1 40018 1 0 1934 1173 43127 92.8 

C. 2 1 26366 0 3870 156 30394 86.7 

C. 3 0 49 20001 4 14 20068 99.7 

C. 4 10 11006 0 33271 7 44295 75.1 

C. 5 28 2621 2 961 4652 8264 56.3 

Total 40057 40043 20004 40041 6003   

Producer’s (%) 99.9 65.8 ~100.0 83.1 77.5 Overall: 85.1% 
           

 Legend  

C. 1 Green Vegetation C. 2 Impervious Surfaces 

C. 3 Water C. 4 Brown Vegetation and Soil 

C. 5 Shadow   

 

Confusion matrix for 2010 LC Thematic Typology 4 at 20cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 Total User’s (%) 

C
la

ss
if

ie
d

 R
e
su

lt
 C

la
ss

es
 

C. 1 74883 7851 0 223 82957 90.3 

C. 2 3930 29520 0 155 33604 87.8 

C. 3 4 49 20002 14 20068 99.7 

C. 4 1282 2624 2 5611 9519 59.0 

Total 80099 40043 20004 6003   

Producer’s (%) 93.5 73.7 ~100.0 93.5 Overall: 89.0% 
       

 Legend  

C. 1 Pervious Surfaces C. 2 Impervious Surfaces 

C. 3 Water C. 4 Shadow 
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Confusion matrix for 2010 LC Thematic Typology 1 at 40cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 C. 7 C. 8 Total User’s (%) 

C
la

ss
if

ie
d

 R
e
su

lt
 C

la
ss

es
 

C. 1 12432 0 0 0 26 3399 0 0 15857 78.4 

C. 2 0 14173 2292 0 52 0 488 195 17201 82.4 

C. 3 0 1585 15107 0 755 0 1130 4 18581 81.3 

C. 4 0 30 0 20007 0 0 0 7 20044 99.8 

C. 5 5 721 54 0 18355 31 255 177 19568 93.8 

C. 6 7599 0 0 0 145 16564 0 1314 25625 64.6 

C. 7 0 2204 2565 0 555 0 18177 0 23500 77.3 

C. 8 0 1319 6 0 124 11 0 4304 5765 74.7 

Total 20037 20032 20023 20007 20013 20005 20021 6002   

Producer’s (%) 62.0 70.8 75.4 100.0 91.7 82.8 90.8 71.7 Overall: 81.5% 
           

 Legend  

C. 1 Grass C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Deciduous C. 6 Coniferous 

C. 7 Bare Ground and Soil C. 8 Shadow 

 

Confusion matrix for 2010 LC Thematic Typology 2 at 40cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 Total User’s (%) 

C
la

ss
if

ie
d

 R
e
su

lt
 C

la
ss

es
 

C. 1 40014 0 0 0 1855 1192 43062 92.9 

C. 2 0 14849 2375 0 1192 236 18652 79.6 

C. 3 1 1628 15409 0 4307 9 21353 72.2 

C. 4 0 29 0 20007 1 7 20044 99.8 

C. 5 8 2181 2232 0 31918 3 36341 87.8 

C. 6 19 1345 7 0 762 4554 6688 68.1 

Total 40042 20032 20023 20007 40034 6002   

Producer’s (%) 99.9 74.1 77.0 100.0 79.7 75.9 Overall: 86.7% 
           

 Legend  

C. 1 Green Vegetation C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Brown Vegetation and Soil C. 6 Shadow 
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Confusion matrix for 2010 LC Thematic Typology 3 at 40cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 Total User’s (%) 

C
la

ss
if

ie
d

 R
e
su

lt
 C

la
ss

es
 

C. 1 40014 0 0 1848 1194 43055 92.9 

C. 2 1 26680 0 3584 155 30420 87.7 

C. 3 0 36 20007 1 7 20051 99.8 

C. 4 8 10783 0 33817 5 44612 75.8 

C. 5 19 255 0 786 4642 8001 58.0 

Total 40042 40055 20007 40034 6002   

Producer’s (%) 99.9 66.6 100.0 84.5 77.3 Overall: 85.6% 
           

 Legend  

C. 1 Green Vegetation C. 2 Impervious Surfaces 

C. 3 Water C. 4 Brown Vegetation and Soil 

C. 5 Shadow   

 

Confusion matrix for 2010 LC Thematic Typology 4 at 40cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 Total User’s (%) 

C
la

ss
if

ie
d

 R
e
su

lt
 C

la
ss

es
 

C. 1 75680 7662 0 213 83555 90.6 

C. 2 3336 29797 0 154 33287 89.5 

C. 3 1 35 20007 7 20050 99.8 

C. 4 1059 2561 0 5628 9248 60.9 

Total 80076 40055 20007 6002   

Producer’s (%) 94.5 74.4 100.0 93.8 Overall: 89.7% 
       

 Legend  

C. 1 Pervious Surfaces C. 2 Impervious Surfaces 

C. 3 Water C. 4 Shadow 
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Confusion matrix for 2010 LC Thematic Typology 1 at 80cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 C. 7 C. 8 Total User’s (%) 

C
la

ss
if

ie
d

 R
e
su

lt
 C

la
ss

es
 

C. 1 12217 0 0 0 26 2699 0 0 14941 81.8 

C. 2 0 14382 2276 0 52 0 468 216 17395 82.7 

C. 3 0 1490 15096 0 961 0 980 6 18253 82.7 

C. 4 0 28 0 20006 0 0 0 3 20037 99.8 

C. 5 4 710 45 0 18555 22 207 188 19732 94.0 

C. 6 7811 0 0 0 113 17297 0 1318 26539 65.2 

C. 7 0 2075 2554 0 498 0 18374 0 23500 78.2 

C. 8 0 1347 6 0 96 8 0 4275 5732 74.6 

Total 20032 20031 19976 20006 20021 20027 20030 6005   

Producer’s (%) 61.0 71.8 75.6 100.0 92.7 86.4 91.7 71.2 Overall: 82.2% 
           

 Legend  

C. 1 Grass C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Deciduous C. 6 Coniferous 

C. 7 Bare Ground and Soil C. 8 Shadow 

 

Confusion matrix for 2010 LC Thematic Typology 2 at 80cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 Total User’s (%) 

C
la

ss
if

ie
d

 R
e
su

lt
 C

la
ss

es
 

C. 1 40044 0 0 0 1779 1182 43004 93.1 

C. 2 0 15049 2356 0 1114 261 18780 80.1 

C. 3 0 1518 15380 0 4015 14 20928 73.5 

C. 4 0 26 0 20006 1 3 20036 99.9 

C. 5 3 2056 2232 0 32463 5 36759 88.3 

C. 6 12 1283 8 0 679 4540 6622 64.6 

Total 40059 20031 19976 20006 40051 6005   

Producer’s (%) ~100.0 75.1 77.0 100.0 81.1 75.6 Overall: 87.2% 
           

 Legend  

C. 1 Green Vegetation C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Brown Vegetation and Soil C. 6 Shadow 

 

 

 



81 

 

 

Confusion matrix for 2010 LC Thematic Typology 3 at 80cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 Total User’s (%) 

C
la

ss
if

ie
d

 R
e
su

lt
 C

la
ss

es
 

C. 1 40044 1 0 1751 1182 42977 93.2 

C. 2 0 26650 0 3377 185 30211 88.2 

C. 3 0 31 20006 0 3 20040 99.8 

C. 4 3 10681 0 34231 6 44922 76.2 

C. 5 12 1646 0 692 4629 7980 58.0 

Total 40059 40008 20006 40051 6005   

Producer’s (%) ~100.0 66.6 100.0 85.5 77.1 Overall: 85.9% 
           

 Legend  

C. 1 Green Vegetation C. 2 Impervious Surfaces 

C. 3 Water C. 4 Brown Vegetation and Soil 

C. 5 Shadow   

 

Confusion matrix for 2010 LC Thematic Typology 4 at 80cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 Total User’s (%) 

C
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ss
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ie
d
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C. 1 76213 7425 0 240 82878 60.9 

C. 2 3078 29901 0 183 33163 90.2 

C. 3 0 31 20006 3 20040 99.8 

C. 4 819 2650 0 5580 9047 61.7 

Total 80110 40008 20006 6005   

Producer’s (%) 95.1 74.7 100.0 92.9 Overall: 90.1% 
       

 Legend  

C. 1 Pervious Surfaces C. 2 Impervious Surfaces 

C. 3 Water C. 4 Shadow 
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Confusion matrix for 2010 LC Thematic Typology 1 at 160cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 C. 7 C. 8 Total User’s (%) 

C
la

ss
if

ie
d

 R
e
su

lt
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ss

es
 

C. 1 12147 0 0 0 18 2260 0 0 14426 84.2 

C. 2 0 14356 2276 0 49 0 458 256 17395 82.5 

C. 3 0 1518 15263 0 576 0 965 10 18332 83.3 

C. 4 0 10 0 19983 0 0 0 0 19994 99.9 

C. 5 5 765 33 0 18801 20 200 200 20024 93.9 

C. 6 7887 0 0 0 79 17733 0 1313 27013 65.6 

C. 7 0 2035 2435 0 376 0 18406 0 23252 79.2 

C. 8 0 1275 3 0 79 5 0 4229 5591 75.6 

Total 20040 19960 20009 19983 19978 20019 20029 6008   

Producer’s (%) 60.6 71.9 76.3 100.0 94.1 88.6 91.9 70.4 Overall: 82.8% 
           

 Legend  

C. 1 Grass C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Deciduous C. 6 Coniferous 

C. 7 Bare Ground and Soil C. 8 Shadow 

 

Confusion matrix for 2010 LC Thematic Typology 2 at 160cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 Total User’s (%) 

C
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ss
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 C

la
ss
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C. 1 40054 0 0 0 1828 1196 43077 93.0 

C. 2 0 15096 2360 0 1129 294 18880 80.0 

C. 3 0 1592 15634 0 3625 15 20867 74.9 

C. 4 0 8 0 19983 0 0 19991 ~100.0 

C. 5 0 1958 2012 0 32845 5 36820 89.2 

C. 6 5 1306 3 0 581 4498 6392 70.4 

Total 40059 19960 20009 19983 40008 6008   

Producer’s (%) ~100.0 75.6 78.1 100.0 82.1 74.9 Overall: 87.7% 
           

 Legend  

C. 1 Green Vegetation C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Brown Vegetation and Soil C. 6 Shadow 
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Confusion matrix for 2010 LC Thematic Typology 3 at 160cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 Total User’s (%) 

C
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ss
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ie
d
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C. 1 40054 0 0 1756 1193 43003 93.1 

C. 2 0 27095 0 2977 215 30287 89.5 

C. 3 0 10 19983 0 0 19994 99.9 

C. 4 0 10394 0 34706 18 45117 76.9 

C. 5 5 2470 0 568 4582 7626 60.1 

Total 40059 39969 19983 40008 6008   

Producer’s (%) ~100.0 67.8 100.0 86.7 76.3 Overall: 86.6% 
           

 Legend  

C. 1 Green Vegetation C. 2 Impervious Surfaces 

C. 3 Water C. 4 Brown Vegetation and Soil 

C. 5 Shadow   

 

Confusion matrix for 2010 LC Thematic Typology 4 at 160cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 Total User’s (%) 

C
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C. 1 76672 7196 0 241 84109 91.2 

C. 2 2824 30313 0 207 33344 90.9 

C. 3 0 15 19983 0 19999 99.9 

C. 4 571 2445 0 5560 8576 64.8 

Total 80067 39969 19983 6008   

Producer’s (%) 95.8 75.8 100.0 92.5 Overall: 90.8% 
       

 Legend  

C. 1 Pervious Surfaces C. 2 Impervious Surfaces 

C. 3 Water C. 4 Shadow 
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Confusion matrix for 2010 LC Thematic Typology 1 at 320cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 C. 7 C. 8 Total User’s (%) 

C
la

ss
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es
 

C. 1 12104 20 0 0 10 2826 0 0 14961 80.9 

C. 2 0 13793 2109 0 96 0 492 174 16630 82.9 

C. 3 0 1845 15360 0 532 0 860 20 18616 82.5 

C. 4 0 20 0 20060 0 0 0 20 20101 99.8 

C. 5 0 727 41 0 19077 41 195 92 20173 94.6 

C. 6 7987 20 0 0 31 17060 0 1260 26358 64.7 

C. 7 0 2529 2468 0 338 0 18463 0 23798 77.6 

C. 8 0 1096 0 0 20 10 0 4434 5560 79.7 

Total 20091 20050 19978 20060 20070 19937 20009 6001   

Producer’s (%) 60.2 68.8 76.9 100.0 95.1 85.6 82.3 73.9 Overall: 82.3% 
           

 Legend  

C. 1 Grass C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Deciduous C. 6 Coniferous 

C. 7 Bare Ground and Soil C. 8 Shadow 

 

Confusion matrix for 2010 LC Thematic Typology 2 at 320cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 Total User’s (%) 

C
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C. 1 40028 82 0 0 1884 1106 43100 92.9 

C. 2 0 14234 2161 0 1311 205 17910 79.5 

C. 3 0 1935 15616 0 3154 20 20726 75.3 

C. 4 0 20 20 20060 0 20 20101 99.8 

C. 5 0 2632 2202 0 33280 0 38113 87.3 

C. 6 0 1147 0 0 451 4649 6246 74.4 

Total 40028 20050 19978 20060 40079 6001   

Producer’s (%) 100.0 71.0 78.2 100.0 83.0 77.5 Overall: 87.5% 
           

 Legend  

C. 1 Green Vegetation C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Brown Vegetation and Soil C. 6 Shadow 
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Confusion matrix for 2010 LC Thematic Typology 3 at 320cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 Total User’s (%) 

C
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ie
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 C

la
ss

es
 

C. 1 40028 72 0 1812 1106 43018 93.0 

C. 2 0 27290 0 2427 133 29850 91.4 

C. 3 0 31 20060 0 20 20111 99.7 

C. 4 0 10455 0 35359 10 45824 77.2 

C. 5 0 2181 0 481 4731 7393 64.0 

Total 40028 40028 20060 40079 6001   

Producer’s (%) 100.0 68.2 100.0 88.2 78.8 Overall: 87.2% 
           

 Legend  

C. 1 Green Vegetation C. 2 Impervious Surfaces 

C. 3 Water C. 4 Brown Vegetation and Soil 

C. 5 Shadow   

 

Confusion matrix for 2010 LC Thematic Typology 4 at 320cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 Total User’s (%) 
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C. 1 77650 7301 0 133 85084 91.3 

C. 2 2140 30556 0 133 32829 93.1 

C. 3 0 31 20060 31 20122 99.7 

C. 4 317 2140 0 5704 8161 69.9 

Total 80108 40028 20060 6001   

Producer’s (%) 96.9 76.3 100.0 95.1 Overall: 91.6% 
       

 Legend  

C. 1 Pervious Surfaces C. 2 Impervious Surfaces 

C. 3 Water C. 4 Shadow 

 

 

 

 



86 

 

 

Confusion matrix for 2010 LC Thematic Typology 1 at 640cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 C. 7 C. 8 Total User’s (%) 

C
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C. 1 12452 41 0 0 0 2007 0 0 14500 85.9 

C. 2 0 11551 1434 0 41 0 328 205 13558 85.2 

C. 3 0 2048 16261 0 451 0 901 0 19661 82.7 

C. 4 0 164 0 19948 0 0 0 0 20111 99.2 

C. 5 0 614 41 0 19210 0 164 328 20357 94.4 

C. 6 7086 82 0 0 0 18145 0 860 26173 69.3 

C. 7 0 2089 2253 0 410 0 18801 0 23552 79.8 

C. 8 0 2662 0 0 41 0 0 4547 7250 62.7 

Total 19538 19251 19988 19948 20152 20152 20193 5939   

Producer’s (%) 63.7 60.0 81.4 100.0 95.3 90.0 93.1 76.6 Overall: 83.3% 
           

 Legend  

C. 1 Grass C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Deciduous C. 6 Coniferous 

C. 7 Bare Ground and Soil C. 8 Shadow 

 

Confusion matrix for 2010 LC Thematic Typology 2 at 640cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 Total User’s (%) 

C
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e
su

lt
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C. 1 39690 164 0 0 410 737 41001 96.8 

C. 2 0 11960 1434 0 8806 328 22528 53.1 

C. 3 0 2130 16507 0 2007 0 20644 80.0 

C. 4 0 164 0 19948 0 0 20111 99.2 

C. 5 0 2130 2048 0 27771 0 31949 86.9 

C. 6 0 2703 0 0 1352 4874 8929 54.6 

Total 39690 19251 19988 19948 40346 5939   

Producer’s (%) 100.0 62.1 82.6 100.0 68.8 82.1 Overall: 83.2% 
           

 Legend  

C. 1 Green Vegetation C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Brown Vegetation and Soil C. 6 Shadow 
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Confusion matrix for 2010 LC Thematic Typology 3 at 640cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 Total User’s (%) 

C
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d
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C. 1 39690 164 0 696 737 41288 96.1 

C. 2 0 26255 0 2908 82 29245 89.8 

C. 3 0 164 19948 0 0 20111 99.2 

C. 4 0 8806 0 34161 0 42967 79.5 

C. 5 0 3850 0 2580 5120 11551 44.3 

Total 39690 39240 19948 40346 5939   

Producer’s (%) 100.0 66.9 100.0 84.7 86.2 Overall: 86.2% 
           

 Legend  

C. 1 Green Vegetation C. 2 Impervious Surfaces 

C. 3 Water C. 4 Brown Vegetation and Soil 

C. 5 Shadow   

 

Confusion matrix for 2010 LC Thematic Typology 4 at 640cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 Total User’s (%) 

C
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C. 1 77046 6062 0 246 83354 92.4 

C. 2 1884 29204 0 82 31171 93.7 

C. 3 0 164 19948 0 30111 99.2 

C. 4 1106 3809 0 5612 10527 53.3 

Total 80036 39240 19948 5939   

Producer’s (%) 96.3 74.4 100.0 94.5 Overall: 90.8% 
       

 Legend  

C. 1 Pervious Surfaces C. 2 Impervious Surfaces 

C. 3 Water C. 4 Shadow 
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Confusion matrix for 2010 LC Thematic Typology 1 at 1280cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 C. 7 C. 8 Total User’s (%) 

C
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ss
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es
 

C. 1 13926 1802 164 0 0 4260 0 0 20152 69.1 

C. 2 0 5079 492 0 0 655 328 0 6554 77.5 

C. 3 0 3604 16056 0 328 0 2458 492 22938 70.0 

C. 4 0 0 0 19497 0 0 0 0 19497 100.0 

C. 5 0 1311 164 0 19988 0 164 0 21627 92.4 

C. 6 8243 1638 0 0 0 15729 0 1147 23757 66.2 

C. 7 0 2294 2458 0 164 0 17695 819 23429 75.5 

C. 8 0 3441 492 0 164 0 0 4260 8356 51.0 

Total 19169 19169 19825 19497 20644 50644 50644 6717   

Producer’s (%) 72.6 26.5 81.0 100.0 96.8 76.2 85.7 63.4 Overall: 76.7% 
           

 Legend  

C. 1 Grass C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Deciduous C. 6 Coniferous 

C. 7 Bare Ground and Soil C. 8 Shadow 

 

Confusion matrix for 2010 LC Thematic Typology 2 at 1280cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 Total User’s (%) 

C
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C. 1 39813 3113 164 0 0 819 43909 90.7 

C. 2 0 6062 655 0 8256 0 15073 40.2 

C. 3 0 3932 16712 0 4588 655 25887 64.6 

C. 4 0 0 0 19497 0 0 19497 100.0 

C. 5 0 2458 1802 0 24084 819 29164 82.6 

C. 6 0 3604 492 0 4260 4424 12780 34.6 

Total 39813 19169 19825 19497 51288 6717   

Producer’s (%) 100.0 31.6 84.3 100.0 58.3 65.9 Overall: 75.6% 
           

 Legend  

C. 1 Green Vegetation C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Brown Vegetation and Soil C. 6 Shadow 
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Confusion matrix for 2010 LC Thematic Typology 3 at 1280cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 Total User’s (%) 
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C. 1 39813 4260 0 0 819 44892 88.7 

C. 2 0 21627 0 8192 164 29983 72.1 

C. 3 0 0 19497 0 0 19497 100.0 

C. 4 0 9011 0 27361 1147 37519 72.9 

C. 5 0 4096 0 5734 4588 14418 31.8 

Total 39813 38994 19497 41288 6717   

Producer’s (%) 100.0 55.5 100.0 66.3 68.3 Overall: 77.2% 
           

 Legend  

C. 1 Green Vegetation C. 2 Impervious Surfaces 

C. 3 Water C. 4 Brown Vegetation and Soil 

C. 5 Shadow   

 

Confusion matrix for 2010 LC Thematic Typology 4 at 1280cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 Total User’s (%) 
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C. 1 71926 10650 0 655 83231 86.4 

C. 2 4096 24248 0 819 29164 83.1 

C. 3 0 0 19497 0 19497 100.0 

C. 4 5079 4096 0 5243 14418 36.4 

Total 81101 38994 19497 6716   

Producer’s (%) 88.7 62.2 100.0 78.0 Overall: 82.6% 
       

 Legend  

C. 1 Pervious Surfaces C. 2 Impervious Surfaces 

C. 3 Water C. 4 Shadow 
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Confusion matrix for 2010 LC Thematic Typology 1 at 2560cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 C. 7 C. 8 Total User’s (%) 

C
la

ss
if

ie
d

 R
e
su

lt
 C

la
ss

es
 

C. 1 17039 1966 0 0 0 5243 0 1311 25559 66.7 

C. 2 0 2621 655 0 0 655 0 655 4588 57.1 

C. 3 0 4588 13107 0 655 0 1311 1966 21627 60.6 

C. 4 0 1311 655 19005 0 0 0 0 20972 90.6 

C. 5 0 1966 1311 0 18350 0 0 0 21627 84.8 

C. 6 3277 655 0 0 0 15073 0 655 19661 76.7 

C. 7 0 2621 7864 0 0 0 19661 655 30702 63.8 

C. 8 0 6554 1311 0 655 0 0 1311 9830 13.3 

Total 20316 22282 24904 19005 19661 20972 20972 6554   

Producer’s (%) 83.9 11.8 52.6 100.0 93.3 71.9 93.8 20.0 Overall: 68.6% 
           

 Legend  

C. 1 Grass C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Deciduous C. 6 Coniferous 

C. 7 Bare Ground and Soil C. 8 Shadow 

 

Confusion matrix for 2010 LC Thematic Typology 2 at 2560cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 Total User’s (%) 
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C. 1 40632 2621 0 0 655 655 44564 91.2 

C. 2 655 3277 655 0 7864 1966 14418 22.7 

C. 3 0 4588 14418 0 4588 2621 26214 55.0 

C. 4 0 1311 655 19005 0 0 20972 90.6 

C. 5 0 3277 7864 0 23593 655 35389 66.7 

C. 6 0 7209 1311 0 3932 655 13107 5.0 

Total 41288 22282 24904 19005 40632 6554   

Producer’s (%) 98.4 14.7 57.9 100.0 58.1 10.0 Overall: 65.7% 
           

 Legend  

C. 1 Green Vegetation C. 2 Pitched Roof 

C. 3 Pavement/Flat Roof C. 4 Water 

C. 5 Brown Vegetation and Soil C. 6 Shadow 
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Confusion matrix for 2010 LC Thematic Typology 3 at 2560cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 C. 5 Total User’s (%) 
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C. 1 41288 3277 0 655 1966 47186 87.5 

C. 2 0 19005 0 7209 2621 28836 65.9 

C. 3 0 2621 19005 0 0 21627 87.9 

C. 4 0 13763 0 26870 1311 41943 64.1 

C. 5 0 8520 0 5898 655 15073 4.3 

Total 41288 47186 19005 40632 6554   

Producer’s (%) 100.0 40.3 100.0 66.1 10.0 Overall: 69.0% 
           

 Legend  

C. 1 Green Vegetation C. 2 Impervious Surfaces 

C. 3 Water C. 4 Brown Vegetation and Soil 

C. 5 Shadow   

 

Confusion matrix for 2010 LC Thematic Typology 4 at 2560cm, MLC 

Sample Data Classes (m2) 

  C. 1 C. 2 C. 3 C. 4 Total User’s (%) 
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C. 1 57016 9175 0 655 66847 85.3 

C. 2 12452 26870 0 4588 43909 61.2 

C. 3 0 2621 19005 0 21627 87.9 

C. 4 12452 8520 0 1311 2282 5.9 

Total 81920 47186 19005 6554   

Producer’s (%) 69.6 56.9 100.0 20.0 Overall: 67.4% 
       

 Legend  

C. 1 Pervious Surfaces C. 2 Impervious Surfaces 

C. 3 Water C. 4 Shadow 

 

 

 


