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Abstract

Model checking has had much success in the verification of single-process and multi-
process programs. However, model checkers assume an immutable topology which limits
the verification in several areas. Consider the security domain, model checkers have had
success in the verification of unicast structurally static protocols, but struggle to verify
dynamic multicast cryptographic protocols.

We give a formulation of dynamic model checking which extends traditional model
checking by allowing structural changes, mutations, to the topology of multi-process network
models. We introduce new mutation models when the structural mutations take either a
primitive, non-primitive, or a non-deterministic form, and analyze the general complexities
of each. This extends traditional model checking and allows analysis in new areas.

We provide a set of proof rules to verify safety properties on dynamic models and outline
its automizability. We relate dynamic models to compositional reasoning, dynamic cutoffs,
parametrized analysis, and previously established parametric assertions.

We provide a proof of concept by analyzing a dynamic mutual exclusion protocol and a
multicast cryptography protocol.

iii



Acknowledgements

First and foremost, I would like to thank my advisor Richard Trefler for his teaching,
endless patience, and encouragement provided throughout my time at the program.

I would like to thank my readers, Dan Berry and Arie Gurfinkel. I would like to thank
the entire computer science college for making this experience so enjoyable, and Vijay
Ganesh volunteering his mentorship. I would like thank my colleague Nguyen Hoang Linh
for his discussion and collaboration.

I would like to thank the Computer Science and Mathematics colleges of Ohio University
transforming me into a student ready for graduate school. My mentors, David Juedes,
David Chelberg, Avinash Kodi, and Razvan Bunescu, and Sam Merten for encouraging me
to pursue graduate studies and research.

I would thank my family for all the support, especially my mother Betty, and my friends
back in Ohio.

iv



Dedication

In loving memory of my grandmother, Alice Rebeca Scott, 1921 - 2017.

v



Table of Contents

List of Figures viii

1 Intro 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and Related Work . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Computer Aided Verification 4

2.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Logic and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 SAT Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Model Checking 14

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Computation Tree Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 LTL vs. CTL Expressibility and CTL* . . . . . . . . . . . . . . . . . . . . 19

3.5 Ordered Binary Decision Diagrams . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Buchi Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 IC3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.8 Symmetry in Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



4 Network Models and Parametrized Models 28

4.1 Network Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Mutual Exclusion Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Structural Mutable Modeling 38

5.1 Network Structures and Topologies . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Dynamic Model Checking 44

6.1 Safety Proof Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Dynamic Model Checking Analysis . . . . . . . . . . . . . . . . . . . . . . 47

7 Dynamic Model Checking Examples 50

7.1 Verifying a Dynamic Mutual Exclusion Protocol . . . . . . . . . . . . . . . 50

7.2 A Multicast Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Conclusions 58

References 59

vii



List of Figures

2.1 The DPLL Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The architecture of a CDCL Solver . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The Pipeline of Model Checking . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 A transition graph of the life of a graduate student . . . . . . . . . . . . . 13

3.1 A binary decision diagram for ψ = (a1 ⇐⇒ b1) ∧ (a2 ⇐⇒ b2) . . . . . . . 21

3.2 The ordered binary decision diagram from Figure 3.1 . . . . . . . . . . . . 22

3.3 The above algorithm uses 9 is an extension of a state space exploration
algorithm introduced in [41] for model checking . . . . . . . . . . . . . . . 27

4.1 Dijkstra’s Algorithm for Mutual Exclusion . . . . . . . . . . . . . . . . . . 33

4.2 An example of a transition system of a process for a Dijkstra mutual exclusion
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 An illustration of two concurrent processes running Dijkstra’s protocol. The
label on the transition, denotes the required state of the process it is running
concurrently with. The * token on the transition label denotes any state. . 35

5.1 Topology of the two process mutual exclusion protocol . . . . . . . . . . . 39

5.2 An illustration of branching mutation. . . . . . . . . . . . . . . . . . . . . 43

7.1 Removal Mutations for a Mutual Exclusion Protocol. . . . . . . . . . . . . 51

7.2 Removal Mutations for a Mutual Exclusion Protocol. . . . . . . . . . . . . 52

7.3 An example Logical Key Hierarchy of depth 5 and 16 users . . . . . . . . . 55

viii



Chapter 1

Intro

1.1 Motivation

Model checking is a fundamental approach to autonomously verifying concurrent and
non-concurrent systems. However, model checking brings forth several challenging research
problems. Defining both a concurrent and non-concurrent mathematical model with
correctness criteria for a practical problem is in itself challenging. Furthermore, obtaining a
proof of correctness can suffer from impractically high running times, which makes receiving
a certificate of correctness a challenging research problem.

To combat the high running times in model checking, researchers use complexity
reducing techniques such as compositional analysis, parametric analysis, cutoff analysis, and
symmetry detection [65] [61] [63] [12] [42] [27] [15] [49] [41]. Furthermore, the verification
of systems that have structurally or programmatically dynamic attributes is a challenging
research problem. Modern model checkers are capable of verifying a structurally static
model where a topology is fixed. Model checking has had a major impact in the debugging
of concurrent systems, yet it’s structurally static formulation makes it challenging to verify
several practical models.

A popular application of formal methods and computer aided verification is to verify
cryptographic security protocols [68] [58]. Traditional model checking struggles with
capturing the dynamism of certain cryptographic security protocols. For example, consider
a multicast security protocol, which allows for users to join and leave a secured network. The
security specification of a multicast protocol is highly dependent on both a programmatic
aspect and a topological aspect of the modeled network. Model checking has had positive
results in verifying unicast protocols but has had little to no results in multicast protocols.
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In this thesis we formulate dynamic model checking, in contrast to traditional static
model checking. Static model checking analyzes reachability of a program or network of
processes over its state space. We extend static model checking to analyze the reachability of
programs under mutating topologies, which opens the door for computer-aided verification
techniques in several new challenging domains.

1.2 Contributions and Related Work

This work was motivated by the work of Namjoshi, Trefler, published in TACAS 2015 [63].
This thesis extends their analysis. In their work, they provided a formulation to do dynamic
process analysis and compute invariants in networks. They study program structures that
can make primitive structural changes. Using parametric assumptions and compositional
reasoning, they compute safety invariants on a dining philosophers and AODV protocol.

In this work, we provide a formulation of dynamic models and dynamic model checking.
We build on [63] by extending their analysis beyond only primitive structural changes. This
allows for the analysis of complex and non-deterministic user oriented Internet protocols by
analyzing non-primitive structural mutations and non-deterministic structural mutations.

There have been other attempts at dynamic network analysis. Bouajjani et al. proposed
a framework and logic to verify dynamic Petri net models [17]. Delzanno et al. analyzed
the complexity and general decidability of types of dynamic ad-hoc network models [26].
Other approaches, include the analysis of families of computational models. Dynamic cutoff
detection techniques [42] [4] have been used to find the smallest model that implies the
verification of larger models and families of models. The parametrized model checking
problem includes a size parameter of the model and asks if the specification holds for all
values of the parameter [15].

The analysis of related families of concurrent systems is a growing area of research.
However, this problem is undecidable in general [6]. The analysis of certain target models
has resulted in several semi-decision procedures or even full decision procedures for spe-
cific models [65]. In this work, we provide analysis on a method that can verify safety
specifications on concurrent protocol models that can be formulated in our analysis.

The deployment of computer aided verification tools is continuing trend in the domains
of cryptography and security. SAT/SMT Solvers have been used to break cryptographic
hash functions. Synthesis tools have been used to develop novel protocols. Theorem provers
and model checkers have been used to verify small unicast protocols. Recently, the Inductive
Method by Paulson et al. has been extended beyond unicast protocols to study multicast
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protocols. In this work, we this as momentum to extend model checking to multicast
cryptographic protocols by analyzing models of mutating topologies and general families.

We relate dynamic model checking to other trends in model checking similar problem;
the parametrized model checking problem (PMCP) and Cutoff analysis. We set forth
criteria to use dynamic modeling to decide PMCP for a specific protocol. We discuss how
to find the smallest initial model which implies security for the entire model as seen in
cutoff detection.

1.3 Thesis Structure

• Chapter 1 - Introduction and Motivation of this thesis

• Chapter 2 - Discusses the preliminaries of this thesis. Specifically: propositional logic,
theoretical computer science, and computer aided verification techniques.

• Chapter 3 - Introduces traditional model checking and common temporal logics.
Algorithms used to perform model checking are discussed.

• Chapter 4 - Introduces and defines Concurrent Models and Concurrent Model Check-
ing.

• Chapter 5 - Defines a structured model with a topology, topological mutations, and
dynamic models

• Chapter 6 - Defines the dynamic model checking problem, how to prove safety
properties, and relates to cut off detection, complexity reducing assertions, and
PMCP.

• Chapter 7 - Analysis of a multi critical section mutual exclusion protocol and a
multicast cryptographic protocol

• Chapter 8 - Concludes the thesis and discusses some further work to be done.
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Chapter 2

Computer Aided Verification

2.1 Propositional Logic

In this section, we will provide the preliminary background of propositional logic that is
required for this thesis. An understanding of propositional logic is assumed and for further
reference, see [40].

Definition 1. An atomic proposition is boolean variable that can take the value of truth,
denoted as >, or false, denoted as ⊥.

Definition 2. A propositional formula ψ, over a set of atomic propositions AP , is defined
inductively as follows:

1. ψ = > or ψ = ⊥.

2. ψ = p, where p ∈ AP .

3. ψ = (¬α), where α is a propositional formula.

4. ψ = (α ∗ β), where α, β are propositional formula, and ∗ ∈ {∨,∧,→,↔}.

The unary connective, ¬, follows the semantics of a logical negation. The binary
connectives, ∨,∧,→,↔, follow the semantics of logical inclusive or, logical and, implication,
and equivalence, respectfully. A strict use of parenthesis is enforced in Definition 2 to
remove any ambiguity in order of operations of the logical connectives. There are a few
standardizations of orders of operations over these logical connectives, but none are used in
this thesis.
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Definition 3 (Valuation and Evaluation). A valuation over AP is a function, v : AP →
{>,⊥}, that assigns each atomic proposition a truth value. Furthermore, an evaluation of
a propositional formula ψ with valuation v, denoted as v(ψ), is a value of either {>,⊥}
obtained by substituting all atomic propositions p ∈ ψ with v(p) and evaluating over the
logical operations.

In the following sections, we will discuss the problems of finding valuations with certain
properties. We will next define types of propositional formula, where the formula takes a
specific structure.

Definition 4. A literal ` is a propositional formula of the form:

1. ` = p, where p ∈ AP .

2. ` = (¬p).

Definition 5. A clause, φ, is a propositional formula defined inductively as follows:

1. φ = > or φ = ⊥.

2. φ = ` where ` is a literal.

3. φ = (φ1 ∨ φ2), where φ1, φ2 are clauses.

Definition 6. A cube, φ, is a propositional formula defined inductively as follows:

1. φ = > or φ = ⊥.

2. φ = `, where ` is a literal.

3. φ = (φ1 ∧ φ2), where φ1, φ2 are cubes.

A literal, cube, and clause are the primitive types used to define the three most well
known standard forms of a propositional formula.

Definition 7 (Standard forms). 1. A propositional formula, ψ, in Negated Normal
Form (NNF) is defined inductively as follows:

(a) ψ = >,⊥
(b) ψ = `, where ` is a literal.
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(c) ψ = (α ∗ β), where α, β are NNF propositional formula, and ∗ ∈ {∨,∧,→,↔}

2. A propositional formula, ψ, in Conjunctive Normal Form (CNF) is defined inductively
as follows:

(a) ψ = φ, where φ is a cube

(b) ψ = (φ1 ∧ φ2), where φ1, φ2 are clauses.

3. A propositional formula, ψ, in Disjunctive Normal Form (DNF) is defined inductively
as follows:

(a) ψ = φ, where φ is a cube

(b) ψ = (φ1 ∧ φ2), where φ1, φ2 are cubes.

Theorem 1. Any propositional formula has a logically equivalent formula in NNF, DNF,
and CNF.

The proof is omitted, but we will outline it. The first note in the proof is that if a
formula is in either DNF or CNF, then it must be in NNF. From there, the proof is by
structural induction by showing that every well-formed formula can be converted to CNF
by applying well known axioms, such as Demorgan’s laws. However, the size of the resulting
formula, in the worst case, exponential with respect to the original formula.

2.2 Logic and Complexity

In this section, we will introduce well known complexity classes, some of which are referenced
later. Further problems relating to propositional logic that have impacts in computational
complexity theory are discussed. For further reference, see [8], [39].

Definition 8 (Turing Machines). Formally, a Turing Machine, T , can be defined as a
7-tuple with T = (Q,∆, b,Σ, δ, q0, F ), where:

1. Q is a finite set of states.

2. q0 ∈ Q, is the initial or starting state.

3. F , the set if final or accepting states (F ⊆ Q).

4. ∆ is a finite alphabet of the tape.
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5. b is the empty symbol of the tape language (b ∈ ∆)

6. Σ, the input characters on the tape at the start, (Σ ⊆ ∆ \ b)

7. δ a transition relation decides how to move along the tape, move in the state space,
and write to the tape, (δ : (Q \ F )×∆→ Q×∆× {L,R}
M is a deterministic if the transition relation δ is a function, otherwise it is nonde-
terministic.

Definition 9 (Common Complexity Classes). Informally, the following complexity classes
are denoted as follows:

1. P/NP is the set of decision problems that can be solved in polynomial time by a
deterministic/non-deterministic Turing machine. 1

2. EXPTIME/NEXPTIME is the set of problems that can be solved in exponential
time by a deterministic/non-deterministic Turing machine

3. L/NL is the set of all problems that can be solved in logarithmic space using a
deterministic/non-deterministic Turing machine.

4. PSPACE/NPSPACE is the set of all problems that can be solved in polynomial
space using a deterministic/non-deterministic Turing machine.

5. EXPSPACE/NEXPSPACE is the set of all problems that can be solved in expo-
nential space using a deterministic/non-deterministic Turing machine.

Definition 10 (Completeness). Informally, for a problem A and complexity class C of all
problems with property µ, A is C−Complete if A is in C and for every problem in C,
there exists a reduction from it to A that upholds µ.

For example, to show a problem is NP−Complete, you need to show that there
exists a non-deterministic Turing machine that can solve the problem in polynomial time
and show there is a reduction from every problem in NP to said problem using a Turing
machine in polynomial time. Informally, a problem is complete if its the hardest problem
in its class.

Problem 1 (Boolean Satisfiability Problem). For a propositional formula ψ, does there
exist a valuation v such that v(ψ) = >.

1The definition of NP is not the traditional definition, but an equivalent statement
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Problem 2 (3-SAT). A propositional formula, ψ, is in 3-CNF if ψ is in CNF and the
maximum number of atomic propositions in every clause is at most 3. The problem of
3-SAT asks the satisfiability problem over 3-CNF formula.

Theorem 2 (Cook-Levin Theorem). 3-SAT is NP−Complete.

The problem of deciding 3-Sat and general boolean propositional formula satisfiability
is ”the poster child” of NP−Complete problems. The showing of 3-SAT being in
NP−Complete resulted in several other problems shown to be NP−Complete as a
reduction from 3-SAT to the targeted problem creates a reduction from all problems in
NP through the concatenation of the two reductions.

Completeness of a complexity class is most used when deciding if two complexity classes
are equal. For example, if a NP−Complete problem is shown to have a polynomial
algorithm, then it is in P. Furthermore, Since all problems in NP have a reduction to the
said problem, a polynomial time algorithm for each problem in NP can be constructed
by reducing it to the NP−Complete problem in polynomial time and then calling its

polynomial time solution. But alas, no algorithm is known and the P
?
= NP problem

remains open.

There are several other well known complete problems relating to propositional or
extended logics. The problem of deciding 2 − SAT is known to be NL−Complete.
Computing the evaluation of a propositional logic formula over a specific valuation is known
to be P−Complete. Deciding if a quantified boolean formula is satisfiable is known to
be PSPACE−Complete.

2.3 SAT Solving

In the last section, we discussed how there is no known asymptotically efficient algorithm
for the SAT problem. Clever brute force implementations in SAT Solving engines are being
developed and studied by researchers. These smart brute force engines are capable of
deciding the problem of boolean satisfiability for formulas with tens of millions of atomic
propositions, all while running an exponential worst case time algorithm.

The Davis Putnam Logemann Loveland algorithm (DPLL) is a sound and complete
algorithm for the SAT problem. DPLL is a backtracking search based algorithm. DPLL is
presented in Figure 2.1. DPLL builds all possible valuations by assigning one literal at a
time and checks to see if the resulting formula is satisfied. If the partial valuation or partial
assignment results in a conflict then go up a level of depth in the search tree.

8



1: procedure DPLL(φ, V )
2: UnitPropogate(φ, V )
3: if φ contains an empty clause then
4: return FALSE
5: else if φ = > then
6: return TRUE
7: end if
8: p = PickProp(φ, V )
9: return DPLL(φ, {V ∪ p}) or
DPLL(φ, {V ∪ ¬p})

10: end procedure

1: procedure UnitPropogate(φ, V )
2: while φ has a clause with a single lit-

eral ` do
3: Set every clause with ` to >
4: Delete ¬` from every clause to

which it appears
5: end while
6: end procedure

Figure 2.1: The DPLL Algorithm

DPLL works with formulas that are in CNF. As seen in Theorem 1, every propositional
formula can be converted to CNF but may be of exponential length. To get around this,
the Tseytin Encoding is used to construct a formula that is equisatisfiable to the original
formula that is in CNF. Two formula are equisatisfiable one is satisfiable if and only if the
other is satisfiable.

Conflict-Driven Clause Learning (CDCL) is an extension of DPLL. CDCL includes
several empirically shown optimizations to the DPLL algorithm. Figure 2.2 demonstrates
the general architecture of a CDCL SAT Solver. The CDCL algorithm can be quite vague
in the literature as to which extensions to DPLL are included, except for conflict clause
learning.

The name driven change, conflict clause learning, is when a partial assignment v =
`1 ∧ `2 ∧ `3... is reached while traversing but is found to contradict the input propositional
formula. That is, ψ ∧ v → ⊥. We can then extend ψ equisatisfiably by considering a CNF
formula ψ′ where ψ′ = (ψ∧¬v). Note that (¬v) is a clause as ¬(`1∧ `2∧ ...) = (¬`1∨¬`2...).

Heuristic based literal selection is used to choose literals that result in a quicker
termination. The most popular of which is the VSIDS heuristic which is a tally of
appearances in ψ and the set of conflict clauses with an exponential decay. Some SAT
Solvers deploy search space restarts while keeping learned conflicts which results in a more
informed literal selection heuristic used when selecting the first literals to branch on. Upon
finding conflicts, CDCL does back tracking analysis to skip up several levels of depth to
greatly prune the search space using the first UIP algorithm [13] [56] [14].

Practical SAT Solving is one of the most interesting phenomena in mathematics in
computer science. CDCL and DPLL algorithms have exponential running times of O(2n)

9



1: procedure CDCL(φ, V )
2: if UnitPropogate(φ, V ) == CONFLICT then
3: return FALSE
4: end if
5: depth = 0
6: while V 6= n do
7: ` = PickLiteral()
8: depth = depth+ 1
9: V = V ∪ {`}

10: if (UnitPropogate(φ, V )) == CONFLICT then
11: ConflictDepth = ConflictAnalysis(φ, V )
12: if ConflictDepth < 0 then
13: return FALSE
14: else
15: DepthLevel = BackTrack(φ, V, ConflictDepth)
16: end if
17: end if
18: end while
19: return TRUE
20: end procedure

Figure 2.2: The architecture of a CDCL Solver
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with n being the length of the propositional formula. Formulas with tens of millions of
variables can be solved in seconds. In fact, constructing problems that SAT Solvers struggle
to solve is an active research area. Proof complexity theorists try to find lower bounds on
the size of the proof that a SAT solver produces. One of the most fundamental examples
is proofs of the unsatisfiability of the pigeon hole principle in which SAT Solvers struggle
with instances of tens of variables, while software and hardware instances can handle tens
of millions of variables. [1]

2.4 Model Checking

Model checking is a fully automatized method for the verification of finite state systems.
The model checking problem asks, given a transition graph, a starting state, and a property,
compute the set of reachable states to which the property is true. This section introduces
model checking and outlines it informally. Model checking is the main topic of this thesis
and will be discussed in greater detail in later chapters.

In Figure 2.3, the overall pipeline of the model checking process is presented. A target
model is selected and extracted to a transition system. For common applications such as
software model checking and hardware model checking, there are tools that can do this
automatically.

Model checking suffers from high running times, and large models can be impractical
to verify. Thus abstraction on the target model is often performed. Abstraction needs
to be done carefully as an excessive abstraction can result in a coarse model such that a
correctness certificate is generated but the original model is bug ridden. The property that
is verified in the model must be properly translated into logic. The desired property, or
specification, of the model is translated into some logic most often a temporal logic.

To illustrate model checking, I will attempt to model my daily life as a graduate student
and examine my study habits. My life as a graduate student has had a ton of detail, so
a high amount of abstraction needs to take place to avoid an unreasonably large model.
As we are dealing with study habits, we will consider the propositions working, sleeping
and playing to denote what I am doing in a given state. Studying, writing, attending
meetings, and going to talks are all being abstracted into the working proposition while
all my hobbies such as games, television, or recreational web browsing are abstracted as
the playing proposition. To denote the location of where I am, I use the propositions of
AtSchool and AtHome.

In the figure, the top left state of the figure denotes a state of sleeping at home, the
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Figure 2.3: The Pipeline of Model Checking
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Figure 2.4: A transition graph of the life of a graduate student

top right node denotes a state of working at home, the middle left state denotes a state
of traveling to work from home or to home from work, the middle right state denotes
playing at home, the bottom left state denotes working at school, and the bottom right
state denotes playing at school.

A graduate student with good study habits should study every day. To properly capture
this formally, we will use a temporal logic in a later chapter, but informally, this would
mean that there is no cyclic path from the state of sleeping where Working is always true.
However, this is not true in the transition system! A model checker would return the bug
that I can transition from sleeping to playing at home all day back to a sleeping state. One
example of a fix would be to reformulate my daily routine by removing the transition from
sleeping to playing at home.

13



Chapter 3

Model Checking

3.1 Overview

In Chapter 2.4 we outlined the concept of model checking. In this chapter, we will more
formally redefine the concepts presented. First and foremost, we will formally define the
previously denoted transition graph as a Kripke Structure.

Definition 11 (Kripke Structure). Let AP be a set of atomic propositions. A Kripke
Structure, M over AP is a four tuple with M = (S, S0, R, L), where:

1. S is a finite set of states

2. S0 ⊆ S is the set of initial states

3. R ⊆ S × S is a transition relation that must be total, that is, for every state s ∈ S
there is a state s′ ∈ S such that R(s, s′).

4. L : S → 2AP is a function that labels each state with the set of atomic propositions
that are true in that particular state.

We will provide an example by using the transition system in Figure 2.4 discussed in
Chapter 2.4 which denoted the daily routine of a graduate student. Our set of atomic
propositions AP = {Sleeping,Working, P laying,AtSchool, AtHome}. We will label each
state in the figure as s1 to s6 starting from the top to bottom, going from left to right. This
would result as:

14



1. S = {s1, s1, s2, s3, s4, s5, s6}

2. S0 = {s1}

3. R = {(s1, s2), (s1, s3, ), (s1, s4), (s2, s3), (s2, s4), (s3, s2), (s3, s4), (s3, s5),
(s4, s1), (s4, s2), (s4, s3), (s5, s3), (s5, s6), (s6, s3), (s6, s5)}

4. L = {(s1, {Sleeping, AtHome}), (s2, {Working,AtHome}), (s3, {}),
(s4, {Playing,AtHome}), (s5, {Working,AtSchool}),
(s6, {Playing,AtSchool})}

To reason about how a Kripke structure transitions we will define a path. In the next
section we will introduce temporal logic that extends the propositional logic to further
reason about a path.

Definition 12 (Paths). A path in a Kripke structure M from a state s ∈ S is a infinite
sequence of states, π = s0s1s2... such that s0 = s and R(si, si + 1) holds for all i ≥ 0.

The reason for the total requirement in definition 11 is to enforce infinite paths. In
our current example, we considered the specification that every day a graduate student
does some work. We syntactically index a state along a path π using a superscript and
an integer. For example, π3 denotes the 3rd state in the path. The existence of the path
π = s1s3s1s3s1s3.... is a bug in the daily routine. To write this specification formally, we
will use temporal logic.

3.2 Linear Temporal Logic

We are about to introduce LTL, the first of three temporal logics discussed in this thesis.
All formula of LTL are path properties, the formula’s semantics reason about a path in
a Kripke structure. The other type of formula we will consider are state properties, in
which the formula’s semantics reason about the properties of a specific state. In LTL, every
formula is a path formula.

Definition 13 (Linear Temporal Logic). We will define LTL inductively,

• >,⊥ are LTL formula.

• If p ∈ AP (Atomic Propositions) then p is an LTL formula.
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• If ψ, φ are LTL formula then the following are also LTL formula

– ψ ∨ φ
– ψ ∧ φ
– ¬ψ
– ψ =⇒ φ

– ψ ⇐⇒ φ

• If ψ, φ are LTL formula then the following are LTL formula

– Gφ, φ is ”globally” true along path π.

– Fφ, φ is eventually or in the ”future” true along path π.

– Xφ, φ is true on the ”next” state on π.

– φUψ, φ is true ”until” ψ is true, along path π.

– φRψ, ψ is is true up until φ comes true (on release” of), along path π.

The tokens ∨,∧,¬, =⇒ , ⇐⇒ have the same semantics as seen in propositional logic.
Let φ, ψ be an LTL formula; then the following is the formal semantics of the temporal
operators.

• M, π |= Gψ ⇐⇒ for all i ≥ 0,M, πi |= ψ

• M, π |= Xψ ⇐⇒ M, π1 |= ψ

• M, π |= Fψ ⇐⇒ there exists a k ≥ 0 such that M, πk |= ψ.

• M, π |= ψUφ ⇐⇒ there exists a k ≥ 0 such that M, πk |= φ and forall 0 ≤ j <
k,M, πj |= ψ

• M, π |= ψRφ ⇐⇒ for all j ≥ 0, if for every i < j M, πi 6|= ψ then M, πj |= φ

Theorem 3. {U,X,¬,∨}, {R,X,¬,∨}, {W,X,¬,∨} are adaquete LTL sets.

Proof. First note that instead of ¬,∨ any other adequate set of propositional logic can be
used instead. The result then comes as

1. ψRφ ≡ ¬(¬ψU¬φ)
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2. ψWφ ≡ φR(ψ ∨ φ) ≡ ¬(¬φU¬(ψ ∨ φ))

3. ψUφ ≡ ¬(¬ψR¬φ)

4. ψWφ ≡ φR(ψ ∨ φ)

5. ψUφ ≡ ¬(¬ψR¬φ)

6. ψRφ ≡ φW(ψ ∧ φ)

Theorem 4 ([73]). LTL Model Checking is PSPACE−Complete

The proof of Theorem 4 is omitted from this thesis, but can be found in [73].

3.3 Computation Tree Logic

In LTL, all logical formula were path formula. In CTL, all logical formula are state formula.
A state formula is a formula to which its semantics reason about properties of states. CTL
includes the temporal operators of LTL but restricts that they must be appended to a path
quantifier. In CTL there are two path quantifiers:

• A, along all paths

• E, there exists a path

Let M be a Kripke structure with path π and state s ∈ S. Let φ, ψ be path formula
Formally, the semantics of the path quantifiers are as follows:

• M, s |= Aψ ⇐⇒ for every path π from s, M, π |= ψ

• M, s |= Eψ ⇐⇒ there is a path π from s such that M, π |= ψ.

Definition 14. We can define CTL inductively

1. >,⊥ are CTL Formula

2. If ψ, φ are CTL formula then the following are CTL formula

17



• ψ ∨ φ
• ψ ∧ φ
• ¬ψ
• ψ =⇒ φ

• ψ ⇐⇒ φ

3. If φ, ψ are CTL formula then the following are CTL formula

• AXφ

• EXφ

• AFφ

• EFφ

• AGφ

• EGφ

• AUφ, ψ

• EUφ, ψ

• ARφ, ψ

• ERφ, ψ

Theorem 5. ¬,∨,EX,EU,EG is an adequate set over CTL.

Proof. As before any adequate set of propositional logic can be used instead of ¬,∨. The
result then comes as the following are equivalent:

1. AXψ ≡ ¬EX(¬ψ)

2. EFψ ≡ EU>, ψ

3. AGψ ≡ ¬EF(¬ψ)

4. AUψ, φ ≡ ¬EU(¬φ), (¬ψ ∧ ¬φ) ∧ ¬EG¬φ

5. ARψ, φ ≡ ¬EU(¬ψ), (¬φ)

6. ERψ, φ ≡ ¬AU(¬ψ), (¬φ)
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Theorem 6 ([72],[23],[7]). CTL model checking can be done in O(|M| · |ψ|) and is in the
P− complete complexity class.

The proof of the first part of the theorem is by the construction of an algorithm. The
algorithm is discussed in Chapter 3.6. P−Completeis analogous to NP−Complete, in
that every problem in class P can be polynomially reduced to it and it has a polynomial time
solution. Some of the open questions of complexity theory deal with efficiently parallelizing
P-Complete problems and solving P-Complete problems with logarithmic space. The proof
of CTL being P−Complete goes by a polynomial reduction to the Circuit Value Problem,
which asks given a boolean circuit and input to the circuit compute the output value of the
circuit.

3.4 LTL vs. CTL Expressibility and CTL*

In the previous sections, LTL and CTL were defined and discussed. In LTL, we reason
about properties of a path, while in CTL we reason about state and path properties. CTL
does not have an exponential running time as it is linear in the size of the model, but the
size of the model is often exponential in the number of atomic propositions.

There are formula that can be expressed in both LTL and CTL, for example, a single
atomic proposition. Furthermore, if ψCTL = ψLTL then AGψCTL = GLTL. But there are
also examples of formula that are in one but not the other. For example, A(FGp) is a valid
LTL formula but not expressible in CTL.

The next logic is a superset of both LTL and CTL that has both state formula and path
formula with the union of the previously discussed state operators and path quantifiers.

Definition 15 (CTL*).

• >,⊥ are CTL* formula.

• If p ∈ AP (Atomic Propositions) then p is an CTL* formula.

• If ψ, φ are CTL* state formula then the following are also CTL* formula

– ψ ∨ φ
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– ψ ∧ φ
– ¬ψ
– ψ =⇒ φ

– ψ ⇐⇒ φ

• If ψ, φ are CTL* formula such that ψ, φ are path formula then the following are
CTL* formula

– Gφ, φ

– Fφ, φ

– Xφ, φ

– φUψ,

– φRψ,

– Aφ

– Eφ

Theorem 7 ([72]). CTL* model checking is is PSPACE−Complete

This result is seen as unsurprising by some as CTL* resembles the union of both LTL
and CTL, but also surprising to some as CTL* is much more expressible than both LTL
and CTL.

3.5 Ordered Binary Decision Diagrams

In the remaining sections of this chapter we will outline a few approaches of model checking
that are implemented in modern model checkers.

An ordered binary decision diagram (OBDD) is a data structure for the representation
of a propositional formula and its evaluation for any interpretation. They resemble a binary
decision tree but mainly differ by its canonical form.

Definition 16. Let ψ be a propositional formula. A binary decision diagram G for ψ is a
rooted directed acyclic graph such that every non-terminal node denotes is labeled with an
atomic proposition of ψ with exactly two outgoing edges labeled as either > or ⊥. Every
terminal node is labeled with either >,⊥.
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Figure 3.1: A binary decision diagram for ψ = (a1 ⇐⇒ b1) ∧ (a2 ⇐⇒ b2)

An example of a binary decision diagram is given in Figure 3.1 for the formula ψ =
(a1 ↔ b1) ∧ (a2 ↔ b2). The structure of a binary decision diagram very much resembles the
process that is done by a DPLL SAT Solver. The DPLL SAT solver performs the depth
first search until it finds the terminal > node or returns no satisfying assignment exists
after traversing the entire tree.

As seen when considering the CDCL SAT solving algorithm compared to the DPLL
SAT solving algorithm notable improvements can be made which results in a much smaller
search. The (perhaps less clear) analogy to CDCL SAT Solving is with Ordered Binary
Decision Diagrams.

Definition 17. Let G be a binary decision diagram of formula ψ. Let ord(p, q) be a total
ordering relation of every proposition p, q ∈ ψ. G is an ordered binary decision diagram if
it has the following properties:

1. (Redundant Termainals) There are exactly two terminal verticies.

2. (Ordered) For propositions p, q ∈ ψ, with labeled nodes u, v ∈ G respectively. If there
is an outgoing edge from u to v then ord(p, q).
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3. (Redundant Nodes) For every two nonterminal nodes with label p, p′ ∈ ψ, and children
nodes with label q, q′, r, r′ ∈ ψ respectively, then p 6= p′ or q 6= q′ or r 6= r′.

4. (Redundant Tests) There does not exists a nonterminal node with children node lables
p, q ∈ ψ where p = q.

Figure 3.2: The ordered binary decision diagram from Figure 3.1

The conversion of a binary decision diagram to an ordered binary diagram is fairly
straightforward and has been shown to be done in linear time in size of the binary decision
diagram [19]. The binary decision diagram is shown in Figure 3.1 is converted to a ordered
binary decision diagram in figure 3.2. The ordering is of a1 < b1 < a2 < b2.

Building upon the analogy of binary decision diagrams is to DPLL as ordered binary
decision diagrams are to CDCL, the process of removing redundancies of a binary decision
diagram is analogous to the learning of conflict clauses when searching through the state
space of a formula. Furthermore, the selection of the total ordering relation resembles that
of branching heuristics deployed in CDCL SAT solvers.

OBDD’s are used in practice for model checking. A kripke structure and its specification
is translated into a single logical equation and represented as an OBDD and queried. A
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formal description of how to translate a kripke structure and the CTL adaquete set in
Theorem 5 is provided in [24] and with LTL in [21].

3.6 Buchi Automata

In the last section, we demonstrated a data structure approach to CTL model checking. In
this section, an automata theoretic approach using Buchi Automata is demonstrated to
perform model checking on LTL specifications.

Definition 18. A Buchi Automata is a ω−automaton over infinite languages

A deterministic Buchi Automata B = (Q,Σ, δ, q0, F ) is a five tuple where:

1. Q is a finite set of states

2. Σ is a finite alphabet

3. δ : Q× Σ→ Q is the transition function

4. q0 ∈ Q is the initial state

5. F ⊆ Q is the accepting states.

A non-deterministic Buchi Automata N = (Q,Σ,∆, I, F )

1. Q is a finite set of states

2. Σ is a finite alphabet

3. ∆ : Q× Σ→ P(Q) is the transition function, with P denoting the power set.

4. I ⊆ Q is the initial state

5. F ⊆ Q is the accepting states.

B,N accepts a run if and only there exists a state s ∈ F which occurs infinitely often
throughout the run.
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To perform LTL model checking, the Kripke structure is translated into a Buchi
Automaton. The LTL specification is also translated to a Buchi Automaton. Let L(M)
denote the language of the Buchi automaton formed by converting a Kripke structure
M into its Buchi automaton representation. Let L(ψ) denote the language of the Buchi
automaton by converting the LTL specification into its Buchi Automaton. We can then
decide the model checking problem by deciding if

L(M) ⊆ L(ψ)

or equivalently if
L(M) ∩ L(ψ) = ∅

where the over-line denotes the compliment of the language. Buchi Automaton are known
to be closed under intersection and compliment, and deciding subsets intersections and
compliments are decidable problems. []

Converting a Kripke Structure can be done as follows. Consider Kripke structure
M = (S,R, S0, L). Then we will construct Buchi Automaton B as follows:

1. Σ = P(AP )

2. Q = S ∪ {i}

3. For s, s′ ∈ S, α ∈ L(s′), ((s, α), s′) ∈ δ if and only if (s, s′) ∈ R and α = L(s′).
Furthermore, ((i, α), s) ∈ δ if and only if s ∈ S0 and α = L(s).

4. q0 = i

5. F = {i} ∪ S

There are several approaches to converting the LTL formula to Buchi Automaton. The
most well known are in: [32] [44] [78], which are omitted from this thesis. Furthermore, any
other logic that can be converted to a Buchi Automata can also use the same procedure.

3.7 IC3

IC3, Incremental Construction of Inductive Clauses for Indubitable Correctness, was
invented proposed by Aaron Bradley in 2011 in [18]. IC3 is a symbolic model checking
algorithm that makes several calls to a SAT Solving subroutine. IC3 was not the first
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algorithm that used a SAT solver. However, it was the first model checking algorithm that
did not unroll the transition system of the model fully. As a consequence, the formulas
sent to the SAT solver are much smaller in comparison to other SAT based techniques.

The lack of transition system unrolling makes the use of IC3 very appealing instead of
other model checking algorithms. However, the IC3 Model checking algorithm as originally
presented checks for invariants properties, commonly known as safety properties. Informally,
a safety property says that something bad will never happen. Another common type of
property is a liveness property which IC3 can not analyze. Informally, a liveness property
says that something good will eventually happen.

Consider a Kripke structure M = (S,R, S0, L) with a safety property ψ. IC3 computes
an over approximation of reachable states where ψ is satisfied. The semantics of a ”state”
can be a bit confusing in the literature. Traditionally, a state is just a node in a transition
graph. However, it can be commonly referred to as an element of the power set of the
atomic propositions of the Kripke structure. The remaining details of IC3 are cut from the
thesis but can be found in [18].

3.8 Symmetry in Model Checking

In this section we will introduce how to incorporate symmetry in model checking. While
the main results in this work do not directly relate with symmetric model checking, it is
later hypothesized and reserved for future works.

Definition 19. A group G is a set elements with a binary operation, notated as multiplica-
tion, such that:

1. Multiplication is associative, that is, a(bc) = (ab)c

2. There is a element e ∈ G, the identity, such that forall a ∈ G, ae = a.

3. For each element a ∈ G, there exists an inverse of the element, notated as a−1 ∈ G,
such that aa−1 = e

Definition 20. A subset H ⊆ G of a group G, if H forms a group under the multiplicative
operator of G.

Definition 21. A permutation of a set S is a one-to-one onto function f : S → S
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Theorem 8. Let S be a set, and G be the set of all permutations of S. Then G is a
group under function composition. This is commonly notated as G = Sym(S) read as the
symmetry group.

Definition 22. Let S be a set, and H ⊆ Sym(S) be a subgroup. H is permutation group
of S.

Definition 23. Let G be a permutation group of set S. Let s ∈ S. The orbit of s on G, is
θ(s) = {t|∃f ∈ G, f(s) = t}

Definition 24. Let θ(s) be an orbit under permutation group G, set S, and permutation f .
Let the function rep() map an orbit to an element of the orbit.

Definition 25. Let M = (S0, S, R, L) be a Kripke Structue. Then G be a permutation
group over S under permutation f . G is an automorphism of the M if G preserves R.
Formally,

∀s1 ∈ S,∀s2 ∈ S, ((s1, s2) ∈ R =⇒ (f(s1, f(s2)) ∈ R)

Definition 26. Let M = () be a kripke structure and G be an automorphism group of M.
The quotient structure MG = (SG, RG, LG) is defined as follows:

1. SG + {f(s)|s ∈ S} be the set of orbits over the states in S

2. RG = {(f(s1), f(s2))|(s1, s2) ∈ R}

3. LG(f(s)) = L(rep(f(s)))

Theorem 9. For any formula in f ∈ CTL∗, M, s |= f ⇐⇒ MG, f(s) |= f .
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1: reached = ∅
2: unexplored = ∅
3: for s ∈ S0 do
4: reached = reached ∪ ξ(s)
5: unexplored = unexplored ∪ ξ(s)
6: end for
7: while unexplored 6= ∅ do
8: Pick s ∈ unexplored
9: if s 6|= ψ then

10: return False
11: end if
12: unexplored = unexplored \ s
13: for Successor state q of s in T do
14: if ξ(q) 6∈ reached then
15: reached = reached ∪ ξ(s)
16: unexplored = unexplored ∪ ξ(s)
17: end if
18: end for
19: end while
20: return True

Figure 3.3: The above algorithm uses 9 is an extension of a state space exploration algorithm
introduced in [41] for model checking

Theorem 10. Computing ξ(s) is hard as the Graph Isomorphism Problem.

This proof is omitted from the thesis, but can be found in [24].
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Chapter 4

Network Models and Parametrized
Models

4.1 Network Transition Systems

Up to this point in the thesis, we have discussed model checking of a single transition
system that resembles a single computational structure. This modeling style fails to apply
to several practical models that are in need of automated verification. In this section, we
will formulate a transition system such that it is representative of several transition systems
running concurrently with each other.

Definition 27. A Process Template p = (S0, S, T, L,AP ) is defined as:

1. S0 is the set of initial states

2. S is the set states

3. T ⊆ S × S is the set of transitions.

4. L : S → AP is the labeling function

5. AP is the set of atomic propositions.

A process template has a nearly identical formulation to a Kripke Structure. Conceptu-
ally, two process templates are unique if the semantics of the modeled transition systems
differ in functionality. For example, consider the concurrent algorithm paradigm where
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there are several worker nodes performing a task using the same algorithm and a single
master who organizes and gathers the work of the worker nodes all running a shared piece
of computer code. The worker nodes would all have equivalent process templates, and
the master node would have a unique process template. In the case of a mutual exclusion
protocol, all the process templates would be equivalent.

We will next formulate a concurrent transition system, called a process. As it is a
concurrent process, it is formulated with respect to other concurrent processes that further
dictates the transition set. We will use the ordered list mathematical structure to represent
multiple process templates. An ordered list is used instead of a set as it is indexable and
allows for multiple equivalent processes. Notationally, for an ordered list P of processes, we
will use a subscript, P i, to denote the ith process in the list. A superscript over a member
of the tuple in a process’s definition, for example, SP 3 , will denote the set of states in the
third process in P .

Definition 28. A (Concurrent) Process within an ordered list of other process PP is a six
tuple p = (S0, S, T, L,AP, P ) where:

1. S0, S, L,AP are the same as in Definition 27

2. P ⊆ PP is an ordered list of process that effect the transition

3. T ⊆ (S, (SP 1 × SP 2 × ...× SPn), S) is a total transition set 1

The notable change in the process transition system compared to the previously studied
transition systems is that T is now a three tuple instead of a two tuple. The first and last
elements are, as before, the starting point of the transition and where it transitions too.
The second element denotes the current states of P and will make the transition as before
but with the condition that all processes in P are in the states as defined by the middle
element. An example is provided in the following section.

We will next define a network over several processes. We will define it in two different
ways for two different models of process synchronization. The first will be the synchronous
model of process synchronization where each transition system makes a transition simul-
taneously. The second is the asynchronous model of process synchronization where any
nonempty subset of the processes make a transition while the compliment does not.

Definition 29. A Synchronous Network N = (P , S0, S, TSync, L, AP ) is a six tuple where:

1As total is a property of a function and this is a set of three tuples and are abusing semantics. We

infer that the first two elements of the tuple, S × SP 1 × SP 2 × ...× SPn and S, has the total property.
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1. P is an ordered list of processes

2. S0 = SP 1
0 × SP 2

0 × ...× SPn
0

3. S = SP 1 × SP 2 × ...× SPn

4. T ⊆ ((SP 1 × SP 2 × ... × SPn), (SP 1 × SP 2 × ... × SPn)) is the transition set of the
network, where ((s1, s2, ...), (s

′
1, s
′
2, ..)) ∈ T if and only if for all i ∈ [n], there exists

(si, α, s
′
i) ∈ T P i, where α = (τ1, τ2, ..., τm) and for each j ∈ [m] τj ∈ SPk , τj = sk for

some k.

5. L(SP 1 × SP 2 × ...× SPn) =
⋃
i∈[n]

LP i(SP i)

6. AP =
⋃
iAP

P i

To elaborate on the notation, n is the size of P , m is the size of PP for a specific
process, α = (τ1, τ2, ...) is the tuple of current states of the neighboring processes to make
the transition and each τi denotes the specific state.

In a network, there is a state for every element in the Cartesian product over each
process’s state. The transition set, T , is from state to state, like the Kripke structure
but unlike the process, such that the requirement of a concurrent process in Definition 28
by only including the appropriate transitions where the neighboring processes are in the
expected state.

Theorem 11. A Synchronous Network transition system is total. Furthermore, it is
deterministic if and only if every process in P is deterministic

Proof. The total requirement is persistent on all seen transition systems as it enforces
infinite paths. A network is is a total transition set as it implied from the result that
each process has a total transition set. If it were not total, then there would exists
s ∈ SP 1 × SP 2 × ...× SPn where a transition is not defined. This would mean that for P 1,
there is no (s1, α, ∗) ∈ T , for any ∗ ∈ SP 1 , which is total. If P i is deterministic, then T P i

forms a function by S × SP 1 × SP 2 × ... × SPn → S. Consider the mapping of T where
T (s1, s2, ..., sn) maps to (s′1, s

′
2, s
′
n) and (s′′1, s

′′
2, s
′′
n) where (s′1, s

′
2, s
′
n) 6= (s′′1, s

′′
2, s
′′
n). Then

T P i((si, α)) = s∗ where s∗ = s′i and s∗ = s′′i and transitively s′i = s′′i .

Definition 30. A Asynchronous Network transition system N = (P , S0, S, TAsync, L, AP )
is a six tuple where:

30



1. S0 = SP 1
0 × SP 2

0 × ...× SPn
0

2. S = SP 1 × SP 2 × ...× SPn

3. TAsync ⊆ ((SP 1 × SP 2 × ...× SPn), (SP 1 × SP 2 × ...× SPn)) is the transition set of the
network, where if ((s1, s2, ..., sn−1, sn), (s′1, s

′
2, ..., s

′
n−1, s

′
n) ∈ TSync then

((s1, s2, ..., sn−1, sn), (s1, s2, ..., sn−1, s
′
n) ∈ TAsync

((s1, s2, ..., sn−1, sn), (s1, s2, ..., s
′
n−1, sn) ∈ TAsync

((s1, s2, ..., sn−1, sn), (s1, s2, ..., s
′
n−1, s

′
n) ∈ TAsync

...

((s1, s2, ..., sn−1, sn), (s1, s
′
2, ..., sn−1, sn) ∈ TAsync

((s1, s2, ..., sn−1, sn), (s1, s
′
2, ..., sn−1, s

′
n) ∈ TAsync

...

((s1, s2, ..., sn−1, sn), (s1, s
′
2, ..., s

′
n−1, s

′
n) ∈ TAsync

((s1, s2, ..., sn−1, sn), (s′1, s2, ..., sn−1, sn) ∈ TAsync
...

((s1, s2, ..., sn−1, sn), (s′1, s
′
2, ..., s

′
n−1, s

′
n) ∈ TAsync

4. L(S = SP 1 × SP 2 × ...× SPn) =
⋃
i∈[n]

LP i(SP i)

5. AP =
⋃
iAP

P i

The asynchronous network differs from a synchronous network by its transition set. The
transition set of the synchronous network is a subset of the transition set of the asynchronous
set by further considering any nonempty subset of processes making a transition while the
complement idles. Without the non-empty requirement, there will always be a loop around
every state, and most liveness properties fail.

Theorem 12. An Asynchronous Network a total and transition system is non-deterministic.

Proof. As the Synchronous transition system set is total and since TSync ⊆ TAsync, then
TAsync must be total. Furthermore, the mapping formed by TAsync is nondeterministic as
any state (s1, ..., sn) maps to 2n − 1 things.
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Definition 31. An infinite family of systems F = {Ni}∞i=1 is a sequence of network models
where Ni denotes a either a synchronous or asynchronous network of i processes.

For this thesis, we will assume that an infinite family is composed of a single process
template. However, this can be easily generalized by including another parameter j ∈ N for
a second process template and so on.

Definition 32. The parametrized model checking problem (PMCP) asks ∀i ∈ N, does
Ni |= ψ?

Theorem 13. PMCP, is in general, undecidable.

The proof is omitted as it is long and technical and given in [].

4.2 Mutual Exclusion Modeling

In this section, we will model a mutual exclusion protocol using the process and network
definitions defined in the previous section. Dijkstra proposed the problem mutual exclusion
and proposed a solution for it in [28]. Dijkstra’s mutual exclusion protocol is known to
exhibit safety specifications but fails common liveness and fairness specifications.

Dijkstra’s algorithm as originally stated is presented in Figure 4.1. When the procedure
is invoked it has three stages. The first loop is the first phase, the second loop being the
second phase, and critical section access. The procedure maintains two boolean arrays
b[], c[] and an integer value K which are readable and writable by all processes. If b[i] = 0,
this denotes the process with pid = i is in the first phase, second phase, or has access to
the critical section. If c[i] = 0, this denotes the process with pid = i is in the second phase
or has access to the critical section. The K integer denotes the identifier of the process
that is about to complete the first phase, in the second phase, or has critical section access.

We will first construct a process template describing Dijkstra’s mutual exclusion protocol.
For states, we will have one for each of the phases as described. One for the two loops(P1, P2),
one denoting critical section access(CS), and an additional state where the procedure is not
invoked(NT ). When invoked, a process loops in phase 1 until there are no other detected
processes in the second phase or critical section or if there was another process in phase
one that wrote to K before it. Otherwise, it advances to the second phase. In the second
phase, the process transitions to the critical section upon completing a loop through the
c[] array by checking if there is another process in the second phase or the critical section.

32



Figure 4.1: Dijkstra’s Algorithm for Mutual Exclusion

1: procedure Mutual Exclusion(pid, b[], c[], K)
2: b[pid]← false . Li0 (Phase 1)
3: if K 6= pid then . Li1
4: c[pid]← true . Li2
5: if b[K] then . Li3
6: K ← pid
7: end if
8: goto− Li1
9: else

10: c[pid]← false . Li4 (Phase 2)
11: for j = 1 to N do
12: if j 6= pid and ¬c[j] then
13: goto− Li1
14: end if
15: end for
16: CriticalSection()
17: c[i]← true
18: b[i]← true
19: Remainder of cycle 1
20: goto− Li0
21: end if
22: end procedure

Figure 4.2: An example of a transition system of a process for a Dijkstra mutual exclusion
algorithm
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If one is found, it transitions back to the first phase, otherwise transitions to the critical
section and then exits the procedure.

We will define a process template that represents the Dijkstra mutual exclusion protocol
with the abstractions as described. The transition system is further illustrated pictorially
in Figure 4.2.

1. S0 = {NT}

2. S = {NT, P1, P2, CS}

3. T = {(NT,NT ), (NT, P1), (P1, P1), (P1, P2), (P2, P1), (P2, CS), (CS,NT )}

4. AP = {p}, where p denotes critical section access.

5. L = {(NT, {})(P1, {}), (P2, {}), (CS, {p})}

Next, we will formulate a concurrent process of a Dijkstra Mutual Exclusion protocol
with two processes communicating with each other. By definition, a process and process
template only differ in its transition set. We will provide the transition set of process
P1. The process P2 can be constructed analogously. It is pictorially represented in Figure 4.3.

T P1 = {

• (NT, (NT ), NT ), (NT, (P1), NT ), (NT, (P2), NT ), (NT, (CS), NT ),

• (NT, (NT ), P1), (NT, (P1), P1), (NT, (P2), P1), (NT, (CS), P1),

• (P1, (NT ), P2), (P1, (P1), P1), ((P1, P1), P2), (P1, (P2), P1), (P1, (CS), P1),

• (P2, (NT ), CS), (P2, (P1), CS), (P2, (P2), P1), (P2, (CS), P1),

• (CS, (NT ), NT ), (CS, (P1), NT ), (CS, (P2), NT ), (CS, (CS), NT )

}

We will next provide the formulation for both a synchronous and asynchronous network
model for the Dijkstra protocol with two processes. In the transition relation, we will use
a super script ∗ to denote a transition that is only present in the asynchronous network
model.
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Figure 4.3: An illustration of two concurrent processes running Dijkstra’s protocol. The
label on the transition, denotes the required state of the process it is running concurrently
with. The * token on the transition label denotes any state.
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1. S0 = {(NT,NT )}

2. S = {(NT,NT ), (NT, P1), (NT, P2), (NT,CS), (P1, NT ), (P1, P1), (P1, P2),

(P1, CS), (P2, NT ), (P2, P1), (P2, P2), (CS,NT ), (CS, P1), (CS, P2), (CS,CS)}

3. • ((NT,NT ), (NT,NT )), ((NT,NT ), (NT, P1)),
((NT,NT ), (P1, NT )), ((NT,NT ), (P1, P1)),

• ((NT, P1), (NT, P1))
∗, ((NT, P1), (NT, P2)),

((NT, P1), (P1, P1))
∗, ((NT, P1), (P1, P2)),

• ((NT, P2), (NT, P2)), ((NT, P2), (NT,CS)),
((NT, P2), (P1, P2))

∗, ((NT, P2), (P1, CS)),

• ((NT,CS), (NT,CS))∗, ((NT,CS), (NT,NT )),
((NT,CS), (P1, CS))∗, ((NT,CS), (P1, NT )),

• ((P1, NT ), (P1, NT ))∗, ((P1, NT ), (P1, P1))
∗,

((P1, NT ), (P2, NT )), ((P1, NT ), (P2, P1)),

• ((P1, P1), (P1, P1)), ((P1, P1), (P1, P2)),
((P1, P1), (P2, P1)), ((P1, P1), (P2, P2)),

• ((P1, P2), (P1, P2))
∗, ((P1, P2), (P1, CS)),

• ((P1, CS), (P1, CS)))∗, ((P1, CS), (P1, NT )),

• ((P2, NT ), (P2, NT )), ((P2, NT ), (P2, P1))
∗, ((P2, NT ), (CS,NT )),

((P2, NT ), (CS, P1)),

• ((P2, P1), (P2, P1))
∗, ((P2, P1), (CS, P1)),

• ((P2, P2), (P2, P1))
∗,

((P2, P2), (P1, P2))
∗, ((P2, P2), (P1, P1)),

•
• ((CS,NT ), (CS,NT ))∗, ((CS,NT ), (CS, P1))

∗,
((CS,NT ), (NT,NT )), ((CS,NT ), (NT, P1)),

• ((CS, P1), (CS, P1))
∗, ((CS, P1), (NT, P1)),

•
• ((CS,CS), (CS,NT ))∗,

((CS,CS), (NT,CS))∗, ((CS,CS), (NT,NT ))
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4. L = {((NT,NT ), {}), ((NT, P1), {}), ((NT, P2), {}), ((NT,CS), {pP2}), ((P1, NT ), {}),
((P1, P1), {}), ((P1, P2), {}), ((P1, CS), {pP2}), ((P2, NT ), {}), ((P2, P1), {}),
((P2, P2), {}), ((P2, CS), {pP2}), ((CS,NT ), {pP1}), ((CS, P1), {pP1}), ((CS, P2), {pP2}),
((CS,CS), {pP1 , pP2})
}
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Chapter 5

Structural Mutable Modeling

5.1 Network Structures and Topologies

Definition 33. A topology T of order n is an n−tuple of sets of components of unique
types.

A well known topology is a graph. A graph has two types of components, vertices, and
edges. In traditional graph theory, it is defined as a two tuple of a set of vertices and edges.

We will next model the topology of a network running a mutual exclusion protocol with
multiple critical sections and users. We want to be able to model user to user communication
as in the protocol users can read and write to shared memory. Furthermore, we would also
like to a representation for a users capability to access a critical section. Therefore, we will
model the mutual exclusion as T = (N,E,C, L) where:

1. N is the set of nodes, denoting users

2. E is the set of (undirected) edges of the form (u, v) for u, v ∈ N to denoting the
ability of process interaction

3. C is the set of critical sections

4. L is the set of links of the form u, c for u ∈ N, c ∈ C denoting processes capability of
accessing a critical section.

The corresponding topology to the two process example used previously in Chapter 4.2
with one critical section and two users would be formulated as:
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Figure 5.1: Topology of the two process mutual exclusion protocol

1. N = {n1, n2}

2. E = {(n1, n2)}

3. C = {c1}

4. L = {(n1, c1), (n2, c2)}

The topology is illustrated in Figure 5.1. The circles denote nodes illistrating processes
as in Figure 4.3. The solid line denotes the edge between the two nodes. The dotted line
denotes the edge between the nodes and the critical section.

Now that we have established a notion of concurrent transition systems and topology
we will combine these notions of defining a structured network model.

Definition 34. A Structured Network Model is a 3-tuple such that M = (N, T , ρ), where:

1. N is either a synchronous or asynchronous network model.

2. T is the topology of the model

3. ρ : P → T is a mapping of the processes of N to a topological component.

We have seen both an example of N and T for the mutual exclusion problem. ρ is a
mapping from the node set in the topology to the process set in the network, and in the
example ρ = {(P 1, n1), (P 2, n2)} where P 1, P 2 denote the two processes.
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There has been no discussion of the specification of the mutual exclusion problem to this
point. Previously we stated that Dijkstra’s mutual exclusion protocol has neither fairness
nor liveness properties in both synchronous and asynchronous network models. One bug
can be visualized by reflecting on Figure 4.3 and observing how if two processes are both in
state P2 to which they can both revert to P1 and continue in this fashion.

However, the safety specification, which no two processes can both be in a critical
section simultaneously, is true in this protocol. We can express this in the CTL logic with
AG(¬pP 1 ∨ pP 2). However, this specification is programmatic, what must be true about
the topology? In the programmatic abstraction, we asserted that all the variables of the
algorithm b[], c[], K are accurately maintained and readable and writable from the processes
in the network. With a structured model, we can say this a bit more precisely. Since
each process running on a node is attempting to obtain access to a critical section, we can
verify that the there is a link between the node and the critical section in the topology.
Furthermore, to assure that the variables are maintained as asserted by the process, we can
verify that every node two nodes that have a link to a common critical section share an
edge. For the two process mutual exclusion example we can state this as:

p = ((n1, c1)
?
∈ C) ∧ q = ((n2, c1)

?
∈ C) ∧ r = ((n1, n2)

?
∈ E)

To accommodate this, we will later assume every specification ψ of a structured network
model is of the form

ψ = ψT ∧ ψP

where ψP denotes the program specification and ψT denotes the topological specification.

Definition 35. The Structured Model Checking Problem asks if

M |= ψ ⇐⇒ (N |= ψP ) ∧ (T |= ψT )

5.2 Mutation

(Deterministic) Mutation

Definition 36. A mutation φ is an algorithm that takes as input a structured model and
either returns a structured model in a fixed number of steps or rejects the input. On each
algorithmic step, it:
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1. Adds/Removes a fixed number of components to T .

2. (and/or) Adds/Removes a fixed number of process to N .

Definition 37. A nondeterministic mutation φ is a terminating algorithm that takes as
input a structured model and either returns a structured model or rejects the input. On
termination,

1. A fixed number of additions/removals of topological components are made to T .

2. And/Or a fixed number of process additions/removals to N .

Notationally, for a structured model M, and mutation φ of n steps, φ(M) denotes the
model that is returned. Furthermore, for i ≤ n, φi(M) denotes the mutated model at the
ith step of the mutation and φ0(M) =M. If φ is nondeterministic a super script will be
used to denote a uniqueness of a structured model after so many steps.

Definition 38. A Dynamic Model is a three tuple D = (M0,P ,Φ) where:

1. M0 is the structured network model.

2. P is the set of process templates used.

3. Φ is the set mutations that add/remove elements of T and processes P of the network
of the structured model.

Definition 39. A directly reachable model of a Dynamic Model is defined inductively as:

1. M0 is directly reachable

2. If M is directly reachable and φ ∈ Φ, φ(M) is directly reachable.

Definition 40. A reachable sub-model that are the models achieved through the mutation
process. Formally, for dynamic model D, mutation φ ∈ Φ and directly reachable model M,
φi(M) is a sub-model for 0 < i ≤ n.

To further reason about mutations and dynamic models, we will consider mutation sets
of the following form:

1. Instantaneously Mutating Dynamic Models. Instantaneous mutation is used to denote
when the model undergoes a primitive structural change.
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Definition 41. A primitive mutation is a mutation that does one of the following:

(a) Adds a single component into the topology.

(b) Removes a single component from the topology.

(c) Adds a single process into the network.

(d) Removes a single process from the network.

Definition 42. An D is an instantaneous dynamic model if every φ is primitive.

M φ→M′

Here M is a directly reachable model, and as a consequence from φ, M′ is a directly
reachable model. There are no sub-models in Instantaneous Mutation as φ is executed
in a single step as it is a single primitive change.

2. Path Like Mutating Dynamic Models. In contrast,

Definition 43. D is a Path Like Mutating Dynamic Model if every φ is deterministic
and there exists at least one mutation that is non-primitive.

M φ→ φ1(M)
φ→ φ2(M)

φ→ ...
φ→ φm(M)

φ→M′

Here M and M′ are directly reachable models. For every ith step of the mutation
procedure, denoted as φi(M), is a sub-model for i ∈ [1, n].

Claim 1. The total number of sub-models generated by path mutation is linear in the
number of structurally primitive changes.

While this claim may seem fairly obvious, it is used to distinguish the following much
more complex paradigm of mutation.

3. Branch Like Mutating Dynamic Model

Definition 44. D is a Branch Like Mutating Dynamic Model if there exists at least
one φ that is non-deterministic.
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Figure 5.2: An illustration of branching mutation.

As the mutation is well defined, it will always have the same result, but the path to
which it gets there is nondeterministic.

Theorem 14. The total number of sub-models generated by branching mutation is O(nn),
with n being the number of structural primitive operations.

Proof. In a nondeterministic setting, a known set C of n singular changes(addition/removal
of a component/process) is applied to a structured network. The order these steps take
place, groups of changes applied simultaneously, and the steps of the mutation process is not
known, with each unknown being a valid reachable sub-model of the dynamic network. We
will claim that the number of sub-models is equal to the size of the set of all permutations
of every possible partition of the set C, denoted as C(C). We will compute the size using
Sterlings number of the second kind, which gives us the number of ways to partition a set
of n items into k nonempty subsets, denoted as Snk . The number of permutations can then
be computed by the factorial function. We can calculate the size of C(C) then as

C(C) =
n∑
k=1

Sknk! =
n∑
k=1

k∑
j=0

(−1)k−j
(
k

j

)
jn ∈ O(nn) (5.1)
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Chapter 6

Dynamic Model Checking

6.1 Safety Proof Rules

Definition 45. Denote M(D) as the set of all reachable models in a Dynamic Model D.

Definition 46. A specification Ψ of a dynamic model D is a function that maps every
M∈M(D) to its structured network model specification Ψ(M) = ψP ∧ ψT .

In this section, we will describe the requirements of proof to verify specifications of
dynamic models. We assert the specification Ψ of a dynamic model D, for each reachable
model, it maps to a conjunction formed by ΨP and ΨT , where ΨP denotes the programmatic
specification of the model and ΨT denotes the topological specification of the model.

Definition 47 (Dynamic Model Checking). The Dynamic Model Checking Problem asks
∀M ∈M(D), does M |= Ψ(M), denoted as D |= Ψ.

In the case of the mutual exclusion model, ΨP denotes that no two processes will be
in the same critical section simultaneously. ΨT in the mutual exclusion model denotes
that any two nodes which share a mutex have an edge between them so they can properly
communicate and that each node that has a process that attempts to access a critical
section has a link to that critical section.

The program code running on each process may be correctly written. Yet, it may
not properly communicate with all nodes due to a mis-configured topology and hardware.
Consequently, correctness certificates could be generated for incorrect programmatic models.

44



Definition 48 (Graph Representation of Dynamic Models). Let G = (V,E) be the graph
representation of a dynamic model D = (M0,P ,Φ) . The set of vertices V is defined as the
directly reachable models. There exists a directed edge (u, v) ∈ E if and only if there exists
a φ ∈ Φ such that φ(u) = v.

Definition 49. (Proof Rules of Safety Properties)

1. Verify M0 |= ΨT (M0) (Initial Topology)

2. Verify ΨT (M0),M0 |= ΨP (M0) (Initial Programmatic)

The first step is to verify the topology of the initial model indeed upholds the topological
aspect of Ψ. If not, then the dynamic model does not satisfy the specification. Now,
granted that it indeed does uphold the specification, verify the programmatic part of
the specification on the initial model.

3. Verify φi(M),ΨT (M) |= (∀i,ΨT (φi(M))), for every φ, directly reachable M. (Reach-
able Topology)

4. Verify M,ΨT (M) |= ΨP (M), for every reachable M (Reachable Programmatic)

For 3, we need to show that for every directly reachable model M, asserting the
topological specification is upheld on start of a mutation process, the topological
specification is upheld throughout and on termination of the mutation process for
every permitted mutation on every directly reachable model. For 4, for every reachable
model M, given the topology of M satisfies Ψ(M)T , the programmatic specification
is upheld.

Theorem 15. D |= Ψ if and only if the above proof rules are satisfied for a safety property
Ψ.

Proof. We will prove soundness of the above proof rules by structural induction by showing
that every reachable model upholds Ψ given (1)-(4) are true. The base case thatM0 |= Ψ(M)
is a direct result from (1) and (2) since Ψ(M0) = ΨT (M0) ∧ ΨP (M0) and (1) gives us
ΨT (M0) is true and (2) gives ΨP (M0) is true. Inductively let M be a directly reachable
model from M0 and mutation set Φ. To complete the proof we need to show that all
resulting sub-models when applying any φ ∈ Φ upholds its specification and every directly
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reachable model from any φ also upholds its specification. By inductive hypothesis Ψ(M)
is true, hence both ΨT (M) and ΨP (M) is true. Hence, (3) gives us all sub-models over
every mutation upholds the topological specification. Furthermore, the case i = n gives us
that the resulting directly reachable model for each mutation also upholds the topological
specification. Since the topological specification is meet on all resulting models from M,
property (4) gives us the ΨP (M) for each sub-model and directly reachable model from
M.

Automizability : These proof rules are automizeable. We will assert ΨT is written in
first order propositional logic, but ΨP is not restricted to a particular logic. (1) can be
verified through a SAT Solver to confirm the initial topology correctness. (2) can be verified
through a standard model checker as it would require solving the static model checking
problem. (3) can be verified through a SAT Solver as done in (1) by verifying the topology
for every reachable model, or a theorem prover to show that given any arbitrary model
that has correct topology, ΨT (φi(M)) is invariant throughout the mutation process. (4)
Asymptotically dominates steps (1) - (3). In this paper and formulation, in the general case,
will require static model checking for every reachable model. We will later demonstrate
how the use of parametric assumptions and briefly discuss the use of symmetry detection
to overcome this setback.

Complexity : For the sake of complexity analysis we will assume |D| is finite and that the
number of directly reachable models is bounded by a number n. The number of primitive
operations over any given mutation is therefore of order O(n). Under primitive, non-
primitive, and nondeterministic the number of sub-models generated under a single mutation
is then O(1),O(n),O(nn) for instantaneous dynamic model checking, path dynamic model
checking, and branching dynamic model checking respectively. We will determine the total
number of reachable models for each type by considering the graph representation (see
definition 48). In the graph representation, |V | ∈ O(n) (directly reachable), and then
|E| ∈ O(n2) (occurrences of submodels spaces through a mutation process). Therefore, the
total number of reachable models then O(n) + O(1) = O(n) for instantaneous dynamic
model checking, O(n) + O(n3) = O(n3) for path dynamic model checking, and O(n) +
O(nn+2) = O(nn+2) for branching dynamic model checking. Verifying (1) takes O(2n) by a
DPLL/CDCL SAT Solver. (2) requires a single call to a static model checker which takes
O(2poly(n)) for most common model checking logics. Under our assertions, (3) takes |Φ|
calls to a theorem prover, which is solvable in O(2n) through resolution based theorem
provers for example. (4) requires a model checking call for each reachable model. This
results in O(2poly(n)n) for instantaneous dynamic model checking, O(2poly(n)n3) for path
dynamic model checking, and O(2poly(n)nn+2) branching dynamic model checking.
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6.2 Dynamic Model Checking Analysis

Theorem 16 (Finding the Minimalist M0). Let D = (M0,P ,Φ) and G = (V,E) be
its graph representation. Suppose there exists a cycle C in G such that M0 ∈ C. Let
D′ = (M′

0,P ,Φ) with M′
0 ∈ C and M′

0 is directly reachable. Then

D |= Ψ if and only if D′ |= Ψ

Proof. We will prove this by showing the set of reachable models of both D,D′ are equivalent.
Let S denote the set of reachable models of D, and S ′ denote the set of reachable models
of D′. S ′ ⊆ S as M′

0 is directly reachable from M0 as the graph contains a path from M0

to M′
0 due to the cycle and all of its reachable models must also be reachable then by M0

by applying the same sequence of mutations to construct the path. Analogously S ⊆ S ′

as M0 is reachable from M′
0 due to the cycle. Thus S = S ′. Therefore if D |= Ψ then, Ψ

is upheld for all reachable models in S and therefore S ′ so hence D′ |= Ψ. The converse
argument is analogous.

For a challenging to verify model D = (M0,P ,Φ) , we can use theorem 16 to reduce
the complexity of proof rules (1)-(2). We can select the smallest and easiest to verify model
as our M′

0 that is cyclic to M0 and verify D′ rather than M. We suspect most dynamic
models to have mutations that both enlarge and decrease the size of the model, so several
cycles should exist. Computing the smallest M′

0 can be done through a depth first search.

Theorem 17. Let D = (M0,Ψ,Φ). Let Φ′ be any other set of mutators and D =
(M0,P ,Φ′) . If there exists a sequence of mutations (φ1, φ2, ...) over mutations in Φ′ such
that ◦nj=1φ

′
j ≡ φ for each φ′ ∈ Φ′ then

D′ |= Ψ implies D |= Ψ

where ◦nj φ′j ≡ φ denotes a nested composition of mutations that result in an equal
structural mutation.

Proof. We will first establish what exactly it means for two mutations φ, φ′ to be equivalent.
φ ≡ φ′ if and only if for any model M, φ(M) =M′ = φ′(M), and for sub-model set S of
φ, and sub-model set S ′ for φ′, S = S ′.

For φ ∈ Φ, φ′ ∈ Φ′ we have that there exists a mutation sequence over Φ′ for each
mutation in Φ such that ◦nj φ′j ≡ φ that entails then the corresponding S ′ = S ′1 ∪ ... ∪ S ′n is
equal to S, the sub-models generated from φ′, φ respectively. From the above, for the set
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of reachable models S from D, and S ′ from D′ it follows that S ⊆ S ′. Conditions (3),(4)
are satisfied as D′ |= Ψ and D′ reachable space is contained within D′. (1),(2) hold as they
have the same initial model. The Theorem is proven by Theorem 15.

Theorem 17 breaks down complex mutation protocols compositionally to construct a
smaller mutation set. By redefining the model with a compositional mutation set, we are
over approximating the reachability of D, as the resulting graph representation of D′ has
higher degree.

Definition 50 (The React Assumption). A network can ”react” to dynamic change. For
ηP being a programmatic invariant for M. For a mutation φ, throughout the process of φ,
ηp is invariant.

Theorem 18. Under the ”react” assumption, a non-dynamic programmatic invariant ηP of
a modelM is invariant in a dynamic model D. Furthermore,M0 |= ΨP (M0) implies ∀M, |=
ΨP (M).

Proof. The react assumption and this theorem were stated and proved in [63]. The
assumption has been adapted for this work. The original theorem proved the strongest
invariant, to which we weakened to be any invariant.

Theorem 19. Let D = (M0,P ,Φ) , and D = (M′
0,P ,Φ′) is is the corresponding model

referencing Theorems 16, 17. If |M′
0| ∈ O(log |D|), |Φ′| ∈ O(log |Φ|). Assuming Definition

50 and by Theorem 18 hold, we can verify D in polynomial time, for all mutation models

Proof. This theorem highlights the cutoff analysis by constructing a small enough dynamic
model from the targeted model that is logarithmic in size cancels out the exponential run
time of proof rules (1) - (3). (4) is given to us by Theorem 18.

Theorem 20. Let N be a network, and F = {Ni}i→∞ be its infinite family . Let D be a
dynamic model such that M0 = (N1) and φ ∈ Φ is a primitive process addition mutation.
If D |= Ψ then PMCP(F , ΨP ) is decidable.

Proof. For PMCP (F) to be decidable it needs to be shown that for each i, Ni |= ΨP . To
prove this, we need to show that for each i, Ni |= ΨP . Assume then that D |= Ψ. Therefore,
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by our construction M0 |= Ψ and further M0 |= ΨP as Ψ = ΨT ∧ΨP . On the converse of
Theorem 15, we have that ΨP is true for each reachable model, and therefore each directly
reachable model. By our construction of φ in D each Ni has a representative directly
reachable model to which ΨP is satisfied.
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Chapter 7

Dynamic Model Checking Examples

7.1 Verifying a Dynamic Mutual Exclusion Protocol

In chapter 4.2 we introduced a Dijkstra protocol, and formulated a process template, a
concurrent process, a synchronous/asynchronous network of two processes. In Chapter 5.1
we outlined the structured network model of the Dijkstra protocol.

We will define an example dynamic model D = (M0,P ,Φ). For structured network
model M0 we will use the one as described in Chapter 5.1. The process template set P is
formed of a single template of the the Dijkstra protocol that is described in Chapter 4.2.
The Mutation set is described in Figure 7.2.

In chapter 6.2 we considered the construction of a Dynamic model D′ from a target
model D whose verification implies the verification of D. Further, we argued that the of
D′ also gives a decidability result for the PMCP problem. Our formulated model of the
Dijkstra’s protocol is representative of the construction of the small and tractable D′, which
then proves a large family of network families.

The use of NDET denotes a nondeterministic action that takes place in a nondeterministic
order. The remaining actions are done iteratively and orderly.

Theorem 21. Under Definition 50, the dynamic model D of Dijkstra’s mutual exclusion
protocol, D |= Ψ.

Proof. We will verify the proof rules of Definition 49 and then by Theorem 15, we will have
shwon D |= Ψ. For proof rule (1), M0 |= ΨT from inspection as the appropriate edges and
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Node Addition

1. Rejection Criteria: None.

2. Instantiate the new node

Critical Section Addition

1. Rejection Criteria: None.

2. Instantiate new critical section

Edge Addition

1. Rejection Criteria: None.

2. Instantiate new edge

Link Addition

1. Rejection Criteria: None

2. Instantiate new edge

Process Addition

1. Rejection Criteria: For process p, where ρ(p) = (n, c), reject if (n, c) 6∈ L. Further
for any p′ with ρ(p′) = (n′, c), reject if (n, n′) 6∈ E

2. Instantiate process.

Figure 7.1: Removal Mutations for a Mutual Exclusion Protocol.
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Node Removal

1. Rejection Criteria: For node n, Reject if there exists process p where n ∈ ρ(p)

2. Deinstantiate node

Critical Section Removal

1. Rejection Criteria: For critical section c, Reject if there exists process p where
c ∈ ρ(p)

2. Deinstantiate Critical Section

Edge Removal

1. Rejection Criteria: For edge e = (u, v), reject if there exists processes p1, p2, and
u ∈ p1 and v ∈ p2 and there is critical section c with c ∈ p1 and c ∈ p2

2. Deinstantiate edge

Link Removal

1. Rejection Criteria: For link ` = (u, c) reject if there exists a process p with ` ∈ ρ(p).

2. Deinstantiate link.

Process Removal

1. Rejection Criteria: None.

2. Deinstantiate process.

Figure 7.2: Removal Mutations for a Mutual Exclusion Protocol.
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links are already in place. For proof rule (2), we will claim that the structured model M0

upholds its programmatic specification from inspection. Further, for both pP 1 , pP 1 to be
true simultaneously they must both be in the the state denoted as CS. For them both to
transition to CS they must both com from the P2 state. However, if both processes are
in the P2 state they would both make the transition to P1 in the synchronous network
model. In the asynchronous network model the only other alternative would be for one of
the processes to idle in P2 while the other reverts back to P1. For proof rule (3), we will
claim this to be true as the mutation procedures as described in figure 7.2 have appropriate
rejection criteria. For proof rule (4), from (2) we have that ψP is an invariant inM0. Under
definition 50 and Theorem 18 ψP is preserved through dynamic change and is true for each
model.

7.2 A Multicast Protocol

In this section, we will apply our built up analysis to a multicast security protocol. We will
provide a dynamic model and argue its specification is meet as done in the previous section.

The most well known type of cryptographic protocol is a one-to-one communication
scheme, where a network operator can communicate with one other source. The network
operator may run several simultaneous instances of this kind of protocol, but the protocol
itself only involves two sources. An example of a one-to-one communication scheme is
the process of identification of a client to a network operator. In identification, a trusted
network user proves to the network operator that he is who he claims to be by using private
information only a trusted user could know. He does so without transmitting private
information or information that could be used to deduce private information.

A multicast cryptography scheme is a one-to-many communication scheme in contrast
to a one-to-one communication scheme. In the multicast setting, the protocol is defined
such that the network operator communicates to several users at a time and users can
communicate with other users in a secured manner. For example, consider a scenario when
several users are trying to get access to a super computing cluster. Users would like to
communicate amongst other users to observe scheduling and computing allocation. Further,
the network operator would like to assure scheduling is done fairly and only trusted users
have access. Multicast schemes have numerous applications across the Internet. They are
employed in a variety of Internet protocols, notably in streaming and copy right protection
services and often incorporate dynamic behavior. [75].

In this multicast model, a network operator controls a secret object K. Each user in
the network is running a k−threshold scheme. A k−threshold scheme is where a user must
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obtain exactly k keys to obtain access to K. A trusted user is someone the network operator
allows access to K. An untrusted user is someone who the network operator does not allow
access to K. The trusted user status is not permanent as a trusted user can become an
untrusted user over time. The untrusted user can use his knowledge adversarily and try to
obtain access to K.

We will model the user with a process template that represents the k-threshold scheme.
There are three states, {NT, T,K} , where NT denotes the process not trying to obtain
access to secret K, C denotes a state of computation where he is using his keys to compute
K, and K denotes access to K. The process when invoked transitions from NT to T ,
otherwise loops at NT . In state T , the process can loop as it may not have enough
information to compute K or it transitions to K and back to a state of NT . Each process
runs independently and does not make decisions with respect to other processes. The set
of atomic propositions will be AP = {trusted, untrusted}, to denote whether the user is
trusted or not.

In this model, we will assume the security of identification and all trusted users can
identify themselves to the network operator. Whenever a user obtains a key, knowledge of
the key is permanently retained (he does not forget it). However, the network operator can
choose to invalidate any key at will. To get access to K a user must have k valid keys. If
a user’s key becomes invalid, a new key must be obtained from the network operator to
maintain access to K. In this model K is considered to be a resource rather than a piece
of knowledge. A trusted user whom once had access to K turned into adversary can not
exploit his previous access to attack the network.

A Logical Key Hierarchy (LKH) is a structural representation of knowledge of the users
in the form of a complete binary tree of depth d. Each leaf node denotes both a user and
his private key. Each non-leaf nodes denote a shared key. A user knows all keys in the path
from the user’s representative node to the root node. All keys in the logical key hierarchy
are valid keys. When a network operator chooses to invalidate a key, users may lose access
to K and new valid keys must be rebroadcasted appropriately.

We will use a topology to model the network operator and the symbolic knowledge of
each user within the logical key hierarchy. The topology of the network T = (U,K,E, L) is
a four tuple composed of a set of users, a set of keys, a set of directed edges from key to
key, and a set of links from users to a key. In our example a user has exactly one link to a
key which represents his private key.

Figure 7.3 demonstrates a logical key hierarchy for a network with 16 users denoted as
squares. Each user has a link to one key (the users private key) denoted with a dotted line.
The path formed from the root key to the user’s leaf key denotes the knowedge of the user.
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Figure 7.3: An example Logical Key Hierarchy of depth 5 and 16 users

In the figure, each user knows exactly the depth of the tree d = 5 keys. The logical key
hierarchy was independently invented by [79] and [81], We use the formulation provided in
[75].

We will use d to denote the depth of the key tree, N to denote the number of users.
Each process is representative of a k threshold scheme with k = d. For mutations, we want
to be able to support the addition and removal of users into the network. While doing so,
we will need to regenerate keys as their values before are no longer valid. These regenerated
keys will need to be rebroadcasted to the appropriate trusted users. The replaced keys are
deemed invalid while the keys currently in the logical key hierarchy are valid.

The security specification Ψ of D:

1. A trusted user knows exactly d valid keys. (Topological Specification 1)

2. An untrusted user knows zero valid keys. (Topological specification 2)

3. A user can compute secret K if k unique keys are known. (Programmatic Specification)

We will next define two mutations to add and remove a user, and then we will argue
that they uphold the topological specification.
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Add User

1. Rejection Criteria: None

2. Check if 2d−1 < N + 1 ≤ 2d is satisfied.

(a) If not, the topology needs to be recreated to maintain a complete binary tree key
structure. Create a tree with updated keys of depth d+ 1 and connect the N + 1
users with new keys with the instantiated new user. Recompute and broadcast
keys for each node.

(b) Otherwise, instantiate user marked as neither trusted nor untrusted and add
appropriately to the logical key hierarchy, so the tree remains complete.

3. Compute path π from the user u to the root node.

4. Broadcast all keys in π to u.

5. Mark new user as trusted

Revoke User

1. Rejection Criteria: Reject if N = 0

2. Check if 2d−1 < N − 1 ≤ 2d is satisfied.

(a) If not, a new topology needs to be created by creating a complete binary tree of
depth d− 1 with N − 1 leaf nodes with new keys with the instantiated new user.
Compute new keys for each node and broadcast, and return.

(b) Otherwise, compute path π from the user u who is going to be removed and root
node.

(c) Invalidate and broadcast new keys on path π to all users but u.

(d) Mark as untrusted.
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Theorem 22. The multicast model is upholds the described security specification.

Proof Sketch. We will argue that both the add user and remove user upholds the
topological specifications when applied to a model where the topological specification is
meet. For adding a single user, preexisting users in the logical key hierarchy are all trusted
users as they were in the logical key hierarchy on the start. Furthermore, the user before
addition was untrusted and knew no keys on the start. The logical key hierarchy will
need to be rebuilt if N = 2d on start of mutation, to make room for the incoming user.
On the rebuild, all old keys become invalid on the reconstruction, so there is no risk of
a user having more than d valid keys. Otherwise, the only information change is that to
user u who had no keys on start and he receives exactly d keys in the mutation process.
Similarly, for node removal in the case of reconstruction, all preexisting keys become invalid
and only trusted users receive valid keys. Otherwise, all d keys of u are made invalid,
so he knows zero valid keys on termination. All remaining trusted who lose valid keys
get updated valid keys in the rebroadcast process. We now have established proof rule
(3) and hence (4) under our parametric assumption. This completes our model’s verification.
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Chapter 8

Conclusions

In this thesis, we discussed computer aided verification and model checking. We began by
considering models that resembled a single computational structure and then furthered it
to consider concurrent computational structures.

The focus of this thesis is dynamic model checking. We provided a formulation for
a mutation procedure that manipulates the overall topology of the model. We further
promoted the use of a topology as an abstraction technique to reduce the dominating
complexity of programmatic verification.

When verifying a dynamic model, we analyze all resulting models. This approach is
exhaustive and ideal for the verification of safety properties. This exhaustive analysis is
very expensive from a computational complexity standpoint and we promote the use of
parametric assumptions to make the overall complexity reasonable.

While full reachable model analysis is valid, in practice, mutations can exhibit a notion
of time, and a complete state space evaluation of each part may not necessarily be required.
Further, due to this exhaustive approach liveness properties will almost always fail to be
verified.

Two common techniques that have had empirical success in the model checking of
transition systems that resemble concurrent computational structures. The first is symmetry
analysis which was outlined in this thesis, but no results were made available in this thesis.
The second is partial order reduction, which is not discussed in this thesis.

Model Checking is a technique that is fully automizable, and our formulation of dynamic
model is claimed to be automizable. Yet, in this thesis, all examples were analyzed manually.
A full proof of concept of dynamic model checking would require an implementation.
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